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Measurement of Soil Color: A Comparison Between 
Smartphone Camera and the Munsell Color Charts

Pedology

Soil color is one of the most useful soil properties for assessing and monitor-
ing soil health. Here we present results of tests of a new soil color app for 
mobile phones. Various smartphone cameras (SPCs) were tested under sunny 
and cloudy conditions and compared with visual estimates using Munsell color 
charts (MCCs). The measured and estimated soil colors were then compared 
with the “true” colors determined using a spectrophotometer. The results indi-
cated that soil color determinations based on SPC measurements under both 
sunny and cloudy conditions were as good as those obtained using the MCCs. 
The accuracy of the SPC measurements was affected by the natural illumi-
nation conditions, with higher accuracy in the sun than where clouds were 
present. Our results also indicated that the SPC measurements completed in 
the sun provide higher precision (lower variance) than SPC measurements 
completed under cloudy conditions or estimates based on MCCs. These results 
suggest that mobile-device cameras have great potential to allow non–soil sci-
entists, and others lacking access to color charts, to determine soil color.

Abbreviations: CIE, International Commission on Illumination; MMC, Munsell color chart; 
sRGB, standard red-green-blue color space; SPC, smartphone camera.

Strong relationships have been established between soil color and many other 
important soil properties and characteristics, including mineral composi-
tion, soil fertility, soil organic matter content, soil moisture, soil drainage 

class, and land suitability (Baumann et al., 2016; Evans and Franzmeier, 1988; 
Franzmeier et al., 1983; Sanchez-Maranon et al., 2015; Schwertmann, 1993; Wills 
et al., 2007). Hence, soil color is an important indicator and attribute that can be 
used to characterize, classify, and differentiate soils (Aitkenhead et al., 2013).

The most common way to determine soil color is by comparison with Munsell color 
charts (MCCs) (Pendleton and Nickerson, 1951; Thompson et al., 2013). These charts 
define soil color based on three color dimensions: (i) hue, which indicates shade; (ii) 
value, which indicates lightness, and (iii) chroma, which indicates saturation (Pendleton 
and Nickerson, 1951; Viscarra Rossel et al., 2006). However, soil color observed using 
MCCs is strongly influenced by environmental conditions (e.g., illumination) and by the 
knowledge, experience, and color vision (e.g., normal versus deficient) of the observers. 
Therefore, soil color observed using MCCs is subjective and lacks consistency among 
different observers (Stiglitz et al., 2016a). Finally, it is challenging to generate reliable, 
quantitative, or statistical relationships between Munsell color and the corresponding 
soil properties due to the cylindrical coordinates (hue, value, and chroma) used by the 
Munsell color system (Ibanez-Asensio et al., 2013; Kirillova et al., 2015).

As a result, many recent studies have proposed alternative methods to more ac-
curately and consistently measure soil color. One of the most promising alternative 
methods is to use mobile-phone cameras to measure soil color (Gomez-Robledo et 
al., 2013; Moonrungsee et al., 2015; Stiglitz et al., 2016b) or to use smartphone-
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•	Smartphone cameras can be used to 
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cameras had less subjectivity and 
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•	Natural lighting conditions affected 
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measured with smartphone cameras.
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connected color sensors to conduct soil classification based on 
the soil color measured by those sensors (Aitkenhead et al., 2016; 
Han et al., 2016). However, most published studies that used 
smartphone cameras (SPCs) to measure soil color were limited to 
controlled illumination conditions (i.e., a controlled light source) 
in the laboratory (e.g., Gomez-Robledo et al., 2013) or required a 
separate sensor (e.g., Stiglitz et al., 2016b). The capability of SPCs 
to determine soil color has not been compared with Munsell-based 
determinations under natural, variable outdoor conditions where 
soil color is commonly determined.

The objective of this study was to investigate the accuracy 
and precision of a new smartphone camera app to measure soil 
color under natural outdoor lighting conditions and to compare 
the results with those based on ocular determinations with a 
Munsell Color Chart.

Materials and Methods
The overall approach was to determine soil color using vari-

ous SPCs and MCCs and then to compare the determined soil 
color with the “true” soil color measured using a spectrophotom-
eter to investigate the performance of SPC measurements versus 
MCC-based estimates. We also compared soil color determined 
under two different natural illumination conditions—sunny (i.e., 
full sun) and cloudy (i.e., sun obscured by clouds)—to investigate 
how natural illumination conditions affect the accuracy and pre-
cision of the soil color measurements. In the following sections, 
we present the procedures of production, processing, and com-
parison of soil color in detail.

Sample Collection and Preparation
Thirty-three soils representing a broad range of soil colors and 

textures were used in this study. The soils were collected from the 
United States (Iowa, Nevada, New Mexico, and Utah) and Mexico 
(Aguascalientes, Chihuahua, Durango, Jalisco, and Zacatecas). After 
the soils were transported to the laboratory, they were air-dried and 
passed through a 2-mm sieve. A sample (~40 g) was removed from 
each of the 33 sieved soils with a mechanical soil splitter. Sand, silt, 
and clay contents were analyzed using a hydrometer (Gee and Or, 
2002) or hand texturing (Thien, 1979) by an experienced soil scien-
tist. Supplemental Table S1 lists the locations, Munsell color nota-
tions, and soil textures for the samples used in this study.

One of the objectives of this study was to examine the reli-
ability of using SPCs to measure soil color under natural illumi-
nation conditions. Therefore, air-dried, disturbed soils were used 
in this study to minimize the impacts of nonsoil materials (e.g., 
roots) and soil moisture content on soil color. We hope that the 
findings with the disturbed soils can establish a foundation for 
further studies with undisturbed soils.

Digital Soil Color Acquisition  
with Smartphone Cameras

Eleven sets of three replicate photographs of each of the 33 
soil samples were acquired. These photographs were acquired 
under both sunny and cloudy lighting conditions with a vari-
ety of mobile phone cameras in the spring of 2016 in Boulder, 
CO. Each photograph included the soil and a reference gray 
card (width, 12.7 cm; height, 7.6 cm) (CameraTrax) (Fig. 1). To 
test the technology across as broad a range of realistic outdoor 
conditions as possible with a limited budget, members of the 

development team were asked to acquire 
the images using their own cameras. Soil 
images that were taken with the cameras 
used under both sunny and cloudy condi-
tions were compared to separate the effect 
of the device from lighting effects. All of 
the soil images have a resolution of 72 dots 
per inch and were taken between 12 and 2 
pm with the camera flash off.

Digital Soil Color Processing
The standard red-green-blue (sRGB) 

color space created by the smartphones is 
device dependent; that is, sRGB color space 
depends on the devices that create, capture, 
produce, and display the color. Therefore, 
the device-dependent sRGB color space 
was first transformed to device-independent 
color space, International Commission on 
Illumination (CIE) LAB or L*a*b* devel-
oped by the International Commission on 
Illumination, so the soil images produced 
by the different smartphones could be com-
pared. More importantly, the CIE L*a*b* Fig. 1. Examples of the soil images with reference greycard taken when the sun was obscured by 

clouds (top panel) and under full sun (bottom panel).
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color space is much closer to and encompasses the entire range of 
human vision. For the CIE L*a*b* color space, the L* value indi-
cates lightness, where a higher L* value indicates lighter color; the 
a* value indicates color in red and green, where more positive a* val-
ues indicate redder color and more negative values indicate greener 
color; and the b* value indicates yellow and blue color, where more 
positive b* values indicate yellower color and more negative values 
indicate bluer color. In the following paragraphs, we present the 
procedures of the transformation from sRGB to CIE LAB color 
space (Fig. 2).

For an image of a given soil sample, the nonshadow area of 
the soil image was first cropped to 
200 × 200 pixels. The dominant 
sRGB values of the cropped soil im-
age were then obtained using the 
modified median cut algorithm of 
color quantization (http://www.
leptonica.com/color-quantization.
html) (Bostock and Heer, 2009). 
Briefly, the soil image was reduced 
from 24-bit (16,777,216 colors) to 
4-bit (16 colors) using the modified 
median cut quantization algorithm, 
and the color with highest popula-
tion among the 16 colors was defined 
as the dominant color (Rs for the 
dominant red color value, Gs for the 
dominant green color value, and Bs 
for the dominant blue color values of 
the cropped soil image).

The nonshadow area of the im-
age of the reference greycard, which 
was taken together with the soil im-
age, was also cropped to 200 × 200 
pixels. The dominant sRGB values of 
the cropped greycard image were ob-
tained using the same modified me-
dian cut quantization algorithm (Rc 
for the dominant red color value, Gc 
for the dominant green color value, 
and Bc for the dominant blue color 
value of the cropped greycard image).

The “true” dominant sRGB val-
ues of the greycard were obtained us-
ing a spectrophotometer (CM-600d, 
Konica Minolta Sensing Inc.). This 
was a one-time measurement to ob-
tain the “true” dominant sRGB val-
ues because we used the same grey-
card with all of the smartphones (Rct 
for the “true” red color value, Gct for 
the “true” green color value, and Bct 
for the “true” blue color value of the 
reference greycard).

The dominant sRGB values of the soil images were then 
corrected based on the dominant sRGB values of the greycard by 
using the following equations:

Rsa = Rs ´ Rcorr� [1]

Gsa = Gs ´ Gcorr� [2]

Bsa = Bs ´ Bcorr� [3]

Fig. 2. Flowchart of the soil-image production and processing, transformation of soil images from standard red-
green-blue color space (sRGB) to L*a*b* values in the CIELAB color space, and the subsequent calculations 
of the color differences between the L*a*b* values measured using the smartphone cameras (SPCs) versus the 
“true” L*a*b* values and between the L*a*b* values measured with the Munsell color charts (MCCs) versus 
the “true” L*a*b* values. The L*a*b* values determined using the spectrophotometer were considered as the 
“true” values.
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where Rsa, Gsa, and Bsa are the corrected red, green, and blue 
color values of the soil images, respectively, and Rcorr, Gcorr, and 
Bcorr are the linear correction coefficients for red, green, and blue 
color, respectively, and are defined as:

Rcorr = Rct/Rc� [4]

Gcorr = Gct/Gc� [5]

Bcorr = Bct/Bc� [6]

The corrected soil images were first transformed from 
sRGB to XYZ values (Tristimulus values; D65 illumination and 
2° observer) in the CIE XYZ color space following Valous et al. 
(2009), and the XYZ values were then transformed to L*a*b* 
values in the CIE LAB color space following Robertson (1990).

Soil Color Comparison
After the sRGB values of soil images were transformed to 

L*a*b* values, the color difference (DE) between the L*a*b* val-
ues of a soil image and the “true” L*a*b* values of that soil sample 
were calculated. The “true” L*a*b* values were assumed to be the 
values measured using the spectrophotometer. The DE value be-
tween a soil image and the “true” value was calculated using the 
CIEDE2000 method following Sharma et al. (2005). A smaller 
DE value indicates a smaller difference between two colors.

Munsell Color Charts
We also matched each soil sample with the closest Munsell 

color chart (MCC) color chip and compared the color of the cor-
responding chip with the color of the soil generated by the SPC. For 
a given soil sample, this was completed as follows (Fig. 2). In Step 
1, the MCC matching the color of the soil sample was identified 
between 12 and 2 pm in direct sunlight with the sun behind the ob-
servers. In Step 2, the L*a*b* values of the identified color chip were 
determined using the spectrophotometer. In Step 3, DE between 
the L*a*b* values of the identified color chip and the “true” L*a*b* 
values of that soil sample (i.e., L*a*b values measured using spectro-
photometer) were calculated using the CIEDE2000 method.

The same five novice observers repeated Steps 1 to 3 for all 
33 soil samples.

Statistical Analysis
We used a paired two-sample t test with a significance level 

(a) of 0.05 to determine if the measured color using different 
methods (e.g., DE for soil color determined with the SPCs un-
der the sunny versus cloudy conditions or MCCs vs. SPCs) were 
significantly different. We also calculated the RMSE to compare 
L*, a*, and b* values determined using the SPCs and MCCs with 
the standard values determined with the spectrophotometer:
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where RMSEL, RMSEa, and RMSEb are the RMSE for L*, a*, and 
b* values; m is the number of data points; Ls,i, as,i, and bs,i are the L*, 
a*, and b* values for the ith soil sample determined using either the 
SPCs or the MCCs; and Li

#, ai
#, and bi

# are the “true” L*, b*, and a* 
values of the ith soil sample measured using the spectrophotometer.

Results and Discussion
For each of the 33 soil samples, approximately 18 measure-

ments were completed with the SPCs under sunny conditions 
(Table 1) and 15 under cloudy conditions (Table 1). A total of five 
estimates of each sample (one per observer) were completed using 
MCCs. The DE valueswere calculated between the L*a*b* values 
of each image (or each chip of MCCs) and the “true” L*a*b* values 
determined using the spectrophotometer. As a result, there were 594 
measurements (18 per soil sample × 33 soil samples) with the SPCs 
under sunny conditions, 495 measurements (15 per soil sample × 
33 soil samples) with the SPCs under cloudy conditions, and 155 
estimates (5 per soil sample × 33 soil samples) with the MCCs.

The mean DE (± SD) of all soil measurements (i.e., the mean 
of the 594 DEs) with the SPCs under sunny conditions (denoted 
as DEs) was 6.45 ± 2.26. The mean DE of all measurements (i.e., 
the mean of the 495 DEs) with the SPCs under cloudy conditions 
(denoted as DEc) was 8.05 ± 3.46 SD. The mean DE of all estimates 
(i.e., the mean of the 155 DEs) based on comparisons with the 
MCCs under sunny conditions (denoted as DEm) was 7.41 ± 3.49. 
A DE value of 2.3 is generally understood to be the just-noticeable-
difference threshold (Mokrzycki and Tatol, 2011), with a DE of 0.0 
indicating that two colors are identical and a DE of 100.0 indicating 
that two colors are opposite (e.g., black and white). A study under 

Table 1. Smartphones used under sunny (full sun) and/or 
cloudy illumination conditions.

Illumination 
condition

Smartphone Total number of images 
for each subsample†

Sunny only HTC Wildfire and Samsung 
Admire

6

Cloudy only iPhone 6 3

Sunny and 
cloudy

Motorola DROID Turbo,‡ HTC 
M8, and Samsung Galaxy S3

12

† �For a given illumination condition and soil sample, a set of three 
replicate images was taken with each of the smartphone cameras.

‡ �Motorola DROID Turbo was used to take soil images on two different 
days (one day is the day when the other smartphones were used, and 
the other day is when only the Motorola DROID Turbo was used).
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indoor, controlled conditions showed that the threshold for the hu-
man eye to distinguish color differences in chromatically manipulat-
ed images of landscapes ranged from 1.2 to 4.0 (Aldaba et al., 2006).

For a given soil sample, we also calculated the mean DE for 
all measurements of each soil sample; therefore, the mean DE for 
a given soil sample was calculated as the mean of the 18 DEs with 
the SPCs under sunny conditions (denoted as DEs), the mean of 
the 15 DEs with the SPCs under cloudy conditions (denoted as 
DEc), and the mean of the five DEs with the MCCs (denoted 
as DEm). The paired t test among DEs, DEc, and DEm (Fig. 3; 
Table 2) indicated that there was no significant difference between 
DEs and DEm (p = 0.14) or between DEc and DEm (p = 0.30). 
These results indicated that soil color measured by the SPCs under 
both sunny and cloudy conditions was similar to that observed by 

human vision with the MCCs, suggesting that using SPCs to mea-
sure soil color under natural illumination in the field is as reliable 
as using MCCs, at least for relatively novice observers.

Table 2. The p values based on the paired Student’s t test 
between the mean of the 18 color difference values with 
the smartphone cameras under sunny conditions (denoted 
as ∆Es), the mean of the 15 color difference values with the 
smartphone cameras under cloudy conditions (denoted as 
∆Ec), and the mean of the five color difference values with 
the Munsell color chart (denoted as ∆Em).

∆Es ∆Ec ∆Em
∆Es – 0.003 0.14

∆Ec 0.003 – 0.30

∆Em 0.14 0.30 –

Fig. 3. The calculated color difference (∆E) for each soil sample using smartphone cameras (SPCs) under sunny (full sun) and cloudy conditions 
and using the Munsell color charts (MCCs). For the SPCs under sunny (a) and cloudy (b) conditions, each data point represents the mean ∆E of 
all images (i.e., 18 and 15 images, respectively; Table 1) taken for the corresponding soil sample. For the MCC determinations (c), each data point 
represents the mean ∆E of the images from five independent human observations from the spectrophotometer-determined value for each soil 
sample. Error bars represent SDs from the mean (n = 18 for under sunny conditions, n = 15 for under cloudy conditions, and n = 5 for MCCs). The 
dashed line represents the mean ∆E of all images taken with the SPCs (under sunny or cloudy conditions) or MCCs.
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The paired t test among DEs, DEc, and DEm (Fig. 3; Table 2) 
indicated that there was a significant difference between DEs and 
DEc (p = 0.003). As presented above, DEs (6.45) is smaller than 
DEc (8.05). Also, soil color measured under sunny conditions tend-
ed to have a smaller RMSE than that measured under cloudy condi-
tions (Table 3). Although some of the phones used under sunny and 
cloudy conditions were not same, the calculated RMSEs for Droid 
Turbo, HTC M8, and Samsung Galaxy S3 (the three phones used 
under both sunny and cloudy conditions) were also lower under 
sunny conditions than under cloudy conditions (Table 3). These 
findings suggest that natural illumination conditions (sunny versus 
cloudy) affected the accuracy of the measured soil color and that the 
accuracy of soil color was higher under sunny than cloudy condi-
tions, although both sunny and cloudy SPC soil colors were similar 
to the color determined using the MCCs under sunny conditions.

The mean SDs were overall smaller for DEs than for DEc 
and DEm (2.26, 3.46, and 3.49 for DEs, DEc, and DEm, respec-
tively) (Fig. 3). The 95% confidence intervals of the mean SDs 
were smaller for DEs than for DEc and DEm (0.20, 0.69, and 0.77 
for the mean SDs of DEs, DEc, and DEm, respectively) (Fig. 3). 
Taken together, these results indicate that the uncertainty of soil 
color measured with the SPCs under sunny conditions was smaller 
than the uncertainty of the soil color measured with the SPCs un-
der cloudy conditions and with the MCCs, suggesting that bright 
ambient light (e.g., direct sunlight) could reduce the uncertainty 
associated with the identified soil color using SPCs compared with 
low and more variable ambient light (e.g., cloudy conditions).

Changes in L* values correspond to changes in “value” of the 
Munsell color space. The L* values measured using the MCCs 
were on average higher (Fig. 4; Table 4), translating to an ap-
proximately 0.5 Munsell value unit overestimation relative to that 
measured by the spectrophotometer. This suggests that soil color 
observed using the MCCs tended to be lighter (higher L*) than 
the “true” soil color, which might be due to observer error. By 
comparison, the L* values measured using the SPCs under sunny 
and cloudy conditions were on average lower by approximately 
the same magnitude (Fig. 4; Table 4). This suggests that the soil 
color measured using the SPCs under sunny and cloudy condi-
tions tended to be darker (lower L*) than the “true” soil color.

In comparison to L* value, changes in a* and b* values corre-
spond to changes in hue and chroma values of the Munsell color 
space. The a* and b* values measured with the SPCs under sunny 

Table 3. The calculated root mean square errors of L*, a*, and 
b* values for the soil images taken using the smartphone cam-
eras under sunny (full sun) and cloudy conditions and using 
the Munsell color charts (MCCs).

Illumination 
condition

 
Smartphone

RMSE†

L* (RMSEL) a* (RMSEa) b* (RMSEb)

Sunny Droid Turbo 6.21 2.86 2.04
HTC M8 3.13 1.84 1.64
HTC Wildfire 5.70 1.89 2.71
iPhone 6 – – –
Samsung Admire 9.27 2.61 5.46
Samsung Galaxy S3 7.97 3.60 3.00
Overall 6.92 2.70 3.49

Cloudy Droid Turbo 8.02 3.41 4.43
HTC M8 7.20 6.08 7.03
HTC Wildfire – – –
iPhone 6 7.06 1.84 4.67
Samsung Admire – – –
Samsung Galaxy S3 10.43 3.41 3.95
Overall 9.40 3.59 4.67

MCCs 7.67 2.26 3.80
† Calculated using Eq. [7–9]

Fig. 4. Comparison of L*, a*, and b* values measured using the 
spectrophotometer versus those measured using smartphone cameras 
(SPCs) under sunny conditions (full sun) (a), SPCs under cloudy 
conditions (b), and Munsell color charts (MCCs) under sunny conditions 
(c). For the MCCs, each of the data points represents the mean value of 
five independent observations for each of the soil samples. For the SPCs, 
each of the data points represents the mean value of all images (i.e., 
18 and 15 images under the sunny and cloudy conditions, respectively; 
Table 1) taken for the corresponding soil sample.

Table 4. Mean “true” L*, a*, and b* values and the mean mea-
sured L*, a*, and b* values using the smartphone cameras 
(SPCs) and Munsell color charts (MCCs).

CIE LAB 
color space

“True” 
value†

SPCs  
MCCsSunny Cloudy

L* 54.7 48.8‡ 49.3‡ 61.3‡

a* 7.3 8.3‡ 8.0 7.9‡

b* 15.9 16.9‡ 20.0‡ 15.5
† Measured using the spectrophotometer.
‡� The mean measured L*, a*, or b* value was significantly different 
(i.e., p < 0.05) from the corresponding “true” value based on the 
paired t test on the mean L*, a*, and b* values for each of the soil 
samples (Fig. 4).
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conditions were on average higher (Fig. 4; Table 4). These results 
suggest that soil color measured with the SPCs under both sunny 
and cloudy conditions tended to be more yellow (higher b*) and 
more red (higher a*).

Further analyses indicated that there were no significant cor-
relations between soil texture and the deviations in the measured 
CIE LAB values (i.e., L*, a*, and b* values), except that the de-
viations in the measured L* value with SPCs under sunny condi-
tions were significantly correlated with sand % and silt % (Table 
5). However, there were more and stronger significant correla-
tions between soil color and the deviations in the measured CIE 
LAB values with SPCs (Table 6). These results suggest that the 
deviations between the measured soil color with SPCs and the 
“true” soil color measured with the spectrophotometer were 
more likely caused by soil color than by soil texture.

Although our studies showed that it is promising to use SPCs 
to measure soil color under outdoor natural illumination condi-
tions, there may be considerable uncertainties (with the measured 
soil color) caused by many factors that are not included in our exper-
iments but that may play important roles in the determination of soil 
color. First, air-dried soil samples were used in our studies; however, 
soil moisture content can affect soil color through directly altering 
soil albedo and visible/near infrared spectral reflectance (Post et al., 
2000) and/or by altering soil redox conditions (O’Donnell et al., 
2011) that further affect soil color due to the change in soil mineral 
composition (Vaughan et al., 2016). Second, the irregular shapes and 
arrangement of soil particles and aggregates can strongly affect soil 
surface roughness and thus the reflected incoming radiation from 
the surface of soil samples (Cierniewski et al., 2013; Matthias et al., 
1998; Potter et al., 1987), which may result in different color deter-
minations for two identical soils where one has been homogenized. 
Additional studies are needed to investigate how to minimize the 
uncertainty of measured soil color associated with soil heterogene-
ity while maintaining and capturing important variability within the 
soil (e.g., redoximorphic features). It is also possible that building an 
automated image resampling system into the app could help to ad-
dress some of the variability issues. In this study, the soil images were 
cropped to 200 × 200 pixels (the first step of processing soil images).

Conclusions

The number of smartphone users was approximately 1.86 bil-
lion worldwide in 2015 and is predicted to be approximately 2.9 bil-
lion by 2020 worldwide (Statista, 2014). Therefore, there is a great 
potential for citizens without soils training to upload observations 
(e.g., soil color) with geospatial locations from mobile devices to soil 
databases (Rossiter et al., 2015; Silvertown, 2009) to dramatically 
and dynamically expand the current soil color database. More mean-
ingfully, soil color measured with smartphone cameras might also be 
used by citizens and/or professionals to predict other important soil 
properties (e.g., soil organic matter content and soil fertility) (e.g., 
Wills et al., 2007) that may be used to estimate soil productivity. 
Therefore, further studies are needed to explore and establish the 
relationships between soil color and other soil properties (e.g., soil 
organic matter content). Nonetheless, our results suggest that smart-
phones and other mobile devices have the potential to significantly 
enhance our ability to quickly and reliably measure soil color in the 
field, making it possible for anyone with a cell phone and a reference 
card to facilitate the expanded use of soil color as an environmental 
indicator to support a wide variety of agricultural and environmen-
tal inventory, monitoring, assessment, and management.
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