Pearson Edexcel International GCSE in Chemistry (9-1)

Exemplar student answers with examiner comments

Contents

About this booklet 3
How to use this booklet. 3
Paper 1 4
Exemplar Question 1 4
Exemplar Question 2 21
Paper 2 62
Exemplar Question 3 62
Exemplar Question 4 77

About this booklet

This booklet has been produced to support mathematics teachers delivering the new International GCSE in Chemistry.

The booklet looks at questions from the Sample Assessment Materials, and some relevant questions from past papers. It shows real student responses to these questions, and how the examining team follow the mark scheme to demonstrate how the students would be awarded marks on these questions.

How to use this booklet

Our examining team have selected student responses to 4 questions. Following each question you will find the mark scheme for that question and then a range of student responses with accompanying examiner comments on how the mark scheme has been applied and the marks awarded, and on common errors for this sort of question.

Paper 1

Exemplar Question 1

8. The copper(II) carbonate in the mineral, malachite, reacts with hydrochloric acid according to this equation.

$$
\mathrm{CuCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Some students investigate the effect of changing the concentration of acid on the rate of this reaction. The diagram shows the apparatus they use.

This is the method they use:

- set the balance to zero
- add an excess of malachite lumps to the conical flask and replace the cotton wool
- start a timer and record the balance reading after one minute.

The experiment is repeated using different concentrations of hydrochloric acid. The mass and number of malachite lumps are kept the same in each experiment.
(a) The table shows the results obtained in one series of experiments.

Concentration of hydrochloric acid/ $\mathbf{m o l} / \mathbf{d m}^{\mathbf{3}}$	0.6	0.8	1.0	1.6	1.8	2.0
Balance reading/g	-0.20	-0.27	-0.44	-0.54	-0.60	-0.67

State why the balance readings have negative values.
\qquad
\qquad
(b) The graph shows the results of this series of experiments.

The circled point indicates an anomalous result.
(i) Suggest one mistake the students could have made to produce this result.
(ii) State the relationship shown by the graph.
\qquad
\qquad
(c) Explain why an increase in the concentration of the acid causes an increase in the rate of the reaction. You should use the particle collision theory in your answer.
\qquad
\qquad

Mark Scheme

Question number	Answer	Mark
$\mathbf{8 (a)}$	One reaction product is a gas and so escapes from the flask	$\mathbf{1}$

Question number	Answer	Mark
$\mathbf{8 (b) (i)}$	Any one of:	
	• balance reading recorded too late acid concentration greater than recorded	$\mathbf{1}$

Question number	Answer	Mark
$\mathbf{8 (b) (i i) ~}$	Loss in mass directly proportional to acid concentration	$\mathbf{1}$

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (c)}$	An explanation that makes reference to the following two points:		
- more particles in the same volume (1) so collide more frequently (with malachite) (1)	accept particles closer together	$\mathbf{2}$	

Student Response A

(a) The table shows the results obtained in one series of experiments.

concentration of hydrochloric acid/ mol/ dm						
balance reading /g	0.6	0.8	1.0	1.6	1.8	2.0

State why the balance readings have negative values.

Carbon Dioxide (CO_{2}) gas escapect from the conical flask and since He balance Ware shown.
(b) The graph shows the results of this series of experiments.

The circled point indicates an anomalous result.
(i) Suggest one mistake the students could have made to produce this result.

The concentration of
(1)

We surface areof HCl wed may have been
higher than 1.0 , xp proximately 1.32 molds wore
(ii) State the relationship shown by the graph. May have been used

As the concentration of HCl increases, the lossin mass increases. The concentration and loss in mass are directly proportional $\sqrt{\text { A linear relationship is shown. }}$
(c) Explain why an increase in the concentration of the acid causes an Increase in the rate of the reaction. You should use the particle collision theory in your answer.

HCl molecules
(2)

D more efrolons will be present if the concentration is hugh thus the chance that the malachite lumps write with the molecules would be higher. Thus, there would be
guccosfull collisions per unit white. Thus rate of reaction increases
(Total for Question $8=5$ marks)

Examiner Comments

Part (c): In dilute solution HCl exists as ions, not molecules. It is also necessary to state that there are more particles/ions in the same volume. The second mark could not be awarded since the candidate did not state that there are more successful collisions per unit time.

Student Response B

(a) The table shows the results obtained in one series of experiments.

concentration of hydrochloric acid / mol/dm						
balance reading /g	0.6	0.8	1.0	1.6	1.8	2.0

State why the balance readings have negative values.
(1)

$$
\begin{gathered}
g \operatorname{ast}\left(\mathrm{co}_{2}\right) \text { os copes } \\
r e d u c e_{s} .
\end{gathered}
$$

(b) The graph shows the results of this series of experiments.

The circled point indicates an anomalous result.
(i) Suggest one mistake the students could have made to produce this result.
(1)

(ii) State the relationship shown by the graph.
directly proportional linear relation ship
(c) Explain why an increase in the concentration of the acid causes an increase in the rate of the reaction. You should use the particle coliision theory in your answer.
(2)

Examiner Comments

Part (b)(i): A comparison of the two concentrations of acid is required, so stating that the acid has a high concentration is not sufficient.

Part (b)(ii): To score here it is necessary to include the names of the two variables plotted on the graph in your answer.

Student Response C

(a) The table shows the results obtained in one series of experiments.

concentration of hydrochloric acid/ mol/dm						
balance reading /g	0.6	0.8	1.0	1.6	1.8	2.0

State why the balance readings have negative values.
(1)
carbon dioxide gets evapourated so it has negative values
(b) The graph shows the results of this series of experiments.

The circled point indicates an anomalous result.
(i) Suggest one mistake the students could have made to produce this result.
ie. The students could have taken a higher concentration that h
$1.0 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{~V}$ (ii) State the relationship shown by the graph.
(1)

As the concentration of hydrochloric acid increase, the \qquad loss in mass also increase A
(c) Explain why an increase in the concentration of the acid causes an increase in the rate of the reaction. You should use the particle collision theory in your answer.
(2)

When the concentration of acid increase, there are more particles per unit volume Therefore success al collisions occur at a high frequency 1 causing the rate of reaction to increase

Examiner Comments

Part (a): Incorrect terminology used. The gas does not evaporate; it escapes.
Part (b)(ii): Since the graph line passes through the origin it is necessary to state that the two variables are directly proportional to one another, not just that as one increases so does the other.

Part (c): It is important to make a comparison between the frequencies of successful collisions. To state that there will now be a high frequency of collisions is not sufficient; it must be higher.

Student Response D

(a) The table shows the results obtained in one series of experiments.

concentration of hydrochloric acid/ mol/dm						
balance reading /g	0.6	0.8	1.0	1.6	1.8	2.0

State why the balance readings have negative values.

To show that the mass decreases.
(b) The graph shows the results of this series of experiments.

The circled point indicates an anomalous result.
(1) Suggest one mistake the students could have made to produce this result.
(1) \bigcirc

Goncentration Timer started quickly.
(ii) State the relationship shown by the graph.
(c) Explain why an increase in the concentration of the acid causes an increase in the rate of the reaction. You should use the particle collision theory in your answer.

```
Increasing concentrations will increase the number ....
of particles. These particles would now collide
more frequently so the number of collisions increase
and therefore increasing the rate of reaction.
```


Examiner Comments

Part (a): The question required an answer that showed why the mass was decreasing, not just that the mass was decreasing.
Part (b)(ii): Since the graph line passes through the origin it is necessary to state that the two variables are directly proportional to one another.
Part (c): It is necessary to state that there are more particles/ions in the same volume.

Student Response E

(a) The table shows the results obtained in one series of experiments.

concentration of hydrochloric acid/ mol/dm						
balance reading /g	0.6	0.8	1.0	1.6	1.8	2.0

State why the balance readings have negative values.
(b) The graph shows the results of this series of experiments.
loss in mass / g

The circled point indicates an anomalous result.
(i) Suggest one mistake the students could have made to produce this result.

The mass of the malachite lumps changed
(ii) State the relationship shown by the graph.

The loss in mass is diff directly to the concentration of HCl .
(c) Explain why an increase in the concentration of the acid causes an increase in the rate of the reaction. You should use the particle collision theory in your answer.
(2)

When the concentration increases more effective collisions take place between the HCl molecules and malachite lumps, thereby increasing the rate of reaction.

Examiner Comments

Part (b)(i): The mass of the marble chips is irrelevant in this experiment since the chips are always in excess.
Part (c): In dilute solution HCl exists as ions, not molecules. It is also necessary to state that there are more particles/ions in the same volume. The second mark could not be awarded since the candidate did not state that there are more successful collisions per unit time.

Student Response F
(a) The table shows the results obtained in one series of experiments.

concentration of hydrochloric acid / mol/ dm						
balance reading /g	0.6	0.8	1.0	1.6	1.8	2.0

State why the balance readings have negative values,
Th Water $+\mathrm{CO}_{2}$ will evaporate
(1)
(b) The graph shows the results of this series of experiments.

The circled point indicates an anomalous result.
(i) Suggest one mistake the students could have made to produce this result.

Not put the exult concentration.
(ii) State the relationship shown by the graph.

The loss in mass is proportional directly to hydrochloric
acid conc.
(c) Explain why an increase in the concentration of the acid causes an increase in the rate of the reaction. You should use the particle collision theory in your answer.

(2)

With a higher concentration there Ole more collisions

 Occuring, concentration affects. rate of reaction, so the rate will

(Total for Question $8=5$ marks)

$$
2 / 5
$$

Examiner Comments

Part (a): Incorrect terminology used. The gas does not evaporate; it escapes.
Part (c): In order to score the first mark it is necessary to state that there are more particles in the same volume.

Student Response G

(a) The table shows the results obtained in one series of experiments.

concentration of hydrochloric acid/ $\mathrm{mol} / \mathrm{dm}^{2}$	0.6	0.8	1.0	1.6	1.8	20
balance reading /g	-0.20	-0.27	-0.44	-0.54	-0.60	-0.67

State why the balance readings have negative values.
Some of the. products escape, such as

(b) The graph shows the results of this series of experiments.

The circled point indicates an anomalous result.
(i) Suggest one mistake the students could have made to produce this result.
(1)
not replaced Me cotton wool fast enough meaning some preductr. exape
(ii) State the relationship shown by the graph.
(c) Explain why an increase in the concentration of the acid causes an increase in the rate of the reaction. You should use the particle collision theory in your answer.
(2)

An increase in concentration of arid wear thane sse more Hklpaticles... in a given volume preaning that they are more jingly ri collide. sin the capparcerbunate particles, and $s c$ exact, in a set periat of liner.

Examiner Comments

Part (c): 'More likely to collide' is not considered to be equivalent to 'collide more frequently', so the second mark is not awarded.

Exemplar Question 2

9 The flow chart shows how ethene can be obtained industrially from crude oil.

(a) Step 1 involves the use of a tall column.

Describe how the diesel fraction is obtained from the crude oil in step 1.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) In step 2, saturated compounds such as dodecane are obtained from the mixture of hydrocarbons in the diesel fraction.

Explain why dodecane is described as a saturated hydrocarbon.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Which of these formulae is that of an alkane?
[] A $\quad \mathrm{C}_{7} \mathrm{H}_{12}$
[] B $\quad \mathrm{C}_{9} \mathrm{H}_{18}$
[]C $\mathrm{C}_{11} \mathrm{H}_{24}$
[]D $\mathrm{C}_{13} \mathrm{H}_{30}$
(d) In step 3, cracking is used to convert alkanes into alkenes.

Complete the equation to show the reaction in which one molecule of dodecane is converted into two molecules of ethene and one molecule of another hydrocarbon.

$$
\mathrm{C}_{12} \mathrm{H}_{26} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+
$$

\qquad
(e) Alkanes and alkenes both react with halogens, but in different ways. The equations for two examples of these different reactions are shown.

$$
\begin{array}{ll}
\text { equation } 1 & \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\text { compound } X \\
\text { equation } 2 & \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}
\end{array}
$$

(i) State the condition needed for the reaction in equation 1 to occur.
\qquad
(ii) Deduce the formula of compound X .
(iii) Draw a dot-and-cross diagram to represent a molecule of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ Show only the outer electrons of each atom.
(iv) Equation 2 shows an example of an addition reaction.

State the type of reaction shown by equation 1.
\qquad
(f) Alkenes can be distinguished from alkanes using bromine water.
(i) What colour change occurs in the reaction between propene and bromine water?
[] A colourless to orange
[] B colourless to green
[] C green to colourless
[] D orange to colourless
(ii) A compound formed in the reaction between propene and bromine water has the percentage composition by mass
$\mathrm{C}=25.9 \%, \mathrm{H}=5.0 \%, \mathrm{Br}=57.6 \%$ and $\mathrm{O}=11.5 \%$
Calculate its empirical formula.
\qquad

Mark Scheme

Question number	Answer	Mark
9(a)	A description that makes reference to five of the following points:	
	- crude oil is heated/vaporised (1) - the vapour enters the lower part of the column (1) - there is a temperature gradient up the column (1) the vapour in the diesel fraction rises up the column until it condenses (1) at a height where its boiling point is lower than the temperature in the column (1) so the diesel fraction is removed (1)	

Question number	Answer	Additional guidance	Mark
9(b)	An explanation that makes reference to the following three points:		
	- dodecane contains hydrogen and carbon (1) only/and no other elements (1) and contains only single bonds (1)	accept does not contain double bonds/multiple bonds	$\mathbf{3}$

Question number	Answer	Mark
9(c)	C	$\mathbf{1}$

Question number	Answer	Mark
$\mathbf{9 (d)}$	$\mathrm{C}_{8} \mathrm{H}_{18}$	$\mathbf{1}$

Question number	Answer	Additional guidance	Mark
$\mathbf{9 (e) (i)}$	Ultraviolet radiation	accept ultraviolet light	$\mathbf{1}$

Question number	Answer	Mark
9(e)(ii)	HCl	1

Question number	Answer	Additional guidance	Mark
9(e)(iii)	- All 6 atoms with a dot and cross representing each bonding pair of electrons (1) 3 lone pairs of electrons on Cl and none on any of the H atoms (1)	accept 2 dots or 2 crosses for each bond	accept any combination of dots and crosses

Question number	Answer	Mark
9(e)(iv)	Substitution	1

Question number	Answer	Mark
9(f)(i)	D	1

Student Response A
(9) The flow chart shows how ethene can be obtained industrially from crude oil.

(a) Step 1 involves the use of a tall column.

Describe how the diesel fraction is obtained from the crude oil in step 1.
(5) 4

Crude oil is a mixture of hydrocarbon.
A fractionating woloumn is used. \& Diesel is a fraction of crude oil. a crude oil is bated and sent in to the fractionating coloump where it is heated of Diesel and the other hyanocarbom
 of the chamber and if the gapesur move up along the fractionating oloumb which has been designed in a way k where the temperature decreases as it goes up the coloitm the has a unique boiling point in comparison to the others thus (7) condenses in a place where that only ty it can return to Ifs state as aliquid it is then trapped oft.
(b) In step 2, saturated compounds such as dodecane are obtained from the mixture of hydrocarbons in the diesel fraction.
Explain why dodecane is described as a saturated hydrocarbon.
(3) 2

Dodec ane tor fry belongs in the lromulogow sene of Alkanes worsen pr which Hydrocarbons doll have a double bond This mean that Pl $_{x}$ the canon, bond with the maximum of amount of hydrogen/atom Kat H can bond witt.
(c) Which of these formulae is that of an alkane?
(1)

A $\mathrm{C}_{7} \mathrm{H}_{12}$B $\mathrm{C}_{9} \mathrm{H}_{18}$
区 C $\mathrm{C}_{11} \mathrm{H}_{24}$D $\mathrm{C}_{13} \mathrm{H}_{30}$
(d) In step 3, cracking is used to convert alkanes into alkenes.

Complete the equation to show the reaction in which one molecule of dodecane is converted into two molecules of ethene and one molecule of another hydrocarbon.

$$
\begin{aligned}
& 12-4 \div 9 \\
& 26 \cdot 5=18
\end{aligned}
$$

$$
\mathrm{C}_{12} \mathrm{H}_{26} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{8} \mathrm{H}_{+8}
$$

(e) Alkanes and alkenes both react with halogens, but in different ways.

The equations for two examples of these different reactions are shown.
equation 1

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\text { compound } X
$$

equation 2 $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$
(i) State the condition needed for the reaction in equation 1 to occur.
(ii) Deduce the formula of compound X .

HCl

(iii) Draw a dot-and-cross diagram to represent a molecule of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$

Show only the outer electrons of each atom

(iv) Equation 2 shows an example of an addition reaction.

State the type of reaction shown by equation 1 .

(1)
1)

1
(f) Alkenes can be distinguished from alkanes using bromine water.
(1) What colour change occurs in the reaction between propene and bromine water?
(1)
\square A colourless to orangeB colourless to green
\square C green to colourless
区 D orange to colourless
(ii) A compound formed in the reaction between propene and bromine water has the percentage composition by mass
$\mathrm{C}=25.9 \%, \mathrm{H}=5.0 \%, \mathrm{Br}=57.6 \%$ and $\mathrm{O}=11.5 \%$
Calculate the empirical formula of this compound.

15/19

Examiner Comments

Part (a): Although the answer implied that the crude oil vapour is put into the column, there was no specific mention of this, so the mark for bullet point 2 cannot be awarded. Also, there was no mention of the diesel fraction condensing at a height where its boiling point is lower than the temperature in the column, so the mark for the fifth bullet point cannot be awarded.

Part (b): One mark lost because the answer does not state that only carbon and hydrogen atoms are present in a hydrocarbon.

Part (e)(iii): Lone pairs on the chlorine atom missing.
Part (f)(ii): Although the correct empirical formula is given in the main text, the formula given on the answer line is not acceptable. An empirical formula should not show any functional groups that may be present.

Student Response B
(9) The flow chart shows how ethene can be obtained industrially from crude oil.

(a) Step 1 involves the use of a tall column.

Describe how the diesel fraction is obtained from the crude oil in step 1.
Crude
oik is heated.

(5)

At different levels of the coloumn the heat reduces .n.
As the heat reduces the crude oil condenses
The diesel is obtorine of from where $i t$ condences

N
(b) In step 2, saturated compounds such as dodecane are obtained from the mixture of hydrocarbons in the diesel fraction.

Explain why dodecane is described as a saturated hydrocarbon.
It has no double bonds present in it so it is called saturated since it on' y contains hydrogen and carbon atoms it is called hydrocarbons
(c) Which of these formulae is that of an alkane?
(1)

A $\mathrm{C}_{7} \mathrm{H}_{12}$B $\mathrm{C}_{9} \mathrm{H}_{18}$
X C $\mathrm{C}_{11} \mathrm{H}_{24}$
D $\mathrm{C}_{13} \mathrm{H}_{30}$
(d) In step 3, cracking is used to convert alkanes into alkenes.

Complete the equation to show the reaction in which one molecule of dodecane is converted into two molecules of ethene and one molecule of another hydrocarbon.

$$
\mathrm{C}_{12} \mathrm{H}_{26} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{8} \mathrm{H}_{48}
$$

(1)

(e) Alkanes and alkenes both react with halogens, but in different ways. The equations for two examples of these different reactions are shown.
equation $1 \quad \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+$ compound X
equation $2 \quad \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$
(i) State the condition needed for the reaction in equation 1 to occur.

(1)
(ii) Deduce the formula of compound X .
(1)

HCl

\checkmark
1
(iii) Draw a dot-and-cross diagram to represent a molecule of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$

Show only the outer electrons of each atom.

(iv) Equation 2 shows an example of an addition reaction.

State the type of reaction shown by equation 1 .
Substitution.

(f) Alkenes can be distinguished from alkanes using bromine water.
(i) What colour change occurs in the reaction between propene and bromine water?
(1)
\square A colourless to orangeB colourless to greenC green to colourless

区 D orange to colourless
(ii) A compound formed in the reaction between propene and bromine water has the percentage composition by mass
$\mathrm{C}=25.9 \%, \mathrm{H}=5.0 \%, \mathrm{Br}=57.6 \%$ and $\mathrm{O}=11.5 \%$
Calculate the empirical formula of this compound.
C
$\frac{25.9}{12}$

0

(3)

2. 158
3 7

empirical formula $=$
(Total for Question 9=19 marks)

13/19

Examiner Comments

Part (a): Only the first bullet point scores here. The rest of the answer is too vague. For example, the statement 'At different levels of the column the heat reduces' is not sufficient. It is necessary to state that the temperature decreases as the column is ascended, or words to that effect.

Part (e)(iii): Lone pairs on the chlorine atom missing.
Part (f)(ii): The formula given is not acceptable. An empirical formula should not show any functional groups that may be present. edexcel

Student Response C

(9) The flow chart shows how ethene can be obtained industrially from crude oil.

(a) Step 1 involves the use of a tall column.

Describe how the diesel fraction is obtained from the crude oil in step 1.
(5)

There are bubble caps in the fractionating column. The crude
oil is heated and the particles evaporate fromm the bottom
of the fractionating column and trave's apnarass. The particles gets trapped or passes through the bubble caps due to the density of the particle. Different fractions of are obtained by the method Diesel has a higher temperature than dodecane, therefore diesel can be obtained by using a tap.
(b) In step 2, saturated compounds such as dodecane are obtained from the mixture of hydrocarbons in the diesel fraction.

Explain why dodecane is described as a saturated hydrocarbon.
Dodecane is anamented hydrocarbon because it contains only hydrogen and carbon
Dodecane is saturated because it contains the maximum number of bonds that it can have. There are no carboncarbon double bonds in dodecone so it is a saturated hydrocarbon.
(c) Which of these formulae is that of an alkane?
(1)A $\mathrm{C}_{2} \mathrm{H}_{12}$B $\mathrm{C}_{9} \mathrm{H}_{18}$
区
C $\mathrm{C}_{11} \mathrm{H}_{24}$D $\mathrm{C}_{13} \mathrm{H}_{30}$
(d) in step 3, cracking is used to convert alkanes into alkenes.

Complete the equation to show the reaction in which one molecule of dodecane is converted into two molecules of ethene and one molecule of another hydrocarbon.
(1)

$$
\mathrm{C}_{12} \mathrm{H}_{26} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{8} \mathrm{H}_{18}
$$

(e) Alkanes and alkenes both react with halogens, but in different ways. The equations for two examples of these different reactions are shown.
equation 1

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\text { compound } X
$$

$$
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}
$$

equation 2
(i) State the condition needed for the reaction in equation 1 to occur.
(1)

(1)

$$
\mathrm{HCl}
$$

(iii) Draw a dot-and-cross diagram to represent a molecule of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$

Show only the outer electrons of each atom.

(2)

Substitution
reaction
(1) $1 /$
(f) Alkenes can be distinguished from alkanes using bromine water.
(i) What colour change occurs in the reaction between propene and bromine water?
(1)A colourless to orange
B colourless to green

- C green to colourless

区 D orange to colourless
(ii) A compound formed In the reaction between propene and bromine water has the percentage composition by mass
$\mathrm{C}=25.9 \%, \mathrm{H}=5.0 \%, \mathrm{Br}=57.6 \%$ and $\mathrm{O}=11.5 \%$
Calculate the empirical formula of this compound.

$$
\begin{array}{rlrll}
\mathrm{C} & \frac{H}{\mathrm{H}} & \frac{\mathrm{Br}}{\mathrm{C}} & \frac{0}{12} \\
n & =\frac{25.9}{12} & \frac{5.0}{1} & \frac{57.6}{80} & \frac{51.5}{16} \\
& =\frac{2.16}{0.72} & \frac{5}{0.72} & \frac{0.72}{0.72} & \frac{0.72}{0.72}
\end{array}
$$

(3)

$$
3: 776: 1: 1
$$

$$
\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{BrO}
$$

$$
\text { empirical formula }=\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{BrO}
$$

(Total for Question $9=19$ marks)

15/19

Examiner Comments

Part (a): First mark obtained for heating the crude oil. The candidate incorrectly states that the particles evaporate from the bottom of the column but nearly scores the mark for vapour travels upwards; however, the fourth bullet point in the mark scheme may only be awarded if there is a mention of the vapour condensing. There is no mention in the answer of any of the other points in the mark scheme, so only one mark awarded.

Student Response D

(9) The flow chart shows how ethene can be obtained industrially from crude oil.

(a) Step 1 involves the use of a tall column.

Describe how the diesel fraction is obtained from the crude oil in step 1 .

The crude oil is heated and passed into a fractionating column that is hotter ot the
bottom and cooler towards the top. The diesel fraction is obtained by making use of it's boiling point. The diesel vapour will move up as a gas until it's specific poiling point is reached and will then condense to form a liquid. This diesel traction is then tapped off.
(b) In step 2, saturated compounds such as dodecane are obtained from the mixture of hydrocarbons in the diesel fraction.

Explain why dodecane is described as a saturated hydrocarbon.
dodecape is an alkane and so has no double possible number of hydrogen atoms for the given number of carbon atoms. Therefore dodecane is described as saturated bydrocorban/due to this reason and also because it contains only carbon and
(c) Which of these formulae is that of an alkane?A $\mathrm{C}_{7} \mathrm{H}_{12}$B $\mathrm{C}_{9} \mathrm{H}_{18}$
$\boxtimes \subset C_{11} H_{24}$D $\mathrm{C}_{13} \mathrm{H}_{30}$

(d) In step 3, cracking is used to convert alkanes into alkenes.

Complete the equation to show the reaction in which one molecule of dodecane is converted into two molecules of ethene and one molecule of another hydrocarbon.
(1) \int_{\checkmark}

$$
\mathrm{C}_{12} \mathrm{H}_{25} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{8} \mathrm{H}_{18}
$$

(e) Alkanes and alkenes both react with halogens, but in different ways, The equations for two examples of these different reactions are shown.

> equation $1 \quad \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+$ compound X equation $2 \quad \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$
(i) State the condition needed for the reaction in equation 1 to occur.

Ultraviolet
 \qquad light

HCl
V
1Ω
(iii) Draw a dot-and-cross diagram to represent a molecule of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}$

Show only the outer electrons of each atom.

$$
\begin{aligned}
& \mathrm{C}-2,4 \\
& \mathrm{H}-1 \\
& \mathrm{Cl}-2,8,7
\end{aligned}
$$

(2)

(iv) Equation 2 shows an example of an addition reaction.

State the type of reaction shown by equation 1 .

Substitution reaction. \qquad \square Substitution reaction.
(f) Alkenes can be distinguished from alkanes using bromine water.
(i) What colour change occurs in the reaction between propene and bromine water?A colourless to orangeB colourless to greenC green to colourless
区 D orange to colourless
(ii) A compound formed in the reaction between propene and bromine water has the percentage composition by mass
$\mathrm{C}=25.9 \%, \mathrm{H}=5.0 \%, \mathrm{Br}=57.6 \%$ and $\mathrm{O}=11.5 \%$
Calculate the empirical formula of this compound.
$\begin{array}{ccc}C & \frac{5.0}{1} \\ \frac{25.9}{12} & \frac{2.16}{0.719} & \frac{5.0}{0.7142} \\ 3 & : & 6.95 \\ 3 & : & 7 \\ \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{BrO} & \mathrm{Ol}\end{array}$
empirical formula $=$ \qquad $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br} \mathrm{O}$
(Total for Question 9 = 19 marks)

18/19

Examiner Comments

Part (a): The second mark is nearly scored, but it is important to state that the crude oil vapour enters the lower part of the column.

Student Response
(9) The flow chart shows how ethene can be obtained industrially from crude oil.

(a) Step 1 involves the use of a tall column.

Describe how the diesel fraction is obtained from the crude oil in step 1 .
The crude oil is put into a fractionating column to be divided into fractions. A heat of $1500^{\circ} \mathrm{C}$ is given to the crude vil Under heat, the crude 0.1 undergoes cracking to form the smaller diesel Fraction This fraction in piped out of the fractionating column after Fwards.
(b) In step 2, saturated compounds such as dodecane are obtained from the mixture of hydrocarbons in the diesel fraction.

Explain why dodecane is described as a saturated hydrocarbon.
Dodecane is an a saturated hydrocarbon as it flacks a* carbon - carbon double bond Dodecare is an alkane and alkanes don't have e carbon - carbon double bonds, So they are saturated hydrocarbon.
(c) Which of these formulae is that of an alkane?
(1)
\square A C, H_{12}
\square B $\quad \mathrm{C}_{9} \mathrm{H}_{18}$
$\pm \subset C_{11} H_{24}$D $\mathrm{C}_{13} \mathrm{H}_{30}$
(d) In step 3, cracking is used to convert alkanes into alkenes.

Complete the equation to show the reaction in which one molecule of dodecane is converted into two molecules of ethene and one molecule of another hydrocarbon.

$$
\mathrm{C}_{12} \mathrm{H}_{26} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{8} \mathrm{H}_{18}
$$

(1)

1
(e) Alkanes and alkenes both react with halogens, but in different ways. The equations for two examples of these different reactions are shown.
equation $1 \quad \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+$ compound X
equation 2

$$
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}
$$

(i) State the condition needed for the reaction in equation 1 to occur.

UV light

(1)

(ii) Deduce the formula of compound X .
(1)

HCl

(iii) Draw a dot-and-cross diagram to represent a molecule of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$

Show only the outer electrons of each atom.
(2)

(iv) Equation 2 shows an example of an addition reaction.

State the type of reaction shown by equation 1 .
(1)

(f) Alkenes can be distinguished from alkanes using bromine water.
(i) What colour change occurs in the reaction between propene and bromine water?A colourless to orangeB colourless to greenC green to colourless
(D orange to colourless

$$
\begin{aligned}
& \text { (ii) A compound formed in the reaction between propene and bromine water has } \\
& \text { the percentage composition by mass } \\
& \mathrm{C}=25.9 \%, \mathrm{H}=5.0 \%, \mathrm{Br}=57.6 \% \text { and } \mathrm{O}=11.5 \% \\
& \text { Calculate the empirical formula of this compound. } \\
& \frac{2.158}{0.71875} \frac{5.0}{0.71875} \\
& \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br} \\
& \frac{\mathrm{Br}}{3} \mathrm{O} \\
& \frac{\mathrm{O}}{12}
\end{aligned}
$$

(Total for Question $9=19$ marks)

Examiner Comments

Part (a): This candidate nearly scores the second mark, but fails to mention that the crude oil (vapour) enters the lower part of the column. The first mark is awarded for heating the crude oil, but the candidate now confuses the fractional distillation of the oil with cracking, so no further marks are awarded.

Part (b): The candidate has confined his/her answer to an explanation of the term 'saturated'. Since both 'saturated' and 'hydrocarbon' were in bold, an explanation of both is required to obtain full marks.
Part (e)(ii): Two of the C to H bonds contain only one electron, so the first mark is not awarded.

Part (e)(iv): Halogenation is not mentioned in the specification with reference to this type of reaction. It is always best to confine answers to the terms that are mentioned in the specification.

Student Response F
(9) The flow chart shows how ethene can be obtained industrially from crude oil.

(a) Step 1 involves the use of a tall column.

Describe how the diesel fraction is obtained from the crude oil in step 1.
Cruel oil is buratx. Fraction column then collects the condesed fraction which cool at different temperatures. β Diesel is collected at its specific ic heat capacity and separated from refinery gasplerosine and bitumen
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) In step 2, saturated compounds such as dodecane are obtained from the mixture of hydrocarbons in the diesel fraction.

Explain why dodecane is described as a saturated hydrocarbon.
(3) Q. We know dodecane is saturated by the'ane' extension to the name, Satured means that the molecule only contain g single bonds. Hydrroabbons are only mede from hydrogen carbarn and the extension of 'dodec' signifies that there we 10 carbons. -
(c) Which of these formulae is that of an alkane?
(1)

- A $\mathrm{C}_{7} \mathrm{H}_{12}$B $\mathrm{C}_{9} \mathrm{H}_{18}$C $\mathrm{C}_{11} \mathrm{H}_{24}$
\square D C $\mathrm{C}_{13} \mathrm{H}_{30}$

(d) In step 3, cracking is used to convert alkanes into alkenes.

Complete the equation to show the reaction in which one molecule of dodecane is converted into two molecules of ethene and one molecule of another hydrocarbon.

$$
\mathrm{C}_{12} \mathrm{H}_{26} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{8} \mathrm{H}_{18}
$$

(1)
(e) Alkanes and alkenes both react with halogens, but in different ways. The equations for two examples of these different reactions are shown.
equation 1

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\text { compound } X
$$

equation 2

$$
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}
$$

(i) State the condition needed for the reaction in equation 1 to occur.

(1)
(iii) Draw a dot-and-cross diagram to represent a molecule of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$

Show only the outer electrons of each atom.

(iv) Equation 2 shows an example of an addition reaction.

State the type of reaction shown by equation 1 .
Substitution
(f) Alkenes can be distinguished from alkanes using bromine water.
(i) What colour change occurs in the reaction between propene and bromine water?
(1)

A colourless to orange
B colourless to greenC green to colourless
D orange to colourless
(ii) A compound formed in the reaction between propene and bromine water has the percentage composition by mass
$\mathrm{C}=25.9 \%, \mathrm{H}=5.0 \%, \mathrm{Br}=57.6 \%$ and $\mathrm{O}=11.5 \%$
Calculate the empirical formula of this compound.
$\frac{C}{12}$
$\frac{\mathrm{H}}{1}$

$\frac{0}{16}$
$\frac{259}{12} \quad \frac{5}{1} \quad \frac{576}{80} \quad \frac{11.5}{16}$
(3)

$\begin{array}{lllll}2.16 & 5 & 0.72 & 0.718\end{array}$
3

$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{BO}$
1
empirical formula $=C_{3} \frac{H_{7} D_{B O}}{B Q}$
(Total for Question $9=19$ marks)

Examiner Comments

Part (a): The crude oil is only heated until it vaporises; it is not heated until it burns. A generous mark is awarded for 'collects the condensed fraction which cools at different temperatures.

Part (e)(iii): Lone pairs on the chlorine atom missing.
Part (f)(iii): Benefit of the doubt is given for use of B instead of Br - treated as a 'slip of the pen'.

Student Response G

(9) The flow chart shows how ethene can be obtained industrially from crude oil.

(a) Step 1 involves the use of a tall column.

Describe how the diesel fraction is' obtained from the crude oil in step 1.
Crude oil is heated to turn into vapour before entering the fractionating column from the bottoms. The fractionating column is cooler at the top and notwat the bottom so as the vapour rises up the fractionating column, groups of hydrocarbons (fractions) with similar boiling point condense at different heights according to their bp. Some hydrocarbons are collected at the bottom as liquids because their bp yinnigner than the temperature in the fractionating column so they condense immediately. Diesel fraction is one
(b) In step 2, saturated compounds such as dodecane are obtained from the mixture of hydrocarbons in the diesel fraction.

Explain why dodecane is described as a saturated hydrocarbon.
Saturated is a compound with single bonds only between carbon atoms and a hydrocarbon is a compound with hydrogen and carbonatoms only. bodecane is a saturated nydrocarbon as it contains hydrogen and carbon atom only and all carbons are singly bonded with eachother.
(c) Which of these formulae is that of an alkane?A $\mathrm{C}_{7} \mathrm{H}_{12}$B $\mathrm{C}_{8} \mathrm{H}_{18}$
$\mathrm{C}_{n} \mathrm{H}_{2 n+2}$
sC C $\mathrm{C}_{11} \mathrm{H}_{24}$D $\mathrm{C}_{13} \mathrm{H}_{30}$
(d) In step 3, cracking is used to convert alkanes into alkenes.

Complete the equation to show the reaction in which one molecule of dodecane is converted into two molecules of ethene and one molecule of another hydrocarbon.

$$
\mathrm{C}_{12} \mathrm{H}_{20} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{8} \mathrm{H}_{18}
$$

(1)

(e) Alkanes and alkenes both react with halogens, but in different ways. The equations for two examples of these different reactions are shown.
equation 1
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+$ compound X
equation 2
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$
(i) State the condition needed for the reaction in equation 1 to occur.
(ii) Deduce the formula of compound X .

(H)
(iv) Equation 2 shows an example of an addition reaction.

State the type of reaction shown by equation 1.
(f) Alkenes can be distinguished from alkanes using bromine water,
(i) What colour change occurs in the reaction between propene and bromine water?

A colourless to orange

\rightarrow unsatu roted ${ }^{(1)}$

B colourless to greenC green to colourlessD orange to colourless
(ii) A compound formed in the reaction between propene and bromine water has the percentage composition by mass
$\mathrm{C}=25.9 \%, \mathrm{H}=5.0 \%, \mathrm{Br}=57.6 \%$ and $\mathrm{O}=11.5 \%$
Calculate the empirical formula of this compound.
(3)
 empirical formula $=$ \qquad

13/19

Examiner Comments

Part (a): First two marks only awarded. The candidate talks generally about fractional distillation and not specifically about the diesel fraction.

Part (e)(iii): Lone pairs on the chlorine atom missing.

Student Response H

(9) The flow chart shows how ethene can be obtained industrially from crude oil.

(a) Step 1 involves the use of a tall column.

Describe how the diesel fraction is obtained from the crude oil in step 1.

It is obtained b,
Le process col
0.1 is heated at $350-400^{\circ} \mathrm{C}$ in a fractionating column where it separate, into different frochons. Fraction are groups of osianis compounds with similar boiling points. The different w compounds thy deed cuntaris will rise up the fractionating column and will condense A high op the column were the temperature reaches their boiling points (The frackonelog column is solder is you po up un hance diesel at f be cliched
(b) In step 2, saturated compounds such as dodecane are obtained from the mixture of hydrocarbons in the diesel fraction.

Explain why dodecane is described as a saturated hydrocarbon.

Didecare is a hydracarbur became it is mode up of the elements bydroger ard carbon only it is saturated because it doe contains ant single convent bonds between its carlin atoms.
(c) Which of these formulae is that of an alkane?

$$
\mathrm{C}_{n} \mathrm{H}_{2 n+2}
$$

(1)

A C, H_{12}
$\square \mathrm{B} \mathrm{C}_{3} \mathrm{H}_{18}$
$\mathrm{C} C \mathrm{C}_{11} \mathrm{H}_{24}$D $\mathrm{C}_{39} \mathrm{H}_{30}$
(d) In step 3, cracking is used to convert alkanes into alkenes.

Complete the equation to show the reaction in which one molecule of dodecane is converted into two molecules of ethene and one molecule of another hydrocarbon.
(1)

$$
\mathrm{C}_{12} \mathrm{H}_{26} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{8} \mathrm{H}_{48}
$$

(e) Alkanes and alkenes both react with halogens, but in different ways. The equations for two examples of these different reactions are shown.
equation 1

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\text { compound } X
$$

equation 2

$$
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}
$$

(i) State the condition needed for the reaction in equation 1 to occur.

(1)

(1)

11
HCl

(iii) Draw a dot-and-cross diagram to represent a molecule of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$

Show only the outer electrons of each atom.

(iv) Equation 2 shows an example of an addition reaction.

State the type of reaction shown by equation 1.

Subshitation rewkigan
(f) Alkenes can be distinguished from alkanes using bromine water.
(ii) What colour change occurs in the reaction between propene and bromine water?
(1)A colourless to orangeB colourless to greenC green to colourless
(1) orange to colourless
(放 A compound formed in the reaction between propene and bromine water has the percentage composition by mass
$\mathrm{C}=25.9 \%, \mathrm{H}=5.0 \%, \mathrm{Br}=57.6 \%$ and $\mathrm{O}=11.5 \%$
Calculate the empirical formula of this compound.
(3)

empirical formula $=$

(Total for Question $9=19$ marks)
14/19

Examiner Comments

Part (a): First mark awarded even though the candidate states that the crude oil is heated in the column, and not before it enters the column. Third mark awarded for 'the fractionating column gets colder as you go up' - this is equivalent to marking point 3. Fourth mark awarded for 'compounds in diesel condense high up'. Fifth mark cannot be awarded since the compounds will condense at a temperature lower than their boiling points, not where it reaches their boiling points.

Student Response I
(9) The flow chart shows how ethene can be obtained industrially from crude oil.

(a) Step 1 involves the use of a tall column.

Describe how the diesel fraction is obtained from the crude oil in step 1.
(5)

Using fractional distillation, cute oil is first heated at very high temperatures beat $35 u-00^{\circ} \mathrm{C}$ prot Andenters
the fractionating tower as a vapour, diesel condenses somewhere in the mistdle of the
bodingpprimtis quite see (the top of the column is coder than the bottoms, the compounds in h the lower boiling point condense high up on the fractionating tower. After it iscondemed diesel is obtannel as a liquid/ answer for hactisy and pour foul)
(b) In step 2, saturated compounds such as dodecane are obtained from the mixture of hydrocarbons in the diesel fraction.
Explain why dodecane is described as a saturated hydrocarbon.
(3)
because dodocane is on alkane (Whic his a saturate' the carton hydrocarbon) as in contain. the maximum number of single bonds. Fur the more the compsuas contain, only bydigen and carboy therefore its coshes a hydrocubun
(c) Which of these formulae is that of an alkane?
(1)

A $\mathrm{C}, \mathrm{H}_{12}$
$\mathrm{Cn}+\mathrm{H}_{n+2}$B $\mathrm{C}_{9} \mathrm{H}_{18}$
EC $\mathrm{C}_{11} \mathrm{H}_{24}$

D $\mathrm{C}_{13} \mathrm{H}_{30}$
(d) In step 3, cracking is used to convert alkanes into alkenes.

Complete the equation to show the reaction in which one molecule of dodecane is converted into two molecules, of ethene and one molecule of another hydrocarbon.

$$
26-8=18
$$

$12-a=8$

$$
\mathrm{C}_{12} \mathrm{H}_{26} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{8} \mathrm{H}_{18}
$$

(1)

(e) Alkanes and alkenes both react with halogens, but in different ways. The equations for two examples of these different reactions are shown.
equation 1
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+$ compound X
equation 2
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$
(i) State the condition needed for the reaction in equation 1 to occur.
(1)

(ii) Deduce the formula of compound X .

(2)

(1)

(f) Alkenes can be distinguished from alkanes using bromine water.
(i) What colour change occurs in the reaction between propene and bromine water?
(1)

A colourless to orangeB colourless to greenC green to colourlessD orange to colourless

(ii) A compound formed in the reaction between propene and bromine water has the percentage composition by mass
$\mathrm{C}=25.9 \%, \mathrm{H}=5.0 \%, \mathrm{Br}=57.6 \%$ and $\mathrm{O}=11.5 \%$
Calculate the empirical formula of this compound.
(3)

empirical formula $=$ \qquad
(Total for Question $9=19$ marks)

Examiner Comments

Part (a): First mark scored for crude oil is heated, but second mark not awarded since the candidate did not state that the vapour enters the lower part of the column. 'The top is cooler than the bottom' is accepted as equivalent to 'temperature gradient' and 'obtained as a liquid' is accepted as equivalent to 'diesel fraction is removed'. There is no mention of either the vapour rising up the column (third marking point) or of the vapour condensing at a height where it boiling point is lower than the temperature in the column, so only three marks are awarded.

Student Response J
(9) The flow chart shows how ethene can be obtained industrially from crude oil.

(a) Step 1 involves the use of a tall column.

Describe how the diesel fraction is obtained from the crude oil in step,1.

(b) In step 2, saturated compounds such as dodecane are obtained from the mixture of hydrocarbons in the diesel fraction.
Explain why dodecane is described as a saturated hydrocarbon.
Explain why dodecane is described as a saturated hydrocarbon.
Dodecane is described as a saturated
hydrocarbons because it doesn't hare double
carbon to carbon bonds it only has singe carbon to carbon bonds.
η
(c) Which of these formulae is that of an alkane?
(1)

A C, H_{12}B $\mathrm{C}_{9} \mathrm{H}_{18}$
$\boldsymbol{X} \subset \mathrm{C}_{11} \mathrm{H}_{3}$,
(d) In step 3, cracking is used to convert alkanes into alkenes.

Complete the equation to show the reaction in which one molecule of dodecane is converted into two molecules of ethene and one molecule of another hydrocarbon.

$$
\mathrm{C}_{12} \mathrm{H}_{26} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{8} \mathrm{H}_{18}
$$

(e) Alkanes and alkenes both react with halogens, but in different ways,

The equations for two examples of these different reactions are shown.
equation $1 \quad \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+$ compound X
equation $2 \quad \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$
(i) State the condition needed for the reaction in equation 1 to occur.
(1)

(ii) Deduce the formula of compound X .

(1)
(iii) Draw a dot-and-cross diagram to represent a molecule of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$

Show only the outer electrons of each atom.

(iv) Equation 2 shows dr example of an addition reaction.

State the type of reaction shown by equation 1 .
(2)

(1)
condensation
-
(f) Alkenes can be distinguished from alkanes using bromine water.
(i) What colour change occurs in the reaction between propene and bromine water?
(1)A colourless to orangeB colourless to greenC green to colouriessD orange to colourless
(湤 A compound formed in the reaction between propene and bromine water has
the percentage composition by mass
$\mathrm{C}=25.9 \%, \mathrm{H}=5.0 \%, \mathrm{Br}=57.6 \%$ and $\mathrm{O}=11.5 \%$
Calculate the empirical formula of this compound.
(3)

empirical formula $=$
(Total for Question $9=19$ marks)

Examiner Comments

Part (a): First mark awarded for crude oil is heated, but nothing credit worthy after that.
Candidate gives vague information rather than focusing on the diesel fraction as demanded by the question.
Part (b): Part(b): The candidate has confined his/her answer to an explanation of the term 'saturated'. Since both 'saturated' and 'hydrocarbon' were in bold, an explanation of both is required to obtain full marks.

Part (e)(iii): One bonding pair of electrons missing, so first mark not awarded. No lone pairs shown on the chlorine atom, so second mark not awarded.

Student Response K
9. The flow chart shows how ethene can be obtained industrially from crude oil.

(a) Step 1 involves the use of a tall column.

Describe how the diesel fraction is obtained from the crude oil in step 1.
(5) 2

To obtain diesel from crude oil, the cruse or would have to undergo fractional distillation. A fractionating column is heated, with higher temperature) of the bottom and lower at the top, At different heights of the column there are collection tubes. Diesel is a mixture of hydrocarbons, all with similar boiung point and so, as the crude al rises as a gas, the group of nydrocarbons that make up diesel, once they reach a specific temperature will condense/ Find be collected.
(b) In step 2, saturated compounds such as dodecane are obtained from the mixture of hydrocarbons in the diesel fraction.

Explain why dodecane is described as a saturated hydrocarbon. .
Dodecane contains ia carbon atoms all bondeb
by single carbon to carbon bonds. This single bond is what makes a compound saturated of is then described as a bydrocarbon because the only r elements present on the compound are hydrogen and carbon.

(c) Which of these formulae is that of an alkane?
CuH_{2}
[A $\mathrm{C}_{7} \mathrm{H}_{12}$
48
$\mathrm{C}_{9} \mathrm{H}_{10}$
CoHen

0C $\mathrm{C}_{11} \mathrm{H}_{24}$

D $\mathrm{C}_{17} \mathrm{H}_{30}$
(d) In step 3, cracking is used to convert alkanes into alkenes.

Complete the equation to show the reaction in which one molecule of dodecane is converted into two molecules of ethene and one molecule of another hydrocarbon.

$$
\mathrm{C}_{12} \mathrm{H}_{20} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{8} \mathrm{H}_{18}
$$

(e) Alkanes and alkenes both react with halogens, but in different ways. The equations for two examples of these different reactions are shown.

$$
\begin{array}{ll}
\text { equation } 1 & \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\text { compound } X \\
\text { equation } 2 & \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}
\end{array}
$$

(i) State the condition needed for the reaction in equation 1 to occur.
(1)

(iii) Draw a dot-and-cross diagram to represent a molecule of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ Show only the outer electrons of each atom.

(iv) Equation 2 shows an example of an addition reaction.

State the type of reaction shown by equation 1.

(1) 1
(2)

(1) substitution

(f) Alkenes can be distinguished from alkanes using bromine water.
(I) What colour change occurs in the reaction between propene and bromine water?A colourless to orangeB colourless to greenC green to colourlessD orange to colourless
(ii) A compound formed in the reaction between propene and bromine water has the percentage composition by mass
$\mathrm{C}=25.5 \%, \mathrm{H}=5.0 \%, \mathrm{Br}=57.6 \%$ and $\mathrm{O}=11.5 \%$
Calculate theempirical formula of this compound.
empirical formula $=$
(Total for Question $9=19$ marks)
11/19

Examiner Comments

Part (a): The candidate's description is generally too vague. The question demanded that the answer be focused on obtaining the diesel fraction. The statement 'higher temperatures at the bottom and lower at the top' is accepted as being equivalent to 'temperature gradient', so the third mark in the mark scheme is awarded. A second mark is awarded for 'condenses'.

Student Response L
(9) The flow chart shows how ethene can be obtained industrially from crude oil.

(a) Step 1 involves the use of a tall column.

Describe how the diesel fraction is obtained from the crude oil in step $\mathbf{1}$.
The crude ail is feet into the bottoms of the coil column and is heaved It then vaporises. As ir gars up the saiumn it becomes eerier.
When the vapors trecems cai enough they condense an a piuthorm and ire Ped bach out of the the column. AU of the virpoes with boiling points at the insight range of the chisel fraction sonclanse there and ace collected as a fracticit.
\qquad
\qquad
\qquad
\qquad
(b) In step 2, saturated compounds such as dodecane are obtained from the mixture of hydrocarbons in the diesel fraction.

Explain why dodecane is described as a saturated hydrocarbon.
dedecene is a salured hydrccertion because it ls made up of Hydregen and Carbon only and dees not have a double bench.
(c) Which of these formulae is that of an alkane?
(1)

A $\mathrm{C}, \mathrm{H}_{12}$B $\mathrm{C}_{9} \mathrm{H}_{1 \mathrm{~m}}$
区 C $\mathrm{C}_{11} \mathrm{H}_{24}$
D $\mathrm{C}_{13} \mathrm{H}_{\mathrm{w}}$
(d) In step 3, cracking is used to convert alkanes into alkenes.

Complete the equation to show the reaction in which one molecule of dodecane is converted into two molecules of ethene and one molecule of another hydrocarbon.

$$
\mathrm{C}_{12} \mathrm{H}_{20} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{8} \mathrm{H}_{18}
$$

(e) Alkanes and alkenes both react with halogens, but in different ways. The equations for two examples of these different reactions are shown.
equation 1

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\text { compound } x
$$

equation 2

$$
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{3}
$$

(i) State the condition needed for the reaction in equation 1 to occur.
(1)

. High temperature

(ii) Deduce the formula of compound x.
\qquad
,

(iii) Draw a dot-and-cross diagram to represent a molecule of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$

Show only the outer electrons of each atorn.
(iv) Equation 2 shows an example of an addition reaction.

State the type of reaction shown by equation 1.
(1)

Displacement reaction

(f) Alkenes can be distinguished from alkanes using bromine water.
(i) What colour change occurs in the reaction between propene and bromine water?
(1)A colourless to orangeB colourless to greenC green to colourless
8 D orange to colourless
(ii) A compound formed in the reaction between propene and bromine water has the percentage composition by mass
$\mathrm{C}=25.9 \%, \mathrm{H}=5.0 \%, \mathrm{Br}=57.6 \%$ and $\mathrm{O}=11.5 \%$
Calculate the empirical formula of this compound.

in COO_{9}.

(3)

11/19

Examiner Comments

Part (a): The implication from the first sentence is that the crude oil is heated after being fed into the column. This is not the case; it is heated prior to being fed into the column. However, a mark is still given for the crude oil being heated. 'As it goes up the column it becomes cooler' it acceptable for 'temperature gradient', so the third marking point in the mark scheme is awarded. The fourth marking point is also reached by mentioning that the vapours of the diesel fraction condense. However, there is no mention of why they condense, nor any mention of the liquid being removed.
Part (e)(i): 'High temperature' is always ignored as a condition for this reaction. UV radiation is the required condition.

Part (e)(iii): The lone pairs on the chlorine atom are missing.

Paper 2

Exemplar Question 3

2 This is a method used to measure the solubility of a solid in water:

- add an excess of solid to some water in a boiling tube and stir
- measure the temperature of the saturated solution formed
- weigh an empty evaporating basin
- pour some of the saturated solution into the evaporating basin
- weigh the basin and contents
- heat the evaporating basin to remove all of the water
- weigh the evaporating basin and remaining solid.
(a) The table shows the results of an experiment using this method.

Mass of empty evaporating basin/g	89.6
Mass of evaporating basin + saturated solution/g	115.8
Mass of evaporating basin + solid/g	94.9

Calculate the mass of solid obtained and the mass of water removed.

```
mass of solid =
```

\qquad

```
mass of water = ..............................g
```

(b) In another experiment, at a different temperature, the mass of solid obtained is 10.5 g and the mass of water removed is 16.8 g .
Calculate the solubility of the solid, in g per 100 g of water, at this temperature.
solubility $=$
(c) If the evaporating basin is heated too strongly some of the solid decomposes to form a gas.
Explain how this would affect the value of the calculated solubility of the solid.
\qquad
\qquad
\qquad
\qquad

Mark Scheme

Question number	Answer	Mark
2(a)	\bullet (mass of solid) $5.3(\mathrm{~g})(1)$	
$\bullet \quad$ (mass of water) $20.9(\mathrm{~g})(1)$	$\mathbf{2}$	

Question number	Answer	Mark
$\mathbf{2 (b)}$	$\bullet(10.5 \div 16.8) \times 100(1)$	
$\bullet 62.5($ grams of solid per 100 g of water $)(1)$	$\mathbf{2}$	

Question number	Answer	Mark
$\mathbf{2 (c)}$	An explanation that links together the following three points: - the gas will escape (1) the mass of solid remaining will be less (than it should be) (1) - the value of the calculated solubility will be lower (than it should be) (1)	$\mathbf{3}$

Student Response A

(a) The table shows the results of an experiment using this method.

mass of evaporating basin/g	89.6
mass of evaporating basin + saturated solution/g	115.8
mass of evaporating basin + solid/g	94.9

Calculate the mass of solid obtained and the mass of water removed.

$$
94.9 .99 .6-5.3 \mathrm{~g} / 1
$$

(b) In another experiment, at a different temperature, the mass of solid obtained is 10.5 g and the mass of water removed is 16.8 g .

Calculate the solubility of the solid, in g per 100 g of water, at this temperature.

(c) If the evaporating basin is heated too strongly some of the solid decomposes to form a gas.

Explain how this strong heating would affect the value of the calculated solubility of the solid.

This would caw se the amount of solid remaining to be

- less. Thus, if would mean that the solubility of the solid lox is less than/ the actual value.

Examiner Comments

Part (c): No mention of the gas escaping.

Student Response B

(a) The table shows the results of an experiment using this method.

mass of evaporating basin/g	89.6
mass of evaporating basin + saturated solution/g	115.8
mass of evaporating basin + solid/g	94.9

Calculate the mass of solid obtained and the mass of water removed.
(2)

(b) In another experiment, at a different temperature, the mass of solid obtained is 10.5 g and the mass of water removed is 16.8 g .

Calculate the solubility of the solid, in g per 100 g of water, at this temperature.

$$
\frac{10.5}{10.8} \times 100
$$

(2)

$$
\text { solubility }=62.5
$$ g per 100 g of water

(c) If the evaporating basin is heated too strongly some of the solid decomposes to form a gas.

Explain how this strong heating would affect the value of the calculated solubility of the solid.
(3)

Examiner Comments

Part (c): Incorrect terminology used; the gas does not evaporate, it escapes. The third mark could not be awarded since the final sentence is too vague; it is necessary to state in what way the results will be inaccurate.

$$
\begin{aligned}
& \text { watch- } 115.8-94.9=20.9 \\
& 94.9-89.6=5.3 \\
& \text { mass of solid }=\quad 5.3 \\
& \text { mass of water }=\ldots 20.9 \quad 9
\end{aligned}
$$

Student Response C

(a) The table shows the results of an experiment using this method.

mass of evaporating basin/g	89.6
mass of evaporating basin + saturated solution/g	115.8
mass of evaporating basin + solid/g	94.9

Calculate the mass of solid obtained and the mass of water removed.

$$
\begin{aligned}
& m_{\text {solid }}=94.9-89.6 \\
& \text { 以 A* } \because 58=89 \\
& =5.3 \mathrm{~g} \\
& \text { (2) } \\
& m_{\text {water }}=(115.8-89.6) \mathrm{AP} / \text { /AAA } \\
& \text { mass of solid = } \\
& .3 \sqrt{9} \\
& \text { 19422 }=26.29 \\
& \text { mass of water }=
\end{aligned}
$$

(b) In another experiment, at a different temperature, the mass of solid obtained is 10.5 g and the mass of water removed is 16.8 g .

Calculate the solubility of the solid, in g per 100 g of water, at this temperature.

(c) If the evaporating basin is heated too strongly some of the solid decomposes to form a gas.
Explain how this strong heating would affect the value of the calculated solubility of the solid.

When the solid in axapuarratent decomposes and form a gas, the mass of the solid decrease. Then the calculated solubility of the solid would be lesser than bate the ats theoritical values Bo en as a lesser mass is calculated when weighing the evapourating basin after removing the water.

Examiner Comments

Part (a): Incorrect subtraction to calculate mass of water; should be (115.8-94.9).
Part (b): Incorrect calculation performed. The experiment showed that 10.5 g of solid dissolved in 16.8 g of water. To find the solubility in $\mathrm{g} / 100 \mathrm{~g}$ of water, one needs to use ratios to calculate the mass of solid that would dissolve in 100 g of water.
Part (c): No mention of the gas escaping, so first mark cannot be awarded.

Student Response D

(a) The table shows the results of an experiment using this method.

mass of evaporating basin/g	89.6
mass of evaporating basin + saturated solution/g	115.8
mass of evaporating basin + solid/g	94.9

Calculate the mass of solid obtained and the mass of water removed.

$$
\begin{aligned}
& \text { mass of water }=115.8 \mathrm{~g}-94.9 \\
&=20.9 \mathrm{~g} 11 \\
& \text { removed } \\
& \text { mass of solid }=94.9 \mathrm{~g}-89.6 \mathrm{~g} \\
&=5.3 \mathrm{~g} / 1
\end{aligned}
$$

(2)

$$
\text { mass of solid }=\quad 5 \cdot 3
$$

$$
\text { mass of water }=\quad 20.9
$$

(b) in another experiment, at a different temperature, the mass of solid obtained is 10.5 g and the mass of water removed is 16.8 g .

Calculate the solubility of the solid, in g per 100 g of water, at this temperature.

$$
\text { Solubility }=52 \mathrm{~g} \text { per } 100 \mathrm{~g} \text { of water } / 1
$$

(2)
$10.5 \mathrm{~g} \rightarrow 16.8 \mathrm{~g}$
$x \mathrm{~g} \rightarrow 100 \mathrm{~g}$
$x=\frac{100 \mathrm{~g} \times 10.5 \mathrm{~g}}{16.8 \mathrm{~g}}$
$=62.5 \mathrm{~g} \quad$ solubility $=\quad 52 \quad 9$ per 100 g of water
$\begin{aligned} \text { solid dissolved } & =62.5 \mathrm{~g}-10.5 \mathrm{~g} \\ & =52 \mathrm{~g}\end{aligned}$
(c) If the evaporating basin is heated too strongly some of the solid decomposes to form a gas.

Explain how this strong heating would affect the value of the calculated solubility of the solid.
(3) \bigcirc

gas. the mass of solid that dissolves in 100 g
of water would now inswease Xes the water also
boils to form a gees.

Examiner Comments

Part (b): Incorrect calculation performed. The experiment showed that 10.5 g of solid dissolved in 16.8 g of water. To find the solubility in $\mathrm{g} / 100 \mathrm{~g}$ of water, one needs to use ratios to calculate the mass of solid that would dissolve in 100 g of water.
Part (c): This candidate has failed to appreciate that the formation, and subsequent escape, of a gas will decrease the mass of solid obtained, and hence that this results in the calculated solubility being lower than it should be. edexcel

Student Response E

(a) The table shows the results of an experiment using this method.

mass of evaporating basin /g	89.6
mass of evaporating basin + saturated solution /g	115.8
mass of evaporating basin + solid /g	94.9

Calculate the mass of solid obtained and the mass of water removed.
(2)

(b) In another experiment, at a different temperature, the mass of solid obtained is 10.5 g and the mass of water removed is 16.8 g ,

Calculate the solubility of the solid, in g per 100 g of water, at this temperature.
$\frac{19}{1008}$
(2)

2
$16.8=1050$
$g=62.5$
solubility $=$ \qquad 62.5 \qquad g per 100 g of water
(c) If the evaporating basin is heated too strongly some of the solid decomposes to form a gas.

Explain how this strong heating would affect the value of the calculated solubility of the solid.

If some of the solid decomposes, the 1/ Final mass of solid obtained would not
be accurate n therefore, the solubility value
calculated would be less

Examiner Comments

Part (c): No mention of the gas escaping and the statement that the mass of solid obtained would be inaccurate is too vague.

Student Response F

(a) The table shows the results of an experiment using this method.

mass of evaporating basin/g	89.6
mass of evaporating basin + saturated solution/g	115.8
mass of evaporating basin + solid/g	94.9

Calculate the mass of solid obtained and the mass of water removed.

$$
\begin{aligned}
& 11.58-89.6=120026.2 \\
& 94.9-89.6=5.3
\end{aligned}
$$

(b) In another experiment, at a different temperature, the mass of solid obtained is 10.5 g and the mass of water removed is 16.8 g .

Calculate the solubility of the solid, in g per 100 g of water, at this temperature.
(2)
solubility $=$ \qquad g per 100 g of water
(c) If the evaporating basin is heated too strongly some of the solid decomposes to form a gas.

Explain how this strong heating would affect the value of the calculated solubility of the solid.
(3)

\qquad
\qquad

Examiner Comments

Part (a): Incorrect subtraction to calculate mass of water. Should be (115.8-94.9).
Part (b): No calculation attempted. The result of the experiment showed that 10.5 g of solid dissolved in 16.8 g of water. To find the solubility in $\mathrm{g} / 100 \mathrm{~g}$ of water, one needs to use ratios to calculate the mass of solid that would dissolve in 100 g of water.

Student Response G

(a) The table shows the results of an experiment using this method.

mass of evaporating basin/g	89.6
mass of evaporating basin + saturated solution/g	115.8
mass of evaporating basin + solid/g	94.9

Calculate the mass of solid obtained and the mass of water removed.

$$
\text { mass of solid }=94.6-89.6=5.3 g
$$

$$
\begin{array}{r}
\text { mass of water }=115 \cdot 8-89 \cdot 6-5 \cdot 3=20 \cdot 9 \mathrm{~g} \\
\text { mass of solid }=5 \cdot 3^{9} 9 \\
\text { mass of water }=20 \cdot 9^{9} 9
\end{array}
$$

(b) In another experiment, at a different temperature, the mass of solid obtained is 10.5 g and the mass of water removed is 16.8 g .

Calculate the solubility of the solid, in g per 100 g of water, at this temperature.

$$
\begin{aligned}
& 10.5 \mathrm{~g} \quad 16.8 \mathrm{~g} \\
& x \quad 100 \mathrm{~g} \\
& x=\frac{10.5 \times 100}{16.8} \quad \text { solubility }=62.5 \\
&=62.5 \mathrm{~g}
\end{aligned}
$$

(c) If the evaporating basin is heated too strongly some of the solid decomposes to form a gas.
Explain how this strong heating would affect the value of the calculated solubility of the solid.

Since some of the solid would decompose with strong heating, the value we would calculate would be/ understated (and the value would
be less. The solubility calculation would not \qquad
be accurate, since our results would imply that
less solid can be dissolved at that temperature
and volume

Examiner Comments

Part (c): No mention of the gas escaping leading to a decrease in the mass of solid.

Student Response H

(a) The table shows the results of an experiment using this method.

mass of evaporating basin /g	89.6
mass of evaporating basin + saturated solution/g	115.8
mass of evaporating basin + solid /g	94.9

Calculate the mass of solid obtained and the mass of water removed.

$$
\begin{aligned}
& 53 \\
& \begin{array}{lr}
\text { mass of solid }= & 5.3 \\
\text { mass of water }= & 20.9 \quad \mathrm{~g}
\end{array}
\end{aligned}
$$

(b) In another experiment, at a different temperature, the mass of solid obtained is 10.5 g and the mass of water removed is 16.8 g .

Calculate the solubility of the solid, in g per 100 g of water, at this temperature.

$$
\begin{aligned}
& \frac{10.5}{169}=\frac{x}{100} \\
& 168 x=10.5 \times 100 \\
& x=\frac{10.5 \times 100}{16.8} \cdot 62.5 \\
& \text { solubility }=\quad 62.5 \quad \text { g per } 100 \mathrm{~g} \text { of water }
\end{aligned}
$$

(c) If the evaporating basin is heated too strongly some of the solid decomposes to form a gas.
Explain how this strong heating would affect the value of the calculated solubility of the solid.
(3)

Since solubility in the yaxume \& solid dissolved in Loo g of 1 water in a given temperature, then if you reduce the valare of solid left in the evapocalng basin (due to strong teat) then the calcalakin kor he
isalobiling wast be accurate and want be reliable. The result yo

```
would abtain would, show in thei case that the salibbili, of this solid
is less than wot actually is.
```


Examiner Comments

Part (c): Unfortunate error made by referring to less volume of solid and not less mass. Also, there is no mention of the gas escaping, so first mark not awarded.

Student Response I
(a) The table shows the results of an experiment using this method.

mass of evaporating basin/g	89.6
mass of evaporating basin + saturated solution/g	115.8
mass of evaporating basin + solid/g	94.9

Calculate the mass of solid obtained and the mass of water removed.

$$
\begin{aligned}
94.9-89.6 & =5.3 \\
115.8-9 L .9 & =20.9 \\
20.9-5.3 & =15.6
\end{aligned}
$$

(b) In another experiment, at a different temperature, the mass of solid obtained is 10.5 g and the mass of water removed is 16.8 g .

Calculate the solubility of the solid, in g per 100 g of water, at this temperature.

$$
\begin{aligned}
& \text { +10g3 } \\
& 100: 12.6 \\
& 832=10.5
\end{aligned}
$$

$$
\text { solubility }=12.6 \% \quad g \text { per } 100 \mathrm{~g} \text { of water }
$$

(c) If the evaporating basin is heated too strongly some of the solid decomposes to form a gas.

Explain how this strong heating would affect the value of the calculated solubility of the solid.

teasers a Solution would scat bubbling vigilously and some of it may be loot, effecting the result) $A b_{0}$ it will start evaporating there will be less so the goy solid will form a gar so you will have less of the solid than you should have, so therefore it effect the value of solubility
(since now you have decompose (the solid) \rightarrow so have less solid then what you hale skat ed with uthech whites host will not be dissolve or saturateion the bottom, so you will be unaware that it hos been decomposed an a you will assume it is dissolver thesfors effecting y our results.

Examiner Comments

Part (a): Incorrect subtraction to calculate mass of water. Should be (115.8-94.9).
Part (b): Incorrect calculation. The result of the experiment showed that 10.5 g of solid dissolved in 16.8 g of water. To find the solubility in $\mathrm{g} / 100 \mathrm{~g}$ of water, one needs to use ratios to calculate the mass of solid that would dissolve in 100 g of water.
Part (c):
There is no mention of the gas escaping, so first mark not awarded. The second mark is awarded for stating that there would be less solid than before, but the candidate merely states that this will affect the value calculated for the solubility without stating how it will be affected.

Student Response J

(a) The table shows the results of an experiment using this method.

mass of evaporating basin /g	89.6
mass of evaporating basin + saturated solution/g	115.8
mass of evaporating basin + solid /g	94.9

Calculate the mass of solid obtained and the mass of water removed.

94.9
$89.6-$
5.3

115.8
$5.3-$
110.5 $\begin{aligned} & 1105 \\ & 20.9\end{aligned}$
mass of solid $=5.3$
(b) In another experiment, at a different temperature, the mass of solid obtained is 10.5 g and the mass of water removed is 16.8 g .

Calculate the solubility of the solid, in g per 100 g of water, at this temperature.

$$
\begin{array}{ll}
\text { mass of solid }=5.5 & \\
\text { mass of water }=110.5 & 20.9 / 9
\end{array}
$$

(2) 2

$$
100 \div 16.9=\frac{125}{21}
$$

Solubility $=$
623 g per 100 g of water

$$
\frac{125}{21} \times 105=62.3
$$

(c) If the evaporating basin is heated too strongly some of the solid decomposes to form a gas.

Explain how this strong heating would affect the value of the calculated solubility

Examiner Comments

Part(c): Second mark awarded even though the candidate does not specify that it is the mass of the solid that will be less. No mention of gas escaping for first mark, and no mention of the effect that less solid has on the calculated solubility.

Student Response K

(a) The table shows the results of an experiment using this method.

mass of evaporating basin/g	89.6
mass of evaporating basin + saturated solution/g	115.8
mass of evaporating basin + solid/g	94.9

Calculate the mass of solid obtained and the mass of water removed.
mass of solidi= $94.9-89.0=5.3$
mex of water $=n 5.8-94.9=20.9$

(b) In another experiment, at a different temperature, the mass of solid obtained is 10.5 g and the mass of water removed is 16.8 g .

Calculate the solubility of the solid, in g per 100 g of water, at this temperature.

solubility $=$ \qquad g per 100 g of water
(c) If the evaporating basin is heated too strongly some of the solid decomposes to form a gas.

Explain how this strong heating would affect the value of the calculated solubility of the solid.

Examiner Comments

Part (b): Calculation not attempted. The experiment showed that 10.5 g of solid dissolved in 16.8 g of water. To find the solubility in $\mathrm{g} / 100 \mathrm{~g}$ of water, one needs to use ratios to calculate the mass of solid that would dissolve in 100 g of water.
Part (c): First mark awarded for gas is lost, but no mention of the effect of this on the mass of solid obtained and the subsequent calculated value for the solubility.

Exemplar Question 4

8 Polymers can be classified as addition polymers or condensation polymers.
(a) An addition polymer can be formed from the monomer $\mathrm{CH}_{2}=\mathrm{CHCl}$
(i) Name this monomer.
(1)

Name the addition polymer formed from this monomer.
\qquad
(b) The diagram shows the repeat unit of a different addition polymer.

Draw the displayed formula of the monomer used to make this polymer.
(c) Polyesters are condensation polymers.

The structures of two monomers that are used to make a polyester are:

$$
\mathrm{HO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}
$$

(i) Draw the structure of the repeat unit of the polyester formed from these two monomers.
(ii) Identify the small molecule formed when these two monomers form the polyester.
(1)

Mark Scheme

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (a) (i)}$	Chloroethene	accept vinyl chloride	$\mathbf{1}$

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (a) (\text { (i) }}$	Poly(chloroethene)	accept polyvinyl chloride ignore PVC	$\mathbf{1}$

Question number	Answer	Additional guidance	Mark	
8(b)	F	F	ignore bond angles	
	F	F		

Question number	Answer	Additional guidance	Mark
8(c)(i)	- Correct ester link (1) - Rest of unit correct (1) Example: $\stackrel{\mathrm{N}}{-\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{O}-}$	accept:	

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (c) (\text { ii })}$	Water/ $\mathrm{H}_{2} \mathrm{O}$	if both name and formula given, both must be correct	$\mathbf{1}$

Student Response A

8 \Polymers can be classified as addition polymers or condensation polymers.
(a) An addition polymer can be formed from the monomer $\mathrm{CH}_{2}=\mathrm{CHCl}$ Ch $\mathrm{Cl}_{3} \mathrm{H}_{3}$
(i) Name this monomer.

Whiter arlene 14×1-chlowethene

(ii) Name the addition polymer formed from this monomer.
rechlore potyethene poly-1. chlonsethene
(b) The diagram shows the repeat unit of a different addition polymer.

Draw the displayed formula of the monomer used to make this polymer.

F| F |
| :--- |
| 1 |
| $C=$ |
| C |
| F |
| F |$\quad 1$

(c) Polyesters are condensation polymers.

The structures of two monomers that are used to make a polyester are:

$\mathrm{HO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$
C. $\mathrm{H}_{2} \mathrm{H}_{3}$

(HO
$\mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}_{2} \mathrm{ED}_{3}$
$\mathrm{H}_{2} \mathrm{CO}_{3}$
'6) Hydingth carbonate
0_{3}
$\mathrm{CH}_{2} \mathrm{CH}_{2}$

(1)

(1) Draw the structure of the repeat unit of the polyester formed from these two monomers.

(2)

(1) Identify the sm
the polyester.

Hydrogen carbonate $\mathrm{CH}_{2} \mathrm{CO}_{3}$)
(Total for Question $8=6$ marks)

Examiner Comments

Part(a): The locator ' 1 ' is not required in either answer, but its inclusion is ignored.

Student Response B

8 Polymers can be classified as addition polymers or condensation polymers.
(a) An addition polymer can be formed from the monomer $\mathrm{CH}_{2}=\mathrm{CHCl}$
(i) Name this monomer.

Chloroethme
\checkmark
(1)
(ii) Name the addition polymer formed from this monomer.
(1)

(b) The diagram shows the repeat unit of a different addition polymer.

Draw the displayed formula of the monomer used to make this polymer.

(i) Draw the structure of the repeat unit of the polyester formed from these two monomers.

(ii) Identify the small molecule formed when these two monomers form the polyester.
(1) 1

Examiner Comments

Part (a)(ii): It is a common mistake to name an addition polymer as a saturated compound.

Student Response C

8 Polymers can be classified as addition polymers or condensation polymers.
(a) An addition polymer can be formed from the monomer $\mathrm{CH}_{2}=\mathrm{CHCl}$
(i) Name this monomer.

Chloroethene

(ii) Name the addition polymer formed from this monomer.
(1)
poly(chlarocthane)
(b) The diagram shows the repeat unit of a different addition polymer.

Draw the displayed formula of the monomer used to make this polymer.

F	
1	
$C=$	F
1	
F	1
F	

(1)

(i) Draw the structure of the repeat unit of the polyester formed from these two monomers.
(2)

$-\mathrm{O}-\stackrel{\mathrm{C}}{ }_{\stackrel{\circ}{\mathrm{C}}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\stackrel{\circ}{\mathrm{C}}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{2}}$
(ii) Identify the small molecule formed when these two monomers form the polyester.
(1) 1

Examiner Comments

Part (a)(ii): It is a common mistake to name an addition polymer as a saturated compound.

Student Response D

(8) Polymers can be classified as addition polymers or condensation polymers.
(a) An addition polymer can be formed from the monomer $\mathrm{CH}_{2}=\mathrm{CHCl}$
(i) Name this monomer.

(1) 1
(ii) Name the addition polymer formed from this monomer.

poly chloroethane

(b) The diagram shows the repeat unit of a different addition polymer.

Draw the displayed formula of the monomer used to make this polymer.

(i) Draw the structure of the repeat unit of the polyester formed from these two monomers.

(2)

(ii) Identify the small molecule formed when these two monomers form the polyester.

Examiner Comments

Part (a)(ii): It is a common mistake to name an addition polymer as a saturated compound.

Student Response
8 Polymers can be classified as addition polymers or condensation polymers.
(a) An addition polymer can be formed from the monomer $\mathrm{CH}_{2}=\mathrm{CHCl}$
(i) Name this monomer.

Chioroethene \qquad

(ii) Name the addition polymer formed from this monomer.

$$
\begin{align*}
& \text { poly chioroethene } \tag{1}\\
& \text { hows the repeat unit of a different a } \\
& \qquad \text { F FeC }
\end{align*}
$$

(b) The diagram shows the repeat unit of a different addition polymer.

Draw the displayed formula of the monomer used to make this polymer.

(c) Polyesters are condensation polymers.

The structures of two monomers that are used to make a polyester are:

$$
\mathrm{HO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}
$$

(i) Draw the structure of the repeat unit of the polyester formed from these two monomers.

(ii) Identify the small molecule formed when these two monomers form the polyester.

5/6
Examiner Comments
Part (c)(i): Correct ester link shown, but rest on molecule is incorrect as blocks are used to
represent the hydrocarbon chains.

Student Response F

8. Polymers can be classified as addition polymers or condensation polymers.
(a) An addition polymer can be formed from the monomer $\mathrm{CH}_{2}=\mathrm{CHCl}$
(i) Name this monomer.
(1)
1
Chloroethene \qquad

(ii) Name the addition polymer formed from this monomer.

,
(b) The diagram shows the repeat unit of a different addition polymer.

Draw the displayed formula of the monomer used to make this polymer.

(i) Draw the structure of the repeat unit of the polyester formed from these two monomers.

(ii) Identify the small molecule formed when these two monomers form

Examiner Comments

Part (a)(ii): Close call! Could be an 'a' or an 'e' before the ' n '. Candidates need to be aware that clearer writing is required to be certain of scoring the mark.

Student Response G

8 Polymers can be classified as addition polymers or condensation polymers.
(a) An addition polymer can be formed from the monomer $\mathrm{CH}_{2}=\mathrm{CHCl}$
(i) Name this monomer.

trite 1 chbromethene γ "

(ii) Name the addition polymer formed from this monomer.

A-thoromethene

\qquad

(b) The diagram shows the repeat unit of a different addition polymer.

Draw the displayed formula of the monomer used to make this polymer.

(i) Draw the structure of the repeat unit of the polyester formed from these two monomers.

Examiner Comments

Part (c): Second mark awarded even though the candidate does not specify that it is the mass of the solid that will be less. No mention of gas escaping for first mark, and no mention of the effect that less solid has on the calculated solubility.

Student Response H

(8) Polymers can be classified as addition polymers or condensation polymers.
(a) An addition polymer can be formed from the monomer $\mathrm{CH}_{2}=\mathrm{CHCl}$
(i) Name this monomer.
chiorolhene
(il) Name the addition polymer formed from this monomer.
chsoro ekinane

(1)
(b) The diagram shows the repeat unit of a different addition polymer.

Draw the displayed formula of the monomer used to make this polymer.

(1)

1
(i) Draw the structure of the repeat unit of the polyester formed from these two monomers.

(ii) Identify the smail molecule formed when these two monomers form the polyester.

Examiner Comments

Part (a)(ii): The candidate rather strangely does not correctly name the polymer, despite having correctly named the monomer.

