

Connecting People, Science and Regulation

PDA Europe Parenterals 2014

November 5, 2014 Munich

Qualifying Integral Container Closure Systems

Dr. Petra Huhn Technical Customer Support West Pharmaceutical Services

Conformance

Product-Package Maximum Allowable Leakage Impact on Product Quality

Evidence

Package Seal Quality Container Closure Integrity

- Provide descriptions of:
 - Overall process for the filling, capping and aseptic assembly of the drug product.
 - Method and results demonstrating container closure integrity.
 - Container/closure compatibility with the drug product to include the results of compatibility studies.
 - Washing, sterilization and depyrogenation process and the associated validation data for containers, closures and equipment.

Package Integrity (CCI)

All package seals

allow <u>some</u> leakage.

- "Smallest" diameter leaks allow gas flow only
- "Larger" diameter leaks can also allow liquid flow
- "Largest" leaks may allow microbial ingress

PDA

Risks to Product Quality

Material Compatibility

- Leaching
- Particles
- Product loss/Degradation
- Product Stability
 - Increase in moisture
 - Deterioration of lyocake
 - pH shift
 - Protein modification /aggregation
- Storage/Distribution

Container Closure Integrity Failure

- Leakage
- Loss of product
- Increased concentration
- Contamination
- Sterility failure
- Critical headspace Loss
- Over pressure
- Under pressure

<u>Closures</u>
 <u>Rubber</u>

Dimensionally stable Withstand temperature extremes Lubricious Sterilizable Low extractability Low gas transmission Machinability Cleanliness

Hardness Elasticity/resealability Compression strength Flow properties Low moisture retention Low abrasion Transparent High tensile and compressive strength Smooth sealing surface Low fracture/ breakage Scratch resistance

Component Quality and System Fit

Component

PDA

- Chemical compatibility
- Physical performance
- Design/dimensions
- Surface characteristics
- System
 - Fit
 - Component performance
 - Processing
 - Assembly

Sealing Risks

- Inference fit of primary seal
 - Surface defects
 - Closure plug design
 - Improper position into vial neck
 - Vial out-of-round
- Aluminum seal skirt length
- Maintain integrity prior to crimping
- Controlling land compression seal

 Machining applied force

Seal Quality Evaluation Methods⁽¹⁾

Method	Application
Dimensional Analysis	Critical review of component technical specifications
	Dimensions and tolerances, variability (Cp, CpK)
	Stacking, interference, worst case probability
Visualization of Component Design and Fit (2)	Component fit analysis for pre-capping integrity Lessens risk of headspace loss
	Lessens risk of misassembly
Raised Stopper Test	Monitors stopper position just prior to capping
	Lessens risk of headspace loss
	Lessens risk of misassembly
Finite Element Agaylysis	Break down components into elements
	Apply laws of physics at the element level
	Solve for physical state elements
	(e.g.: temperature, stress, strain, pressure, etc.)
X-Ray Tomography	Evaluates, component fit, elastomer deformation
Residual Seal Force (RSF)	Verifies compressive force of crimped closure on vial land seal surface Indirect measure of elastomer compression (deformation) Ensures seal force Consistency
Experimental Design	Identify and evaluate factors that affect seal integrity and capping forces. Design optimization and critical parameter settings

(1) Adapted from D.Guazzo "Selection and application of CCI and seal quality tests throughout parenteral product life cycle" PDA Contaiiner/Closure Workshop, May 2013, Bethesda, MD USA

(2) P.Lam, A.Stern, PDA J Pharm Science and Technology 2010, 64

(3) R.Paul, "Functionality and fit through-oit shelf life: Applying Finite Element Analysis to Container Closure Systems" PDA Contaiiner/Closure Workshop, May 2013, Bethesda, MD USA

• Detrimental gases • Liquid/microorganism • Extraneous debris

Case by Case - Method Development - Method Validation

- Define the package's inherent integrity
 - Maximum allowable leakage
- Means of optimizing package design based on use challenges
- Check CCI as a function of product stability
- Routine manufacturing
- Commercial product stability

Proposed Revisions to USP <1207> Sterile Product Package – Integrity Evaluation

Product Life Cycle Testing

He Leak

Stack-up Flange thickness Crown height: Skirt length: Stack-up: RSF: (%)Compression

Component fit • Component material • Component processing

Any manual or mechanical manipulation of the sterilized drug, components, containers, or closures prior to or during aseptic assembly poses the risk of contamination and thus necessitates careful control.

No single package leak test or package seal quality test method is applicable to all product-package systems. Some product-packages may require more than one test method during the product life cycle.

Product Life Cycle Testing

Integral Packaging: Verify-Validate

Design to Build Assurance of Integrity Throughout the Products' Market Life

- Quality
 - Consider type of materials
- System Fit
 - Conditions of use
- Sealing
 - Optimal capping equipment and processes
- CCI
 - Establish maximum allowable leakage

Vigilant Monitoring of Components and Processes

- Dana M. Guazzo Ph.D., RxPax, LLC; USP Packaging Storage and Distribution Expert Committee
- Roger Asselta, Vice President and Senior Advisor, Genesis Technical Advisors
- Desmond Hunt, Scientist USP Department of Standards Development
- Jessica Mangus, Project Specialist, Product Evaluation -Tech Support, West Pharmaceutical Services
- Diane Paskiet, Director Scientific Affairs, West Pharmaceutical Services
- Routine and Functional Analysis/Filling Services, West Analytical Laboratories