PEARSON EDEXCEL INTERNATIONAL A LEVEL MECHANICS 2 Student Book

Series Editors: Joe Skrakowski and Harry Smith Authors: Greg Attwood, Dave Berry, Ian Bettison, Alan Clegg, Gill Dyer, Jane Dyer, Keith Gallick, Susan Hooker, Michael Jennings, Mohammed Ladak, Jean Littlewood, Bronwen Moran, James Nicholson, Su Nicholson, Laurence Pateman, Keith Pledger, Joe Skrakowski, Harry Smith, Jack Williams

Published by Pearson Education Limited, 80 Strand, London, WC2R 0RL.

www.pearsonglobalschools.com

Copies of official specifications for all Pearson qualifications may be found on the website: https://qualifications.pearson.com

Text © Pearson Education Limited 2018
Edited by Lyn Imeson and Eric Pradel
Typeset by Tech-Set Ltd, Gateshead, UK
Original illustrations © Pearson Education Limited 2018
Illustrated by © Tech-Set Ltd, Gateshead, UK
Cover design by © Pearson Education Limited 2018
The rights of Greg Attwood, Dave Berry, Ian Bettison, Alan Clegg, Gill Dyer, Jane Dyer, Keith Gallick, Susan Hooker, Michael Jennings, Mohammed Ladak, Jean Littlewood, Bronwen Moran, James Nicholson, Su Nicholson, Laurence Pateman, Keith Pledger, Joe Skrakowski, Harry Smith and Jack Williams to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

First published 2018
21201918
10987654321
British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Endorsement Statement

In order to ensure that this resource offers high-quality support for the associated Pearson qualification, it has been through a review process by the awarding body. This process confirms that this resource fully covers the teaching and learning content of the specification or part of a specification at which it is aimed. It also confirms that it demonstrates an appropriate balance between the development of subject skills, knowledge and understanding, in addition to preparation for assessment.

Endorsement does not cover any guidance on assessment activities or processes (e.g. practice questions or advice on how to answer assessment questions) included in the resource, nor does it prescribe any particular approach to the teaching or delivery of a related course.
While the publishers have made every attempt to ensure that advice on the qualification and its assessment is accurate, the official specification and associated assessment guidance materials are the only authoritative source of information and should always be referred to for definitive guidance.
Pearson examiners have not contributed to any sections in this resource relevant to examination papers for which they have responsibility.
Examiners will not use endorsed resources as a source of material for any assessment set by Pearson. Endorsement of a resource does not mean that the resource is required to achieve this Pearson qualification, nor does it mean that it is the only suitable material available to support the qualification, and any resource lists produced by the awarding body shall include this and other appropriate resources.

ISBN 9781292244761

Copyright notice

All rights reserved. No part of this may be reproduced in any form or by any me (including photocopying or storing it in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright owner, except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency, Barnard's Inn, 86 Fetter Lane, London, EC4A 1EN (www.cla.co.uk). Applications for the copyright owner's written permission should be addressed to the publisher.

Printed in Slovakia by Neografia

Picture Credits

The authors and publisher would like to thank the following individuals and organisations for permission to reproduce photographs:

Alamy: Alvey \& Towers Picture Library 50, Cultura RM 85, Teo Moreno Moreno 108;
Shutterstock: joan_bautista 138, Fer Gregory 24, Mark Herreid 1
Cover images: Front: Getty Images: Werner Van Steen
Inside front cover: Shutterstock.com: Dmitry Lobanov
All other images © Pearson Education Limited 2018
All artwork © Pearson Education Limited 2018

COURSE STRUCTURE iv
ABOUT THIS BOOK vi
QUALIFICATION AND ASSESSMENT OVERVIEW viii
EXTRA ONLINE CONTENT1 PROJECTILES1
2 VARIABLE ACCELERATION3 CENTRES OF MASS
REVIEW EXERCISE 1 91
4 WORK AND ENERGY 98
5 IMPULSES ANDCOLLISIONS 121
6 STATICS OFRIGID BODIES 151
REVIEW EXERCISE 2 160
EXAM PRACTICE 171
GLOSSARY 173
ANSWERS 175
INDEX 189

CHAPTER 1 PROJECTILES

1.1 HORIZONTAL PROJECTION
1.2 HORIZONTAL AND VERTICAL COMPONENTS1
2

5
8
14
19
1.3 PROJECTION AT ANY ANGLE 8
1.4 PROJECTILE MOTION FORMULAE1
2

5
8
14
19
CHAPTER REVIEW 1
CHAPTER 2 VARIABLEACCELERATION24
2.1 FUNCTIONS OF TIME 25
2.2 USING DIFFERENTIATION 28
2.3 USING INTEGRATION 33
2.4 DIFFERENTIATING VECTORS 37
2.5 INTEGRATING VECTORS 39CHAPTER REVIEW 2
2.6 CONSTANT ACCELERATION FORMULAE 43
452MASS50
3.1 CENTRE OF MASS OF A SET OF PARTICLES ON A STRAIGHT LINE PLANE 53
3.2 CENTRE OF MASS OF A SET OF
3.2 CENTRE OF MASS OF A SET OF PARTICLES ARRANGED IN A PARTICLES ARRANGED IN A
3.3 CENTRES OF MASS OF STANDARD UNIFORM PLANE LAMINAS 57
3.4 CENTRE OF MASS OF A COMPOSITE LAMINA 61
3.5 CENTRE OFMASS OF A FRAMEWORK 68
3.6 LAMINAS IN EQUILIBRIUM 72
3.7 FRAMEWORKS IN EQUILIBRIUM 79
3.8NON-UNIFORM COMPOSITE
LAMINAS AND FRAMEWORKS 83
CHAPTER REVIEW 3 87
REVIEW EXERCISE 1 91
CHAPTER 4 WORK AND ENERGY 98
4.1 WORK DONE 99
4.2 KINETIC AND POTENTIAL ENERGY 103
4.3 CONSERVATION OF MECHANICAL ENERGY AND WORK-ENERGY PRINCIPLE 107
4.4 POWER 111
CHAPTER REVIEW 4 116
CHAPTER 5 IMPULSES AND COLLISIONS 121
5.1 MOMENTUM AS A VECTOR 122
5.2 DIRECT IMPACT AND NEWTON'S LAW OF RESTITUTION 125
5.3 DIRECT COLLISION WITH A SMOOTH PLANE 131
5.4 LOSS OF KINETIC ENERGY 134
5.5 SUCCESSIVE DIRECT IMPACTS 140
CHAPTER REVIEW 146
CHAPTER 6 STATICS OF RIGID BODIES 151
6.1 STATIC RIGID BODIES 152
CHAPTER REVIEW 6 157
REVIEW EXERCISE 2 160
EXAM PRACTICE 171 173
ANSWERS 175
INDEX 189

ABOUT THIS BOOK

The following three themes have been fully integrated throughout the Pearson Edexcel International Advanced Level in Mathematics series, so they can be applied alongside your learning.

1. Mathematical argument, language and proof

- Rigorous and consistent approach throughout
- Notation boxes explain key mathematical language and symbols

2. Mathematical problem-solving

- Hundreds of problem-solving questions, fully integrated into the main exercises
- Problem-solving boxes provide tips and strategies
- Challenge questions provide extra stretch

3. Transferable skills

The Mathematical Problem-Solving Cycle

- Transferable skills are embedded throughout this book, in the exercises and in some examples
- These skills are signposted to show students which skills they are using and developing

QUALIFICATION AND ASSESSMENT OVERVIEW

Qualification and content overview

Mechanics $\mathbf{2}$ (M2) is a optional unit in the following qualifications: International Advanced Subsidiary in Mathematics International Advanced Subsidiary in Further Mathematics International Advanced Level in Mathematics International Advanced Level in Further Mathematics

Assessment overview

The following table gives an overview of the assessment for this unit.
We recommend that you study this information closely to help ensure that you are fully prepared for this course and know exactly what to expect in the assessment.

Unit	Percentage	Mark	Time	Availability
M2: Mechanics 2	$33 \frac{1}{3} \%$ of IAS	75	1 hour 30 mins	January, June and October
Paper code WME02/01	$16 \frac{2}{3} \%$ of IAL			First assessment June 2019

IAS: International Advanced Subsidiary, IAL.. International Advanced A Level.

AO1	Recall, select and use their knowledge of mathematical facts, concepts and techniques in a variety of contexts.	30%
AO2	Construct rigorous mathematical arguments and proofs through use of precise statements, logical deduction and inference and by the manipulation of mathematical expressions, including the construction ofextended arguments for handling substantial problems presented in unstructured form.	30%
	Recall, select and use their knowledge of standard mathematical models to represent situations in the real world; recognise and understand given representations involving	10%
AO3standard models; present and interpret results from such models in terms of the original situation, including discussion of the assumptions made and refinement of such models.	5%	
AO4	Comprehend translations of common realistic contexts into mathematics; use the results of calculations to make predictions, or comment on the context; and, where appropriate, read critically and comprehend longer mathematical arguments or examples of applications.	5%
AO5	Use contemporary calculator technology and other permitted resources (such as formulae booklets or statistical tables) accurately and efficiently; understand when not to use such technology, and its limitations. Give answers to appropriate accuracy.	5%

Relationship of assessment objectives to units

	P2	A01	A02	A03	A04
	Marks out of 75	$20-25$	$20-25$	$10-15$	$7-12$
$\%$	$26 \frac{2}{3}-33 \frac{1}{3}$	$26 \frac{2}{3}-33 \frac{1}{3}$	$13 \frac{1}{3}-20$	$9 \frac{1}{3}-16$	$5-10$

Calculators

Students may use a calculator in assessments for these qualifications. Centres are responsible for making sure that calculators used by their students meet the requirements given in the table below. Students are expected to have available a calculator with at least the following keys: $+,-, \times, \div, \pi, x^{2}$, $\sqrt{x}, \frac{1}{x}, x^{y}, \ln x, \mathrm{e}^{x}, x!$, sine, cosine and tangent and their inverses in degrees and decimals of a degree, and in radians; memory.

Prohibitions

Calculators with any of the following facilities are prohibited in all examinations:

- databanks
- retrieval of text or formulae
- built-in symbolic algebra manipulations
- symbolic differentiation and/or integration
- language translators
- communication with other machines or the internet

Extra online content

Whenever you see an Online box, it means that there is extra online content available to support you.

SolutionBank

SolutionBank provides worked solutions for questions in the book. Download-all the solutions as a PDF or quickly find the solution you need online.

Use of technology

Explore topics in more detail, visualise problems and consolidate your understanding. Use pre-made GeoGebra activities or Casio

resources for a graphic calculator.

Interact with the mathematics you are learning using GeoGebra's easy-to-use tools

Calculator tutorials

Our helpful video tutoriats will guide you through how to use your calculator in the exams. They cover both Casio's scientific and colour graphic calculators.

Online Work out each coefficient quickly using the ${ }^{n} C_{r}$ and power functions on your calculator.

Step-by-step guide with audio instructions on exactly which buttons to press and what should appear on your calculator's screen

1 PROJECTILES

Learning objectives

After completing this chapter you should be able to:

- Use the constant acceleration formulae to solve problems involving vertical motion under gravity
- Model motion under gravity for an object projected horizontally
- Resolve velocity into components
- Solve problems involving particles projected at an angle
- Derive the formulae for time of flight, range and greatest height, and the equation of the path of a projectile

$$
\rightarrow \text { pages 14-19 }
$$

Prior knowledge check

1 A small ball is projected vertically upwards from a point P with speed $15 \mathrm{~m} \mathrm{~s}^{-1}$. The ball is modelled as a particle moving freely under gravity. Find: a the maximum height of the ball b the time taken for the ball to return to $P . \quad \leftarrow$ Mechanics 1 Section 2.6
2 Use the diagram to write expressions for x and y in terms of y and θ. \leftarrow International GCSE Mathematics

3 a Given $\sin \theta=\frac{5}{13}$, find:
 i $\cos \theta \quad$ ii $\tan \theta$
b Given $\tan \theta=\frac{8}{15}$, find:
i $\sin \theta \quad$ ii $\cos \theta$
\leftarrow Pure 2 Section 6.2

A particle moving in a vertical plane under the action of gravity is sometimes called a projectile. You can use projectile motion to model the flight of a basketball.

1.1 Horizontal projection

You can model the motion of a projectile as a particle being acted on by a single force, gravity. In this model you ignore the effects of air resistance and any rotational movement (i.e. spinning) on the particle.

You can analyse the motion of a projectile by considering its horizontal motion and its vertical motion separately. Because gravity acts vertically downwards, there is no force acting on the particte in the horizontal direction.

- The horizontal motion of a projectile is modelled as having constant velocity ($a=0$).
You can use the formula $s=v t$.
The force due to gravity is modelled as being constant, so the vertical acceleration is constant.
- The vertical motion of a projectile is modelled as having constant acceleration due to gravity ($a=g$).

Use $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$ unless the question specifies a different value.

Example 1 SKILLS PRobLEM-SOLVING

A particle is projected horizontally at $25 \mathrm{~ms}^{-1}$ from a point 78.4 metres above a horizontal surface. Find:
a the time taken by the particle to reach the surface
b the horizontal distance travelled in that time.


```
a \(R(\downarrow), \quad u=0, s=78.4, a=9.8, t=\) ?
    \(s=u t+\frac{1}{2} a t^{2}\)
    \(78.4=0+\frac{1}{2} \times 9.8 \times t^{2}\)
    \(78.4=4.9 t^{2}\)
    \(\frac{78.4}{4.9}=t^{2}\)
        \(t^{2}=16\) so \(t=4 \mathrm{~s}\)
b \(\mathrm{R}(\rightarrow), \quad u=25, s=x, t=4\)
    \(s=v t\)
    \(x=25 \times 4 \quad\) so \(\quad x=100 \mathrm{~m}\)
```


Watch out The sign of g (positive or negative)

 depends on which direction is chosen as positive. Positive direction downwards: $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$ Positive direction upwards: $g=-9.8 \mathrm{~m} \mathrm{~s}^{-2}$The time taken must be positive so choose the positive square root.

Your answer to part a tells you the time taken for the particle to hit the surface. The horizontal motion has constant velocity so you can use: distance $=$ speed \times time .

Example 2

A particle is projected horizontally with a velocity of $15 \mathrm{~m} \mathrm{~s}^{-1}$. Find:
a the horizontal and vertical components of the displacement of the particle from the point of projection after 3 seconds
b the distance of the particle from the point of projection after 3 seconds.

Draw a diagram based on the information in the question.

Use $s=u t+\frac{1}{2} a t^{2}$ to find the vertical distance. This is the same distance as the particle would travel in 3 seconds if it was dropped and fell under the action of gravity.

The distance travelled is the magnitude of the displacement vector. Sketch a right-angled triangle showing the components and use Pythagoras' Theorem.

Example 3

A particle is projected horizontally with a speed of $U \mathrm{~m} \mathrm{~s}^{-1}$ from a point 122.5 m above a horizontal plane. The particle hits the plane at a point which is at a horizontal distance of 90 m from the starting point. Find the initial speed of the particle.

Exercise 1A SKILLS PRobLEMA-soLUNG

1 A particle is projected horizontally at $20 \mathrm{~m} \mathrm{~s}^{-1}$ from a point h metres above horizontal ground. It lands on the ground 5 seconds later. Find:
a the value of h
b the horizontal distance travelled between the time the particle is projected and the time it hits the ground

2 A particle is projected horizontally with a velocity of $18 \mathrm{~m} \mathrm{~s}^{-1}$. Find:
a the horizontal and vertical components of the displacement of the particle from the point of projection after 2 seconds
b the distance of the particle from the point of projection after 2 seconds.
3 A particle is projected horizontally with a speed of $U \mathrm{~m} \mathrm{~s}^{-1}$ from a point 160 m above a horizontal plane. The particle hits the plane at a point which is at a horizontal distance of 95 m from the point of projection. Find the initial speed of the particle.

4 A particle is projected horizontally from a point A which is 16 m above horizontal ground.
The particle strikes the ground at a point B which is at a horizontal distance of 140 m from A. Find the speed of projection of the particle.
(P) 5 A particle is projected horizontally with velocity $20 \mathrm{~m} \mathrm{~s}^{-1}$ along a flat smooth table-top from a point 2 m from the table edge. The particle then leaves the table-top which is at a height of 1.2 m from the floor. Work out the total time taken for the particle to travel from the point of projection until it lands on the floor.
(E) 6 A darts player throws darts at a dartboard which hangs vertically. The motion of a dart is modelled as that of a particle moving freely under gravity. The darts move in a vertical plane which is perpendicular to the plane of the dartboard. A dart is thrown horizontally with an initial velocity of $14 \mathrm{~m} \mathrm{~s}^{-1}$. It hits the dartboard at a point which is 9 cm below the level from whieh it was thrown. Find the horizontal distance from the point where the dart was thrown to the dartboard.
(4 marks)
(E/P) 7 A particle of mass 2.5 kg is projected along a horizontal rough surface with a velocity of $5 \mathrm{~m} \mathrm{~s}^{-1}$. After travelling a distance of 2 m the ball leaves the rough surface as a projectile and lands on the ground which is 1.2 m vertically below. Given that the total time taken for the ball to travel from the initial point of projection to the point when it lands is 1.0 seconds, find:
a the time for which the particle is in contact with the surface
b the coefficient of friction between the particle and the surface
c the horizontal distance travelled from the point of projection to the point where the particle hits the ground.

1.2 Horizontal and vertical components

Suppose a particle is projected with initial velocity U, at an angle α above the horizontal. The angle α is called the angle of projection.

You can resolve the velocity into components that act horizontally and vertically:

Links This is the same technique as you use to resolve forces into components.
\leftarrow Mechanics 1 Section 5.1

- When a particle is projected with initial velocity U,
at an angle α above the horizontal:
- The horizontal component of the initial velocity is $U \cos \alpha$.
- The vertical component of the initial velocity is $U \sin \alpha$.

Example 4 SKILLS Problem-SOLIING

A particle is projected from a point on a horizontal plane with an initial velocity of $40 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle α above the horizontal, where $\tan \alpha=\frac{3}{4}$.
a Find the horizontal and vertical components of the initial velocity.
Given that the vectors \mathbf{i} and \mathbf{j} are unit vectors acting in a plane,
horizontally and vertically respectively,
b express the initial velocity as a vector in terms of \mathbf{i} and \mathbf{j}.

a $\tan \alpha=\frac{3}{4}$ so $h=\sqrt{3^{2}+4^{2}}=5$
$\sin \alpha=\frac{3}{5} \quad \cos \alpha=\frac{4}{5}$
$R(\rightarrow), u_{x}=u \cos \alpha=40 \times \frac{4}{5}=32 \mathrm{~ms}^{-1}$
$R(\uparrow), \quad u_{y}=u \sin \alpha=40 \times \frac{3}{5}=24 \mathrm{~ms}^{-1}$
b $U=(32 \mathbf{i}+24 \mathbf{j}) \mathrm{ms}^{-1}$.

Problem-solving

When you are given a value for $\tan \alpha$, you can find the values of $\cos \alpha$ and $\sin \alpha$ without working out the value of α. Here $\tan \alpha=\frac{3}{4}=\frac{\mathrm{opp}}{\text { adj }}$, so sketch a right-angled triangle with opposite side $=3$ and adjacent side $=4$.

Online Find $\cos \alpha$ and $\sin \alpha$ using your calculator.

You can write velocity as a vector using $\mathbf{i}-\mathbf{j}$ notation. Remember to include units.

Example 5

A particle is projected with velocity $\mathbf{U}=(3 \mathbf{i}+5 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$, where \mathbf{i} and \mathbf{j} are the unit vectors in the horizontal and vertical directions respectively. Find the initial speed of the particle and its angle of projection.

Speed is the magnitude of the velocity vector. If the initial velocity is $(p \mathbf{i}+q \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$, the initial speed is $\sqrt{p^{2}+q^{2}}$.

When an initial velocity is given in the form $(p \mathbf{i}+q \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$, the values of p and q are the horizontal and vertical components of the velocity respectively.

Exercise 1B SKILLS PROBLEM-SOLVING

In this exercise, \mathbf{i} and \mathbf{j} are unit vectors acting in a vertical plane, horizontally and vertically respectively.

1 A particle is projected from a point on a horizontal plane with an initial velocity of $25 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 40° above the horizontal.
a Find the horizontal and vertical components of the initial velocity.
b Express the initial velocity as a vector in the form $(p \mathbf{i}+q \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$.

2 A particle is projected from a cliff top with an initial velocity of $18 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 20° below the horizontal.
a Find the horizontal and vertical components of the initial velocity.
b Express the initial velocity as a vector in the form $(p \mathbf{i}+q \mathbf{j}) \mathrm{ms}$

3 A particle is projected from a point on level ground with an initial velocity of $35 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle α above the horizontal, where $\tan \alpha=\frac{5}{12}$.
a Find the horizontal and vertical components of the initial velocity.
b Express the initial velocity as a vector in terms of \mathbf{i} and \mathbf{j}.

4 A particle is projected from the top of a building with an initial velocity of $28 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle θ below the horizontal, where $\tan \theta=\frac{7}{24}$.
a Find the horizontal and vertical components of the initial velocity.
b Express the initial velocity as a vector in terms of \mathbf{i} and \mathbf{j}.

5 A particle is projected with initial velocity $\mathbf{U}=(6 \mathbf{i}+9 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$.
Find the initial speed of the particle and its angle of projection.

6 A particle is projected with initial velocity $\mathbf{U}=(4 \mathbf{i}-5 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$.
Find the initial speed of the particle and its angle of projection.
(P) 7 A particle is projected with initial velocity $\mathbf{U}=(3 k \mathbf{i}+2 k \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$.
a Find the angle of projection.
Given the initial speed is $3 \sqrt{13} \mathrm{~m} \mathrm{~s}^{-1}$,
b find the value of k.

1.3 Projection at any angle

You can solve problems involving particles projected at any angle by resolving the initial velocity into horizontal and vertical components.
The distance from the point where the particle was projected to the point where it strikes the horizontal plane is called the range.

The time the particle takes to move from its point of projection to the point where it strikes
 the horizontal plane is called the time of flight of the particle.

- A projectile reaches its point of greatest height when the vertical component of its velocity is equal to 0 .

Example 6 SKILLS Problem-Solving

A particle P is projected from a point O on a horizontal plane with speed $28 \mathrm{~m} \mathrm{~s}^{-1}$ and with angle of elevation 30°. After projection, the particle moves freely under gravity until it strikes the plane at a point A. Find:
a the greatest height above the plane reached by P b the time of flight of P c the distance $O A$.

Example 7

A particle is projected from a point O with speed $V \mathrm{~m} \mathrm{~s}^{-1}$ and at an angle of elevation of θ, where $\tan \theta=\frac{4}{3}$. The point O is 42.5 m above a horizontal plane. The particle strikes the plane at a point A, 5 s after it is projected.
a Show that $V=20$.
b Find the distance between O and A.

Resolving the velocity of projection horizontally and vertically:
$R(\rightarrow), \quad u_{x}=V \cos \theta=\frac{3}{5} V$
$R(\uparrow), \quad u_{y}=V \sin \theta=\frac{4}{5} V$.
a Taking the upward direction as positive:
$R(\uparrow), s=-42.5, u=\frac{4}{5} V, g=-9.8, \lambda=5$
$s=u t+\frac{1}{2} a t^{2}$

$4 V=4.9 \times 25-42.5=80$
$V=\frac{80}{4}=20$, as required.

You will need $\sin \theta$ and $\cos \theta$ to resolve the initial velocity. When you know $\tan \theta$ you can draw a triangle to find $\cos \theta$ and $\sin \theta$.
$\tan \theta=\frac{4}{3}$
$\sin \theta=\frac{4}{5}$
$\cos \theta=\frac{3}{5}$

Use the formula $s=u t+\frac{1}{2} a t^{2}$ to obtain an equation in V.

Use the value of V found in part a to find the horizontal distance moved by the particle.

Example 8

A particle is projected from a point O with speed $35 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of elevation of 30°.
The particle moves freely under gravity.
Find the length of time for which the particle is 15 m or more above O.

The particle is 15 m above O twice. First on the way up and then on the way down.

In this example the horizontal component of the initial velocity is not used.

Form a quadratic equation in t to find the two times when the particle is 15 m above 0 . Between these two times, the particle will be more than 15 m above O.

You should give this answer as a decimal to 2 significant figures, 0.71 s , following previous use of $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$.

Example 9

A ball is struck by a racket at a point A which is 2 m above horizontal ground. Immediately after being struck, the ball has velocity $(5 \mathbf{i}+8 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$, where \mathbf{i} and \mathbf{j} are unit vectors horizontally and vertically respectively. After being struck, the ball travels freely under gravity until it strikes the ground at the point B, as shown in the diagram. Find:

a the greatest height above the ground reached by the ball
b the speed of the ball as it reaches B
c the angle the velocity of the ball makes with the ground as the ball reaches B.
a Taking the ypward direction as positive:
$\mathrm{R}(\uparrow), \quad u=8, v=0, a=-9.8, s=$?
$v^{2}=u^{2}+2 a s$
$O^{2}=8^{2}-2 \times 9.8 \times s$
$s=\frac{64}{19.6}=3.265 \ldots$
The greatest height above the ground
reached by the ball is $2+3.265 \ldots=5.3 \mathrm{~m}$,
to 2 significant figures.

The velocity of projection has been given as a vector in terms of \mathbf{i} and \mathbf{j}. The horizontal component is 5 and the vertical component is 8 .

This is the greatest height above the point of projection. You need to add 2 m to find the height above the ground.
b The horizontal component of the velocity of the ball at B is $5 \mathrm{~ms}^{-1}$.
The vertical component of the velocity of
the ball at B is given by:
$R(\uparrow), s=-2, u=8, a=-9.8, v=$?
$v^{2}=u^{2}+2 a s$
$=8^{2}+2 \times(-9.8) \times(-2)=10 \div .2$
The speed at B is given by:
$v^{2}=5^{2}+103.2=128.2$.
$v=\sqrt{128.2}$
The speed of the ball as it reaches B is $11 \mathrm{~ms}^{-1}$, to 2 significant figures.
c The angle is given by: .
$\tan \theta=\frac{\sqrt{103.2}}{5} \Rightarrow \theta=64^{\circ}$ (2 s.f.)
The angle the velocity of the ball makes with the ground as the ball reaches B is 64°, to the nearest degree.

The horizontal motion is motion with constant speed, so the horizontal component of the velocity never changes.

There is no need to find the square root of 103.2 at this point, as you need v^{2} in the next stage of the calculation.

As the ball reaches B, its velocity has two components as shown below.

Exercise 1C SKILLS PROBLEM-SOLVING

In this exercise, \mathbf{i} and \mathbf{j} are unit vectors acting in avertical plane, horizontally and vertically respectively.
Whenever a numerical value of g is required, take $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$ unless otherwise stated.
1 A particle is projected with speed $35 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of elevation of 60°.
Find the time the particle takes to reach its greatest height.
2 A ballis projected from a point 5 m above horizontal ground with speed $18 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of elevation of 40°. Find the height of the ball above the ground 2 s after projection.

3
A stone is projected from a point above horizontal ground with speed $32 \mathrm{~m} \mathrm{~s}^{-1}$, at an angle of 10° below the horizontal. The stone takes 2.5 s to reach the ground. Find:
a the height of the point of projection above the ground
the distance from the point on the ground vertically below the point of projection to the point where the stone reaches the ground.

A projectile is launched from a point on horizontal ground with speed $150 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 10° above the horizontal. Find:
a the time the projectile takes to reach its highest point above the ground
b the range of the projectile.

5 A particle is projected from a point O on a horizontal plane with speed $20 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of elevation of 45°. The particle moves freely under gravity until it strikes the ground at a point X. Find:
a the greatest height above the plane reached by the particle
b the distance $O X$.
(P) 6 A ball is projected from a point A on level ground with speed $24 \mathrm{~m} \mathrm{~s}^{-1}$. The ball is projected at an angle θ to the horizontal where $\sin \theta=\frac{4}{5}$. The ball moves freely under gravity until it strikes the ground at a point B. Find:
a the time of flight of the ball
b the distance from A to B.
(P) 7 A particle is projected with speed $21 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of elevation α. Given that the greatest height reached above the point of projection is 15 m , find the value of a, giving your answer to the nearest degree.

8 A particle P is projected from the origin with velocity $(12 \mathbf{i}+24 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$, where \mathbf{i} and \mathbf{j} are horizontal and vertical unit vectors respectively. The particle moves freely under gravity.
Find:
a the position vector of P after 3 s
b the speed of P after 3 s .
9 A stone is thrown with speed $30 \mathrm{~m} \mathrm{~s}^{-1}$ from a window which is 20 m above horizontal ground. The stone hits the ground 3.5 s later. Find:
a the angle of projection of the stone
b the horizontal distance from the window to the point where the stone hits the ground.

10 A ball is thrown from a point Q on horizontal ground with speed $U \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of elevation of θ, where $\tan \theta=\frac{3}{4}$. The ball strikes a vertical wall which is 20 m from O at a point which is 3 m above the ground. Find:
a the value of U
b the time from the instant the ball is thrown to the instant that it strikes the wall.
(E/P) 11 A particle P is projected from a point A with position vector 20 j m with respect to a fixed origin O. The velocity of projection is $(5 u \mathbf{i}+4 u \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$. The particle moves freely under gravity, passing through a point B, which has position vector $(k \mathbf{i}+12 \mathbf{j}) \mathrm{m}$, where k is a constant, before reaching the point C on the x-axis, as shown in the diagram.

The particle takes 4 s to move from A to B. Find:
a the value of u
(4 marks)
b the value of k
c the angle the velocity of P makes with the x-axis as it reaches C.
Watch out When finding a square root involving use of $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$ to work out an answer, an exact surd (irrational number) answeris not acceptable.
(E) 12 A stone is thrown from a point A with speed $30 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 15° below the horizontal. The point A is 14 m above horizontal ground. The stone strikes the ground at the point B, as shown in the diagram. Find:
a the time the stone takes to travel from A to B b the distance $A B$.

(E/P) 13 A particle is projected from a point on level ground with speed $U \mathrm{~m} \mathrm{~s}^{-1}$ and angle of elevation α. The maximum height reached by the particle is 42 m above the ground and the particle hits the ground 196 m from its point of projection. Find the value of α and the value of U.
(E/P) 14 In this question use $g=10 \mathrm{~m} \mathrm{~s}^{-2}$.
An object is projected with speed $U \mathrm{~m} \mathrm{~s}^{-1}$ from a point A at the top of a vertical building. The point A is 25 m above the ground. The object is projected at an angle α above the horizontal, where $\tan \alpha=\frac{5}{12}$. The object hits the ground at the point B, which is at a horizontal distance of 42 m from the foot of the building, as shown in the diagram.
The object is modelled as a particle moving freely under gravity.
Find:

the value of U
b the time taken by the object to travel from A to B
c the speed of the object when it is 12.4 m above the ground, giving your answer to 2 significant figures.

15 An object is projected from a fixed origin O with velocity $(4 \mathbf{i}+5 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$. The particle moves freely under gravity and passes through the point P with position vector $k(\mathbf{i}-\mathbf{j}) \mathrm{m}$, where k is a positive constant.
a Find the value of k.
(6 marks)
b Find:
i the speed of the object at the instant when it passes through P
ii the direction of motion of the object at the instant when it passes through P.

16 A basketball player is standing on the floor 10 m from the basket. The height of the basket is 3.05 m , and he shoots the ball from a height of 2 m , at an angle of 40° above the horizontal.

The basketball can be modelled as a particle moving in a vertical plane. Given that the ball passes through the basket,
a find the speed with which the basketball is thrown.
b State two factors that can be ignored by modelling the basketbalk as a particle

Challenge

A vertical tower is 85 m high. A stone is projected at a speed of $20 \mathrm{~m} \mathrm{~s}^{-1}$ from the top of a tower at an angle of α below the horizontal. At the same time, a second stone is projected horizontally at a speed of $12 \mathrm{~m} \mathrm{~s}^{-1}$ from a window in the tower 45 m above the ground.

Given that the two stones move freely under gravity in the same vertical plane, and that they collide in mid-air, show that the time that elapses between the moment they are projected and the moment they collide is 2.5 s .

1.4 Projectile motion formulae

You need to be able to derive general formulae related to the motion of a particle which is projected from a point on a horizontalplane and moves freely under gravity.

Example 10 s syills reasoning/argumentation

A particle is projected from a point on a horizontal plane with an initial velocity U, at an angle α above the horizontal, and moves freely under gravity until it hits the plane at point B. Given that the acceleration due to gravity is g, find expressions for:
a the time of flight, T

b the range, R, on the horizontal plane.

Taking the upward direction as positive and resolving the velocity of projection:
$R(\uparrow), \quad u_{y}=U \sin \alpha$
$R(\rightarrow), \quad u_{x}=U \cos \alpha$
a Considering vertical motion:
$\mathrm{R}(\uparrow), \quad u=U \sin \alpha, s=0, a=-g, t=T$ $s=u t+\frac{1}{2} a t^{2}$ $O=(U \sin \alpha) T-\frac{1}{2} \times g \times T^{2}$. $O=T\left(U \sin \alpha-\frac{g T}{2}\right)$
either $T=0$ (at A) or $U \sin \alpha-\frac{g T}{2}=0$.
so $T=\frac{2 U \sin \alpha}{g}$
b Considering horizontal motion:
$\mathrm{R}(\rightarrow), \quad v_{x}=U \cos \alpha, s=R, t=T$
$s=v_{x} t$
$R=U \cos \alpha \times T \quad$ using $T=\frac{2 U \sin \alpha}{g}$.
$R=U \cos \alpha \times \frac{2 U \sin \alpha}{g}=\frac{2 U^{2} \sin \alpha \cos \alpha}{g}$
Using $2 \sin \alpha \cos \alpha \equiv \sin 2 \alpha$:
$R=\frac{U^{2} \sin 2 \alpha}{g}$

Online Explore the parametric equations for the path of a particle and their Cartesian form, both algebraically and graphically using technology.

When the particle reaches the horizontal plane, the vertical displacement is 0 .
Taking out the factor T, one solution is $T=0$ which is at the start of the motion.

Problem-solying

Follow the same steps as you would if you were given values of U and α ahd asked to find the time of flight and the range. The answer will be an algebraic expression in terms of U and α instead of a numerical value.

Substitute for T in the equation $R=U \cos \alpha \times T$
$U \cos \alpha \times \frac{2 U \sin \alpha}{g}=\frac{U \cos \alpha}{1} \times \frac{2 U \sin \alpha}{g}$

Use the double-angle formula for $\sin 2 \alpha$.

Notation g is usually left as a letter in the formulae for projectile motion.

Example 11

A particle is projected from a point with speed U at an angle of elevation α and moves freely under gravity. When the particle has moved a horizontal distance x, its height above the point of projection is y.

Show that $y=x \tan \alpha-\frac{g x^{2}}{2 u^{2}}\left(1+\tan ^{2} \alpha\right)$.
A particle ís projected from a point O on a horizontal plane, with speed $28 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of elevation α. The particle passes through a point B, which is at a horizontal distance of 32 m from O and at a height of 8 m above the plane.
b Find the two possible values of α, giving your answers to the nearest degree.

a $R(\rightarrow), \quad u_{x}=U \cos \alpha$
$R(\uparrow), \quad u_{y}=U \sin \alpha$.
For the horizontal motion:

$$
\begin{align*}
\mathrm{R}(\rightarrow), & \\
& s \tag{1}\\
& =v t \\
x & =u \cos \alpha \times t
\end{align*}
$$

For the vertical motion, taking upward as positive:

$$
\begin{array}{ll}
\mathrm{R}(\uparrow), \quad s & =u t+\frac{1}{2} a t^{2} \\
y & =U \sin \alpha \times t-\frac{1}{2} g t^{2}
\end{array}
$$

(2)

Resolve the velocity of projection horizontally and vertically.

You have obtained two equations, labelled (1) and (2). Both equations contain t and the result you have been asked to show has no t in it. You must eliminate (i.e. remove) t using substitution.

If the upward direction is taken as positive, the vertical acceleration is $-g$.
Rearranging (1) to make t the subject of the formula:
(1) and (2) are parametric equations describing

$$
\begin{equation*}
t=\frac{x}{U \cos \alpha} \tag{3}
\end{equation*}
$$

the path of the particle. You can eliminate the parameter, t, to find the Cartesian form of the path.
Substituting (3) into (2):

To obtain a quadratic expression in $\tan \alpha$, you need to use the identity $\sec ^{2} \alpha \equiv 1+\tan ^{2} \alpha$.

You should use your calculator to check the solutions to this equation.

There are two possible angles of elevation for which the particle will pass through B. This sketch illustrates the two paths.

- For a particle which is projected from a point on a horizontal plane with an initial velocity U at an angle α above the horizontal, and that moves freely under gravity:
- Time of flight $=\frac{2 U \sin \alpha}{g}$
- Time to reach greatest height $=\frac{U \sin \alpha}{g}$
- Range on horizontal plane $=\frac{U^{2} \sin 2 \alpha}{g}$
- Equation of trajectory: $y=x \tan \alpha-g x^{2} \frac{\left(1+\tan ^{2} \alpha\right)}{2 U^{2}}$
where y is the vertical height of the particle, x is the horizontal distance from the point of projection, and g is the acceleration due to gravity.

Watch out You need to know how to

 derive the equations. But be careful of using them in projectile problems. They are hard to memorise, and it is usually safer to answer projectile problems using the techniques covered in Section 1.3.
Hint the equation for the

 trajectory of the particle is a quadratic equation for y in x. This proves that the path of a projectile moving freely under gravity is a quadratic curve, or parabola.
Exercise 1D SKILLS reasoning/argumentation

Whenever a numerical value of g is required, take $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$ unless otherwise stated.
(P) 1 A particle is launched from a point on a horizontal plane with initial velocity $U \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of elevation α. The particle moves freely under gravity until it strikes the plane.
The greatest height of the particle is $h \mathrm{~m}$.
Show that $h=\frac{U^{2} \sin ^{2} \alpha}{2 g}$.
(P) 2 A particle is projected from a point with speed $21 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of elevation α and moves freely under gravity. When the particle has moved a horizontal distance $x \mathrm{~m}$, its height above the point of projection is $y \mathrm{~m}$.
a Show that $y=x \tan \alpha-\frac{x^{2}}{90 \cos ^{2} \alpha}$.
b Given that $y=8.1$ when $x=36$, find the value of $\tan \alpha$.
(P) 3 A particle is launched from a point on a horizontal plane with initial speed $U \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of elevation α. The particle moves freely under gravity until it strikes the plane. The range of the particle is $R \mathrm{~m}$.
a Show that the time of flight of the particle is $\frac{2 U \sin \alpha}{g}$ seconds.
b Show that $R=\frac{U^{2} \sin 2 \alpha}{g}$.
c Deduce that, for a fixed u, the greatest possible range is when $\alpha=45^{\circ}$.
d Given that $R=\frac{2 U^{2}}{5 g}$, find the two possible values of the angle of elevation at which the particle could have been launched.
(P) 4 A firework is launched vertically with a speed of $v \mathrm{~m} \mathrm{~s}^{-1}$. When it reaches its maximum height, the firework explodes into two parts, which are projected horizontally in opposite directions, each with speed $2 v \mathrm{~m} \mathrm{~s}^{-1}$.
each with speed $2 v \mathrm{~m} \mathrm{~s}^{-1}$.
Show that the two parts of the firework land a distance $\frac{4 v^{2}}{g} \mathrm{~m}$ apart.
E/P 5 In this question use $g=10 \mathrm{~m} \mathrm{~s}^{-2}$.
A particle is projected from a point O with speed U at an angle of elevation α above the horizontal and moves freely under gravity. When the particle has moved a horizontal distanee x, its height above O is y.
a Show that $y=x \tan \alpha-\frac{g x^{2}}{2 U^{2} \cos ^{2} \alpha}$.
A boy throws a stone from a point P at the end of a pier. The point P is 15 m above sea level.
The stone is projected with a speed of $8 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of elevation of 40°. By modelling the stone as a particle moving freely under gravity,
b find the horizontal distance of the stone from P when the stone is 2 m above sea leyel. ($\mathbf{5}$ marks)
(E/P 6 A particle is projected from a point with speed U at an angle of elevation α above the horizontal and moves freely under gravity. When it has moved a horizontal distance x, its height above the point of projection is y.
a Show that $y=x \tan \alpha-\frac{g x^{2}}{2 U^{2}}\left(1+\tan ^{2} \alpha\right)$.
(5 marks)
An athlete throws a javelin from a point P at a height of 2 m above horizontal ground.
The javelin is projected at an angle of elevation of 45° with a speed of $30 \mathrm{~m} \mathrm{~s}^{-1}$.
By modelling the javelin as a particle moving freely under gravity,
b find, to 3 significant figures, the horizontal distance of the javelin from P when it hits the ground
c find, to 2 significant figures, the time elapsed from the point the javelin is thrown to the point when it hits the ground.
(E/P 7 A girl playing volleyball on horizontal ground hits the ball towards the net 9 m away from a point 1.5 m above the ground. The ball moves in a vertical plane which is perpendicular to the net. The ball just passes over the top of the net, which is 2.4 m above the ground, as shown in the diagram.
The ball is modelled as a particle projected
 with initial speed $U \mathrm{~m} \mathrm{~s}^{-1}$ from point O, 1.5 m above the ground at an angle α to the horizontal.
a By writing down expressions for the horizontal and vertical distances from O to the ball, t seconds after it was hit, show that when the ball passes over the net:

$$
\begin{equation*}
0.9=9 \tan \alpha-\frac{81 g}{2 U^{2} \cos ^{2} \alpha} \tag{6marks}
\end{equation*}
$$

Given that $\alpha=30^{\circ}$,
b find the speed of the ball as it passes over the net.

E/P 8 In this question, \mathbf{i} and \mathbf{j} are unit vectors in a horizontal and upward vertical direction respectively. An object is projected from a fixed point A on horizontal ground with velocity $(k \mathbf{i}+2 k \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$, where k is a positive constant. The object moves freely under gravity until it strikes the ground at B, where it immediately comes to rest. Relative to O, the position vector of a point on the path of the object is $(x \mathbf{i}+y \mathbf{j}) \mathrm{m}$.
a Show that $y=2 x-\frac{g x^{2}}{2 k^{2}}$.
Given that $A B=R \mathrm{~m}$ and the maximum vertical height of the object above the ground is $H \mathrm{~m}$,
b using the result in part a, or otherwise, find, in terms of k and g,
i R
ii H
(6 marks)
Challenge
A stone is projected from a point on a straight sloping hill. Given that the hill slopes downwards at an angle of 45°, and that the stone is projected at an angle of 45° above the horizontal with speed $U \mathrm{~m} \mathrm{~s}^{-1}$, show that the stone lands a distance $\frac{2 \sqrt{2} U^{2}}{g} \mathrm{~m}$ down the hill.

Chapter review 1

Whenever a numerical value of g is required, take $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$ unless otherwise stated.
1 A ball is thrown vertically downwards from the top of a tower with speed $6 \mathrm{~m} \mathrm{~s}^{-1}$. The ball strikes the ground with speed $25 \mathrm{~m} \mathrm{~s}^{-1}$. Find the time the ball takes to move from the top of the tower to the ground.

2 A child drops a ball from a point at the top of a cliff which is 82 m above the sea. The ball is initially at rest. Find:
a the time taken for the ball to reach the sea b the speed with which the ball hits the sea. e State one physical factor which has been ignored in making your calculation.

b Hence show that:

i $v^{2}=u^{2}+2 a s$
ii $s=u t+\frac{1}{2} a t^{2}$
iii $s=v t-\frac{1}{2} a t^{2}$
(E/P 4 A particle is projected vertically upwards with a speed of $30 \mathrm{~m} \mathrm{~s}^{-1}$ from a point A. The point B is h metres above A. The particle moves freely under gravity and is above B for 2.4 s . Calculate the value of h.

5 The diagram is a velocity-time graph representing the motion of a cyclist along a straight road.
At time $t=0 \mathrm{~s}$, the cyclist is moving with velocity $u \mathrm{~m} \mathrm{~s}^{-1}$. The velocity is maintained until time $t=15 \mathrm{~s}$, when she slows down with constant deceleration, coming to rest when $t=23 \mathrm{~s}$. The total distance she travels in 23 s is 152 m . Find the value of u.

6 A particle P is projected from a point O on a horizontal plane with speed $42 \mathrm{~m}^{-1}$ and with angle of elevation 45°. After projection, the particle moves freely under gravity until it strikes the plane. Find:
a the greatest height above the plane reached by P
b the time of flight of P.
7 A stone is thrown horizontally with speed $21 \mathrm{~m} \mathrm{~s}^{-1}$ from a point P on the edge of a cliff h metres above sea level. The stone lands in the sea at a point Q, where the horizontal distance of Q from the cliff is 56 m .
Calculate the value of h.
(E) 8 A ball is thrown from a window above a horizontal lawn. The velocity of projection is $15 \mathrm{~m} \mathrm{~s}^{-1}$ and the angle of elevation is α, where $\tan \alpha=\frac{4}{3}$. The ball takes 4 s to reach the lawn. Find:
a the horizontal distance between the point of projection and the point where the ball hits the lawn
b the vertical height above the lawn from which the ball was thrown.
(E) 9 A projectile is fired with velocity $40 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of elevation of 30° from a point A on horizontal ground. The projectile moves freely under gravity until it reaches the ground at the point B. Find:
a the distance $A B$
b the speed of the projectile at the first instant when it is 15 m above the ground.
(E/P) 10 A projectile P is projected from a point on a horizontal plane with speed U at an angle of elevation θ.
Show that the range of the projectile is $\frac{U^{2} \sin 2 \theta}{g}$.
b Hence find, as θ varies, the maximum range of the projectile.
c Given that the range of the projectile is $\frac{2 U^{2}}{3 g}$, find the two possible value of θ.
Give your answers to the nearest 0.1°.

A golf ball is driven from a point A with a speed of $40 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of elevation of 30° On its downward flight, the ball hits a tree at a height 15.1 m above the level of A, as shown in the diagram above. Find:
a the time taken by the ball to reach its greatest height above
b the time taken by the ball to travel from A to B
c the speed with which the ball hits the tree.
(E/P) 12 A particle P is projected from a fixed origin O with velocity $(12 \mathbf{i}+5 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$. The particle moves freely under gravity and passes through the point A with position vector $\lambda(2 \mathbf{i}-\mathbf{j})$ m, where λ is a positive constant.
a Find the value of λ.

b Find:

i the speed of P at the instant when it passes through A
ii the direction of motion of P at the instant when it passes through A.
(E/P) 13 In this question use $g=10 \mathrm{~ms} \mathrm{~s}^{-2}$.
A boy plays a game at a fairground. He needs to throw a ball through a hole in a vertical target to win a prize. The motion of the ball is modelled as that of a particle moving freely under gravity. The ball moves in a vertical plane which is perpendicular to the plane of the target. The boy throws the ball horizontally at the same height as the hole with a speed of $10 \mathrm{~m} \mathrm{~s}^{-1}$. It hits the target at a point 20 cm below the hole.
a Find the horizontal distance from the point where the ball was thrown to the target.
(4 marks)
The boy throws the ball again with the same speed and at the same distance from the target.
b Work out the possible angles above the horizontal the boy could throw the ball so that it passes through the hole.

E/P 14 In this question use $g=10 \mathrm{~m} \mathrm{~s}^{-2}$.
A stone is thrown from a point P at a target, which is on horizontal ground. The point P
is 10 m above the point O on the ground.
The stone is thrown from P with speed $20 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of α below the horizontal, where $\tan \alpha=\frac{3}{4}$.

The stone is modelled as a particle and the target as a point T. The distance $O T$ is 9 m . The stone misses the target and hits the ground at the point Q, where $O T Q$ is a straight line, as shown in the diagram. Find:
a the time taken by the stone to travel from P to Q
b the distance $T Q$.
The point A is on the path of the stone vertically above T.
c Find the speed of the stone at A.
15 A vertical mast is 32 m high. Two balls P and Q are projected at the same time. Bah P is projected horizontally from the top of the mast with speed $18 \mathrm{~m} \mathrm{~s}^{-1}$. Ball Q is projected from the bottom of the mast with speed $30 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle α above the horizontal. The balls move freely under gravity in the same vertical plane and collide in mid-air. By considering the horizontal motion of each ball,
a prove that $\cos \alpha=\frac{3}{5}$.
b Find the time which elapses between the instant when the balls are projected and the instant when they collide.

Challenge

A cruise ship is 250 m long, and is accelerating forwards in a straight line at a constant rate of $1.5 \mathrm{~m} \mathrm{~s}^{-2}$. A golfer stands at the stern (back) of the cruise ship and hits a golf ball towards the bow (front). Given that the golfer hits the golf ball at an angle of elevation of 60°, and that the ball lands directly on the bow of the cruise ship, find the speed, v, with which the golfer hits the ball.

Problem-solving

You need to calculate the initial speed of the ball relative to the golfer. This is the speed the ball would appear to be travelling at if you were standing on the ship.

Summary of key points

1 The force of gravity causes all objects to accelerate towards the Earth. If you ignore the effects of air resistance, this acceleration is constant. It does not depend on the mass of the object.
2 An object moving vertically freely under gravity can be modelled as a particle with a constant downward acceleration of $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$.
3 The horizontal motion of a projectile is modelled as having constant velocity ($a=0$). You can use the formula $s=v t$.
4 The vertical motion of a projectile is modelled as having constant acceleration due to gravity $(a=g)$.
5 When a particle is projected with initial velocity U, at an angle α above the horizontal:

- The horizontal component of the initial velocity is $U \cos \alpha$.
- The vertical component of the initial velocity is $U \sin \alpha$.

6 A projectile reaches its point of greatest height when the vertical component of its velocity is equal to 0 .

7 For a particle which is projected from a point on a horizontal plane with an initial velocity U at an angle α above the horizontal, and that moves freely under gravity:

- Time of flight $=\frac{2 U \sin \alpha}{g}$
- Time to reach greatest height $=\frac{U \sin \alpha}{g}$
- Range on horizontal plane $=\frac{U^{2} \sin 2 \alpha}{g}$
- Equation of trajectory: $y=x \tan \alpha-g x^{2} \frac{\left(1+\tan ^{2} \alpha\right)}{2 U^{2}}$
where y is the vertical height of the particle, x is the horizontal distance from the point of projection, and g is the acceleration due to gravity.

