% University at Buffalo The State University of New York . REACHING OTHERS

PCL Tutorial:
The Point Cloud Library By Example

Jeff Delmerico

Vision and Perceptual Machines Lab
106 Davis Hall
UB North Campus

jadl2@buffalo.edu

February 11, 2013

Jeff Delmerico February 11, 2013 1/38

jad12@buffalo.edu

.[é University at Buffalo The State University of New York . REACHING OTHERS

Point Clouds

Definition

A point cloud is a data structure used to represent a collection of
multi-dimensional points and is commonly used to represent
three-dimensional data.

In a 3D point cloud, the points usually represent the X, Y, and Z
geometric coordinates of an underlying sampled surface. When
color information is present, the point cloud becomes 4D.

Jeff Delmerico February 11, 2013 Introduction 2/38

% University at Buffalo The State University of New York . REACHING OTHERS

Where do point clouds come from?

RGB-D cameras
Stereo cameras

3D laser scanners
Time-of-flight cameras

Sythetically from software
(e.g. Blender)

Jeff Delmerico February 11, 2013 Introduction 3/38

% University at Buffalo The State University of New York . REACHING OTHERS

Point Cloud Library

PCL is a large scale, open project for 2D /3D image and point
cloud processing (in C++, w/ new python bindings).

The PCL framework contains numerous state-of-the art
algorithms including filtering, feature estimation, surface
reconstruction, registration, model fitting and segmentation.
PCL is cross-platform, and has been successfully compiled and
deployed on Linux, MacOS, Windows, and Android/iOS.
Website: pointclouds.org

sample_consensus '.I kdtree F range_image tracking

Jeff Delmerico February 11, 2013 Introduction 4/38

pointclouds.org

% University at Buffalo The State University of New York . REACHING OTHERS

Getting PCL

First, download PCL for your system from:
http://pointclouds.org/downloads/

If you want to try the python bindings (currently for only a
subset of the full PCL functionality), go here:
http://strawlab.github.com/python-pcl/

PCL provides the 3D processing pipeline for ROS, so you can
also get the perception_pcl stack and still use PCL standalone.

PCL depends on Boost, Eigen, FLANN, and VTK.

Jeff Delmerico February 11, 2013 Using PCL 5/38

http://pointclouds.org/downloads/
http://strawlab.github.com/python-pcl/

% University at Buffalo The State University of New York . REACHING OTHERS

Basic Structures

The basic data type in PCL is a PointCloud. A PointCloud is a
templated C4++ class which contains the following data fields:
width (int) - secifies the width of the point cloud dataset in
the number of points.
the total number of points in the cloud (equal with the
number of elements in points) for unorganized datasets
the width (total number of points in a row) of an organized
point cloud dataset
height (int) - Specifies the height of the point cloud dataset
in the number of points.
set to 1 for unorganized point clouds
the height (total number of rows) of an organized point cloud
dataset
points (std::vector(PointT)) - Contains the data array
where all the points of type PointT are stored.

Jeff Delmerico February 11, 2013 Using PCL 6/38

% University at Buffalo The State University of New York . REACHING OTHERS

Basic Structures

is_dense (bool) - Specifies if all the data in points is finite
(true), or whether the XYZ values of certain points might
contain Inf/NaN values (false).

sensor_origin_ (Eigen::Vector4f) - Specifies the sensor
acquisition pose (origin/translation). This member is usually
optional, and not used by the majority of the algorithms in
PCL.

sensor_orientation_ (Eigen::Quaternionf) - Specifies the
sensor acquisition pose (orientation). This member is usually
optional, and not used by the majority of the algorithms in
PCL.

Jeff Delmerico February 11, 2013 Using PCL 7/38

% University at Buffalo The State University of New York . REACHING OTHERS

Point Types

PointXYZ - float x, vy, z

PointXYZI - float x, y, z, intensity
PointXYZRGB - float x, vy, z, rgb
PointXYZRGBA - float x, vy, z, uint32_t rgba
Normal - float normal[3], curvature
PointNormal - float x, y, z, normal[3], curvature
Histogram - float histogram[N]

And many, many, more. Plus you can define new types to suit
your needs.

Jeff Delmerico February 11, 2013 Using PCL 8/38

tﬁ University at Buffalo The State University of New York . REACHING OTHERS

Building PCL Projects

PCL relies on CMake as a build tool. CMake just requires that
you place a file called CMakelLists.txt somewhere on your project
path.

CMakelists.txt

cmake_minimum_required(VERSION 2.6 FATAL_.ERROR)
project(MY_GRAND_PROJECT)

find_package(PCL 1.3 REQUIRED COMPONENTS common io)
include_directories($PCL_INCLUDE_DIRS)
link_directories($PCL_LIBRARY_DIRS)
add_definitions($PCL_DEFINITIONS)
add_executable(pcd_write_test pcd_write.cpp)
target_link_libraries(pcd_write_test $PCL_COMMON_LIBRARIES
$PCL_IO_LIBRARIES)

Jeff Delmerico February 11, 2013 Using PCL 9/38

% University at Buffalo The State University of New York . REACHING OTHERS

Building PCL Projects

Generating the Makefile & Building the Project

$ cd /PATH/TO/MY/GRAND/PROJECT
$ mkdir build

$ cd build

$ cmake ..

$ make

Jeff Delmerico February 11, 2013 Using PCL 10/38

% University at Buffalo The State University of New York . REACHING OTHERS

PCD File Format

A simple file format for storing multi-dimensional point data. It
consists of a text header (with the fields below), followed by the
data in ASCII (w/ points on separate lines) or binary (a memory
copy of the points vector of the PC).

VERSION - the PCD file version (usually .7)

FIELDS - the name of each dimension/field that a point can have (e.g. FIELDS

xyz)

SIZE - the size of each dimension in bytes (e.g. a float is 4)

TYPE - the type of each dimension as a char (I = signed, U = unsigned, F =
float)

COUNT - the number of elements in each dimension (e.g. X, y, or z would only
have 1, but a histogram would have N)

WIDTH - the width of the point cloud

HEIGHT - the height of the point cloud

VIEWPOINT - an acquisition viewpoint for the points: translation (tx ty tz) +
quaternion (qw gx qy qz)

POINTS - the total number of points in the cloud

DATA - the data type that the point cloud data is stored in (ascii or binary)

Jeff Delmerico February 11, 2013 1/0 11/38

.[é University at Buffalo The State University of New York REACHING OTHERS

PCD Example

.PCD v.7 - Point Cloud Data file format
VERSION .7

FIELDS x y z rgb

SIZE4 444

TYPEFFFF

COUNT 1111

WIDTH 213

HEIGHT 1

VIEWPOINT 0001000
POINTS 213

DATA ascii

0.93773 0.33763 0 4.2108e+06
0.90805 0.35641 0 4.2108e+06
0.81915 0.32 0 4.2108e+-06
0.97192 0.278 0 4.2108e+06
0.944 0.29474 0 4.2108e+06
0.98111 0.24247 0 4.2108e+06
0.93655 0.26143 0 4.2108e+06
0.91631 0.27442 0 4.2108e+06
0.81921 0.29315 0 4.2108e+06
0.90701 0.24109 0 4.2108e+06
0.83239 0.23398 0 4.2108e+06
0.99185 0.2116 0 4.2108e+06
0.89264 0.21174 0 4.2108e+06

Jeff Delmerico February 11, 2013 1/0 12/38

tﬁ University at Buffalo The State University of New York REACHING OTHERS

Writing PCD Files

write_pcd.cpp

#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>

int
main (int argc, charxx argv)

pcl:: PointCloud<pcl :: PointXYZ> cloud;

// Fill in the cloud data
cloud . width = 50;
cloud . height = 1¢
cloud.is-dense = false;

cloud . points.resize (cloud.width * cloud.height);
for (size_t i = 0; i < cloud.points.size (); ++i)

cloud. points[i].x = 1024 = rand () / (RAND.MAX + 1.0f);
cloud. points[i].y = 1024 = rand () / (RAND.MAX + 1.0f);
cloud. points[i].z = 1024 = rand () / (RAND.MAX + 1.0f);

pcl::io::savePCDFileASCIlI (" test_pcd.pcd”, cloud);
return (0);

Jeff Delmerico February 11, 2013 1/0 13/38

tﬁ University at Buffalo The State University of New York REACHING OTHERS

Reading PCD Files

read_pcd.cpp
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>

int
main (int argc, charxx argv)

pcl:: PointCloud<pcl :: PointXYZ >::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);

// Load the file
if (pcl::io::loadPCDFile<pcl::PointXYZ> ("test_pcd.pcd”, xcloud) = —1)

PCL_ERROR (" Couldn't_read._file_test_pcd.pcd_\n");
return (—1);

// Do some processing on the cloud here

return (0);

Jeff Delmerico February 11, 2013 1/0 14/38

% University at Buffalo The State University of New York . REACHING OTHERS

Getting Point Clouds from OpenNI

openni_grabber.cpp

#include <pcl/io/openni_grabber.h>
#include <pcl/visualization/cloud_viewer.h>

class SimpleOpenNIViewer

{
public:
SimpleOpenNIViewer () : viewer ("PCL.OpenNl_Viewer") {}
void cloud_cb. (const pcl::PointCloud<pcl::PointXYZRGBA >::ConstPtr &cloud)

if (!viewer.wasStopped())

viewer .showCloud (cloud);
}

pcl::visualization :: CloudViewer viewer;

Jeff Delmerico February 11, 2013 1/0 15/38

tﬁ University at Buffalo The State University of New York . REACHING OTHERS

Getting Point Clouds from OpenNI

openni_grabber.cpp

void run ()

pcl:: Grabberx interface = new pcl:: OpenNIGrabber();

boost :: function<void (const pcl::PointCloud<pcl::PointXYZRGBA >::ConstPtr&)> f =
boost :: bind (&SimpleOpenNIViewer::cloud_cb_, this, _1);

interface —>registerCallback (f);

interface—>start ();

while (!viewer.wasStopped())

boost:: this_thread ::sleep (boost::posix_-time::seconds (1));
}

interface—=stop ();
I
int main ()
SimpleOpenNIViewer v;
v.run ();

return 0;

}

Jeff Delmerico February 11, 2013 1/0 16/38

tﬁ University at Buffalo The State University of New York REACHING OTHERS

Normal Estimation

compute_normals.cpp

void
downsample (pcl::PointCloud<pcl ::PointXYZRGB >::Ptr &points, float leaf_size ,
pcl:: PointCloud<pcl :: PointXYZRGB >:: Ptr &downsampled_out)

{
pcl:: VoxelGrid<pcl :: PointXYZRGB> vox_grid ;
vox_grid.setlLeafSize (leaf_size, leaf_size, leaf_size);
vox_grid.setlnputCloud (points);
vox_grid. filter (xdownsampled_out);

}

void compute_surface_normals (pcl::PointCloud<pcl::PointXYZRGB >::Ptr &points ,
float normal_radius, pcl::PointCloud<pcl::Normal>::Ptr &normals_out)

{
pcl:: NormalEstimation<pcl :: PointXYZRGB, pcl::Normal> norm_est;
// Use a FLANN-based KdTree to perform neighborhood searches
norm_est.setSearchMethod (pcl::search::KdTree<pcl::PointXYZRGB >::Ptr

(new pcl::search::KdTree<pcl::PointXYZRGB >));

// Specify the local neighborhood size for computing the surface normals
norm_est.setRadiusSearch (normal_radius);
// Set the input points
norm_est.setlnputCloud (points);
// Estimate the surface normals and store the result in "normals_out”
norm_est.compute (xnormals_out);

}

Jeff Delmerico February 11, 2013 3D Features 17/38

tﬁ University at Buffalo The State University of New York REACHING OTHERS

compute_normals.cpp

void visualize_normals (const pcl::PointCloud<pcl::PointXYZRGB >::Ptr points,

const pc PointCloud<pcl :: PointXYZRGB >:: Ptr normal_points ,
const pcl::PointCloud<pcl:: Normal >::Ptr normals)
{
pcl::visualization :: PCLVisualizer viz;
viz .addPointCloud (points, "points”);
viz.addPointCloud (normal_points, "normal_points”);
viz .addPointCloudNormals<pcl :: PointXYZRGB, pcl::Normal> (normal_points, normals, 1, 0.
viz.spin ();
b

int main (int argc, charxx argv)
// Load data from pcd

pcl:: PointCloud<pcl :: PointXYZRGB >:: Ptr ds (new pcl:: PointCloud<pcl :: PointXYZRGB >);
pcl:: PointCloud<pcl :: Normal >::Ptr normals (new pcl:: PointCloud<pcl :: Normal >);
// Downsample the cloud

const float voxel_grid_leaf_size = 0.01;

downsample (cloud, voxel_grid_-leaf_size , ds);

// Compute surface normals

const float normal_radius = 0.03;

compute_surface_normals (ds normal_radius, normals);

// Visualize the normals

visualize_normals(cloud, ds, normals);

return (0);

}

Jeff Delmerico February 11, 2013 3D Features 18/38

% University at Buffalo The State University of New York . REACHING OTHERS

Computing 3D Features

lindices ' indices H lindices 1 indices
Isurface | Isurface 1 surface I surface
i i i
1 1 I
i i O i o O
1 1 O I
pl i p1 i pi O | p1 O
i i i
1 1 1
2
P2 ' ' TROR? ' a1 \oP
: : ‘“ o | o
1 1 o b [[]
q2

setlnputCloud = False | setlnputCloud = True
setSearchSurface = False | compute on all points, | compute on a subset,

using all points using all points
setSearchSurface = True | compute on all points, | compute on a subset,
using a subset using a subset

Jeff Delmerico February 11, 2013 3D Features 19/38

% University at Buffalo The State University of New York . REACHING OTHERS

Filtering

When working with 3D data, there are many reasons for filtering
your data:

Restricting range (PassThrough)
Downsampling (VoxelGrid)

Outlier removal
(StatisticalOutlierRemoval /
RadiusOutlierRemoval)

Selecting indices

Jeff Delmerico February 11, 2013 filtering 20/38

tﬁ University at Buffalo The State University of New York . REACHING OTHERS

PassThrough Filter

Filter out points outside a specified range in one dimension. (Or
filter them in with setFilterLimitsNegative)

filtering.cpp

pcl:: PointCloud<pcl :: PointXYZ >::Ptr cloud
(new pcl::PointCloud<pcl:: PointXYZ>);
pcl:: PointCloud<pcl::PointXYZ>::Ptr cloud_filtered
(new pcl::PointCloud<pcl::PointXYZ>);

// PassThrough filter

pcl:: PassThrough<pcl :: PointXYZ> pass;
pass.setlnputCloud (cloud);
pass.setFilterFieldName (”"x");
pass.setFilterLimits (—0.75, 0.5);
//pass.setFilterLimitsNegative (true);
pass. filter (xcloud_filtered);

Jeff Delmerico February 11, 2013 filtering 21/38

% University at Buffalo The State University of New York . REACHING OTHERS

Downsampling to a Voxel Grid

Voxelize the cloud to a 3D grid. Each occupied voxel is
approximated by the centroid of the points inside of it.

filtering.cpp

// Downsample to voxel grid

pcl:: VoxelGrid<pcl :: PointXYZ> vg;
vg.setlnputCloud (cloud);
vg.setlLeafSize (0.01f, 0.01f, 0.01f);
vg.filter (sxcloud_filtered);

Jeff Delmerico February 11, 2013 filtering 22/38

% University at Buffalo The State University of New York . REACHING OTHERS

Statistical Outlier Removal

Filter points based on their local point densities. Remove points
that are sparse relative to the mean point density of the whole
cloud.

filtering.cpp

// Statistical Outlier Removal

pcl:: StatisticalOutlierRemoval <pcl ::PointXYZ> sor;
sor.setlnputCloud (cloud);

sor.setMeanK (50);

sor.setStddevMulThresh (1.0);

sor.filter (xcloud_filtered);

Jeff Delmerico February 11, 2013 filtering 23/38

% University at Buffalo The State University of New York . REACHING OTHERS

What is a keypoint?

A keypoint (also known as an “interest point”) is simply a point
that has been identied as a relevant in some way. A good keypoint
detector will find points with the following properties:

Sparseness: Typically, only a small subset of the points in the
scene are keypoints.

Repeatiblity: If a point was determined to be a keypoint in
one point cloud, a keypoint should also be found at the
corresponding location in a similar point cloud. (Such points
are often called "stable")

Distinctiveness: The area surrounding each keypoint should
have a unique shape or appearance that can be captured by
some feature descriptor.

Jeff Delmerico February 11, 2013 Keypoints 24/38

% University at Buffalo The State University of New York . REACHING OTHERS

Why compute keypoints?

Some features are expensive to compute, and it would be
prohibitive to compute them at every point. Keypoints
identify a small number of locations where computing
feature descriptors is likely to be most effective.

When searching for corresponding points, features computed
at non-descriptive points will lead to ambiguous feature
corespondences. By ignoring non-keypoints, one can reduce
error when matching points.

Jeff Delmerico February 11, 2013 Keypoints 25/38

tﬁ University at Buffalo The State University of New York . REACHING OTHERS

Detecting 3D SIFT Keypoints

keypoints.cpp

void

detect_keypoints (pcl::PointCloud<pcl ::PointXYZRGB >::Ptr &points, float min_scale,
int nr_octaves, int nr_scales_per_octave, float min_contrast,
pcl:: PointCloud<pcl :: PointWithScale >::Ptr &keypoints_out)

{

pcl::SIFTKeypoint<pcl :: PointXYZRGB, pcl::PointWithScale> sift_detect;

// Use a FLANN-based KdTree to perform neighborhood searches
sift_detect .setSearchMethod (pcl::search::KdTree<pcl ::PointXYZRGB >::Ptr
(new pcl::search::KdTree<pcl ::PointXYZRGB >));

// Set the detection parameters
sift_detect.setScales (min_scale, nr_octaves, nr_scales_per_octave);

sift_detect .setMinimumContrast (min_contrast);

// Set the input
sift_detect.setlnputCloud (points);

// Detect the keypoints and store them in "keypoints_out”
sift_detect .compute (xkeypoints_out);

Jeff Delmerico February 11, 2013 Keypoints 26/38

tﬁ University at Buffalo The State University of New York . REACHING OTHERS

Computing PFH Features at Keypoints

keypoints.cpp

void

PFH_features_at_keypoints(pcl::PointCloud<pcl ::PointXYZRGB >::Ptr &points ,

pcl:: PointCloud<pcl :: Normal >::Ptr &normals,
pcl::PointCloud<pcl:: PointWithScale >::Ptr &keypoints ,

float feature_radius ,

pcl:: PointCloud<pcl:: PFHSignaturel25 >::Ptr &descriptors_out)

// Create a PFHEstimation object
pcl:: PFHEstimation<pcl :: PointXYZRGB, pcl::Normal, pcl::PFHSignaturel25> pfh_est;
pfh_est.setSearchMethod (pcl::search::KdTree<pcl::PointXYZRGB>::Ptr
(new pcl::search :: KdTree<pcl :: PointXYZRGB >));
// Specify the radius of the PFH feature
pfh_est.setRadiusSearch (feature_radius);
// Copy XYZ data for use in estimating features
pcl:: PointCloud<pcl :: PointXYZRGB >:: Ptr keypoints_xyzrghb
(new pcl::PointCloud<pcl :: PointXYZRGB >);
pcl::copyPointCloud (xkeypoints, xkeypoints_xyzrgb);
// Use all of the points for analyzing the local structure of the cloud
pfh_est.setSearchSurface (points);
pfh_est.setlnputNormals (normals);
// But only compute features at the keypoints
pfh_est.setlnputCloud (keypoints_xyzrgb);
// Compute the features
pfh_est.compute (xdescriptors_out);

Jeff Delmerico February 11, 2013 Keypoints 27/38

tﬁ University at Buffalo The State University of New York . REACHING OTHERS

Finding Correspondences

keypoints.cpp

void
feature_correspondences (pcl::PointCloud<pcl:: PFHSignaturel25 >::Ptr &source_descriptors ,

}

pcl:: PointCloud<pcl:: PFHSignaturel25 >::Ptr &target_descriptors ,
std :: vector<int> &correspondences_out ,
std :: vector<float> &correspondence_scores_out)

// Resize the output vector
correspondences_out.resize (source_descriptors—>size ());
correspondence_scores_out.resize (source_descriptors—>size ());

// Use a KdTree to search for the nearest matches in feature space
pcl::search :: KdTree<pcl :: PFHSignaturel25> descriptor_kdtree;
descriptor_kdtree.setlnputCloud (target_descriptors);

// Find the index of the best match for each keypoint
const int k = 1;

std :: vector<int> k_indices (k);

std :: vector<float> k_squared_distances (k);

for (size-t i = 0; i < source_descriptors—>size (); ++i)
descriptor_kdtree .nearestKSearch (xsource_descriptors, i, k,
k_indices , k_squared_distances);
correspondences_out[i] = k_indices [0];
correspondence_scores_out[i] = k_squared_distances [0];
e elmerico ebruary 11, 201 eypoints
} Jeff Delmeri Feb 2013 Keypoi 28/38

% University at Buffalo The State University of New York REACHING OTHERS

K-d Trees

X 7.2

Jeff Delmerico February 11, 2013 Trees 29/38

tﬁ University at Buffalo The State University of New York . REACHING OTHERS

KdTree Neighbor Search

kdtree.cpp

#include <pcl/kdtree/kdtree_flann .h>

pcl::KdTreeFLANN<pcl :: PointXYZ> kdtree;
kdtree.setlnputCloud (cloud);

// K nearest neighbor search

int K= 10;

pcl ::PointXYZ searchPoint;

st vector<int> pointldxNKNSearch (K);

std :: vector<float> pointNKNSquaredDistance (K);

if (kdtree.nearestKSearch (searchPoint, K, pointldxNKNSearch ,
pointNKNSquaredDistance) > 0)

{

}

// Neighbors within radius search

std :: vector<int> pointldxRadiusSearch;

std :: vector<float> pointRadiusSquaredDistance;

float radius = 256.0f % rand () / (RANDMAX + 1.0f);

if (kdtree.radiusSearch (searchPoint, radius, pointldxRadiusSearch,

pointRadiusSquaredDistance) > 0)

{

¥ Jeff Delmerico February 11, 2013 Trees

30/38

% University at Buffalo The State University of New York . REACHING OTHERS

Octrees

OO

Jeff Delmerico February 11, 2013 Trees 31/38

tﬁ University at Buffalo The State University of New York REACHING OTHERS

octree.cpp

#include <pcl/octree/octree.h>

float resolution = 128.0f;

pcl::octree:: OctreePointCloudSearch<pcl::PointXYZ> octree (resolution);
octree.setlnputCloud (cloud);

octree.addPointsFromlnputCloud ();

// Neighbors within voxel search
if (octree.voxelSearch (searchPoint, pointldxVec))

}

// K nearest neighbor search
int K= 10;
if (octree.nearestKSearch (searchPoint, K,
pointldxNKNSearch , pointNKNSquaredDistance) > 0)
{

}

// Neighbors within radius search
if (octree.radiusSearch (searchPoint, radius,

pointldxRadiusSearch , pointRadiusSquaredDistance) > 0)
{

}

Jeff Delmerico February 11, 2013 Trees 32/38

% University at Buffalo The State University of New York . REACHING OTHERS

Sample Consensus

The Random Sample Consensus (RANSAC) algorithm assumes the
data is comprised of both inliers and outliers. The distribution of
inliers can be explained by a set of parameters and a model. The
outlying data does not fit the model.

Jeff Delmerico February 11, 2013 Sample Consensus & Segmentation 33/38

% University at Buffalo The State University of New York . REACHING OTHERS

Plane Fitting with RANSAC

sample_consensus.cpp

#include <pcl/sample_consensus/ransac.h>
#include <pcl/sample_consensus/sac_model_plane.h>
#include <pcl/sample_consensus/sac_model_sphere.h>

std :: vector<int> inliers;

// created RandomSampleConsensus object and compute the model
pcl::SampleConsensusModelPlane<pcl :: PointXYZ >::Ptr

model_p (new pcl::SampleConsensusModelPlane<pcl :: PointXYZ> (cloud));
pcl:: RandomSampleConsensus<pcl :: PointXYZ> ransac (model_p);
ransac.setDistanceThreshold (.01);
ransac.computeModel ();
ransac.getlnliers(inliers);

// copies all inliers of the model computed to another PointCloud
pcl:: copyPointCloud<pcl :: PointXYZ>(*cloud , inliers , =final);

Jeff Delmerico February 11, 2013 Sample Consensus & Segmentation 34/38

tﬁ University at Buffalo The State University of New York . REACHING OTHERS

euclidean_cluster_extraction.cpp

#include <pcl/segmentation/extract_clusters.h>

pcl::search:: KdTree<pcl:: PointXYZ >::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
tree—>setlnputCloud (cloud_filtered);

std :: vector<pcl:: Pointindices> cluster_indices;
pcl:: EuclideanClusterExtraction<pcl :: PointXYZ> ec;
ec.setClusterTolerance (0.02); // 2cm
ec.setMinClusterSize (100);

ec.setMaxClusterSize (25000);

ec.setSearchMethod (tree);

ec.setlnputCloud (cloud_filtered);

ec.extract (cluster_indices);

for (std::vector<pcl::Pointlndices >::const_iterator it = cluster_indices.begin ();
it != cluster_indices.end (); ++it)
{
pcl:: PointCloud<pcl :: PointXYZ >::Ptr cloud_cluster
(new pcl::PointCloud<pcl ::PointXYZ>);
for (std::vector<int >::const_iterator pit = it—>indices.begin ();
pit != it—indices.end (); pit++)
cloud_cluster —>points.push_back (cloud_filtered —>points[*pit]);
cloud_cluster >width = cloud_cluster —points.size ();
cloud_cluster —>height = 1;
cloud_cluster—>is_dense = true;
b

Jeff Delmerico February 11, 2013 Sample Consensus & Segmentation 35/38

% University at Buffalo The State University of New York . REACHING OTHERS

Iterative Closest Point

ICP iteratively revises the transformation (translation,
rotation) needed to minimize the distance between the
points of two raw scans.

Inputs: points from two raw scans, initial estimation of the
transformation, criteria for stopping the iteration.

Output: refined transformation.

The algorithm steps are :

Associate points by the nearest neighbor criteria.

Estimate transformation parameters using a mean
square cost function.

Transform the points using the estimated parameters.

Iterate (re-associate the points and so on).
Jeff Delmerico February 11, 2013 Registration 36/38

% University at Buffalo The State University of New York . REACHING OTHERS

Iterative Closest Point

icp.cpp
#include <pcl/registration/icp.h>

pcl::lterativeClosestPoint <pcl::PointXYZRGB, pcl::PointXYZRGB> icp;
icp.setlnputCloud (cloud2);

icp.setlnputTarget (cloudl);

icp.setMaximumlterations (20);

icp.setMaxCorrespondenceDistance (0.1);

Eigen:: Matrix4f trafo;

icp.align (xcloud2);

(*cloud2) 4+= x(cloudl);

Jeff Delmerico February 11, 2013 Registration 37/38

% University at Buffalo The State University of New York . REACHING OTHERS

Conclusion

PCL has many more tutorials and lots sample code here:
http://pointclouds.org/documentation/tutorials/. And
the tutorials only cover a small portion of its overall functionality.

| hope you find a use for PCL in your own projects, and you should
feel free to ask me any PCL-related questions in the future
(jad12@buffalo.edu).

Jeff Delmerico February 11, 2013 Conclusion 38/38

http://pointclouds.org/documentation/tutorials/

	Introduction
	Using PCL
	I/O
	3D Features
	filtering
	Keypoints
	Trees
	Sample Consensus & Segmentation
	Registration
	Conclusion

