
PDE for Finance Notes – Section 1
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in
connection with the NYU course PDE for Finance, G63.2706, Spring 1999.

Deterministic optimal control, dynamic programming, and the Hamilton-Jacobi-
Bellman equation. This section gives a fast introduction to optimal control via dynamic
programming. We mainly follow chapter 10 of Evans, Partial Differential Equations, and
Section 1 of the chapter by Bardi in Viscosity Solutions and Applications (Springer Lecture
Notes in Math 1660). Anticipating heavy demand for Evans’ book (which only just arrived
in the library), I’ve placed a xerox copy of Chapter 10 in the Green Box on reserve. A stan-
dard text on dynamic programming and optimal control, covering many examples (mainly
from physical sciences) and many topics not addressed here (such as Pontryagin’s maximum
principle), is W. Fleming and R. Rishel, Deterministic and stochastic optimal control.

A typical problem of optimal control is this: we have a system, whose state at any time t is
described by a vector x = x(t) ∈ Rn. The system evolves in time, and we have the ability
to influence its evolution through a vector-valued control α(t) ∈ Rm. The evolution of the
system is determined by an ordinary differential equation

ẋ(t) = f(x(t), α(t)), x(0) = x0,

and our goal is to choose the function α(t) for 0 < t < T so as to minimize some cost or
maximize some utility, e.g.

min
∫ T

0
h(x(s), α(s)) ds+ g(x(T)).

The problem is determined by specifying the dynamics f , the initial state x0, the final time
T , the “running cost” h and the final cost g. The problem is solved by finding the optimal
control α(t) for 0 < t < T and the value of the minimum.

The mathematical literature usually focuses on minimizing cost; the economic literature on
maximizing utility. The two problems are mathematically equivalent.

One needs some hypotheses on f to be sure the solution of the ODE defining x(t) exists
and is unique. We do not make these explicit since the goal of these notes is to summarize
the main ideas without getting caught up in fine points. See Evans for a mathematically
careful treatment. Another technical point: it’s possible to formulate an optimal control
problem that has no solution. If the cost is bounded below, then for any ε > 0 there’s
certainly a control αε(t) achieving a cost within ε of optimal. But the controls αε might
not converge to a meaningful control as ε→ 0. (See Homework 1 for a simple example with
this difficulty.) Note however that even if an optimal control doesn’t exist, the optimal cost
is still well-defined.

Dynamic programming is a method for approaching problems like this. The idea is simple:
embed the problem you wish to solve in a parametrized family of problems, with the property

1

that solving each one makes the next one easy. In this setting: instead of fixing the initial
time to be 0, let it be a parameter t0. We also treat x0 as a parameter. Thinking discretely
– for a numerical solution scheme – we may imagine that t0 is restricted to take values j∆t,
with 0 ≤ j ≤ N and T = N∆t. Similarly, x0 is restricted to a lattice in Rn with mesh
space ∆x, and α(t) is defined only at times j∆t. Dynamic programming works backwards
in time:

First Consider the problem with t0 = T . In this case the dynamics is irrelevant. So are
the control and the running cost. Whatever the value of x0, the associated value of
the cost is just g(x0).

Next Consider the problem with t0 = T −∆t. Approximate the dynamics as

x(t+ ∆t) = x(t) + f(x(t), α(t))∆t

For any fixed initial state x0 = x(t0), the optimal control is now just a single vector
(not a function), α(t0). It is determined by minimizing the cost (of course we approx-
imate the integral by a sum). Notice that the cost is easy to express as a function
of α(t0) since the discretized dynamics determines the state at time t0 + ∆t = T .
Sometimes the cost can be minimized by hand using calculus; other times it can be
found numerically by steepest descent (but beware of local minima!); other times a
direct search of all possible values for α(t0) is required. This calculation must be done
for all possible values of x0.

Next Consider the problem with t0 = T − 2∆t. For any fixed initial state x0 = x(t0), the
optimal control is now represented by a pair of vectors α(t0), α(t0 + ∆t). However
we can still determine it by solving a minimization problem involving just one vector
α(t0). Indeed, the cost is easy to express as a function of α(t0): it equals the running
cost from time t0 to t0 +∆t [determined by calculating x(t0 +∆t) from the discretized
dynamics] plus the optimal cost associated with using “initial state” x(t0 + ∆t) and
“initial time” t0 + ∆t [this optimal cost was computed in the preceding paragraph].
This calculation determines the optimal value associated with any x0, and also the
optimal control that achieves it [once the optimal value of α(t0) is determined, so is
the value of x(t0 + ∆t); the calculation in the preceding paragraph determined the
associated optimal control α(t0 + ∆t)].

Continue Work backward, one stage at a time. At the jth stage it is important to consider
all possible “initial states” x0 = x(T − j∆t), or at least all those that might actually
lie on an optimal trajectory. The information to be saved from the jth stage, when
t0 = T − j∆t, is the optimal cost and the associated optimal control α0 = α(T − j∆t)
associated with each possible initial state x0 = x(T − j∆t).

The most awkward part of this algorithm is the need to consider all possible initial states
x0 at each stage: when x is vector valued this can be prohibitive (especially if ∆x is
small). The method is especially easy when the state is one-dimensional or the problem is
intrinsically discrete rather than continuous. An example of the latter is a standard method
for computing a shortest path between two nodes of a graph: Pick one of the nodes (call it

2

an endpoint). Find all nodes that lie distance 1 from it, then all points that lie distance 2
from it, etc. Stop when the other endpoint appears in the set you come up with.

Students of math finance will have noticed by now that dynamic programming looks a lot like
the binomial-tree method for valuing a European or American option. The resemblance is
no coincidence. The biggest difference is that for the European option no optimization need
be done at any point in the calculation; for the American option the optimization is simple
– over just two alternatives, to exercise or not to exercise. This is due to the completeness
of the underlying market model. In a multiperiod market that’s not complete, there is
an optimization to be done at each stage, namely an optimization over all risk-neutral
probabilities. But we’re getting ahead of ourselves – these stochastic control issues will be
addressed later in the course. (Students not familiar with option pricing: don’t worry, the
concepts in this paragraph will be developed from scratch when we need them.)

When the state is vector-valued and continuous, the algorithm described above is basically a
numerical scheme for solving a certain PDE. We shall shortly identify the PDE and discuss
what its solutions can look like.

But first we digress to discuss some other types of optimal control problems. Since the
initial state and time are now variables, we prefer to call them x and t rather than x0 and
t0, and we represent the solution of ODE by a new name y(s):

ẏ(s) = f(y(s), α(s)) for t < s < T with initial data y(t) = x.

Sometimes we wish to emphasize the dependence of y(s) on the initial value x, the initial
time t, and the choice of control α(s), t < s < T ; in this case we write y = yx,t,α(s). The
control is typically restricted to take values in some specified set A, independent of s:

α(s) ∈ A for all s;

the set A must be specified along with the dynamics f . Sometimes it is natural to impose
state constraints, i.e. to require that the state y(s) stay in some specified set Y :

yx,t,α(s) ∈ Y for all s;

when present, this requirement restricts the set of admissible controls α(s). The value of
the minimum cost, viewed as a function of the initial state and time, is called the value
function. The problem discussed above is sometimes called the finite horizon problem;
its value function is

u(x, t) = min
α

{∫ T

t
h(yx,t,α(s), α(s)) ds+ g(yx,t,α(T))

}
.

For the analogous infinite horizon problem we may fix the starting time to be 0, so the
value function depends only on the spatial variable x:

u(x) = min
α

∫ ∞
0

h(yx,0,α(s), α(s))e−s ds

3

(one can, of course, introduce a discount factor et−s even in a finite horizon problem). The
minimum time problem minimizes the time it takes y(s) to travel from x to some target
set T : its value function is

u(x) = min
α
{time at which yx,0,α(s) first arrives in T } .

The minimum time problem is somewhat singular: if, for some x, the solution starting
at x cannot arrive in T (no matter what the control) then the value is undefined. The
discounted minimum time problem avoids this problem: its value function is

u(x) = min
α

∫ τ(x,α)

0
e−s ds

where τ(x, α) is the time that yx,0,α(s) first arrives in T , or infinity if it never arrives.
Notice that the integral can be evaluated: the quantity being minimized is

∫ τ(x,α)
0 e−s ds =

1 − e−τ(x,α). So we’re still minimizing the arrival time, but the value function is 1 −
exp(−arrival time) instead of the arrival time itself.

Another digression: let’s give an explicit example of a control problem from finance. The
following example is closely connected with Merton’s theory of optimal investment and
consumption, which we’ll be discussing later. Differences: our example is simpler than
Merton’s because its dynamics is deterministic rather than stochastic; on the other hand
it includes transaction costs and a solvency constraint, subtleties that have only recently
been addressed in Merton’s context. Our example is a stripped-down version of the problem
discussed in S. Shreve, H. Soner, and G. Xu, “Optimal investment and consumption with
two bonds and transaction costs,” Mathematical Finance Vol. 1, No. 3, 1991, 53-84.

Suppose an investor can choose between two different investment opportunities:

• a money-market account, paying constant interest r, and

• a high-yield account, paying constant interest R > r.

The investor can move money between the two accounts, but in doing so he incurs a trans-
action fee proportional to the amount of money moved:

• when moving money from money-market to high-yield, X dollars in money-market
becomes (1− µ)X dollars in high-yield (µX is the transaction cost);

• when moving money from high-yield to money-market, Y dollars in high-yield becomes
(1− µ)Y dollars in money-market (µY is the transaction cost).

The investor can remove money from the investment fund only by taking it out of the
money market account; there is no transaction fee associated with such consumption. The
investor can take short positions in either account, however (to avoid the obvious arbitrage)
we impose a “solvency constraint:” liquidation into money market should not leave him in
debt. When X is the money-market position and Y is the high-yield position, the solvency
condition says:

4

• if Y ≥ 0 then X + (1 − µ)Y ≥ 0. (Liquidation involves turning Y dollars in high-
yield into (1 − µ)Y dollars in money-market; this must be sufficient to pay off any
money-market debt).

• if Y ≤ 0 then X +Y/(1−µ) ≥ 0. (Liquidation involves paying off the high-yield debt
by removing |Y |/(1 − µ) dollars from money-market; the resulting money-market
balance must not be negative.)

The investor’s goal is to maximize the discounted utility of his total future consumption.
Let us formulate this as a control problem. The state is an R2-valued function of time,
(X(t), Y (t)), where

• X(t) = money-market position at time t,

• Y (t) = high-yield position at time t;

the solvency condition is a state constraint. The control is an R3-valued function of time,
(α(t), β(t), γ(t)), where

• α(t) ≥ 0 is the rate at which money is being moved from money-market to high-yield
at time t,

• β(t) ≥ 0 is the rate at which money is being moved from high-yield to money-market
at time t,

• γ(t) ≥ 0 is the consumption rate at time t.

The evolution equation is

dX/dt = rX − α+ (1− µ)β − γ
dY/dt = RY + (1− µ)α− β,

with initial conditions X(0) = X0, Y (0) = Y0. Using a power-law utility and discount rate
1, the investor’s goal of maximizing lifetime utility becomes

max
α,β,γ

∫ ∞
0

e−sγp(s) ds.

This is an infinite-horizon problem; its value function is u(X0, Y0) = maximum lifetime
utility as a function of initial position.

Some remarks: (1) We permit the investor to “move” money from money-market to high-
yield even when X < 0; this amounts to borrowing money at the money-market rate to
purchase the high-yield investment. Similarly he can “move” money from high-yield to
money-market even when Y < 0. (2) If the investor moves a certain amount of money all at
once at time t∗ then α or β is formally infinite (like a “delta-function”) at t∗ and X,Y are
discontinuous; such policies can be approximated, of course, by continuous ones. (3) The
exponent p in our expression for lifetime utility should satisfy 0 < p < 1, since the benefit
γp dt associated with consuming γ dt in a time interval dt should be an increasing, concave
function of γ (the second derivative is negative: law of diminishing marginal return from

5

increased consumption). We will return to this problem – describing its solution – a little
later.

Enough digression. Let’s return to the mathematical question raised earlier: what PDE
is solved by the dynamic programming algorithm presented above, in the continuous-time,
continuous-space limit? We have discussed a number of different problems (minimize cost,
maximize utility, finite vs infinite horizon, minimum time, etc.) and essentially the same
method can be applied to all of them. Let’s concentrate on the version that maximizes
utility with a finite horizon:

maximize

{∫ T

t
h(y(s), α(s)) ds+ g(y(T))

}

over controls restricted only by α(t) ∈ A, where

dy/ds = f(y(s), α(s)) for t < s < T and y(t) = x.

Its value function u(x, t) gives the maximal utility as a function of the initial time and state.
The answer to our question is this: u solves the Hamilton-Jacobi-Bellman equation

ut +H(∇u, x) = 0 for t < T

with
u(x, T) = g(x) at t = T ,

where H is defined by
H(p, x) = max

a∈A
{f(x, a) · p+ h(x, a)}.

(Note that p is a vector with the same dimensionality as x; a is a vector with the same
dimensionality as α.)

To explain, we start with the dynamic programming principle, which captures the essential
idea of our discrete scheme. It says:

u(x, t) = max
α

{∫ t′

t
h(yx,t,α(s), α(s)) ds+ u(yx,t,α(t′), t′)

}
(1)

whenever t < t′ < T . The justification is easy, especially if we assume that an optimal
control exists (this case captures the main idea; see Evans for a more careful proof, without
this hypothesis). Suppose the optimal cost starting at x at time t is achieved by an optimal
control αx,t(s). Then the restriction of this control to any subinterval t′ < s < T must be
optimal for its starting time t′ and starting position yx,t,α(t′). Indeed, if it weren’t then there
would be a new control α′(s) which agreed with α for t < s < t′ but did better for t′ < s < T .
Since the cost is additive – the running cost is

∫ T
t h(y, α) ds =

∫ t′
t h(y, α) ds+

∫ T
t′ h(y, α) ds –

this new control would be better for the entire time period, contradicting the optimality of
α. Therefore in defining u(x, t) as the optimal cost, we can restrict our attention to controls
that are optimal from time t′ on. This leads immediately to (1).

Now a heuristic justification of the Hamilton-Jacobi-Bellman equation. The basic idea is to
apply the dynamic programming principle with t′ = t+∆t and let ∆t→ 0. Our argument is

6

heuristic because we assume (i) u is differentiable, and (ii) the optimal control is adequately
approximated by one which is constant for t < s < t+∆t. (Our goal, as usual, is to capture
the central idea, referring to Evans for a more rigorous treatment.) Since ∆t is small, the
integral on the right hand side of (1) can be approximated by h(x, a)∆t, where a ∈ A is the
(constant) value of α for t < s < t + ∆t. Using a similar approximation for the dynamics,
the dynamic programming principle gives

u(x, t) ≥ h(x, a)∆t+ u(x+ f(x, a)∆t, t+ ∆t) + errors we wish to ignore

with equality when a is chosen optimally. Using the first-order Taylor expansion of u this
becomes

u(x, t) ≥ h(x, a)∆t+ u(x, t) + (∇u · f(x, a) + ut)∆t+ error terms

with equality when a is optimal. In the limit ∆t→ 0 this gives

0 = ut + max
a∈A
{∇u · f(x, a) + h(x, a)},

i.e. ut + H(∇u, x) = 0 with H as asserted above. The final-time condition is obvious: if
t = T then the dynamics is irrelevant, and the total utility is just g(x).

The equation simplifies to ut+H(∇u) = 0 if f and h are both independent of x. Let’s focus
on this case for a while. The Hamiltonian H is necessarily convex in ∇u, since the formula

H(p) = max
a∈A
{f(a) · p+ h(a)}

expresses it as a maximum of linear functions of p. The function H does not determine f
and h – different f ’s and h’s can lead to the same H. But for any convex H there’s an
especially simple choice of an associated f and h, namely

f∗(a) = a, h∗(a) = min
p
{H(p)− a · p}.

Explanation of the latter: once we fix f(a) = a, the formula for H says H(p) ≥ a · p+ h(a)
for all a and p, with equality when a = a(p) is optimal. Rewrite this as h(a) ≤ H(p)− a · p.
Our h∗ is the the largest possible value for h(a), obtained by minimizing H(p)−a ·p over p.
This calculation is closely related to “convex duality” and the “Fenchel transform.” Notice
that h∗ is concave, as a utility should be, since it is a minimum of linear functions.

The optimal control problem associated with f = f∗ and h = h∗ is easy to solve. Indeed, we
claim that whenever f(a) = a and h(a) is concave, the optimal control is constant and the
associated trajectory is a constant-velocity path. Indeed, f(a) = a means a is the velocity
of the path y(s). The concavity of h gives

h[average velocity] ≥ average of h[velocity].

Notice moreover that the average velocity of a path depends only on its endpoints, since

1
T − t

∫ T

t

dy

ds
ds =

1
T − t

(y(T)− y(t)).

7

Thus replacing any path by one with the same endpoints and constant velocity can only
improve the utility. We thus arrive at the Hopf-Lax solution formula: when f(a) = a and
h(a) is concave,

u(x, t) = max
z

{
(T − t)h

(
z − x
T − t

)
+ g(z)

}
.

Here z represents the state at time T – the only remaining unknown – and (z − x)/(T − t)
is the velocity of the associated path starting at x at time t and ending at z at time T .

Let’s bring this down to earth by considering a very specific example: f(a) = a, H(p) =
1
2 |p|

2, and h(p) = −1
2 |a|

2. Then the Hamilton-Jacobi-Bellman equation is

ut +
1
2
|∇u|2 = 0, u(x, T) = g(x)

and the solution formula is

u(x, t) = max
z

{
g(z)− |z − x|

2

2(T − t)

}
.

An important fact is immediately evident: the Hamilton-Jacobi-Bellman equation has many
(almost-everywhere) solutions, only one of which agrees with the solution formula. For
example, suppose g = 0. Then the solution formula gives u(x, t) = 0, which does solve the
Hamilton-Jacobi equation. However the PDE has lots of other solutions: for example the
function

u(x, t) =

{
1
2(T − t)− |x| if |x| ≤ 1

2(T − t)
0 otherwise.

This example is easy to generalize, yielding infinitely many “solutions” of the PDE, all equal
to 0 at t = T .

One might think, at first, that the issue is regularity. Might the correct solution be a unique
smooth solution? The answer is no: the correct solution can easily fail to be smooth. An
example: when g(y) = |y|, the solution formula gives

u(x, t) =
T − t

2
+ |x|

(the optimal z is z = x+ (T − t)x/|x|). The lack of smoothness arises through non-smooth
dependence of the optimal z on x.

Another point to note: the Hamilton-Jacobi equation is nonlinear. If u1 solves it with final
data g1 and u2 solves it with final data g2, we should not expect u1 +u2 to solve it with final
data g1 + g2. When H(p) = H(−p), for example when H(p) = |p|2/2, one might imagine
that if u is the correct solution with final data g then −u is the correct solution with final
data −g. But even this is false: when g(y) = −|y| the solution formula for ut + 1

2 |∇u|
2 = 0

gives

u(x, t) =

{
(T − t)/2− |x| if |x| ≥ (T − t)
−|x|2/2(T − t) otherwise

(the optimal z is z = x− (T − t)x/|x| if |x| ≥ (T − t), z = 0 otherwise).

What use, then, is the Hamilton-Jacobi equation? Its uses are basically three-fold:

8

(a) The value function must satisfy it, wherever the value function is smooth.

(b) A smooth solution of the Hamilton-Jacobi equation (or even an associated inequality)
can be used to demonstrate the optimality of a proposed optimal control.

(c) There is a more sophisticated notion of “solution” of a Hamilton-Jacobi equation,
namely the viscosity solution. Viscosity solutions exist, are unique, and when H is
convex they agree with the dynamic programming solution discussed above.

We’ve basically discussed (a). Point (c) is an interesting story, which we’ll discuss in Section
2. To explain (b) – whose applications are sometimes known as verification theorems – let’s
consider an easily-visualized special case of the minimum time problem: starting at a point
x in Rn, travel with speed ≤ 1 so as to arrive in a set T as quickly as possible. The optimal
strategy, of course, is to travel with constant velocity toward the point in T that is closest
to x, and the value function (the arrival time) is

u(x, t) =

{
0 for x ∈ T

dist(x, T) for x /∈ T .

Notice that dist(x, T) can easily fail to be smooth, even when the shape of T is very smooth.
We thus have another example of how nonsmoothness arises naturally in the solutions to
dynamic programming problems. This example fits right into the dynamic programming
framework of course: the state evolves by

dy/ds = α(s), y(t) = x,

and the controls are restricted by

α(s) ∈ A for all s

with A being the unit ball. The associated Hamilton-Jacobi equation is 1− |∇u| = 0. We
can see this – and generalize it – by considering the minimum arrival time problem for a
more general state equation

dy/ds = f(y, α), y(0) = x.

Arguing much as we did for the other problem, we see that the value function (the time it
takes to arrive at T) should satisfy

u(x) ≤ ∆t+ u(x+ f(x, a)∆t) + error terms

for any a ∈ A, with equality when a is optimal. Using Taylor expansion this becomes

u(x) ≤ ∆t+ u(x) +∇u · f(x, a)∆t+ error terms.

Optimizing over a and letting ∆t→ 0 we get

1 + min
a∈A
{f(x, a) · ∇u} = 0.

9

This can be written as 1−H(x,∇u) = 0 with

H(x, p) = max
a∈A
{−f(x, a) · p}.

When f(x, a) = a and A is the unit ball we get 1− |∇u| = 0, as expected.

Now for a simple example of a verification theorem: suppose we believe a control α∗(s) is
optimal for x. To prove we are right, it suffices to find a smooth function v such that

(a) v ≤ 0 on ∂T ,

(b) H(y,∇v(y)) ≤ 1 for all y /∈ T , and

(c) −f(y∗(s), α∗(s)) · ∇v(y∗(s)) = 1 along the path y∗ associated with control α∗, and
v = 0 where this path first reaches T .

For then consider an arbitrary control α(s) and its associated path y(s). This path starts
at x when s = 0; suppose it arrives at T when s = S. We have

− d

ds
v(y(s)) = −f(y(s), α(s)) · ∇v(y(s)) ≤ H(∇v(y(s))) ≤ 1

using (b). Integrating this from s = 0 to s = S gives

S ≥ v(x)− v(y(S)) ≥ v(x),

using (a). When we repeat this calculation for the special path y∗ associated with α∗ the
inequalities become equalities, by (c), so the arrival time S∗ satisfies

S∗ = v(x)

Thus the path is indeed optimal, and S∗ = u(x) is the minimal arrival time.

In the special case of our geometrical example 1−|∇u| = 0 the natural choice of v is linear,
with unit-length gradient parallel to x − z where z is the point of T closest to x. It is
instructive to repeat the verification argument directly for this example, using this v.

Similar verification principles exist for all the dynamic programming problems considered
above.

10

