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Abstract: A run-time improvement for anomaly detection in crowded scenes is proposed. This framework is a combination 

of temporal anomaly detection and edge detection methods. The presented detector is based on a video representation, it 

uses a set of models for normal crowd behavior containing mixtures of dynamic textures which consists of both appearance 

and dynamics. After detecting temporal anomaly, edge detection is performed on processed frames, and temporal anomaly 

detection output contours will be fit to detected edges. This proposed method allows better accuracy in localization without 

significant additional workload.  
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1   Introduction 
 

The recent population boom has made crowd phenomenon more frequent and has created new 

needs for crowd analysis. Specifically, the behavioral analysis of crowded scenes is of great interest 

with large number of applications, such as (Junior 2010): 

1) Crowd management 

Crowd analysis can be used for amplifying crowd management strategies, to avoid crowd 

related disasters and ensure public safety. 

2) Public space design 

It can provide guidelines for the design of public spaces. 

3) Virtual environments 

It can be used to validate or increase the performance of the mathematical models used in 

crowd simulations. 

4) Visual surveillance 

It can be used for automatic detection of anomalies and raise alarms. Moreover, the ability to 

track objects in a crowd could help the security guard to catch suspects. 

5) Intelligent environments 

In some intelligent environments which involve large groups of people, crowd analysis can be 

used to take a decision for assisting the crowd or an individual in the crowd. 

 

The study of human behavior is a subject of great scientific interest, especially for intelligent 

visual surveillance it has gotten more research attention and funding following increased global 

security concerns and increasing need for effective monitoring of public places such as airports, 

railway stations, shopping malls, crowded sports arena, military installations, etc. 

To recognize human activity is to automatically analyze ongoing activities from an unknown video. 

Usually, detecting, recognizing, or learning favorite events which is defined as ‘abnormal 

behavior’ or ‘abnormality’ is one of the major goals. The term “behavior” is generic and refers to 

the noticeable actions of agents such as persons, or other moving objects in the scene. Such salient 

manners are because they are different from the normal patterns in that context. Thus anomalies 

are temporal or spatial outliers events not conforming to learned patterns. They “stand out” as 

different relative to the context of their surrounding in space and time (Zhan 2008). 

We can view abnormal behavior detection as a type of high level operation of image understanding, 

where logical information is extracted from input image sequences and used to model behavior. 

This figure shows sketch of the general process (Popoola 2012). 
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Figure 1. General process of feature based modeling and detection of anomalies in video 

sequences. (Popoola 2012) 

 

The research in abnormal behavior detection based on both prior knowledge are used and human 

affecting on the learning process are categorized as supervised, unsupervised and semi-supervised. 

Whereas in this paper unsupervised method is used, a review on existing approaches in this 

area is given at the following (Popoola 2012). 

Several approaches have been proposed to resolve the problem of abnormality detection that are 

categorized based on types of scenes and learning models that they use. Most of the proposed 

approaches for tracking objects in crowded scenes however, requires effective background 

subtraction and is limited by factors such as occlusion and shadows, so limiting its advantage to 

encode compound behavior in real world event of anomalies (Basharat 2008, Siebel 2002, Zhang 

2009l). Moreover, it is sensitive to tracking errors even though they occur in a few frames. This 

approach also fails when modeling crowded and complicated scenes (Mahadevan 2010). 

Various authors have proposed alternative motion representations that avoid tracking. The most 

popular is dense optical flow, or some other form of spatio-temporal gradients (Adam 2008, Kim 

2009, Mehran 2009). 

All of these approaches concentrate exclusively on movement information, due to appearance 

variety of objects appearance information is often ignored which make them unbreakable against 

abnormalities without motion outliers, but these approaches have problems in crowded scenes 

where background is dynamic, the scene is cluttered or has complicated occlusions. Some 

advanced representations have worked on both appearance and movement. Boiman and Irani 

(2007) have used spatio-temporal patches and declare regions that cannot be reconstructed using 

data from previous frames as abnormal. Spatio-temporal gradients gave been proposed in (Kratz 

2009), where their statistics are modeled with a coupled HMM to detect abnormalities in densely 

crowded scenes (Mahadevan 2010). 

In this work spatio-temporal patches are used that have extracted from video cells, then each cell 

is modeled by one mixture of dynamic textures(MDT). This space-time local features have been 

particularly popular because of their reliability under noise, camera jitter, illumination changes, 

and background movements (Aggarwal 2011). 

In this paper, anomalies are considered based on events of low-probability in relation to a 

model of normal crowd behavior. Then these results were combined with outcome of edge 

detection process to improve system accuracy. 

The evaluation is based on a dataset of crowded scene which contains video sequences of a 

college campus walkway with crowds with naturally varying densities. It contains abnormal events 

that occur naturally, e.g. bicycle riders, cars, a person who walks through the grass. In the end the 

proposed approach is compared with previous methods. 
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2   Anomaly Detection 

2.1   Mixtures of dynamic textures 

According to Chan (2005), a mixture of dynamic textures model is a collection of videos consisting 

of different visual processes as samples from a set of dynamic textures. 

2.1.1   Dynamic texture 

A dynamic texture is a generative video model defined by the following linear dynamical system 

(LDS) equations. It consists of a random process containing an observed variable 𝑦𝑡, which 

encodes the appearance of video frame at a specific time, and a hidden state variable 𝑥𝑡, which 

encodes the dynamics of video over time Chan (2005). 

 

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝑣𝑡   

𝑦𝑡 = 𝐶𝑥𝑡 + 𝑤𝑡  (1) 

 

where 𝑥𝑡 ∈ 𝑅𝑛 and 𝑦𝑡 ∈ 𝑅𝑚, (𝑛 ≪ 𝑚). The parameter A ∈ 𝑅𝑛×𝑛 and 𝐶 ∈ 𝑅𝑚×𝑛 are the state 

transition and observation matrices respectively. The driving noise process is 𝑣𝑡~𝑁(0, 𝑄) with 

𝑄 ∈ 𝑅𝑛×𝑛, and observed noise process is 𝑤𝑡~𝑁(0, 𝑅), with 𝑅 ∈ 𝑅𝑚×𝑚, where 𝑁(𝜇, Σ) is a 

Gaussian distribution with mean 𝜇 and covariance Σ. The initial condition is given by 𝑥1~𝑁(𝜇, 𝑆). 

The dynamic texture is completely specified with the parameters Θ = {𝐴, 𝑄, 𝐶, 𝑅, 𝜇, 𝑆} 

 

 

Figure 2. Dynamic texture (Chan 2005) 

 

2.1.2   Mixture of dynamic textures 

The video sequence 𝑦1
𝜏 is produced from one of k dynamic textures and with nonzero prior 

probability 𝛼𝑗of occurrence, then component probabilities are {𝛼1, … , 𝛼𝑘} with ∑ 𝛼𝑗
𝑘
𝑗=1 = 1and 

dynamic texture components of parameters {Θ1, … , Θ𝑘}, a video sequence is taken by: producing 

a mixture component index 𝑧 and observation 𝑦1
𝜏 form the dynamic texture component of Θz and 

an observation 𝑦1
𝜏 from the dynamic texture component of parameters Θz (Chan 2005). 

The probability of a sequence 𝒚𝟏
𝝉  under this model is 

 

(2) 𝑝(𝑦1
𝜏) = ∑ 𝛼𝑗𝑝(𝑦1

𝜏|𝑧 = 𝑗)𝑘
𝑗=1   

 

where 𝑝(𝑦1
𝜏|𝑧 = 𝑗) is the class conditional distribution of the 𝑗th dynamic texture, that is, the 

dynamic texture component parameterized by Θ𝑗 = {𝐴𝑗 , 𝑄𝑗 , 𝐶𝑗 , 𝑅𝑗 , 𝜇𝑗 , 𝑆𝑗}. The generative model for 

the mixture of dynamic textures is 

 

𝑥𝑡+1 = 𝐴𝑧𝑥𝑡 + 𝑣𝑡   
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𝑦𝑡 = 𝐶𝑧𝑥𝑡 + 𝑤𝑡  (3) 

 

where the random variable 𝑧~𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝛼1, … , 𝛼𝑘) indexes mixture components from 

which the observations are taken, the initial condition is given by 𝑥1~𝑁(𝜇𝑧, 𝑆𝑧) and the noises are 

𝑣𝑡~𝑁(0, 𝑄𝑧) and 𝑤𝑡~𝑁(0, 𝑅𝑧). The conditional state distribution and the conditional state 

observation, given the component index 𝑧 are 

 

 𝑝(𝑥1|𝑧) = 𝐺(𝑥1, 𝜇𝑧, 𝑆𝑧)  

 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑧) = 𝐺(𝑥𝑡 , 𝐴𝑧𝑥𝑡−1, 𝑄𝑧)  

(4) 𝑝(𝑦𝑡|𝑥𝑡 , 𝑧) = 𝐺(𝑦𝑡 , 𝐶𝑧𝑥𝑡 , 𝑅𝑧)  

 

and the joint distribution is 

 

(5) 𝑝(𝑥1
𝜏, 𝑦1

𝜏, 𝑧) = 𝑝(𝑧)𝑝(𝑥1|𝑧) ∏ 𝑃(𝑥𝑡|𝑥𝑡−1, 𝑧)𝜏
𝑡=2 ∏ 𝑃(𝑦𝑡|𝑥𝑡 , 𝑧)𝜏

𝑡=1   

 

 

Figure 3. Mixture of dynamic texture. (Chan 2005) 

 

2.1.3   Parameter estimation using EM 

The EM algorithm is a method for learning of Dynamic Textures and estimation the parameters of 

a probability distribution when the distribution dependents on hidden variables like missing data 

in this case. given a set of independent and  identically distributed(i.i.d) video sequences 𝐷𝑖 =

{𝑦(𝑖)}
𝑖=1

𝑁
, Maximum likelihood estimates (MLE) of the parameters of an MDT 𝑝(𝑦; Θ) of K 

components, that are learned with the EM algorithm. the hidden variables in this model consists of 

1)the assignment 𝑧(𝑖) of each sequence to a mixture component and 2) the hidden state sequence 

𝑥(𝑖) that generates 𝑦(𝑖) (Chan 2005).  

 

(6) 𝛩∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝛩

𝑝(𝐷𝑖; 𝛩) = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝛩

∑ 𝑙𝑜𝑔 𝑝(𝑦(𝑖); 𝛩)𝑁
𝑖=1   

 

The EM solution is an iterative procedure that alternates between estimating the missing 

information with the current parameters and computing new parameters given the estimate of the 

missing information. The EM iteration is between two steps 

 

 𝒬(𝛩; 𝛩̂) = 𝐸𝐷ℎ|𝐷𝑖;𝛩̂[𝑙𝑜𝑔 𝑝(𝐷𝑐; 𝛩)]  E-Step: 

(7) 𝛩̂∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝛩

𝒬(𝛩; 𝛩̂)  M-Step: 
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where the hidden data 𝐷ℎ consists of the hidden variables {𝑥(𝑖)}
𝑖=1

𝑁
and  {𝑧(𝑖)}

𝑖=1

𝑁
, and the complete 

data 𝐷𝑐 = 𝐷𝑖 ∪ 𝐷ℎ. The assignment variable 𝑧(𝑖) is represented by a vector 𝑧𝑖 ∈ {0,1}𝐾, such that 

𝑧𝑖,𝑗 = 1 if and only if 𝑧(𝑖) = 𝑗. 

 

Each dynamic texture component Θ𝑗 was initialized by using the suboptimal learning method 

on a random video sequence from the training set. The component probabilities were initialized to 

a uniform distribution, 𝛼𝑗 =
1

𝑘
. Since the EM algorithm can terminate on a local minimum, the 

algorithm was run several times using different initialization seeds, and parameters which best fit 

the training data (in the maximum likelihood sense) were kept. Finally, the covariance matrices 𝑄, 

𝑆 and 𝑅 were regularized by forcing their eigenvalues to be larger than a minimum value, and by 

restricting 𝑆 and 𝑅 to be diagonal (Chan 2005). 

2.2   Temporal Anomaly Detection 

Abnormality detection operates based on the background subtraction method of GSG(Generalized 

Stauffer-Grimson) (Stauffer 1999). This method relies on a Gaussian mixture(GMM) at each 

image location. For abnormality detection the GMM is replaced by MDT, and the pixel-wise grid 

is replaced by one with a displacement of a defined size. Each grid location defines the center of a 

video cell. Spatio-temporal patches are extracted from each cell, and a MDT is learned through 

training phase. The cell sizes are not acutely important (Mahadevan 2010). 

 

 

Figure 4. Overview of generalized Stauffer-Grimson background modeling dynamic textures 

(Chan 2011). 

 

In next phase, given a patch 𝑦1
𝜏, the hidden state sequence, 𝑋1

𝜏 under this MDT model is 

estimated, and its log-likelihood under the mixture model 𝑝𝑋|𝑌(𝑋1
𝜏|𝑦1

𝜏) is computed with a Kalman 

smoothing filter. Patches of low probability under the cell MDT are considered abnormalities. The 

temporal abnormality map at location 𝑙 is the negative log-likelihood of the state sequence 

estimated from the patch centered at 𝑙 (Mahadevan 2010). 
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(8) 𝐴𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑙) = −𝑙𝑜𝑔(𝑝𝑋|𝑌(𝑋1
𝜏|𝑦1

𝜏); 𝜃𝑙)  

 

 

Figure 5. Learning MDTs for temporal abnormality detection. For each region of scene, an 

MDT is learned during training. At test time, the negative log-likelihood of the spatio-temporal 

patch centered at location 𝑙 is computed using the MDT whose region center is closest to 𝑙. 
(Mahadevan 2010) 

 

2.3   Edge Detection 

This method is an unsupervised edge detection based on the computational edge detection approach 

introduced by Canny. It is a simple and computationally cheap technique that achieves non-trivial 

results. This technique uses the highly efficient ADM algorithm to generate the initial edge image, 

and uses a subsequent modified non-maximal suppression scheme to optimize the edge output 

resulting in the final edge map without operator intervention of any kind (Ray 2013). 

 

 

Figure 6. Edge Map of one frame with optimized threshold 

 

2.4   Proposed Method 

In this proposed method, anomaly detection is accomplished in three steps: 

  1- First, temporal anomaly detection procedure is performed as previously described, to 

identify existing anomalies in each frame. 

 2- within the boundries of the contour of the region containing an anomaly event determined 

by the previous step, edge detection is performed to find a more accurate boundry for the subject 

with anomaly. 
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 3- the contour of the region containing an anomaly event determined in step one is reduced 

to the boundries identified by the detected edges, to increase the accuracy for our anomaly 

detection region. 

Therefore we can more accurately determine the detected anomaly boundries.  

 

  

Figure 7. Sample of anomaly detection using MDT approach (left) and proposed approach 

(right) 

 

3   Evaluation Procedure 

In anomaly detection one ‘Pixel Level’ criteria is used to measure the accuracy of the method. It 

is based on true-positive rates (TPR) and false positive rates (FPR). A frame consists of anomaly 

is a positive, otherwise a negative (Mahadevan 2010): 

3.1  Pixel level anomaly localization 

Each frame recognized by this method as abnormal is compared in pixel level with groundtruth. If 

at least 40% of the truly anomalous pixels are detected, the frame is assumed as detected correctly 

and is a true positive, otherwise is a false positive (Mahadevan 2010). 

Two measures combined to determine a Receiver Operating Characteristic (ROC) curve of 

TPR versus FPR.  

 

4  Anomaly Detection Performance 

Enhancing localization has been one of our goals in this study. 

Following table compare the performance of the tested abnormality detection algorithms. The 

equal error rate of detection for anomaly localization task is shown in Table 1. 

 

Table 1. Anomaly Localization Experiment: Rate of Detection. 

 MPPCA MDT(Tmp) MDT(Tmp+Edg) Proposed 

Localization 18% 30% 45% 

 

This is a Real-Time system that needs first training for one time and then works for each new 

frame immediately. After training phase the mixtures of dynamic textures for videos of frame size 

160 ×  240 , the testing time per frame is about 8secs on a standard Pentium machine with 3GHz 

CPU and 8GB RAM that is improved from earlier proposed systems. 
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5   Conclusion 

It is observed this proposed complex method outperforms similar methods in important aspect of 

localization accuracy. 

the ROC curves for anomaly localization are shown in Figure 8, and the Rate of Detection 

value is tabulated in Table 1. Example of one frame with anomalies detected by proposed approach 

are shown in Table 1. 

 

 

Figure 8. Approaches performance for anomaly localization in pixel level 
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