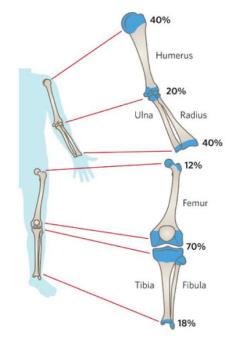
Pediatric Orthopedic Emergencies

Jaryd Zummer, MD Pediatric Emergency Medicine September 12 2020

Objectives

- Recognize common injury patterns in children by age group and mechanism of injury
- Develop evidence-based management strategies for can't miss pediatric orthopedic emergencies

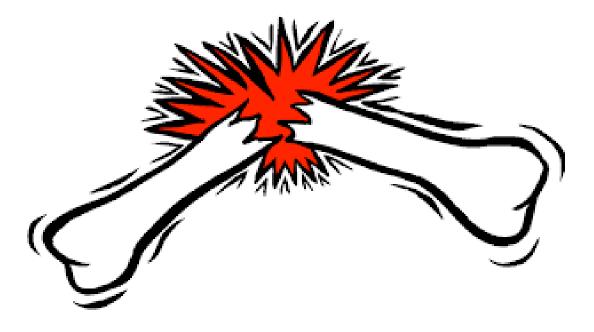

Topics

- Keys to pediatric musculoskeletal anatomy/physiology
- Pediatric specific Fx/injury patterns
 - Supracondylar humerus Fx
 - Distal radius/ulna Fxs
 - Clavicle
 - Toddler Fx
 - Apophysites
- Irritable Hip (SA vs TS)

Introduction – Peds anatomy/physiology

- Fractures > ligament/tendon injuries
- Bone turnover/Remodeling
 - Younger age
 - Closer to physis
 - UE = away from elbow / LE = closer to knee
- Pain Control
 - Immobilize early, IN
- Evaluate joints above & below
 - Most commonly missed $Fx = 2^{nd} Fx$

The Royal Children's Hospital, Melbourne, Australia



Introduction – Peds anatomy/physiology

- Younger children (equivalent adolescent/adult injuries)
 - Proximal humerus Fx > Shoulder dislocation
 - Lateral clavicle Fx > AC separation
 - Tibial spine Fx > ACL tear
 - Carpal (Scaphoid) Fx RARE

Specific Fx Patterns

• What type of Fx?

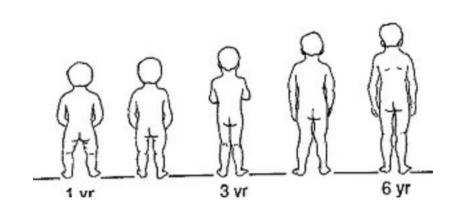
Buckle (Torus) Fx

- Younger children
- Relatively weak metaphysis
- Compressive load

• What type of Fx?

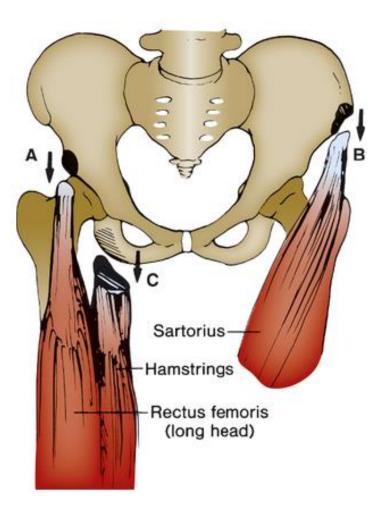
Greenstick Fx

- 1 cortex breaks
- 1 cortex (periosteum) bows/remains intact
- Reduction can sometimes cause Fx completion (OK!)


• What type of Fx?

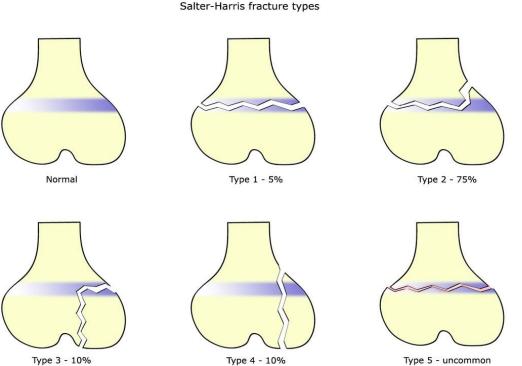
Bowing/Plastic deformity

- LESS remodeling potential
- Refer to Ortho
- Normal LE
 - birth = bowing
 - 18m = straight
 - 3yo = valgus
 - 5yo = straight


Avulsion Fx

- Common in *adolescence*
 - attachment of strong muscles to weaker apophyses (20 ossification centers) which are beginning to close

- pelvis, tibial tubercle, phalanges
- RARELY require reduction


Pelvic avulsion Fxs

Fleischer & Ludwig

Physeal Injuries (Salter-Harris) 1MEME5

Gaillard, 2008

Physeal Injuries (Salter-Harris)

• SALTR / 1MEME5

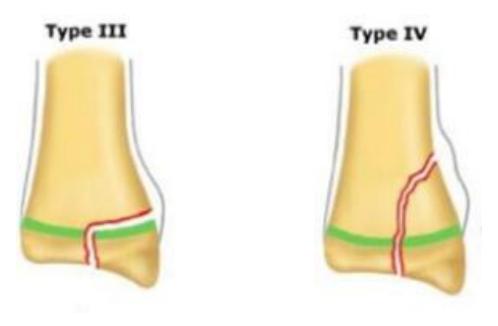
- Peak 10-13yo
- m/c site = distal radius
- m/c = SH 2

- Growth disturbance
- Refer all articular injuries to Ortho (24-48hrs)

Salter-Harris 1

- may not be radiographically evident
- if suspect clinically → treat as Fx
 immobilize and f/u in 7-10d

Salter-Harris 2 (M)


- most common (75%)
- good prognosis

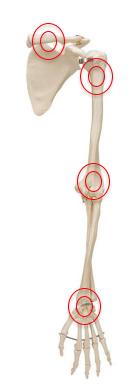
Salter-Harris 3 (E) and 4 (ME)

- Epiphysis involved
 - poorer prognosis since intraarticular
- Ortho cx or close referral (24-48hrs)

Salter-Harris 5

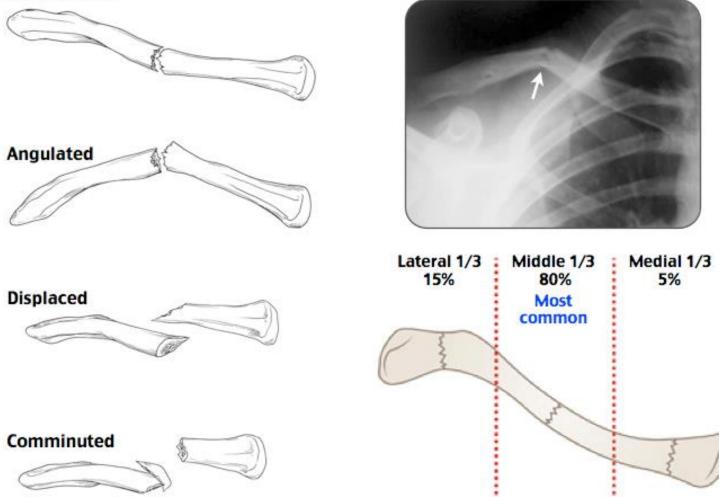
- like SH1, difficult radiographically
- may be suggested by mechanism or effusion
 axial load ankle/knee
- worst prognosis
 - premature closure of physis

• What type of Fx?


• What type of Fx?

Fall On Outstretched Hand (FOOSH)

- Wrist (Radius, Ulna, Scaphoid Fxs)
- Supracondylar Humerus Fx
- Proximal Humerus Fx
- Clavicle Fx



- **newborn** = birth trauma
- **infants/children** = FOOSH or direct blow
 - greenstick or complete

Clavicular Fractures

Nondisplaced

Rosh Review, 2016

- Shaft (middle 1/3)
 - Immobilization
 - Sling/swathe x3 wks \rightarrow restrict high-risk activities x3 mos

- Shaft (middle 1/3)
 - Immobilization
 - Sling/swathe x3 wks \rightarrow restrict high-risk activities x3 mos
 - Ortho/Surgical
 - Open, sig skin tenting, NV compromise, displaced/shortened >2cm (esp >12yo)

- Shaft (middle 1/3)
 - Immobilization
 - Sling/swathe x3 wks \rightarrow restrict high-risk activities x3 mos
 - Ortho/Surgical
 - Open, sig skin tenting, NV compromise, displaced/shortened >2cm (esp >12yo)
- Lateral
 - Non-displaced = Immobilization
 - Surgical = Displaced, severe AC dissociation (Rockwood 4-5)

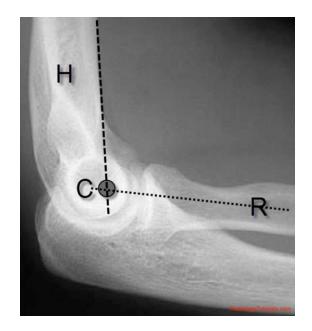
Medial

Rare but potentially life-threatening

- Anterior SC dislocation
 - 2-3x more common, less serious
- Posterior SC dislocation
 - Rare but potentially life/limb threatening
 - Structures: trachea, esophagus, subclavian bvs, brachial plexus
 - Immediate Ortho Cx + CTA (OR reduction, Thoracic/Vascular surgery)

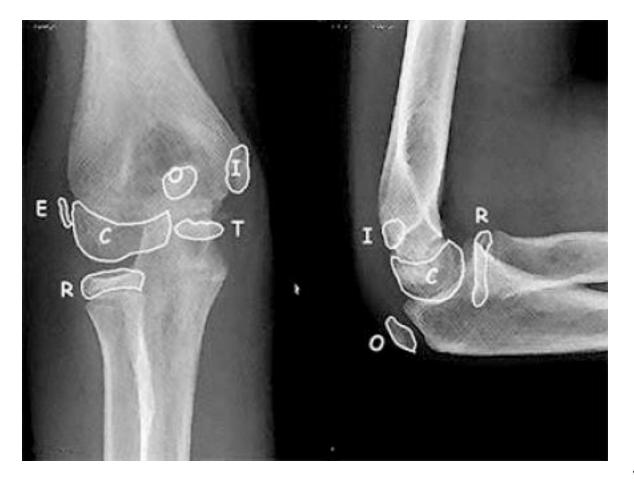
Case

 8yoM. Fell from monkey bars onto R outstretched hand. Elbow held straight, refuses to flex, +++ edema.



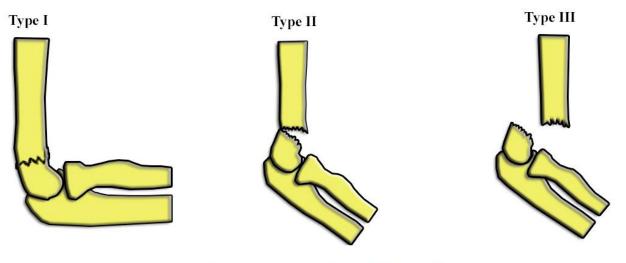
Peds Elbow

- Fat pads
- Radial head/neck


- Anterior humeral line
- Radiocapitellar line

- CRITOE
 - Ages variable, order same

CRITOE (1 3 5 7 9 11)

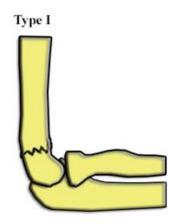


The Radiology Assistant

Supracondylar Humerus Fx

- m/c elbow Fx in Peds (60%)
- 3-10yo (esp 5-7yo)
- FOOSH w extended elbow

Gartland classification


S. Benoudina Ra

Radiopedia, 2015

Supracondylar Humerus Fx

- <u>Type 1</u> = Non-displaced
 - NON-operative (often only see fat pads)
 - Posterior splint OR Long arm cast initially if min swelling
 - arm neutral OR pronation w 90deg elbow flexion
 - Ortho referral in 1-3 weeks

Supracondylar Humerus Fx

- <u>Type 2</u> = Displaced with *intact post cortex*
 - Cx Ortho for reduction + splint OR operative repair
 - sometimes subdivided 2A = NO rotation / 2B = rotational deformity
 → operative repair
 - Elbow flexion can further compress *brachial artery* if NOT yet reduced → AVOID FLEXION splinting (20-30 deg)

Supracondylar Humerus Fx

- <u>Type 3</u> = Completely displaced w NO cortical contact (anterior and posterior cortices violated)
 - Cx Ortho for operative repair
 - Elbow flexion can further compress *brachial artery* if NOT yet reduced → AVOID FLEXION splinting (20-30 deg)

Complications

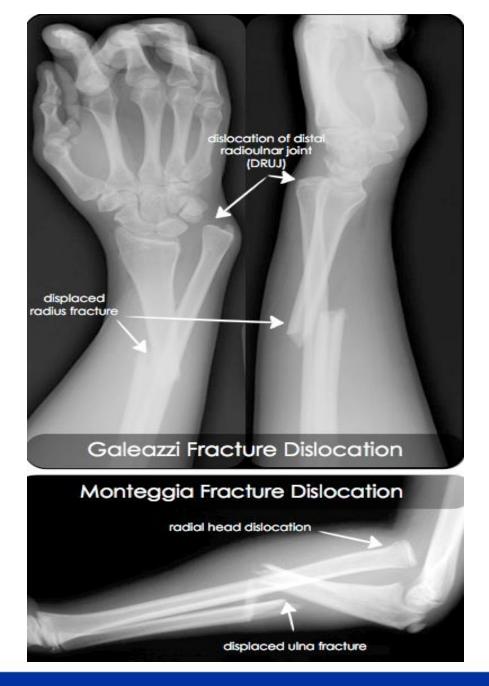
- Most common nerve affected = Anterior Interosseus (AIN)
 - proximal branch of median n
 - *motor* only
 - flexor policis longus
 - radial 1/2 flexor digitorum profundus
 - pronator quadratus
- Compartment syndrome
- Brachial artery injury
- Other nerve injuries

Forearm (Radius/Ulna Shaft) Fxs

- 3rd m/c Fx in PEDS
- Ring structure = r/o 2nd Fx or RUJ dislocation (wrist, elbow)
 - Monteggia >> Galeazzi in PEDS
- Often unstable (40-60%)
- Ulnar bowing
- Rx = sugar tongue splint / Long arm cast + Ortho referral

Forearm (Radius/Ulna Shaft) Fxs

- Consider Ortho Cx (highest risk for failed reduction)
 - Angulation >10-15deg
 - Rotational deformity
 - Age >10-12yo
 - Proximal 1/3 radius Fx


Forearm (Radius/Ulna Shaft) Fxs

- Acceptable angulation \leftrightarrow Remodeling potential
 - Younger age (<10yo)</p>
 - More distal (near wrist physis) closes by 14-16yo

Table of Acceptable Reduction (Tolerances)							
Age	Angulation (°)	Malrotation (°)	Bayonet Apposition				
0-9 years	<15	<45	Yes, if <1cm short				
≥10y, mid to distal shaft	<15	<30	No				
≥10y, proximal shaft	<10	0	No				
Approaching skeletal maturity (<2y growth remaining)		0	No				

Orthobullets.com

Rosh Review, 2016

Wrist (Distal Radius/Ulna) Fxs

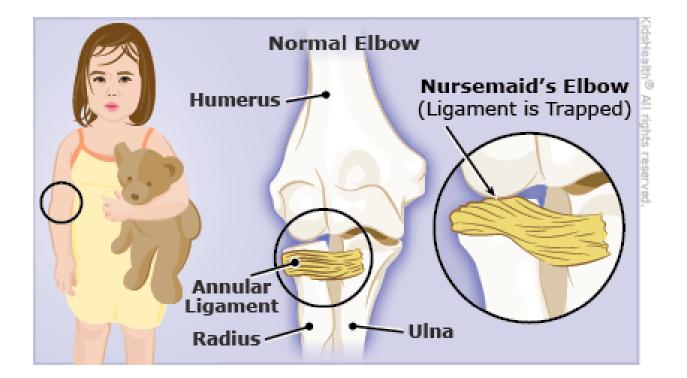
- m/c Fx in PEDS/adolescents <16yo
 - < 10yo = buckle
 - 6-12yo= physeal
 - Adolescent = complete Fxs

Orthobullets.com

Wrist (Distal Radius/Ulna) Fxs

- Acceptable angulation ↔ Remodeling potential
 - Younger age (<10yo)</p>
 - More distal (near wrist physis) closes by 14-16yo

"Classically" Acceptable Angulation for Closed Reduction in Pediatric Forearm Radius Fractures (controversial with ongoing discussion)						
<u>Shaft / Both bone fx</u>			<u>Distal radius/ulna</u>			
Age	Acceptable Bayonetting	Acceptable Angulations	Malrotation*	Dorsal Angulation		
< 9 yrs	< 1 cm	15-20°	45°	30 degrees		
> 9 yrs.	< 1 cm	10°	30°	20 degrees		



Case

- 2yoF. L arm held to side, refuses to lift it. Problem started shortly after playing with another kid at daycare. Appears well, arm appears normal, no edema.
- What's going on?
- How to fix the problem?

Nemours Foundation

- Annular ligament
- 5mos-5yo
- MOI = pulled/lifted, many cases falls or unwitnessed
- <u>Exam</u>
 - Pronated, partially flexed, adducted
 - Well-appearing
 - No/minimal edema and point tenderness
 - Pain w elbow flexion, pro/supination
 - Often identifies wrist pain

- <u>Reduction techniques</u> the "click"
 - Hyperpronation
 - Supination/Flexion
 - Should regain function in 5-10mins

https://www.merckmanuals.com/professional/m ultimedia/video/v23370720

Merck Manual

PHOTO COURTESY OF PETER PRYOP, MD

- Edema OR Failure to return function
 - consider alternative Dx and obtain XR

- Suspected non-reduced annular ligament subluxation
 - discharge in a sling/posterior splint with Ortho f/u

Case

• 2yoM. Unwitnessed fall down 2 stairs. Now refuses to bear weight on R leg.

Toddler's Fracture

- AKA CAST = **C**hildhood **A**ccidental **S**piral **T**ibial Fx
- 9mos-3yo
- H/o minor or no trauma, rotational
- Refusal to bear weight
- Point TTP, pain w twisting of syndesmosis
- XR normal or spiral/oblique Fx through mid-distal tibia
- Immobilize

- 9 months to 3 years of age
- NOT related to non-accidental trauma (ambulating toddler)
- Child presents with limp
- Rx: Long leg cast

Rosh Review, 2016

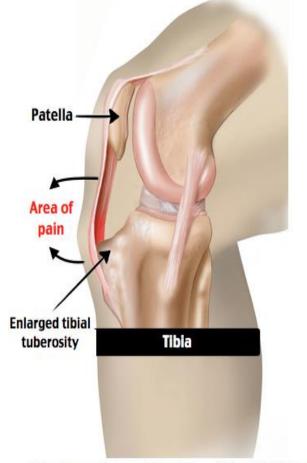
Case

- 13yoM runner presents for R knee pain for several months. No acute injuries. There is isolated TTP over his tibial tubercle. What is the name of this disease?
- Same Pt, but with BL heel pain. TTP at calcaneal insertion site. What is the name of this disease?

Apophysitis

- Apophysis
 - bony tubercle arising from 20 ossification center
 - site of tendon attachment
- Overuse \rightarrow inflammation at insertion site
- Adolescents/rapidly growing (10-15yo)
- M>F
- Can get partial/complete avulsion Fx of tubercle

Osgood-Schlatter Disease


- Patellar tendon insertion site at tibial tubercle apophysis
- Isolated TTP, worse w knee extension

 running, jumping
- Rx = NSAIDs, continue normal activity

Osgood-Schlatter Disease

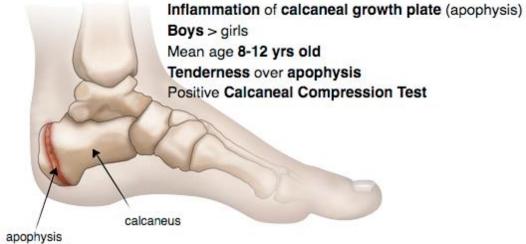
- Rupture of growth plate at the tibial tuberosity
- Rapidly growing adolescents
- More common in athletes
- Pain and tenderness at tibial tubercle

Rosh Review, 2016

Sindig-Larsen-Johansson Disease

- Traction tendinitis (overuse) of patellar tendon at inferior patella
- Similar age, sports, management as OSD

Tooshikafs (Wikipedia)


Sever's Disease

- Achilles tendon insertion site at <u>calcaneus apophysis</u>
- 50-60% BL
- Isolated TTP, calcaneus squeeze test
 - running, jumping

Sever Disease (Calcaneal apophysitis)

(growth plate)

Rosh Review, 2016

Pediatric Septic Arthritis

- m/c by hematogenous spread
- m/c ages 6-24mos (50% < 2yo)
- 35% hip joint
 - risk of AVN
- *Overall* = Staph aureus
- Adolescents, young adults = GC
- Indolent, <5yo = Kingella kingae (GNB)

The acutely irritable Hip: Septic Arthritis vs Toxic Synovitis

• DDX

Legg-Calve-Perthes, osteomyelitis, psoas abscess
*Lower abdominal, testicular, gynecologic pathology

- Kocher Criteria (CBC, ESR) + CRP + BCx
- PXR (AP + frog-leg), US, Bone scan, MRI
- Septic arthritis
 - Suspect if aspirate >50K WBC, >75% PMN
 - Definitive = pos GS/Cx

Differentiating Between Septic Arthritis and Transient Synovitis of the Hip in Children: An Evidence-Based Clinical Prediction Algorithm^{*†}

BY MININDER S. KOCHER, M.D.‡, DAVID ZURAKOWSKI, PH.D.‡, AND JAMES R. KASSER, M.D.‡, BOSTON, MASSACHUSETTS

Investigation performed at Children's Hospital, Harvard Medical School, Boston

Kocher Criteria to Determine Risk for Pediatric Septic Joint				
Non-weight bearing on affected side	Probability of Septic Arthritis • 4/4 = 99%			
ESR > 40 mm/hr				
Fever	• 3/4 = 93% • 2/4 = 40%			
WBC > 12,000	• 1/4 = 3%			

Factors Distinguishing Septic Arthritis from Transient Synovitis of the Hip in Children

A PROSPECTIVE STUDY

BY MICHELLE S. CAIRD, MD, JOHN M. FLYNN, MD, Y. LEO LEUNG, MD, JENNIFER E. MILLMAN, BA, JOANN G. D'ITALIA, CWOCN, CRNP, AND JOHN P. DORMANS, MD

Investigation performed at the Division of Orthopaedics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania

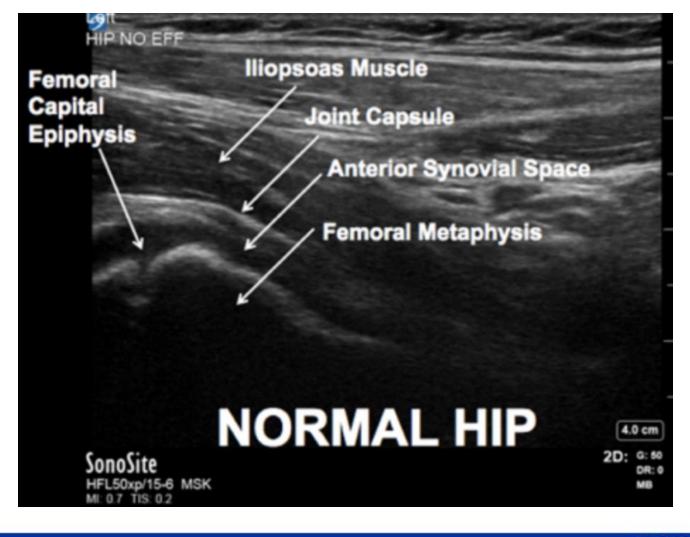
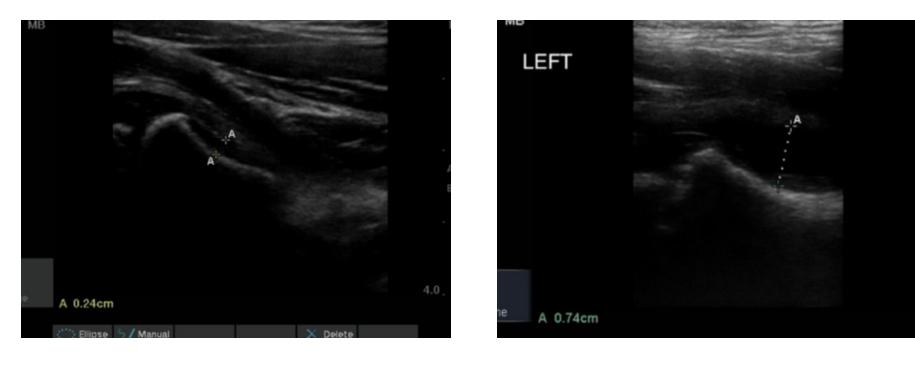

• CRP > 2.0mg/dL (>20mg/L)

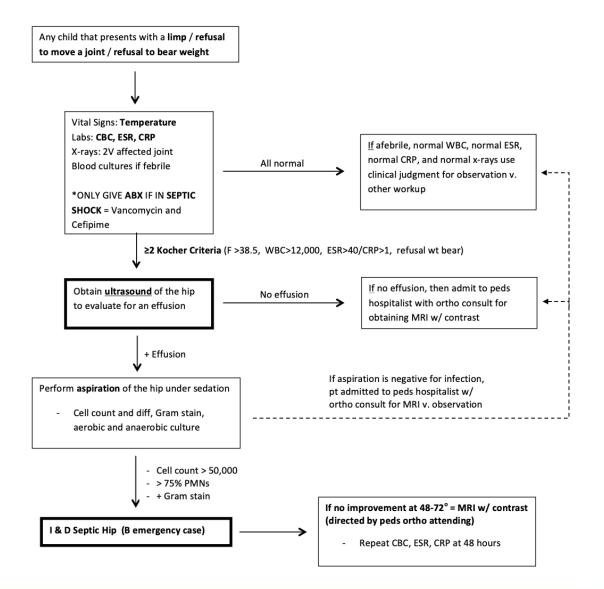
TABLE IV Predicted Probability of Septic Arthritis

	Septic Arthritis (N = 34) (no. [%])	Transient Synovitis (N = 14) (no. [%])	Predicted Probability of Septic Arthritis (%)	
No. of Factors			Current Study	Study by Kocher et al. ¹
0	1 (3)	3 (21)	16.9	0.2
1	3 (9)	6 (43)	36.7	3
2	3 (9)	2 (14)	62.4	40
3	9 (26)	2 (14)	82.6	93.1
4	15 (44)	1 (7)	93.1	99.6
5	3 (9)	0	97.5	


Hip US

Hip US

• Effusion (>5mm or >2mm difference from CL side)



ACEPNow

3.7

UK Pediatric SEPTIC JOINT ALGORITHM

Thank you

Norton Children's

References

- The Royal Children's Hospital, Melbourne, Australia. Remodelling. Retrieved from https://www.rch.org.au/fracture-education/remodelling/
- HSS. Bowlegs and Normal Growth and Development of Knees and Legs. Retrieved from <u>https://www.hss.edu/conditions_bowlegs-and-normal-growth-development-legs-knees.asp</u>
- Shaw K, Bachur R. *Fleischer and Ludwig's Textbook of Pediatric Emergency Medicine:* 7th *edition*. Philadelphia, Wolters Kluwer, 2016.
- Uptodate (2019). Mathison D, Agrawal D. General principles of fracture management: Fracture patterns and description in children. Retrieved from https://www.uptodate.com/contents/general-principles-of-fracture-management-fracture-patterns-and-description-in-children
- Rosh Review (2016). Emergency Medicine Question Bank.
- Radiopedia. From the case: Supracondylar fractures Gartland Classification. Retrieved from https://radiopaedia.org/images/16227545
- Ortho Bullets. Edgington J, Glotzbecker M. Both Bone Forearm Fracture Pediatric. Retrieved from <u>https://www.orthobullets.com/pediatrics/4126/both-bone-forearm-fracture--pediatric</u>
- Ortho Bullets. Qudsi R, SouderC. Distal Radius Fractures Pediatric. Retrieved from <u>https://www.orthobullets.com/pediatrics/4014/distal-radius-fractures--pediatric</u>

References

- Nemours Foundation. A to Z: Nursemaid's Elbow (Annular Ligament Displacement). Retrieved from https://kidshealth.org/Nemours/en/parents/az-nursemaid.html
- Merck Manual Professional Version. How to Reduce a Radial Head Subluxation (Nursemaid's Elbow). Retrieved from <u>https://www.merckmanuals.com/professional/multimedia/video/v23370720</u>
- ACEPNow. Bailey C, Mantuani D, Nagdev A. Bedside Ultrasound for the Septic Hip. Retrieved from <u>https://www.acepnow.com/article/bedside-ultrasound-septic-hip/</u>
- Kocher MS, Zurakowski D, Kasser JR. Differentiating Between Septic Arthritis and Transient Synovitis of the Hip in Children: An Evidence-Based Clinical Prediction Algorithm. *Journal of Bone and Joint Surgery.* 81-A (12)1999.
- Caird MS, Flynn JM, Leung L, Millman JE, D'Italia JG, Dormans J. Factors Distinguishing Septic Arthritis from Transient Synovitis of the Hip in Children: A Prospective Study. *Journal of Bone and Joint Surgery.* 88-A (6), 2006.
- Norton Children's. What is a Growth Plate Fracture. Retrieved from <u>https://nortonchildrens.com/news/growth-plate-fracture/</u>

