PEARSON EDEXCEL INTERNATIONAL A LEVEL PURE MATHEMAIKCS 3 Student Book

Series Editors: Joe Skrakowski and Harry Smith
Authors: Greg Attwood, Jack Barraclough, Ian Bettison, Gordon Davies, Keith Gallick, Daniel Goldberg, Alistair Macpherson, Anne McAteer, Bronwen Moran, Su Nicholson, Diane Oliver, Joe Petran, Keith Pledger, Cong San, Joe Skrakowski, Harry Smith, Geoff Staley, Robert Ward-Penny, Dave Wilkins

Published by Pearson Education Limited, 80 Strand, London, WC2R 0RL.

www.pearsonglobalschools.com

Copies of official specifications for all Pearson qualifications may be found on the website: https://qualifications.pearson.com

Text © Pearson Education Limited 2019
Edited by Richard Hutchinson and Eric Pradel
Typeset by Tech-Set Ltd, Gateshead, UK
Original illustrations © Pearson Education Limited 2019
Illustrated by © Tech-Set Ltd, Gateshead, UK
Cover design by © Pearson Education Limited
The rights of Greg Attwood, Jack Barraclough, Ian Bettison, Gordon Davies, Keith Gallick, Daniel Goldberg, Alistair Macpherson, Anne McAteer, Bronwen Moran, Su Nicholson, Diane Oliver, Joe Petran, Keith Pledger, Cong San, Joe Skrakowski, Harry Smith, Geoff Staley, Robert Ward-Penny and Dave Wilkins to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

First published 2019
21201918
10987654321
British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Endorsement Statement

In order to ensure that this resource offers high-quality support for the associated Pearson qualification, it has been through a review process by the awarding body. This process confirms that this resource fully covers the teaching and learning content of the specification or part of a specification at which it is aimed. It also confirms that it demonstrates an appropriate balance between the development of subject skills, knowledge and understanding, in addition to preparation for assessment.

Endorsement does not cover any guidance on assessment activities or processes (e.g. practice questions or advice on how to answer assessment questions) included in the resource, nor does it prescribe any particular approach to the teaching or delivery of a related course.
While the publishers have made every attempt to ensure that advice on the qualification and its assessment is accurate, the official specification and associated assessment guidance materials are the only authoritative source of information and should always be referred to for definitive guidance.
Pearson examiners have not contributed to any sections in this resource relevant to examination papers for which they have responsibility.

Examiners will not use endorsed resources as a source of material for any assessment set by Pearson. Endorsement of a resource does not mean that the resource is required to achieve this Pearson qualification, nor does it mean that it is the only suitable material available to support the qualification, and any resource lists produced by the awarding body shall include this and other appropriate resources.

ISBN 9781292244921

Copyright notice

All rights reserved. No part of this may be reproduced in any form or by any me (including photocopying or storing it in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright owner, except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency, Barnard's Inn, 86 Fetter Lane, London, EC4A 1EN (www.cla.co.uk). Applications for the copyright owner's written permission should be addressed to the publisher.

Printed in Slovakia by Neografia

Picture Credits

The authors and publisher would like to thank the following individuals and organisations for permission to reproduce photographs:

Alamy Stock Photo: Cultura RM 122, Prisma Bildagentur 10; Shutterstock.com: ChristianChan 1, Color4260 70, LuFeeTheBear 146, topora 46, Vadim Sadovski 158, viktor95 102

Cover images: Front: Getty Images: Werner Van Steen Inside front cover: Shutterstock.com: Dmitry Lobanov

All other images © Pearson Education Limited 2019
All artwork © Pearson Education Limited 2019

COURSE STRUCTURE iv
ABOUT THIS BOOK vi
QUALIFICATION AND ASSESSMENT OVERVIEW viii
EXTRA ONLINE CONTENT
1 ALGEBRAIC METHODS 1
2 FUNCTIONS AND GRAPHS 10
3 TRIGONOMETRIC FUNCTIONS 46
4 TRIGONOMETRIC ADDITION FORMULAE 70
REVIEW EXERCISE 1 97
5 EXPONENTIALSAND LOGARITHMS 102
6 DIFFERENTIATION 122
7 INTEGRATION 146
8 NUMERICAL METHODS 158
REVIEW EXERCISE 2 170
EXAM PRACTICE 174
GLOSSARY 176
ANSWERS 178
INDEX 214
CHAPTER 1 ALGEBRAICMETHODS1.1 ARITHMETIC OPERATIONS WITHALGEBRAIC FRACTIONS
1.2 IMPROPER FRACTIONS 5
CHAPTER REVIEW 1
CHAPTER 2 FUNCTIONS ANDGRAPHS10
2.1 THE MODULUS FUNCTION 11
2.2 FUNCTIONS AND MAPPINGS 15
2.3 COMPOSITE FUNCTIONS 20
2.4 INVERSE FUNCTIONS 24
$2.5 y=|f(x)|$ AND $y=f(|x|)$
2.6 COMBINING TRANSFORMATIONS28
2.7 SOLVING MODULUS PROBLEMS 35
CHAPTER REVIEW 2
CHAPTER 3 TRIGONOMETRIC FUNCTIONS
3.1 SECANT, COSECANT AND COTANGENT 47
3.2 GRAPHS OF sec $x, \operatorname{cosec} x$ AND $\cot x$ 49
3.3 USING sec x, cosec 533ND cot x
3.4 TRIGONOMETRIC IDENTITIES
57
3.5 INVERSE TRIGONOMETRIC FUNCTIONS 62
CHAPTER REVIEW 3 66
CHAPTER 4 TRIGONOMETRIC ADDITION FORMULAE 70
4.1 ADDITION FORMULAE 71
4.2 USING THE ANGLE ADDITION FORMULAE4.3 DOUBLE-ANGLE FORMULAE4.4 SOLVING TRIGONOMETRICEQUATIONS81
4.5 SIMPLIFYING $a \cos x \pm b \sin x$ 85
4.6 PROVING TRIGONOMETRIC IDENTITIES 90
CHAPTER RENTEN 4 93
REVIEW EXERCISE 1 97
CHAPTER 5 EXPONENTIALS AND LOGARITHMS 102
5.1 EXPONENTIAL FUNCTIONS 103
$5.2 y=\mathrm{e}^{a x+b}+c$ 105
5.3 NATURAL LOGARITHMS 108
5.4 LOGARITHMS AND NON-LINEAR DATA 110
5.5 EXPONENTIAL MODELLING 116
CHAPTER REVIEW 5 118

CHAPTER 6

 DIFFERENTIATION6.1 DIFFERENTIATING $\sin x$ AND $\cos x$
6.2 DIFFERENTIATING EXPONENTIALS
AND LOGARITHMS 126
6.3 THE CHAIN RULE 128
6.4 THE PRODUCT RULE 132
6.5 THE QUOTIENT RULE 134
6.6 DIFFERENTIATING
TRIGONOMETRIC FUNCTIONS 137
CHAPTER REVIEW 6 142
CHAPTER 7 INTEGRATION 146
7.1 INTEGRATING STANDARD FUNCTIONS7.2 INTEGRATING $f(a x+b)$
7.3 USING TRIGONOMETRICIDENTITIES151
7.4 REVERSE CHAIN RULE 153
CHAPTER REVIEW 7 156123

CHAPTER 8 NUMERICAL

METHODS1588.1 LOCATING ROOTS 159
8.2 FIXED POINT ITERATION 163
CHAPTER REVIEW 8 167
REVIEW EXERCISE 2 170
EXAM PRACTICE 174
gLossark 176
ANSWERS 178
14 49
INDEX 214

ABOUT THIS BOOK

The following three themes have been fully integrated throughout the Pearson Edexcel International Advanced Level in Mathematics series, so they can be applied alongside your learning.

1. Mathematical argument, language and proof

- Rigorous and consistent approach throughout
- Notation boxes explain key mathematical language and symbols

2. Mathematical problem-solving

- Hundreds of problem-solving questions, fully integrated into the main exercises
- Problem-solving boxes provide tips and strategies
- Challenge questions provide extra stretch

3. Transferable skills

The Mathematical Problem-Solving Cycle

- Transferable skills are embedded throughout this book, in the exercises and in some examples
- These skills are signposted to show students which skills they are using and developing

QUALIFICATION AND ASSESSMENT OVERVIEW

Qualification and content overview

Pure Mathematics 3 (P3) is a compulsory unit in the following qualifications:
International Advanced Level in Mathematics
International Advanced Level in Pure Mathematics

Assessment overview

The following table gives an overview of the assessment for this unit.
We recommend that you study this information closely to help ensure that you are fully prepared for this course and know exactly what to expect in the assessment.

Unit	Percentage	Mark	Time	Availability
P3: Pure Mathematics 3 Paper code WMA13/01	$16 \frac{2}{3} \%$ of IAL	75	1 hour 30 min	January, June and October

IAL: International Advanced A Level.

Assessment objectives and weightings

AO1	Recall, select and use their knowledge of mathematical facts, concepts and techniques in a variety of contexts.	30%
AO2	Construct rigorous mathematical arguments and proofs through use of precise statements, logical deduction and inference and by the manipulation of mathematical expressions, including the construction of extended arguments for handling substantial problems presented in unstructured form.	30%
	Recall, select and use their knowledge of standard mathematical models to represent situations in the real world; recognise and understand given representations involving standard models; present and interpret results from such models in terms of the original situation, including discussion of the assumptions made and refinement of such models.	10%
AO4	Comprehend translations of common realistic contexts into mathematics; use the results of calculations to make predictions, or comment on the context; and, where appropriate, read	5%
AOitically and comprehend longer mathematical arguments or examples of applications.		
AO5	Use contemporary calculator technology and other permitted resources (such as formulae booklets or statistical tables) accurately and efficiently; understand when not to use such technology, and its limitations. Give answers to appropriate accuracy.	5%

Relationship of assessment objectives to units

	P3	A01	A02	A03	A04
	Assessment objective				
Marks out of 75	$25-30$	$25-30$	$5-10$	$5-10$	$5-10$
$\%$	$33 \frac{1}{3}-40$	$33 \frac{1}{3}-40$	$6 \frac{2}{3}-13 \frac{1}{3}$	$6 \frac{2}{3}-13 \frac{1}{3}$	$6 \frac{2}{3}-13 \frac{1}{3}$

Calculators

Students may use a calculator in assessments for these qualifications. Centres are responsible for making sure that calculators used by their students meet the requirements given in the table below. Students are expected to have available a calculator with at least the following keys: $+,-, \times, \div, \pi, x^{2}$, $\sqrt{x}, \frac{1}{x^{\prime}} x^{y}, \ln x, \mathrm{e}^{x}, x!$, sine, cosine and tangent and their inverses in degrees and decimals of a degree, and in radians; memory.

Prohibitions

Calculators with any of the following facilities are prohibited in all examinations:

- databanks
- retrieval of text or formulae
- built-in symbolic algebra manipulations
- symbolic differentiation and/or integration
- language translators
- communication with other mâchines or the internet

Extra online content

Whenever you see an Online box, it means that there is extra online content available to support you.

SolutionBank

SolutionBank provides a full worked solution for questions in the book.
Download all the solutions as a PDF or quickly find the solution you need online.

Use of technology

Explore topics in more detail, visualise problems and consolidate your understanding. Use pre-made GeoGebra activities or Casio

resources for a graphic calculator.

Interact with the mathematics you are learning using GeoGebra's easy-to-use tools

Explore the mathematics you are learning and gain confidence in using a graphic calculator

Calculator tutorials

Our helpful video tutoriats will guide you through how to use your calculator in the exams. They cover both Casio's scientific and colour graphic calculators.

Online Work out each coefficient quickly using the ${ }^{n} C_{r}$ and power functions on your calculator.

Step-by-step guide with audio instructions on exactly which buttons to press and what should appear on your calculator's screen

3 TRIGONOMETRIC FUNGTIONS
 Learning objectives
 After completing this chapter you should be able to:
 - Understand the definitions of secant, cosecant and cotangent and their relationship to cosine, sine and tangent
 - Understand the graphs of secant, cosecant and cotangent and

 their domain and range- Simplify expressions, prove simple identities and solve equations involving secant, cosecant and cotangent

3.1 Secant, cosecant and cotangent

Secant (sec), cosecant (cosec) and cotangent (cot) are known as the reciprocal trigonometric functions.

- $\sec x=\frac{1}{\cos x} \quad$ (undefined for values of x for which $\cos x=0$)
- $\operatorname{cosec} x=\frac{1}{\sin x} \quad$ (undefined for values of x for which $\sin x=0$)
- $\cot x=\frac{1}{\tan x} \quad$ (undefined for values of x for which $\tan x=0$)

You can also write cot x in terms of $\sin x$ and $\cos x$.

- $\cot x=\frac{\cos x}{\sin x}$

Example 1

Use your calculator to write down the values of:
a $\sec 280^{\circ}$
b $\cot 115^{\circ}$
a $\sec 280^{\circ}=\frac{1}{\cos 280^{\circ}}=5.76$ (3 s.f.) Make sure your calculator is in degrees mode. b $\cot 115^{\circ}=\frac{1}{\tan 115^{\circ}}=-0.466$ (3 s.f.)

Example 2

Work out the exact values of:
a $\sec 210^{\circ} \quad$ b $\operatorname{cosec} \frac{3 \pi}{4} \quad$ Exact here means give in surd form.

a $\sec 300^{\circ}$
b $\operatorname{cosec} 190^{\circ}$
c $\cot 110^{\circ}$
d $\cot 200^{\circ}$

2 Use your calculator to find, to 3 significant figures, the values of:
a $\sec 100^{\circ}$
$\operatorname{cosec} 260^{\circ}$
c $\operatorname{cosec} 280^{\circ}$
d $\cot 550^{\circ}$
$\cot \frac{4 \pi}{3}$
g $\operatorname{cosec} \frac{11 \pi}{10}$
h $\sec 6 \mathrm{rad}$

3 Find the exact value (as an integer, fraction or surd) of each of the following:
a $\operatorname{cosec} 90^{\circ}$
d $\sec 240^{\circ}$
g $\sec 60^{\circ}$
j $\cot \frac{4 \pi}{3}$
b $\cot 135^{\circ}$
c $\sec 180^{\circ}$
e $\operatorname{cosec} 300^{\circ}$
f $\cot \left(-45^{\circ}\right)$
h $\operatorname{cosec}\left(-210^{\circ}\right)$
i $\sec 225^{\circ}$
k $\sec \frac{11 \pi}{6}$
l $\operatorname{cosec}\left(-\frac{3 \pi}{4}\right)$
(P) 4 Prove that $\operatorname{cosec}(\pi-x) \equiv \operatorname{cosec} x$
(P) 5 Show that $\cot 30^{\circ} \sec 30^{\circ}=2$
(P) 6 Show that $\operatorname{cosec} \frac{2 \pi}{3}+\sec \frac{2 \pi}{3}=a+b \sqrt{3}$, where a and b are real numbers to be found.

Challenge

SKILLS
CREATVITY

The point P lies on the unit circle, centre O. The radius $O P$ makes an acute angle of θ with the positive x-axis. The tangent to the circle at P intersects the coordinate axes at points A and B.
Prove that:
a $O B=\sec \theta$
b $O A=\operatorname{cosec} \theta$
c $A P=\cot \theta$

3.2 Graphs of $\sec x, \operatorname{cosec} x$ and $\cot x$

You can use the graphs of $y=\cos x, y=\sin x$ and $y=\tan x$ to sketch the graphs of their reciprocal functions.

Example 3 SKILS INJERPRETATION

Sketch, in the interval $-180^{\circ} \leqslant \theta \leqslant 180^{\circ}$, the graph of $y=\sec \theta$

First draw the graph $y=\cos \theta$
For each value of θ, the value of $\sec \theta$ is the reciprocal of the corresponding value of $\cos \theta$.
In particular: $\cos 0^{\circ}=1$, so $\sec 0^{\circ}=1$; and $\cos 180^{\circ}=-1$, so $\sec 180^{\circ}=-1$

As θ approaches 90° from the left, $\cos \theta$ is +ve but approaches zero, and so $\sec \theta$ is +ve but becomes increasingly large.

At $\theta=90^{\circ}, \sec \theta$ is undefined and there is a vertical asymptote. This is also true for $\theta=-90^{\circ}$

As θ approaches 90° from the right, $\cos \theta$ is -ve but approaches zero, and so $\sec \theta$ is -ve but becomes increasingly large negative.

- The graph of $\boldsymbol{y}=\sec \boldsymbol{x}, \boldsymbol{x} \in \mathbb{R}$, has symmetry in the \boldsymbol{y}-axis and has period 360° or 2π radians. It has vertical asymptotes at all the values of \boldsymbol{x} for which $\cos \boldsymbol{x}=0$

Notation The domain can also be given as $x \in \mathbb{R}, x \neq \frac{(2 n+1) \pi}{2}, n \in \mathbb{Z}$
\mathbb{Z} is the symbol used for integers, which are the positive and negative whole numbers including 0 .

- The domain of $y=\sec x$ is $x \in \mathbb{R}, \boldsymbol{x} \neq 90^{\circ}, 270^{\circ}, 450^{\circ}, \ldots$ or any odd multiple of 90°
- In radians the domain is $x \in \mathbb{R}, x \neq \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots$ or any odd multiple of $\frac{\pi}{2}$
- The range of $y=\sec x$ is $y \leqslant-1$ or $y \geqslant 1$
- The graph of $\boldsymbol{y}=\operatorname{cosec} \boldsymbol{x}, \boldsymbol{x} \in \mathbb{R}$, has period 360° or 2π radians. It has vertical asymptotes at all the values of \boldsymbol{x} for which $\sin \boldsymbol{x}=0$
$y=\operatorname{cosec} x$

Notation The domain can also be given as $x \in \mathbb{R}, x \neq n \pi, n \in \mathbb{Z}$

- The domain of $y=\operatorname{cosec} x$ is $x \in \mathbb{R}, x \neq 0^{\circ}, 180^{\circ}, 360^{\circ}, \ldots$ or any multiple of 180°
- In radians the domain is $x \in \mathbb{R}, x \neq 0, \pi, 2 \pi, \ldots$ or any multiple of π
- The range of $y=\operatorname{cosec} x$ is $y \leqslant-1$ or $y \geqslant 1$
- The graph of $y=\cot x, x \in \mathbb{R}$, has period 180° or π radians. It has vertical asymptotes at all the values of x for which $\tan x=0$

- The domain of $y=\cot x$ is $x \in \mathbb{R}, x \neq 0^{\circ}, 180^{\circ}$, $360^{\circ}, \ldots$ or any multiple of 180°
- In radians the domain is $x \in \mathbb{R}, \boldsymbol{x} \neq 0, \pi, 2 \pi, \ldots$ or any multiple of π
- The range of $y=\cot x$ is $y \in \mathbb{R}$

Example 4

a Sketch the graph of $y=4 \operatorname{cosec} x,-\pi \leqslant x \leqslant \pi$
b On the same axes, sketch the line $y=x$
c State the number of solutions to the equation $4 \operatorname{cosec} x-x=$

Example 5

Sketch, in the interval $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$, the graph of $y=1+\sec 2 \theta$
 of the graphs of reciprocal trigonometric functions using technology.

Step 1

Draw the graph of $y=\sec \theta$

Step 2

Stretch in the θ-direction with scale factor $\frac{1}{2}$

Step 3

Translate by the vector $\binom{0}{1}$

Exercise 3B SKILLS Interpretation

1 Sketch, in the interval $-540^{\circ} \leqslant \theta \leqslant 540^{\circ}$, the graphs of:
a $y=\sec \theta$
b $y=\operatorname{cosec} \theta$
c $y=\cot \theta$

2 a Sketch, on the same set of axes, in the interval $-\pi \leqslant x \leqslant \pi$, the graphs of $y=\cot x$ and $y=-x$
b Deduce the number of solutions of the equation $\cot x+x=0$ in the interval $-\pi \leqslant x \leqslant \pi$

3 a Sketch, on the same set of axes, in the interval $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$,
the graphs of $y=\sec \theta$ and $y=-\cos \theta$
b Explain how your graphs show that $\sec \theta=-\cos \theta$ has no solutions.

4 a Sketch, on the same set of axes, in the interval $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$, the graphs of $y=\cot \theta$ and $y=\sin 2 \theta$
b Deduce the number of solutions of the equation $\cot \theta=\sin 2 \theta$ in the interval $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$

5 a Sketch on separate axes, in the interval $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$, the graphs of $y=\tan \theta$ and $y=\cot \left(\theta+90^{\circ}\right)$
b Hence, state a relationship between $\tan \theta$ and $\cot \left(\theta+90^{\circ}\right)$
(P) 6 a Describe the relationships between the graphs of:

$$
\begin{array}{cl}
\text { i } y=\tan \left(\theta+\frac{\pi}{2}\right) \text { and } y=\tan \theta & \text { ii } y=\cot (-\theta) \text { and } y=\cot \theta \\
\text { iii } y=\operatorname{cosec}\left(\theta+\frac{\pi}{4}\right) \text { and } y=\operatorname{cosec} \theta & \text { iv } y=\sec \left(\theta-\frac{\pi}{4}\right) \text { and } y=\sec \theta
\end{array}
$$

b By considering the graphs of $y=\tan \left(\theta+\frac{\pi}{2}\right), y=\cot (-\theta), y=\operatorname{cosec}\left(\theta+\frac{\pi}{4}\right)$ and $y=\sec \left(\theta-\frac{\pi}{4}\right)$, state which pairs of functions are equal.
(P) 7 Sketch on separate axes, in the interval $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$, the graphs of:
a $y=\sec 2 \theta$
b $y=-\operatorname{cosec} \theta$
d $y=\operatorname{cosec}\left(\theta-30^{\circ}\right)$
e $y=2 \sec \left(\theta-60^{\circ}\right)$
g $y=-\cot (2 \theta)$
h $y=1-2 \sec \theta$
c $y=1+\sec \theta$

In each case, show the coordinates of any maximum and minimum points, and of any points at which the curve meets the ax

8 Write down the periods of the following functions. Give your answers in terms of π.
a $\sec 3 \theta$
b $\operatorname{cosec} \frac{1}{2} \theta$
c $2 \cot \theta$
d $\sec (-\theta)$
(E/P) 9 a Sketch, in the interval $-2 \pi \leqslant x \leqslant 2 \pi$, the graph of $y=3+5 \operatorname{cosec} x$
b Hence deduce the range of values of k for which the equation $3+5 \operatorname{cosec} x=k$ has no solutions.
(E/P) 10 a Sketch the graph of $y=1+2 \sec \theta$ in the interval $-\pi \leqslant \theta \leqslant 2 \pi$
b Write down the θ-coordinates of points at which the gradient is zero.
c Deduce the maximum and minimum values of $\frac{1}{1+2 \sec \theta}$ and give the smallest positive values of θ at which they occur.

3.3 Using sec $x, \operatorname{cosec} x$ and $\cot x$

You need to be able to simplify expressions, prove identities and solve equations involving $\sec x$,
$\operatorname{cosec} x$ and $\cot x$.

- $\sec \boldsymbol{x}=\boldsymbol{k}$ and $\operatorname{cosec} \boldsymbol{x}=\boldsymbol{k}$ have no solutions for $-1<\boldsymbol{k}<1$

Example 6

Simplify:
a $\sin \theta \cot \theta \sec \theta$
b $\sin \theta \cos \theta(\sec \theta+\operatorname{cosec} \theta)$

Example 7

a Prove that $\frac{\cot \theta \operatorname{cosec} \theta}{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta} \equiv \cos ^{3} \theta$
b Hence explain why the equation $\frac{\cot \theta \operatorname{cosec} \theta}{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}=8$ has no solutions.
a Consider the LHS:
The numerator $\cot \theta \operatorname{cosec} \theta$

$$
\equiv \frac{\cos \theta}{\sin \theta} \times \frac{1}{\sin \theta} \equiv \frac{\cos \theta}{\sin ^{2} \theta}
$$

The denominator $\sec ^{2} \theta+$

$$
\equiv \frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta \sin ^{2} \theta}
$$

$$
\equiv \frac{1}{\cos ^{2} \theta \sin ^{2} \theta}
$$

$$
\text { So } \frac{\cot \theta \operatorname{cosec} \theta}{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}
$$

b Since $\frac{\cot \theta \operatorname{cosec} \theta}{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta} \equiv \cos ^{3} \theta$ we are required to solve the equation $\cos ^{3} \theta=8$ $\cos ^{3} \theta=8 \Rightarrow \cos \theta=2$ which has no solutions since $-1 \leqslant \cos \theta \leqslant 1$

Write the expression in terms of \sin and cos,
using $\sec ^{2} \theta \equiv\left(\frac{1}{\cos \theta}\right)^{2} \equiv \frac{1}{\cos ^{2} \theta}$ and
$\operatorname{cosec}^{2} \theta \equiv \frac{1}{\sin ^{2} \theta}$

Remember that $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$

Remember to invert the fraction when changing from \div sign to \times.
Write the expression in terms of \sin and cos,
using $\cot \theta \equiv \frac{\cos \theta}{\sin \theta}$ and $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$
Write the expression in terms of \sin and \cos,
using $\cot \theta \equiv \frac{\cos \theta}{\sin \theta}$ and $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$

Problem-solving

Write down the equivalent equation, and state the range of possible values for $\cos \theta$.

Example 8

Solve the equations:
a $\sec \theta=-2.5 \quad$ b $\cot 2 \theta=0.6$
in the interval $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$

Exercise 3C SKILLS ANALYSIS

1 Rewrite the following as powers of $\sec \theta, \operatorname{cosec} \theta$ or $\cot \theta$.
a $\frac{1}{\sin ^{3} \theta}$
b $\frac{4}{\tan ^{6} \theta}$
c $\frac{1}{2 \cos ^{2} \theta}$
d $\frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}$
e $\frac{\sec \theta}{\cos ^{4} \theta}$
f $\sqrt{\operatorname{cosec}^{3} \theta \cot \theta \sec \theta}$
g $\frac{2}{\sqrt{\tan \theta}}$
h $\frac{\operatorname{cosec}^{2} \theta \tan ^{2} \theta}{\cos \theta}$

2 Write down the value(s) of $\cot x$ in each of the following equations:
a $5 \sin x=4 \cos x$
b $\tan x=-2$
c $\frac{3 \sin x}{\cos x}=\frac{\cos x}{\sin x}$

3 Using the definitions of sec, cosec, cot and tan, simplify the following expressions.
a $\sin \theta \cot \theta$
b $\tan \theta \cot \theta$
c $\tan 2 \theta \operatorname{cosec} 2 \theta$
d $\cos \theta \sin \theta(\cot \theta+\tan \theta)$
e $\sin ^{3} x \operatorname{cosec} x+\cos ^{3} x \sec x$
f $\sec A-\sec A \sin ^{2} A$
g $\sec ^{2} x \cos ^{5} x+\cot x \operatorname{cosec} x \sin ^{4} x$
(P) 4 Prove that:
a $\cos \theta+\sin \theta \tan \theta \equiv \sec \theta$
b $\cot \theta+\tan \theta \equiv \operatorname{cosec} \theta \sec \theta$
c $\operatorname{cosec} \theta-\sin \theta \equiv \cos \theta \cot \theta$
d $(1-\cos x)(1+\sec x) \equiv \sin x \tan x$
e $\frac{\cos x}{1-\sin x}+\frac{1-\sin x}{\cos x} \equiv 2 \sec x$
$\frac{\cos \theta}{1+\cot \theta} \equiv \frac{\sin \theta}{1+\tan \theta}$
(P) 5 Solve the following equations for values of θ in the interval $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ Give your answers to 3 significant figures where necessary.
a $\sec \theta=\sqrt{2}$
c $5 \cot \theta=-2$
d $\operatorname{cosec} \theta=2$
e $3 \sec ^{2} \theta-4=0$
$\operatorname{cosec} \theta=-3$
g $\cot ^{2} \theta-8 \tan \theta=0$
h $2 \sin \theta=\operatorname{cosec} \theta$
(P) 6 Solve the following equations for values of θ in the interval $-180^{\circ} \leqslant \theta \leqslant 180^{\circ}$
a $\operatorname{cosec} \theta=1$
b $\sec \theta=-3$
c $\cot \theta=3.45$
d $2 \operatorname{cosec}^{2} \theta-3 \operatorname{cosec} \theta=0$
e $\sec \theta=2 \cos \theta$
f $3 \cot \theta=2 \sin \theta$
g $\operatorname{cosec} 2 \theta=4$
h $2 \cot ^{2} \theta-\cot \theta-5=0$
(P) 7 Solve the following equations for values of θ in the interval $0 \leqslant \theta \leqslant 2 \pi$ Give your answers in terms of π.
a $\sec \theta=-1$
b $\cot \theta=-\sqrt{3}$
c $\operatorname{cosec} \frac{\theta}{2}=\frac{2 \sqrt{3}}{3}$
d $\sec \theta=\sqrt{2} \tan \theta, \theta \neq \frac{\pi}{2}, \theta \neq \frac{3 \pi}{2}$
(E/P 8 In the diagram, $A B=6 \mathrm{~cm}$ is the diameter of the circle and $B T$ is the tangent to the circle at B. The chord $A C$ is extended to meet this tangent at D and $\angle D A B=\theta$
a Show that $C D=6(\sec \theta-\cos \theta) \mathrm{cm}$.
b Given that $C D=16 \mathrm{~cm}$, calculate the length of the chord $A C$.

Problem-solving

$A B$ is the diameter of the circle, so $\angle A C B=90^{\circ}$
(E/P 9 a Prove that $\frac{\operatorname{cosec} x-\cot x}{1-\cos x} \equiv \operatorname{cosec} x$
b Hence solve, in the interval $-\pi \leqslant x \leqslant \pi$, the equation $\frac{\operatorname{cosec} x-\cot x}{1-\cos x}=2$
(E/P) 10 a Prove that $\frac{\sin x \tan x}{1-\cos x}-1 \equiv \sec x$
b Hence explain why the equation $\frac{\sin x \tan x}{1-\cos x}-1=-\frac{1}{2}$ has no solutions.
(E/P) 11 Solve, in the interval $0^{\circ} \leqslant x \leqslant 360^{\circ}$, the equation $\frac{1+\cot x}{1+\tan x}=5$

Problem-solving
 Use the relationship $\cot x=\frac{1}{\tan x}$ to form a quadratic equation in $\tan x . \quad \leftarrow$ Pure 1 Section 2.1

3.4 Trigonometric identities

You can use the identity $\sin ^{2} x+\cos ^{2} x \equiv 1$ to prove the following identities.

- $1+\tan ^{2} x \equiv \sec ^{2} x$
- $1+\cot ^{2} x \equiv \operatorname{cosec}^{2} x$

Example 9 SKILLS ANALYSIS

a Prove that $1+\tan ^{2} x \equiv \sec ^{2} x$
b Prove that $1+\cot ^{2} x \equiv \operatorname{cosec}^{2} x$

$$
\begin{aligned}
\text { a } \sin ^{2} x+\cos ^{2} x & \equiv 1 \\
\frac{\sin ^{2} x}{\cos ^{2} x}+\frac{\cos ^{2} x}{\cos ^{2} x} & \equiv \frac{1}{\cos ^{2} x} \\
\left(\frac{\sin x}{\cos x}\right)^{2}+1 & \equiv\left(\frac{1}{\cos x}\right)^{2} \\
\text { so } 1+\tan ^{2} x & \equiv \sec ^{2} x
\end{aligned}
$$

Unless otherwise stated, you can assume the identity $\sin ^{2} x+\cos ^{2} x \equiv 1$ in proofs involving cosec, sec and cot in your exam.

Divide both sides of the identity by $\cos ^{2} x$.
b $\sin ^{2} x+\cos ^{2} x \equiv 1$

$$
\frac{\sin ^{2} x}{\sin ^{2} x}+\frac{\cos ^{2} x}{\sin ^{2} x} \equiv \frac{1}{\sin ^{2} x}
$$

$$
1+\left(\frac{\cos x}{\sin x}\right)^{2} \equiv\left(\frac{1}{\sin x}\right)^{2}
$$

$$
\text { so } 1+\cot ^{2} x \equiv \operatorname{cosec}^{2} x
$$

Example

Given that $\tan A=-\frac{5}{12}$, and that angle A is obtuse, find the exact values of:
a $\sec A$
b $\sin A$

Example 11

Prove the identities:
a $\operatorname{cosec}^{4} \theta-\cot ^{4} \theta \equiv \frac{1+\cos ^{2} \theta}{1-\cos ^{2} \theta}$
b $\sec ^{2} \theta-\cos ^{2} \theta \equiv \sin ^{2} \theta\left(1+\sec ^{2} \theta\right)$

$$
\begin{aligned}
& \equiv\left(\operatorname{cosec}^{2} \theta+\cot ^{2} \theta\right)\left(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta\right) \\
& \equiv \operatorname{cosec}^{2} \theta+\cot ^{2} \theta \\
& \equiv \frac{1}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta} \\
& \equiv \frac{1+\cos ^{2} \theta}{\sin ^{2} \theta} \\
& \equiv \frac{1+\cos ^{2} \theta}{1-\cos ^{2} \theta}=\text { RHS }
\end{aligned}
$$

RHS $=\sin ^{2} \theta+\sin ^{2} \theta \sec ^{2} \theta$
$\equiv \sin ^{2} \theta+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}$
$\equiv \sin ^{2} \theta+\tan ^{2} \theta$

$$
\equiv\left(1-\cos ^{2} \theta\right)+\left(\sec ^{2} \theta-1\right)
$$

$$
\equiv \sec ^{2} \theta-\cos ^{2} \theta
$$

$$
\equiv L H S
$$

This is the difference of two squares, so factorise.

As $1+\cot ^{2} \theta \equiv \operatorname{cosec}^{2} \theta$, so $\operatorname{cosec}^{2} \theta-\cot ^{2} \theta \equiv 1$

Using $\operatorname{cosec} \theta \equiv \frac{1}{\sin \theta}, \cot \theta \equiv \frac{\cos \theta}{\sin \theta}$

Write in terms of $\sin \theta$ and $\cos \theta$.
Use $\sec \theta \equiv \frac{1}{\cos \theta}$
$\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \equiv\left(\frac{\sin \theta}{\cos \theta}\right)^{2} \equiv \tan ^{2} \theta$

Look at LHS. It is in terms of $\cos ^{2} \theta$ and $\sec ^{2} \theta$, so use $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$ and $1+\tan ^{2} \theta \equiv \sec ^{2} \theta$

Problem-solving

You can start from either the LHS or the RHS when proving an identity. Try starting with the LHS using $\cos ^{2} \theta \equiv 1-\sin ^{2} \theta$ and $\sec ^{2} \theta \equiv 1+\tan ^{2} \theta$

Example 12

Solve the equation $4 \operatorname{cosec}^{2} \theta-9=\cot \theta$ in the interval $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$

The equation can be rewritten as

$$
4\left(1+\cot ^{2} \theta\right)-9=\cot \theta
$$

$4 \cot ^{2} \theta-\cot \theta-5=0$
$(4 \cot \theta-5)(\cot \theta+1)=0$ Factorise, or solve using the quadratic formula.

This is a quadratic equation. You need to write it in terms of one trigonometric function only, so use $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$

As $\tan \theta$ is $+\mathrm{ve}, \theta$ is in the 1 st and 3 rd quadrants. - The acute angle to the horizontal is $\tan ^{-1}\left(\frac{4}{5}\right)=38.7^{\circ}$

If α is the value the calculator gives for $\tan ^{-1}\left(\frac{4}{5}\right)$, then the solutions are α and $\left(180^{\circ}+\alpha\right)$

As $\tan \theta$ is -ve, θ is in the 2 nd and 4 th quadrants. The acute angle to the horizontal is $\tan ^{-1} 1=45^{\circ}$

If α is the value the calculator gives for $\tan ^{-1}(-1)$, then the solutions are $\left(180^{\circ}+\alpha\right)$ and $\left(360^{\circ}+\alpha\right)$, as α is not in the given interval.

Exercise 3D SKILLS ANALYSIS

Give answers to 3 significant figures where necessary.

1 Simplify each of the following expressions.
a $1+\tan ^{2}\left(\frac{\theta}{2}\right)$
b $(\sec \theta-1)(\sec \theta+1)$
c $\tan ^{2} \theta\left(\operatorname{cosec}^{2} \theta-1\right)$
d $\left(\sec ^{2} \theta-1\right) \cot \theta$
$\left(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta\right)^{2}$
f $2-\tan ^{2} \theta+\sec ^{2} \theta$
g $\frac{\tan \theta \sec \theta}{1+\tan ^{2} \theta}$
$\left(1-\sin ^{2} \theta\right)\left(1+\tan ^{2} \theta\right)$
i $\frac{\operatorname{cosec} \theta \cot \theta}{1+\cot ^{2} \theta}$
j $\left(\sec ^{4} \theta-2 \sec ^{2} \theta \tan ^{2} \theta+\tan ^{4} \theta\right)$
k $4 \operatorname{cosec}^{2} 2 \theta+4 \operatorname{cosec}^{2} 2 \theta \cot ^{2} 2 \theta$
(P) 2 Given that $\operatorname{cosec} x=\frac{k}{\operatorname{cosec} x}$, where $k>1$, find, in terms of k, possible values of $\cot x$.

3 Given that $\cot \theta=-\sqrt{3}$, and that $90^{\circ}<\theta<180^{\circ}$, find the exact values of:
a $\sin \theta$
b $\cos \theta$

4 Given that $\tan \theta=\frac{3}{4}$, and that $180^{\circ}<\theta<270^{\circ}$, find the exact values of:
a $\sec \theta$
b $\cos \theta$
c $\sin \theta$

5 Given that $\cos \theta=\frac{24}{25}$, and that θ is a reflex angle, find the exact values of:
a $\tan \theta$
b $\operatorname{cosec} \theta$
(P) 6 Prove the following identities:
a $\sec ^{4} \theta-\tan ^{4} \theta \equiv \sec ^{2} \theta+\tan ^{2} \theta$
b $\operatorname{cosec}^{2} x-\sin ^{2} x \equiv \cot ^{2} x+\cos ^{2} x$
c $\sec ^{2} A\left(\cot ^{2} A-\cos ^{2} A\right) \equiv \cot ^{2} A$
d $1-\cos ^{2} \theta \equiv\left(\sec ^{2} \theta-1\right)\left(1-\sin ^{2} \theta\right)$
e $\frac{1-\tan ^{2} A}{1+\tan ^{2} A} \equiv 1-2 \sin ^{2} A$
f $\sec ^{2} \theta+\operatorname{cosec}^{2} \theta \equiv \sec ^{2} \theta \operatorname{cosec}^{2} \theta$
h $(\sec \theta-\sin \theta)(\sec \theta+\sin \theta) \equiv \tan ^{2} \theta+\cos ^{2} \theta$
g $\operatorname{cosec} A \sec ^{2} A \equiv \operatorname{cosec} A+\tan A \sec A$
(P) 7 Given that $3 \tan ^{2} \theta+4 \sec ^{2} \theta=5$, and that θ is obtuse, find the exact value of $\sin \theta$.
(P) 8 Solve the following equations in the given intervals:
a $\sec ^{2} \theta=3 \tan \theta, 0^{\circ} \leqslant \theta \leqslant 360^{\circ}$
b $\tan ^{2} \theta-2 \sec \theta+1=0,-\pi \leqslant \theta \leqslant \pi$
c $\operatorname{cosec}^{2} \theta+1=3 \cot \theta,-180^{\circ} \leqslant \theta \leqslant 180^{\circ}$
d $\cot \theta=1-\operatorname{cosec}^{2} \theta, 0 \leqslant \theta \leqslant 2 \pi$
e $3 \sec \frac{1}{2} \theta=2 \tan ^{2} \frac{1}{2} \theta, 0^{\circ} \leqslant \theta \leqslant 360^{\circ}$
f $(\sec \theta-\cos \theta)^{2}=\tan \theta-\sin ^{2} \theta, 0 \leqslant \theta \leqslant \pi$
g $\tan ^{2} 2 \theta=\sec 2 \theta-1,0^{\circ} \leqslant \theta \leqslant 180^{\circ}$
$\sec ^{2} \theta-(1+\sqrt{3}) \tan \theta+\sqrt{3}=1,0 \leqslant \theta \leqslant 2 \pi$
(E/P) 9 Given that $\tan ^{2} k=2 \sec k$,
a find the value of $\sec k$
b deduce that $\cos k=\sqrt{2}-1$.
c Hence solve, in the interval $0^{\circ} \leqslant k \leqslant 360^{\circ}, \tan ^{2} k=2 \sec k$, giving your answers to 1 decimal place.
(E/P) 10 Given that $a=4 \sec x, b=\cos x$ and $c=\cot x$,
a express b in terms of a
b show that $c^{2}=\frac{16}{a^{2}-16}$
(E/P) 11 Given that $x=\sec \theta+\tan \theta$,
a show that $\frac{1}{x}=\sec \theta-\tan \theta$
b Hence express $x^{2}+\frac{1}{x^{2}}+2$ in terms of θ, in its simplest form.
(E/P) 12 Given that $2 \sec ^{2} \theta-\tan ^{2} \theta=p$, show that $\operatorname{cosec}^{2} \theta=\frac{p-1}{p-2}, p \neq 2$

3.5 Inverse trigonometric functions

You need to understand and use the inverse trigonometric functions $\arcsin x, \arccos x$ and $\arctan x$ and their graphs.

- The inverse function of $\sin \boldsymbol{x}$ is called $\arcsin \boldsymbol{x}$.

Hint The $\sin ^{-1}$ function on your calculator will give principal values in the same range as arcsin.

- The domain of $y=\arcsin x$ is $-1 \leqslant x \leqslant 1$
- The range of $y=\arcsin x$ is $-\frac{\pi}{2} \leqslant \arcsin x \leqslant \frac{\pi}{2}$ or $-90^{\circ} \leqslant \arcsin x \leqslant 90^{\circ}$

Example

Sketch the graph of $y=\arcsin x$

Step 1
Draw the graph of $y=\sin x$, with the restricted domain of $-\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2}$

Restricting the domain ensures that the inverse function exists since $y=\sin x$ is a one-to-one function for the restricted domain. Only one-toone functions have inverses. \leftarrow Pure 1 Section 2.3

Step 2

Reflect in the line $y=x$
The domain of $\arcsin x$ is $-1 \leqslant x \leqslant 1$; the range is $-\frac{\pi}{2} \leqslant \arcsin x \leqslant \frac{\pi}{2}$

Remember that the x and y coordinates of points interchange (swap) when reflecting in $y=x$ For example:

$$
\left(\frac{\pi}{2}, 1\right) \rightarrow\left(1, \frac{\pi}{2}\right)
$$

- The inverse function of $\cos x$ is called $\arccos x$.

- The domain of $y=\arccos x$ is $-1 \leqslant x \leqslant 1$
- The range of $y=\arccos x$ is $0 \leqslant \arccos x \leqslant \pi$ or $0^{\circ} \leqslant \arccos x \leqslant 180^{\circ}$
- The inverse function of $\tan x$ is called $\arctan x$.

- The domain of $\boldsymbol{y}=\arctan \boldsymbol{x}$ is $\boldsymbol{x} \in \mathbb{R}$
- The range of $y=\arctan x$ is $-\frac{\pi}{2} \leqslant \arctan x \leqslant \frac{\pi}{2}$ or $-90^{\circ} \leqslant \arctan x \leqslant 90^{\circ}$

Example 14

Work out, in radians, the values of:

You need to solve, in the interval $0 \leqslant x \leqslant \pi$, the equation $\cos x=-1$
Draw the graph of $y=\cos x$

You can verify these results using the $\sin ^{-1}, \cos ^{-1}$ and $\tan ^{-1}$ functions on your calculator.

Exercise 3E SKILLS Interpretation

In this exercise, all angles are given in radians.

1 Without using a calculator, workout, giving your answer in terms of π :
a $\arccos (0)$
b $\arcsin (1)$
c $\arctan (-1)$
d $\arcsin \left(-\frac{1}{2}\right)$
e $\arccos \left(-\frac{1}{\sqrt{2}}\right)$

g $\arcsin \left(\sin \frac{\pi}{3}\right)$
h $\arcsin \left(\sin \frac{2 \pi}{3}\right)$

2 Find:
a $\arcsin \left(\frac{1}{2}\right)+\arcsin \left(-\frac{1}{2}\right)$
b $\arccos \left(\frac{1}{2}\right)-\arccos \left(-\frac{1}{2}\right)$
c $\arctan (1)-\arctan (-1)$
(P) 3 without using a calculator, work out the values of:
a $\sin \left(\arcsin \left(\frac{1}{2}\right)\right)$
b $\sin \left(\arcsin \left(-\frac{1}{2}\right)\right)$
c $\tan (\arctan (-1))$
d $\cos (\arccos 0)$
(P) 4 Without using a calculator, work out the exact values of:
a $\sin \left(\arccos \left(\frac{1}{2}\right)\right)$
b $\cos \left(\arcsin \left(-\frac{1}{2}\right)\right)$
c $\tan \left(\arccos \left(-\frac{\sqrt{2}}{2}\right)\right)$
d $\sec (\arctan (\sqrt{3}))$
e $\operatorname{cosec}(\arcsin (-1))$
f $\sin \left(2 \arcsin \left(\frac{\sqrt{2}}{2}\right)\right)$
(P) 5 Given that $\arcsin k=\alpha$, where $0<k<1$, write down the first two positive values of x satisfying the equation $\sin x=k$
(E/P) 6 Given that x satisfies $\arcsin x=k$, where $0<k<\frac{\pi}{2}$,
a state the range of possible values of x
b express, in terms of x,
i $\cos k \quad$ ii $\tan k$
Given, instead, that $-\frac{\pi}{2}<k<0$,
\mathbf{c} how, if at all, are your answers to part \mathbf{b} affected?
(P) 7 Sketch the graphs of:
a $y=\frac{\pi}{2}+2 \arcsin x$
b $y=\pi-\arctan x$
c $y=\arccos (2 x+1)$
d $y=-2 \arcsin (-x)$
(E/P) 8 The function f is defined as $\mathrm{f}: x \mapsto \arcsin x,-1 \leqslant x \leqslant 1$, and the function g is such that $\mathrm{g}(x)=\mathrm{f}(2 x)$
a Sketch the graph of $y=\mathrm{f}(x)$ and state the range of f .
b Sketch the graph of $y=\mathrm{g}(x)$
c Define g in the form $\mathrm{g}: x \mapsto \ldots$ and give the domain of g .
d Define g^{-1} in the form $g^{-1}: x \mapsto \ldots$
(E/P 9 a Prove that for $0 \leqslant x \leqslant 1, \arccos x=\arcsin \sqrt{1-x^{2}}$
b Give a reason why this result is not true for $-1 \leqslant x \leqslant 0$

Challenge

SKILLS a Sketch the graph of $y=\sec x$, with the restricted domain $0 \leqslant x \leqslant \pi, x \neq \frac{\pi}{2}$
INTERPRETATION
b Given that $\operatorname{arcsec} x$ is the inverse function of $\sec x, 0 \leqslant x \leqslant \pi, x \neq \frac{\pi}{2^{\prime}}$
sketch the graph of $y=\operatorname{arcsec} x$ and state the range of $\operatorname{arcsec} x$.

Chapter review 3

Give any non-exact answers to equations to 1 decimal place.

(E/P 1 Solve $\tan x=2 \cot x$, in the interval $-180^{\circ} \leqslant x \leqslant 90^{\circ}$
(4 marks)
(E/P) 2 Given that $p=2 \sec \theta$ and $q=4 \cos \theta$, express p in terms of q.
(4 marks)
(E/P) 3 Given that $p=\sin \theta$ and $q=4 \cot \theta$, show that $p^{2} q^{2}=16\left(1-p^{2}\right)$
(P) 4 a Solve, in the interval $0^{\circ}<\theta<180^{\circ}$,
i $\operatorname{cosec} \theta=2 \cot \theta$
ii $2 \cot ^{2} \theta=7 \operatorname{cosec} \theta-8$
b Solve, in the interval $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$,
i $\sec \left(2 \theta-15^{\circ}\right)=\operatorname{cosec} 135^{\circ}$
ii $\sec ^{2} \theta+\tan \theta=3$
c Solve, in the interval $0 \leqslant x \leqslant 2 \pi$,
i $\operatorname{cosec}\left(x+\frac{\pi}{15}\right)=-\sqrt{2}$
ii $\sec ^{2} x=\frac{4}{3}$
(E/P) 5 Given that $5 \sin x \cos y+4 \cos x \sin y=0$, and that $\cot x=2$, find the value of $\cot y$. (5 marks)
(P) 6 Prove that:
a $(\tan \theta+\cot \theta)(\sin \theta+\cos \theta) \equiv \sec \theta+\operatorname{cosec} \theta$
$\frac{\operatorname{cosec} x}{\operatorname{cosec} x-\sin x} \equiv \sec ^{2} x$
c $(1-\sin x)(1+\operatorname{cosec} x) \equiv \cos x \cot x$ d $\frac{\cot x}{\operatorname{cosec} x-1}-\frac{\cos x}{1+\sin x} \equiv 2 \tan x$
$\mathbf{e} \frac{1}{\operatorname{cosec} \theta-1}+\frac{1}{\operatorname{cosec} \theta+1} \equiv 2 \sec \theta \tan \theta$

$$
\mathbf{f} \frac{(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)}{1+\tan ^{2} \theta} \equiv \cos ^{2} \theta
$$

(E/P) 7 a Prove that $\frac{\sin x}{1+\cos x}+\frac{1+\cos x}{\sin x}=2 \operatorname{cosec} x$
b Hence solve, in the interval $-2 \pi \leqslant x \leqslant 2 \pi, \frac{\sin x}{1+\cos x}+\frac{1+\cos x}{\sin x}=-\frac{4}{\sqrt{3}}$
(E/P) $\mathbf{8}$ Prove that $\frac{1+\cos \theta}{1-\cos \theta} \equiv(\operatorname{cosec} \theta+\cot \theta)^{2}$
(E) 9 Given that $\sec A=-3$, where $\frac{\pi}{2}<A<\pi$,
a calculate the exact value of $\tan A$
b show that $\operatorname{cosec} A=\frac{3 \sqrt{2}}{4}$ (3 marks)

10 Given that $\sec \theta=k,|k| \geqslant 1$, and that θ is obtuse, express in terms of k :
a $\cos \theta$
b $\tan ^{2} \theta$
c $\cot \theta$
d $\operatorname{cosec} \theta$
(E) 11 Solve, in the interval $0 \leqslant x \leqslant 2 \pi$, the equation $\sec \left(x+\frac{\pi}{4}\right)=2$, giving your answers in terms of π.
(E/P) 12 Find, in terms of π, the value of $\arcsin \left(\frac{1}{2}\right)-\arcsin \left(-\frac{1}{2}\right)$
(E/P) 13 Solve, in the interval $0 \leqslant x \leqslant 2 \pi$, the equation $\sec ^{2} x-\frac{2 \sqrt{3}}{3} \tan x-2=0$, giving your answers in terms of π.
(E/P) 14 a Factorise $\sec x \operatorname{cosec} x-2 \sec x-\operatorname{cosec} x+2$
b Hence solve $\sec x \operatorname{cosec} x-2 \sec x-\operatorname{cosec} x+2=0$ in the interval $0^{\circ} \leqslant x \leqslant 360^{\circ}$
(E/P) 15 Given that $\arctan (x-2)=-\frac{\pi}{3}$, find the value of x.
(E) 16 On the same set of axes, sketch the graphs of $y=\cos x, 0 \leq x \leq \pi$, and $y=\arccos x$, $-1 \leqslant x \leqslant 1$, showing the coordinates of points at which the curves meet the axes.
(E/P 17 a Given that $\sec x+\tan x=-3$, use the identity $1+\tan ^{2} x \equiv \sec ^{2} x$ to find the value of $\sec x-\tan x$
b Deduce the values of: i $\sec x \quad$ ii $\tan x$
c Hence solve, in the interval $-180^{\circ} \leqslant x \leqslant 180^{\circ}, \sec x+\tan x=-3$
(E/P) 18 Given that $p=\sec \theta-\tan \theta$ and $q=\sec \theta+\tan \theta$, show that $p=\frac{1}{q}$
(E/P) 19 a Prove that $\sec ^{4} \theta-\tan ^{4} \theta=\sec ^{2} \theta+\tan ^{2} \theta$
b Hence solve, in the interval $-180^{\circ} \leqslant \theta \leqslant 180^{\circ}, \sec ^{4} \theta=\tan ^{4} \theta+3 \tan \theta$
(P) 20 a Sketch the graph of $y=\sin x$ and shade in the area representing $\int_{0}^{\frac{\pi}{2}} \sin x \mathrm{~d} x$.
b Sketch the graph of $y=\arcsin x$ and shade in the area representing $\int_{0}^{1} \arcsin x \mathrm{~d} x$. c By considering the shaded areas, explain why $\int_{0}^{\frac{\pi}{2}} \sin x \mathrm{~d} x+\int_{0}^{1} \arcsin x \mathrm{~d} x=\frac{\pi}{2}$
(P) 21 Show that $\cot 60^{\circ} \sec 60^{\circ}=\frac{2 \sqrt{3}}{3}$
(E/P) 22 a Sketch, in the interval $-2 \pi \leqslant x \leqslant 2 \pi$, the graph of $y=2-3 \sec x$
b Hence deduce the range of values of k for which the equation $2-3 \sec x=k$ has no solutions.
(P)23 a Sketch the graph of $y=3 \arcsin x-\frac{\pi}{2}$, showing clearly the exact coordinates of the end-points of the curve.
b Find the exact coordinates of the point where the curve crosses the x-axis.

24 a Prove that for $0<x \leqslant 1, \arccos x=\arctan \frac{\sqrt{1-x^{2}}}{x}$
b Prove that for $-1 \leqslant x<0, \arccos x=k+\arctan \frac{\sqrt{1-x^{2}}}{x}$, where k is a constant to be found.

Summary of key points

$1 \cdot \sec x=\frac{1}{\cos x} \quad$ (undefined for values of x for which $\cos x=0$)

- $\operatorname{cosec} x=\frac{1}{\sin x} \quad$ (undefined for values of x for which $\sin x=0$)
- $\cot x=\frac{1}{\tan x} \quad$ (undefined for values of x for which $\tan x=0$)
- $\cot x=\frac{\cos x}{\sin x}$

2 The graph of $\boldsymbol{y}=\boldsymbol{\operatorname { s e c }} \boldsymbol{x}, x \in \mathbb{R}$, has symmetry in the y-axis and has period 360° or 2π radians. It has vertical asymptotes at all the values of x for which $\cos x=0$

3 The graph of $\boldsymbol{y}=\boldsymbol{\operatorname { c o s e c }} \boldsymbol{x}, \boldsymbol{x} \in \mathbb{R}$, has,period 360° or 2π radians. It has vertical asymptotes at all the values of x for which $\sin x=0$

4 The graph of $\boldsymbol{y}=\boldsymbol{\operatorname { c o t }} \boldsymbol{x}, x \in \mathbb{R}$, has period 180° or π radians. It has vertical asymptotes at all the values of x for which $\tan x=0$

5 You can use the identity $\sin ^{2} x+\cos ^{2} x \equiv 1$ to prove the following identities:

- $1+\tan ^{2} x \equiv \sec ^{2} x$
- $1+\cot ^{2} x \equiv \operatorname{cosec}^{2} x$

6 The inverse function of $\sin x$ is called $\arcsin \boldsymbol{x}$.

- The domain of $y=\arcsin x$ is -1
- The range of $y=\arcsin x$ is $-\frac{\pi}{2} \leqslant \arcsin x=\frac{\pi}{2}$ or

$$
-90^{\circ} \leqslant \arcsin x \leqslant 90^{\circ}
$$

7 The inverse function of $\cos x$ is called $\arccos \boldsymbol{x}$.

- The domain of $y=\arccos x$ is $-1 \leqslant x \leqslant 1$
- The range of $y=\arccos x$ is $0 \leqslant \arccos x \leqslant \pi$ or $0^{\circ} \leqslant \arccos x \leqslant 180^{\circ}$

The inverse function of $\tan x$ is called $\arctan \boldsymbol{x}$.

- The domain of $y=\arctan x$ is $x \in \mathbb{R}$
- The range of $y=\arctan x$ is $-\frac{\pi}{2} \leqslant \arctan x \leqslant \frac{\pi}{2}$ or $-90^{\circ} \leqslant \arctan x \leqslant 90^{\circ}$

