
Modern Application
Development in

Tcl/Tk

Tcl Tutorial Team

Modern Application Development in Tcl/Tk

The Tutorial Team

March 2009

Copyright c© 2004–2009 Neil Madden.
Copyright c© 2004–2009 Clif Flynt.
Copyright c© 2004–2009 David N. Welton.
Copyright c© 2004–2009 Arjen Markus.
All rights reserved.
(Add further copyright notices here).
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK:
England & Wales License. See
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/.

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Contents

Preface vii

I Tcl: The Tool Command Language 1

1 Getting Started 3
1.1 Running Tcl . 3
1.2 Hello World! . 3
1.3 Variables and Values . 4
1.4 Evaluation and Substitution . 6

1.4.1 Backslash Substitution . 7
1.5 Arithmetic . 8

1.5.1 Operands . 8
1.5.2 Operators . 10
1.5.3 Math Functions . 11
1.5.4 Incrementing Integers . 12

2 Handling Data 13
2.1 Strings . 13

2.1.1 Unicode . 17
2.1.2 Pattern Matching . 17

2.2 Dates and Times . 18
2.3 Lists . 19

2.3.1 List Variable Commands . 21
2.3.2 Nested Lists . 22
2.3.3 Sorting and Searching . 22

2.4 Dictionaries . 25
2.4.1 Filtering a Dictionary . 27
2.4.2 Updating a Dictionary . 27

2.5 Arrays . 28
2.6 Regular Expressions . 29

2.6.1 Crafting Regular Expressions . 32

3 Control Structures 37
3.1 Branching with if and switch . 37

3.1.1 The if Command . 37
3.1.2 The switch Command . 38

3.2 Loops: while and for . 39
3.2.1 The while Loop . 39
3.2.2 The for Loop . 40
3.2.3 Early termination: break and continue 41
3.2.4 The foreach Loop . 42

iii

3.3 Procedures . 43
3.3.1 Parameters and Arguments . 44
3.3.2 Global and Local Variables . 45
3.3.3 The return Command . 46
3.3.4 The Procedure Call Stack . 46
3.3.5 Recursion: Looping without loops! . 47
3.3.6 Higher-Order Procedures and Callbacks . 48
3.3.7 Anonymous Procedures . 51
3.3.8 Command Aliases . 52
3.3.9 Examining Procedures . 53

3.4 Dealing with Errors . 53
3.4.1 The try Command . 54
3.4.2 The catch Command . 57
3.4.3 Throwing Errors and Exceptions . 58

4 Program Organisation 61
4.1 Namespaces . 62

4.1.1 Ensembles . 62
4.1.2 Import and Export . 62
4.1.3 Creative Writing . 62
4.1.4 Paths and Unknown Commands . 62
4.1.5 Abstract Data Types . 62

4.2 Packages . 62
4.2.1 Modules . 62

4.3 Object Oriented Tcl . 62
4.4 Testing . 62

4.4.1 TclTest . 62

5 Input and Output 63
5.1 Command Line Arguments and Environment Variables 63
5.2 Channels . 63
5.3 The File System . 63
5.4 Processes . 63
5.5 TCP/IP Networking . 63

6 The Event Loop 65
6.1 Introduction . 65
6.2 Delayed Tasks . 65
6.3 Channel Events . 65
6.4 Variable and Command Traces . 65

7 Advanced Topics 67
7.1 Custom Control Structures . 67
7.2 Unknown Command Handlers . 67
7.3 Coroutines . 67
7.4 Interpreters . 67
7.5 Threads . 67

II Tk: Graphical User Interfaces 69

8 Basic Concepts 71
8.1 Introduction . 71

9 Managing toplevel windows 75

10 Basic Widgets 79
10.1 Labels . 79
10.2 Entry widgets . 81

10.2.1 Validation . 81
10.3 Buttons . 81
10.4 Checkbuttons . 81
10.5 Radio buttons . 81
10.6 Scales . 82
10.7 Scrollbars . 82
10.8 Spinboxes . 83
10.9 Comboboxes . 83
10.10Progressbars . 83
10.11Separators . 83

11 Geometry Management 85
11.1 Placing the widgets . 85

12 The Text Widget 89
12.1 Positions in the text . 90
12.2 Tags . 91
12.3 Searching . 91
12.4 Hypertext . 92
12.5 Formatted text . 92
12.6 More information . 95

13 The Canvas Widget 97
13.1 Identifying objects . 98
13.2 Coordinates . 98
13.3 Handling mouse events and keystrokes . 99
13.4 Embedding widgets and images . 99
13.5 More subcommands . 100
13.6 A more elaborate example . 100

14 Themed Tk 103

III Real-World Application Development 105

15 Tcl Database Connectivity (TDBC) 107

16 XML 109

17 Web Applications and Services 111

References 113

v

vi

Preface

Introduction

Welcome to Modern Application Development in Tcl/Tk! This book aims to provide a complete
introduction to developing applications in Tcl/Tk, and to emphasise modern software development
methodology throughout. The book is intended as a free companion and eventual replacement
for the existing Tcl Tutorial [5], written by Clif Flynt, Arjen Markus, David N. Welton and Neil
Madden. Some material from that tutorial has been reused in this book, but the majority has been
heavily edited or rewritten from scratch to reflect current best practices.

Tcl stands for the ‘Tool Command Language’. It was originally developed in the 1980’s by Dr.
John Ousterhout, then a Professor of Computer Science at the University of California at Berkeley,
as a lightweight embeddable command language for a number of software tools developed by Dr.
Ousterhout and his students. The idea was that Tcl would provide some basic facilities common
to all programming languages, such as variables, loops, and control structures, and then a host
application could embed the language and extend it with new commands relevant to that tool.
Users could then use Tcl to control the tool by issuing commands, either interactively or in batch
scripts. You can read more about the history of Tcl at http://www.tcl.tk/about/history.
html.

Tcl still excels as an embedded command language, but it has also developed into a fully
fledged general programming language. The core principles that made it such a good command
language: simplicity, extensibility, and ease of integrating different components, have also stood
Tcl in good stead as a general purpose language. Today it is used for everything from modern
desktop applications, to heavy-duty network servers, and lots in between.

Outline of the Book

The first part of the book introduces the Tcl language, from basic facilities through to advanced
topics such as developing custom flow control constructs and event-based TCP/IP networking.
Don’t Panic! No previous knowledge of Tcl/Tk or even programming in general is assumed in this
book. Feel free to skip the more advanced chapters to begin with, and then come back to them
when you feel more comfortable with the material. The remaining parts of the book introduce a
number of popular extensions to Tcl for developing sophisticated applications:

• Part II introduces Tk, the Graphical User Interface (GUI) ToolKit, and its newer “themed”
companion, Ttk. Together, these extensions allow you to create polished desktop applications
that integrate well with all major desktop environments: Microsoft Windows, Mac OS X, and
Linux/X11 (KDE and Gnome).

• Part III then introduces a number of useful and popular extensions for handling real-world
requirements: interfacing to database management systems (Chapter 15), processing XML
(Chapter 16), interfacing with Web Services (Chapter 17), and writing powerful Web appli-
cations.

vii

http://www.tcl.tk/about/history.html
http://www.tcl.tk/about/history.html

This book doesn’t currently cover the implementation of Tcl or how to extend or embed Tcl from
C or C++. These advanced topics are covered by the Tcl manual pages and a number of other
books on Tcl.

Additional Resources

The Tcl community is an exceedingly friendly one. Here are some good places to get help:

• The Tcl Developer eXchange (http://www.tcl.tk/) is the main website for Tcl, and con-
tains links to downloads, documentation, mailing lists, and the open source Tcl development
project where you can also download the source-code of the Tcl interpreter.

• The comp.lang.tcl newsgroup. Accessible via a newsreader, or Google Groups.

• The Wiki (http://wiki.tcl.tk/) has a great deal of useful code, examples and discus-
sions of the finer points of Tcl usage.

• If you need help right away, there is often someone on the #tcl channel on irc.freenode.
net who can help you out, but please don’t be impatient if no one can help you instantly—if
you need that level of support, consider hiring a consultant.

• There are several other good books on Tcl/Tk if you wish to gain more in-depth knowledge
of Tcl. Recommended titles include ‘Tcl/Tk: A Developer’s Guide’[4] and ‘Practical Program-
ming in Tcl/Tk’[12].

Contributors

The following people have contributed material to this book:

• Clif Flynt

• Neil Madden

• Arjen Markus

• David N. Welton

viii

http://www.tcl.tk/
http://wiki.tcl.tk/
irc.freenode.net
irc.freenode.net

Part I

Tcl: The Tool Command Language

1

Chapter 1

Getting Started

1.1 Running Tcl

Tcl is an interpreted language. The main interpreter program is named tclsh or, depending on
the installation, tclsh8.6 or tclsh86.exe on Windows.1 The tclsh program can be started
in one of two modes: interactively or in batch mode. In batch mode, tclsh accepts a file name
as an argument and will then load the file and execute each command in it before exiting. In
interactive mode, tclsh presents the user with a prompt, much like a shell, from which you can
type in commands to be evaluated one at a time. After evaluating each command, tclsh will
print the result of the command, or any error message that was generated. To start tclsh in
interactive mode, simply start it without any arguments.

As we mentioned in the introduction, Tcl was designed to be embedded into other applications.
It should therefore come as no surprise that tclsh is not the only way of accessing a Tcl inter-
preter. Tcl is embedded into a number of different applications and devices, from CAD (Computer
Aided Design) packages to network routers. However, there are also a number of other standard
interpreter programs which might also be installed on your system. One example is the WIndow-
ing SHell, wish. This is a version of tclsh that automatically loads the Tk graphical user interface
extension. Other options are also available, providing more functional environments for develop-
ing and debugging Tcl code. One very popular choice is the TkCon (http://tkcon.sf.net/)
enhanced interactive interpreter, written by Jeff Hobbs. The Eclipse IDE also offers good Tcl sup-
port, via the DLTK project (which also supports Python, Ruby and other ‘dynamic languages’). For
writing longer applications, a good programmer’s text editor is worth acquiring. A number of IDEs
and editors with support for Tcl are listed on the Tcl Wiki (see the Additional Resources section in
the Preface).

1.2 Hello World!

The traditional starting place for a tutorial is the classic “Hello, World” program. Once you can
print out a string, you’re well on your way to using Tcl for fun and profit!

The command to output a string in Tcl is the puts command. A single text argument after
the puts command will be printed to the standard output device (stdout; usually the console).
The default behaviour is to print a newline character (“return”) appropriate for the system after
printing the text. Here’s an example of using the puts command to display some text. You can
run this either by start tclsh interactively and typing in the command at the % prompt, or by
saving the command into a file called hello.tcl and then running tclsh hello.tcl.

puts Hello!

1Throughout this book we will assume that you have the 8.6 version of Tcl installed, which is the latest version as of
this writing. Differences to previous versions will be pointed out in the text.

3

http://tkcon.sf.net/

If the string has more than one word, you must enclose the string in double quotes ("") or
braces ({}). A set of words enclosed in quotes or braces is treated as a single unit, while words sep-
arated by whitespace are treated as multiple arguments to the command. Quotes and braces can
both be used to group several words into a single unit. However, they actually behave differently.
In the next section, you’ll start to learn some of the differences between their behaviours. Note
that in Tcl, single quotes are not significant, as they are in some other programming languages,
such as C, Java, Perl and Python.

Many commands in Tcl (including puts) can accept multiple arguments. If a string is not
enclosed in quotes or braces, the Tcl interpreter will consider each word in the string as a separate
argument, and pass each individually to the command. The puts command will try to evaluate
the words as optional arguments, likely resulting in an error. Here is an example interactive
session with tclsh, showing the correct ways of calling puts and an error that results from an
incorrect call.

% puts "Hello, World!"
Hello, World!
% puts {Hello, World!}
Hello, World!
% puts Hello, World!
can not find channel named "Hello,"

A command in Tcl is a list of words terminated by a newline or semicolon. You can write
a comment (i.e., a piece of text that documents the program) by starting a command with a #
character. The comment continues until the end of the line, ignoring any semicolons or other
punctuation. Tcl will skip any text in a comment and move on to the next command. You can use
comments to describe the intention of your code to other programmers, or temporarily disable a
command that you do not want to be evaluated. Note: In Tcl, comments can only appear where Tcl
would expect a command to begin. You cannot, for instance, introduce a comment in the middle
of a command, or in the middle of a quoted string. If you wish to add a comment to the end of an
existing line, you can use a semicolon to first terminate the command.

This is a comment on its own line
puts "Hello, World" ;# This is a comment after a command
puts "Bad" # This will cause an error - no semicolon!
puts "Line 1"; puts "Line 2"; # Prints two lines
puts "Semi-colons inside quotes are ignored: ; See?"
puts {... and within braces: ; See?}

1.3 Variables and Values

A value2 is a piece of data that can be passed as the argument of a command, or returned as its
result. In Tcl, every value (or term) is a string, i.e., a piece of text. This is in contrast to many other
languages, in which values are sharply divided into different ‘types’, e.g., integers, strings, lists,
and so on. In Tcl, it is up to individual commands to determine how to interpret the arguments
that they are passed. For instance, one command might treat the string {a b c} as a list, while
another treats it as a set (i.e., a collection without duplicates), while yet another might treat it
simply as a string. Internally, Tcl remembers how commands have interpreted different values,
so for instance if the string 3.14159 is always interpreted as a floating-point number, then Tcl
will remember this interpretation and store an efficient representation of the number, identical
to the representation used in most other languages. This allows Tcl to still be quite fast, while
maintaining the flexibility that makes it such a convenient ‘glue language’. This property is often
referred to as ‘everything-is-a-string’, or EIAS, within the Tcl community.

2More correctly, a term.

4

While all Tcl values are strings, there are a number of other elements to the language which
are not values, and are not strings. We have already encountered one such entity: commands.
Another very important type of object are variables. A variable is a named location in memory that
can be used to store values. All non-value resources in Tcl are accessed via names: commands,
variables, channels, and so on. While the name is a string, the underlying resource that it names
is usually a more complex entity. You can assign a value to a variable using the set command:

set fruit "Cauliflower"

When set is called with two arguments, as above, it places the second argument (Cauliflower)
into the memory space referenced by the first argument (the variable; fruit), overwriting any
value that was already there. If the variable does not already exist then a new one is created with
the given name. The set command always returns the new value of the variable, in this case the
string Cauliflower.

The set command can also be called with just a single argument. In this case it simply returns
the current value of the variable:

% set fruit
Cauliflower

Because fetching the value of a variable is such a common task, Tcl has built-in syntax just for this
operation: the $ symbol can be used in front of a variable name to retrieve the current value. This
can even be used within a quoted string:

puts $fruit ;# Just prints "Cauliflower"
puts "The fruit is: $fruit"

You cannot however use this within braces. The following code will print the literal string “The
fruit is: $fruit”.

puts {The fruit is: $fruit}

This is the main difference between quotes and braces: braces prevent substitution. By default, Tcl’s
$-substitution rules only allow variable names to consist of letters, digits, or underscores.3 If you
want to have more complicated variable names, perhaps including spaces or other punctuation
characters, you can use braces to tell Tcl where the end of the variable is:

set "My long variable" "Some value"
puts ${My long variable}

A variable can be destroyed using the unset command, which takes a variable name as an
argument and removes that variable, as if it had never been set:

% set x 1
1
% unset x
% set x
can’t read "x": no such variable

You can also find out which variables have been created by using the info vars command4.
This returns a list of all the variables that are currently defined in this scope. You can also pass
a pattern to the command in order to restrict which variables are returned. Here we can see a
number of special variables that Tcl defines automatically on startup:

% info vars tcl_*
tcl_rcFileName tcl_interactive tcl_version tcl_pkgPath tcl_patchLevel
tcl_library tcl_platform

3Two other forms are also allowed, which will be discussed in later chapters on namespaces and arrays.
4The info command contains lots of useful sub-commands for inspecting the state of the interpreter. We will discuss

others as we encounter them.

5

1.4 Evaluation and Substitution

In Tcl, the evaluation of a command is done in 2 phases. The first phase is a single pass of
subsitutions. The second phase is the evaluation of the resulting command. Note that only one
pass of substitutions is made. Thus, in the following command, the contents of the proper variable
are substituted for $varName, and then the command is executed.

puts $varName

Assuming we have set varName to "Hello, World!", the sequence would look like this:

1. First $varName is substituted: puts $varName⇒ puts "Hello, World!".

2. Then, the command is evaluated, resulting in "Hello, World!" being output to the con-
sole.

During the substitution phase, several types of subsitutions occur:

• A command within square brackets ([]) is replaced with the result of evaluating that com-
mand.

• Words within double quotes or braces are grouped into a single argument.

• Variable references (with a preceeding $) are replaced with the value of that variable.

• ‘Backslash substitution’ is performed (see Section 1.4.1).

Double-quotes ("") and braces ({}) both serve to group multiple words together into a single
word in the command. The difference between them is that braces prevent subtitution being
performed on their contents, whereas double quotes do not. Compare:

set a 10
puts "a = [set a] or $a" ;# prints "a = 10 or 10"
puts {a = [set a] or $a} ;# prints "a = [set a] or $a"

Command substitutions can be nested, for example, given fictitious ‘readsensor’ and ‘selectsen-
sor’ commands, we can write:

puts [readsensor [selectsensor]]

This will first evaluate the selectsensor command and then pass the result to the readsensor
command as a single argument. The result of that command will then become the argument to
puts. Note that only a single round of substitution is ever done, despite multiple commands being
evaluated. This means that, for instance, if the selectsensor command returns a string such
as ‘$someText’ this will be treated as a literal string and not substituted as if it was a variable
reference. You can perform an extra round of substitution using the subst command if needed,
but that is a rare requirement.

The result of a command or variable substitution is usually treated as a single word in the
resulting command. For instance, in the example above, the string "Hello, World!" became a
single argument to the puts command, despite having a space in it, because it was the result of a
variable substitution. The only exception to this rule is the new {*} operator that was introduced
in Tcl 8.5. This operator converts a list of words (such as the result of a command or variable
substitution) into a set of individual arguments. Compare:

set x "a b c d"
puts $x ;# => puts "a b c d" -> displays "a b c d"
puts {*}$x ;# => puts a b c d -> error

6

String Output ASCII Hex/Notes
\a Audible Bell 0x07
\b Backspace 0x08
\f Form Feed (clear screen) 0x0c
\n Newline 0x0a
\r Carriage-return 0x0d
\t Tab 0x09
\v Vertical tab 0x0b
\<newline>whitespace A single space. Line continuation.
\\ Backslash A literal backslash
\0oo A Unicode character (octal escape) obsolete
\xhh A Unicode character (hexadecimal) obsolete
\uhhhh A Unicode character The four hexadecimal dig-

its (‘h’) give the sixteen-bit
value for the Unicode char-
acter that will be inserted.

Table 1.1: Backslash escape sequences.

The {*} operator is an advanced feature that you generally won’t have to use much when you
are learning Tcl. The full behaviour of substitution and evaluation in Tcl is described in the main
Tcl.n manual page [11], which you should read completely before starting any serious program-
ming with Tcl. The 12 rules given in that manual page completely describe the operation of the
Tcl interpreter, and you should try to read and understand them before moving on. The rules can
be quite subtle, however, especially if you are used to other programming languages, so don’t be
surprised if it takes a little while to fully appreciate the details!

1.4.1 Backslash Substitution

In general, the backslash (\) disables substitution for the single character immediately following
the backslash. For example, the string ‘\"’ will be replaced with the literal character ‘"’ (a double
quote), and will not be regarded as starting a double-quote string for grouping. However, there are
also a number of specific ‘Backslash Sequence’ strings which are replaced by special values during
the substitution phase, shown in Table 1.1. Backslash-newline (‘line continuation’) substitutions
are the only form that is performed within braces.

Here are some examples you can try in a tclsh interpreter session. Try to guess what the
result of each will be using the rules before testing it.

set Z Albany
set Z_LABEL "The Capitol of New York is: "

puts "$Z_LABEL $Z"
puts "$Z_LABEL \$Z"

puts "\nBen Franklin is on the \$100.00 bill"

set a 100.00
puts "Washington is not on the $a bill"
puts "Lincoln is not on the $$a bill"
puts "Hamilton is not on the \$a bill"
puts "Ben Franklin is on the \$$a bill"

puts "\n..................... examples of escape strings"

7

puts "Tab\tTab\tTab"
puts "This string prints out \non two lines"
puts "This string comes out\
on a single line"

1.5 Arithmetic

The Tcl command for evaluating mathematical expressions is expr. Many commands use expr
behind the scenes in order to evaluate condition test expressions, such as if, while, and for
loops. All of the advice given here for expr also holds for these other commands. The following
sections are largely derived from the standard Tcl manual page for the expr command.

The expr command takes all of its arguments (‘2 + 2’ for example) and evaluates the result
as a Tcl ‘expression’ (rather than a normal command), returning the value. The syntax of Tcl ex-
pressions resembles that of conventional mathematical notation, including various standard infix
arithmetic and logical operators, bitwise operators, as well as functions like rand(), sqrt(),
cosh() and so on. Expressions almost always yield numeric results (integer or floating-point
values).

Tip: You should always enclose the arguments to expr in braces. While this
is not strictly necessary, it results in faster code, and also is much safer when
handling user-supplied data. The reason for this is that expr performs a round
of subsititution in addition the the normal substitution phase performed by Tcl.
The braces prevent the Tcl round from being performed, which is both faster
and avoids the problems of double substitution. To illustrate the problems that
can occur, consider this interactive session:

% set userinput {[puts DANGER!]} ;# example user input
[puts DANGER!]
% expr $userinput == 1
DANGER!
0
% expr {$userinput == 1}
0

In the first example, Tcl first substitutes the variable for its value. The
expr command then evaluates the code that it contains, resulting in
the ‘DANGER!’ message being displayed. Clearly, this could present a
security problem if users can enter arbitrary code. In the second ex-
ample, the braces prevent Tcl substituting the variable and so the code
works correctly. As a general rule, always surround expressions with
braces. The resulting code will be safe and will also run faster!

1.5.1 Operands

A Tcl expression consists of a combination of operands, operators, and parentheses. White space
may be used between each of these; it is ignored by the expression processor. Where possible,
operands are interpreted as integer values, otherwise it is treated as a floating-point number.
Integer values may be specified in decimal (the normal case), in octal (using the prefix 0o), in
hexadecimal (using the prefix 0x), or in binary (prefix 0b). For compatibility with earlier versions
of Tcl, you can also use just a leading zero to indicate octal, but this use is discouraged in new
code. Some examples follow:

% expr {1234}

8

1234
% expr {0o1234} ;# 1234 octal = 668 decimal
668
% expr {01234} ;# 1234 octal (old-style notation)
668
% expr {0x123f} ;# 123f hexadecimal = 4671 decimal
4671
% expr {0b11110000}
240

Tip: The old octal format is a frequent cause of mistakes when dealing with
user input. Whenever a user enters a decimal integer you must ensure to
remove any leading zeros that they may have entered in order to avoid the
octal interpretation. For instance, consider the following (pseudo)code:

set num [get-user-input]
puts "$num + 1 = [expr {$num + 1}]"

If the user enters a leading zero then unexpected results can occur, e.g., if the
user enters 012 they will receive the unexpected result that ‘012 + 1 = 11’!
Even worse, if the user enters an invalid octal number, such as 09, the program
will halt with an error. The best way to avoid such problems is to ensure that
all user input is correctly converted to an appropriate format before being
used. One particularly useful command here is the scan command that can
perform lots of conversions. The %d conversion will ensure that our number is
a decimal integer:

set num [scan [get-user-input] %d]
puts "$num + 1 = [expr {$num + 1}]"

If an operand does not have one of the integer formats given above, then it is treated as
a floating-point number (i.e., an approximate real number), if that is possible. Floating point
numbers may be specified in any of several common formats making use of decimal digits, the
decimal point (‘.’), the characters ‘e’ or ‘E’ indicating scientific notation, and the sign characters
‘+’ or ‘-’. For example, all of the following are valid floating point numbers:

% expr {2.1}
2.1
% expr {3.}
3.0
% expr {6e4}
60000.0
% expr {7.91e+16}
79100000000000000.0

Note that the comma ‘,’ is not a valid decimal point indicator in Tcl. The special values ‘Inf’
and ‘NaN’ (exact spelling) can also be used to represent floating point infinity and not-a-number,
respectively.

If no numeric interpretation is possible, then an operand is left as a string, and only a limited
set of operators may be applied to it. Some operations expect a Boolean truth value. Table 1.2
shows the valid Boolean values in Tcl.

Big Integers

Since Tcl version 8.5

9

False True
Numeric 0 all others
Yes/No no yes
On/Off off on
True/False false true

Table 1.2: Valid Boolean truth values.

Tcl can handle arbitrarily large integer values exactly. This is handled largely transparently for
the Tcl programmer, with the internal representation of the number automatically upgraded to a
format that is large enough to represent the value. For example, we can calculate 21000 as follows:

% expr {2**1000}
107150860718626732094842504906000181056140481170553360744
375038837035105112493612249319837881569585812759467291755
314682518714528569231404359845775746985748039345677748242
309854210746050623711418779541821530464749835819412673987
675591655439460770629145711964776865421676604298316526243
86837205668069376

1.5.2 Operators

Logical and Relational Operators

The expr command understands the following logical (Boolean) operators (in descending order
of precedence):

! Logical negation (NOT). Converts any ‘true’ value (see Table 1.2) to 0, and any ‘false’ value to
1.

<,<=,>,>= Relational less than, less than or equal, greater than, and greater than or equal oper-
ators, respectively. Each operator produces 1 if the condition is true, or 0 otherwise. These
operators can be applied to numeric operands or strings, in which case string comparison is
used.

==,!= Equals and not-equal operators, respectively.

&& Logical conjunction (AND). Returns 1 if both operands are ‘true’ values, otherwise 0.

|| Logical disjunction (OR). Returns 1 if either of the operands are ‘true’, otherwise 0.

$x?$y:$z The if-then-else ternary operator. If $x evaluates to a ‘true’ value then the result is the
value of $y, otherwise it is the value of $z.

Arithmetic Operators

The following operators are used for standard arithmetic operations on numbers:

-,+ Unary minus and plus operators, used to set the sign of the operand.

** Exponentiation operator: [expr {$x**$n}] means xn.

*,/,% Multiply, divide, and remainder respectively. The remainder operations can only be applied
to integers, and the result will always have the same sign as the divisor and an absolute
value smaller than the divisor. If the divide operator is applied to two integer operands then
integer division is performed, otherwise floating-point division is used.

+,- Binary addition and substraction, respectively. Valid for any numeric operands.

10

Bitwise Operators

The following operators are used to perform operations on the binary (bitwise) representation of
integers:

˜ Bit-wise NOT. Negates each bit in its operand (including the sign bit). For example5:

% format %#hb [expr {˜0b0101010101010101}]
0b1010101010101010

<<,>> Left and right bit shift, respectively.

& Bitwise AND.

ˆ Bitwise exclusive OR.

| Bitwise OR.

String and List Operators

The following operators can be used to compare strings and to determine if a value is or is not an
element of a list. Although listed separately, all of these operators share the same precedence.

eq,ne String equality/inequality operators. Causes an equality test to be done on the string
representation of each value, even if they have a numeric interpretation.

in,ni Set operators: contains and doesn’t contain operators, respectively. [expr {$x in $xs}]
will return 1 if the value in $x is a member of the list $xs.

1.5.3 Math Functions

Tcl supports the following mathematical functions in expressions, which you can access using
traditional mathematical notation, e.g., [expr {sin($x)}].

abs acos asin atan
atan2 bool ceil cos
cosh double entier exp
floor fmod hypot int
isqrt log log10 max
min pow rand round
sin sinh sqrt srand
tan tanh wide

You can also access normal Tcl commands within expr using the usual square-bracket syntax,
e.g., [expr {[set a]+1}]. Be aware, however, that any further sub-expressions contained
within such command calls must include a further call to expr, as in:

[expr {[mycmd [expr {$x*2}]]+1}]

As of Tcl 8.5, you can now expose Tcl commands as functions within expr by creating a com-
mand in a tcl::mathfunc namespace6, which would allow you to write the expression as
[expr {mycmd($x*2)+1}], which is much clearer.

5The format command here converts the decimal result into a 16-bit binary representation.
6Namespaces are discussed in Section 4.1.

11

1.5.4 Incrementing Integers

One extremely common arithmetic operation is to simply increment a variable containing an inte-
ger. You could accomplish this simply using expr, as:

set x [expr {$x + 1}]

However, the operation is so common that Tcl builds-in a convenient short-hand, which is also
slightly more efficient: the incr command. The syntax of incr is as follows:

incr varName ?amount?

This increments the value stored in varName and stores the new value back into the variable. The
command also returns the new value. The optional amount argument can be used to specify how
much to increment the value, and can be any integer, including negative to indicate decrement.

12

Chapter 2

Handling Data

Like most programming languages, Tcl comes with facilities for handling many different sorts
of data. We’ve already seen Tcl’s facilities for handling numbers and basic arithmetic. In this
chapter we will examine all the other sorts of data that can be used in a Tcl program: strings,
lists, dictionaries, and associative arrays, and how they can be put to work. We’ll also look at how
you can use these basic data ‘types’ to build up more sophisticated data structures suited to your
application.

Unlike most programming languages, Tcl does not have a built-in notion of ‘type’. More pre-
cisely, all values in Tcl are of a single type: strings. In practice, most programming with data in Tcl
is much like programming in other languages: you decide on how some data is to be interpreted
(e.g., as a number, or a list) and then use commands that are appropriate for that sort of data. Tcl
will take care of making sure that efficient representations are used under-the-hood (e.g., integers
are represented as native machine integers).

Tcl’s approach to data structures is to provide a few general purpose structures and to then
optimise the implementation for typical uses. This is in contrast to lower-level languages, such as
C++ or Java, that provide lots of different data structures for different purposes. Tcl instead aims
to simplify the task of programming by picking a few powerful and general data structures. In this
regard, Tcl is similar to high-level applications like spreadsheets or relational database systems,
that allow the user to specify what they want to achieve and leave it up to the implementation
to ensure that most operations are efficient. Of course, you can always design your own custom
data structures in Tcl if you need to, but the defaults provided are sufficient for most tasks. In
addition, Tcl takes care of memory management and index checking for you, and so is safe from
whole classes of errors due to memory mismanagement or ‘buffer overflows’.1

2.1 Strings

Tcl commands often have subcommands. We’ve already seen an example in the info command.
The string command is another example, that contains subcommands for manipulating strings.
While all values in Tcl are strings, the string command should be used only on data that you
really want to be treated as a string. Examples might include names of people, or addresses. A
command with subcommands is known as an “ensemble” command. Some useful string com-
mands include:

string length: Returns the length of a string, e.g., string length "Hello, World!"
returns 13.

string index: Returns the nth character from a string, counting from 0. For example:

1For the technically minded, Tcl uses a form of reference-counting for memory management. This suffices for the
majority of cases, and simplifies the C interface.

13

% string index "Hello, World!" 0
H
% string index "Hello, World!" 5
,

You can also index strings from the end using the following syntax:

% string index "Hello, World!" end
!
% string index "Hello, World!" end-2
l

string range: Returns the range of characters between two indices:

% string range "Hello, World!" 2 end-2
llo, Worl

string equal: Compares two strings for equality. You can specify whether the comparison
should be case sensitive (the default) or not, and also specify a length limit for the compari-
son (which defaults to the full length of the strings):

% string equal -nocase -length 5 "Hello, World!" "hElLo Tcl!"
1

string compare: Compares two strings for alphabetical ordering. Each character is compared
one at a time, with with ‘a’ being less than ‘b’ and ‘A’ being less than ‘a’. Note that numbers
are also compared in this fashion, so that the string ‘10’ will be considered less than ‘2’ as
the first character (1) is less than 2. As for string equal, you can specify -nocase and
-length options. The command returns -1 if the first string is ‘less’ than the second, 0 if
they are equal, or 1 if the second string is less than the first:

% string compare "Hello" "World"
-1
% string compare -nocase apple Apple
0

string first: Searches for a string within a larger string. If found, it returns the index of the
first occurrence, otherwise it returns -1:

% string first "ll" "Hello, World!"
2

You can also specify an optional start index for the search:

% string first "ll" "Hello, World!" 5
-1

string last: Searches for the last occurrence of a search string:

14

% string last "ll" "Hello, World!"
2
% string last l "Hello, World!"
10

string wordend: Returns the index of the character just after the last one in the word that
contains the given index. A word is any contiguous set of letters, numbers or underscore
characters, or a single other character.

string wordstart: Returns the index of the first character in the word that contains the index
given. You can use these two commands along to extract the word that a given index lies
within:

% set str "Hello, World!"
Hello, World!
% set idx 2
2
% string range $str [string wordstart $str $idx]\

[string wordend $str $idx]-1
Hello

string reverse: Reverses a string:

% string reverse "Hello, World!"
!dlroW ,olleH

string repeat: Generates a string consisting of n repetitions of the given string:

% string repeat "Hello! " 5
Hello! Hello! Hello! Hello! Hello!

string replace: Replace a substring within a larger string. The string to use as a replacement
can be omitted, in which case the original string will be deleted. Note that this command,
like most Tcl commands, does not alter the original string, but instead returns a new string
with the replacement made:

% string replace "Hello, World!" 0 4 Goodbye
Goodbye, World!

string map: This very useful command performs a bulk search and replace operation on a
string. The first argument specifies a list of mappings: a string to find and then a string to
replace it with. The command then searches through the given string replacing each search
string with its mapping and returns the resulting string:

% string map {0 "zero " 1 "one " 2 "two "} 01201201202
zero one two zero one two zero one two zero two

string tolower, string toupper, string totitle: Converts a string to all lower-case,
all upper-case, or title-case, respectively. Title-case means that the first letter is capitalized,
while all others are made lower-case.

15

string trim, string trimleft, string trimright: Trims any occurrences of a given
set of characters from the start or end of a string. The default is to trim all whitespace
characters:

% string trim "\t Hello, World! "
Hello, World!
% string trimleft "Hello, World!" "lHe!"
o, World!

Note that the second argument is considered as a set of characters rather than a string.

string is: Performs input validation on an input string to determine if it can be interpreted as
the given class of value. This command is meant for validating user input, rather than for
general type checking. In particular, the command will accept the empty string ("") as valid
unless the -strict option is given. This command is mostly useful in Tk GUIs (Part II).

A number of other commands are useful for manipulating strings, but are not in the string
ensemble:

append: Appends one or more strings to a variable that contains a string. Note that this command
alters a variable rather than just returning a new string:

% set str "Hello,"
Hello,
% append str " World!"
Hello, World!
% set str
Hello, World!

Note that we do not use a dollar-sign when passing the variable str to this command. This
is because the command expects the name of a variable containing a string, rather than the
string itself. The general rule is that if a command returns a new value then you should use
a dollar, but if it manipulates a variable then you should pass the variable name without a
dollar sign.

concat: Concatenates zero or more strings together, inserting spaces between each one. Returns
the resulting string:

% concat "Hello," "World!"
Hello, World!

scan and format: These commands can be used to perform conversions between strings and
various different data types, while also specifying details of the format, such as maximum
length and padding characters. The full details of these commands are too complex for
this tutorial, so we will just show some examples of each. The full details are available in
manual pages [9, 6]. C programmers will be familiar with these as the scanf and sprintf
functions.

Parse a simple colour specification of the form #RRGGBB in hex format
% scan #08D03F "#%2x%2x%2x" r g b
3
% puts "$r $g $b"
8 208 63

16

Format the string back again
% format "#%02X%02X%02X" $r $g $b
#08D03F

These two commands are very useful for input validation and output formatting, and we
will demonstrate their usage throughout the text. In particular, you should almost always
use scan and format when processing numeric input and output.

2.1.1 Unicode

Tcl was one of the first programming languages to adopt Unicode-aware strings throughout the
language. To this day, Tcl still has one of the most mature and well-integrated Unicode string
implementations, roughly on a par with that of Java. Tcl strings are represented internally as a
slightly modified version of UTF-8. Data entering or exiting the Tcl system is translated to and
from UTF-8 largely transparently. (The details of how to control this conversion are discussed in
Chapter 5). What this means for the Tcl programmer is that they can concentrate on the logic
of their application, safe in the knowledge that they can handle input in most languages and
character sets in use in the world. All standard Tcl commands that deal with strings (i.e., pretty
much all of them!) can handle Tcl’s UTF-8 format, as can all commands that deal with input
and output. Most Tcl extensions in common use are also usually Unicode-aware, so, for instance,
Tcl XML parsers do actually handle the Unicode requirements of XML, unlike some languages we
might care to mention!

There are some current limitations to Tcl’s otherwise excellent Unicode support. Firstly, Tcl
currently only supports Unicode code-points up to U+FFFF (the ‘Basic Multilingual Plane’, or
BMP). Support for Unicode characters beyond this range is a work-in-progress. The remaining
limitations are largely within the Tk graphical user interface extension: for instance, support
for rendering bidirectional (‘bidi’) scripts is currently missing. Overall, though, Tcl’s support for
Unicode and different character encodings is first class.

To enter arbitrary Unicode characters into a Tcl script, you can use the Unicode escape syntax
described in Section 1.4.1:

set str "n\u00E4mlich"

This will result in $str containing the string nämlich. To manually convert between different
encodings you can use the encoding command. Note: you should normally never have to use the
encoding command directly, as all conversions are usually done by the I/O system automatically.

2.1.2 Pattern Matching

One particularly useful string operation is the string match command that takes a pattern,
known as a ‘glob’, and determines if a given string matches the pattern. ‘Globbing’ is the wild-card
matching technique that most Unix shells use. In addition to string match, globbing is also
used by the switch, lsearch and glob commands, discussed later. The wildcards that string
match accepts are:

* Matches any quantity (including zero) of any characters.

? Matches one occurrence of any character.

[...] Matches one occurrence of any character between the brackets. A range of characters can
also be specified. For example, [a-z] will match any lower-case letter.

\X The backslash escapes a glob-special character, such as * or ?, just as in Tcl. This allows you
to write glob patterns that match literal glob-sensitive characters, which would otherwise be
treated specially.

17

Some examples are as follows:

% string match f* foo
1
% string match f?? foo
1
% string match f foo
0
% string match {[a-z]*} foo
1
% string match {[a-z]*} Foo
0

The string match command is a great way of determining if some input string matches a partic-
ular format. If you have more complex pattern matching requirements, or need to simultaneously
extract information as well as match it, then regular expressions (Section 2.6) provide a more
powerful (but harder to use) facility.

2.2 Dates and Times

Tcl has sophisticated facilities for dealing with dates and times in the form of the clock command,
another ensemble. Tcl represents dates and times as the number of seconds since the epoch time of
1st January, 1970, 00:00 UTC. Note that Tcl’s clock times do not include leap seconds: each UTC
day is considered to have exactly 86400 seconds. Instead, Tcl minutely adjusts its clock speed to
account for leap seconds. The various clock-related commands are as follows:

clock seconds Returns the current time as an integer number of seconds since the epoch.

clock milliseconds Returns the current time as an integer number of milliseconds since the
epoch.

clock microseconds Returns the current time as an integer number of microseconds (mil-
lionths of a second) since the epoch.

clock clicks Returns a system-dependent high-resolution timer value.

clock format Formats a time value into a human-readable form.

clock scan Parses a date/time value in some format into a Tcl time value.

clock add Adds two time values together, accepting a variety of ways of specifying the dates
and times.

The format and scan sub-commands accept a -format option that specifies the expected
format of the output/input. If not specified, clock format defaults to a format of ‘%a %b %d
%H:%M:%S %z %Y’, while clock scan uses ‘free form scan’ mode, in which it attempts to guess
the format of the given input string. The possible format specifiers are too numerous to list in
this tutorial. Instead, we refer the reader to the official manual page [2]. The -locale and
-timezone options can be used to specify which locale and timezone to process time values. The
-base option to clock scan specifies a base time to consider all values as relative to. In older
versions of Tcl you can use the -gmt 1 option to specify that all processing should be done in
UTC. Since Tcl 8.5, this usage is deprecated in favour of -timezone :UTC. Some examples of
the use of the clock command:

% clock format [clock seconds] -format "%Y-%m-%d %T"
2009-03-22 20:50:42
% clock format [clock scan "now + 1 year"]
Mon Mar 22 00:00:00 GMT 2010

18

The clock clicks command returns a system-dependent high-resolution timer. This timer
is not guaranteed to be relative to any particular epoch, unlike the other clock commands, and so
should only be used for relative timing when the highest-resolution timer that a system supports
is needed (such as for benchmarks).

If you want to time how long a particular piece of Tcl code is taking to run (for profiling), then
you can use the time command that is designed for just this purpose:

time script ?iterations?

This command runs the given script for the given number of iterations (defaults to 1) and then
returns a human-readable string of the form: N microseconds per iteration.

2.3 Lists

The list is a fundamental data structure in Tcl. A list is simply an ordered collection of elements:
numbers, words, strings, or other lists. As Tcl is untyped, lists can contain elements of multiple
different kinds. Even commands in Tcl are just lists, in which the first element is the name of
the command to call, and subsequent elements are the arguments to that command. Tcl lists are
implemented in a similar manner to arrays or vectors in languages such as C. That is, Tcl list ele-
ments are held in contiguous ranges of memory. This makes indexing and iterating over elements
very efficient (O(1) indexing in ‘big-Oh notation’ [13]). Other operations, such as appending and
deleting elements are also efficient for most usage patterns due to the way Tcl handles list memory.

Lists can be created in several ways:

As a literal string: As with all values, Tcl lists are just strings in a certain format. If your list is
simple you can just write it as a literal string:

set myList {"Item 1" "Item 2" "Item 3"}

Note that in this tutorial we often use braces to delimit lists and quotes to delimit other
strings. This is just a convention: Tcl will accept either as either a string or a list, so long as
it is in the right format.

Using the list command: The list command takes an arbitrary number of arguments and
returns a list whose elements are those arguments:

set myList [list "Item 1" "Item 2" "Item 3"]

Using the split command: The split command converts an arbitrary string into a valid list
by splitting the string on one of a given set of delimiter characters (which defaults to any
whitespace):

set myList [split "Item 1,Item 2,Item 3" ","]

As for strings, there are a number of commands for accessing and manipulating elements of
lists. Unlike string, these list commands are not part of a single ensemble, but are separate
commands using a ‘l’ prefix, e.g., lindex, lrange etc.:2

llength: Returns the length of the list:

2The reason for this discrepancy is largely historical, as the list command was already taken as a list constructor.

19

% llength {"Item 1" "Item 2" "Item 3"}
3

lindex: Returns the nth element of a list, counting from 0:

% lindex {a b c d} 2
c

As for strings, you can also use the ‘end-n’ syntax to access elements from the end.

lrange: Returns all the elements between two indices as a new list:

% lrange {"Item 1" "Item 2" "Item 3"} 1 2
{Item 1} {Item 2}

Note that Tcl leaves off the outer braces when displaying lists, and prefers to use braces
rather than quotes to delimit elements. Most Tcl list commands will ‘normalize’ lists in this
way. Don’t be fooled though: Tcl always ensures that the elements of lists can be retrieved
in exactly the format that they were created. In other words, the following law holds for all
list operations:

[lindex [list $x]] == $x

You should always use the standard Tcl list commands for creating and dismantling lists to
ensure that this law continues to hold. Don’t be tempted to use string commands to try and
create strings that ‘look like lists’. While this can work, the details are much trickier than
they appear at first. All Tcl’s list commands ensure that the lists they produce are always
properly formed.

linsert: Inserts one or more elements into a list, returning the new list with the added elements:

% linsert {b c d} 0 a
a b c d
% linsert {a b c} end d
a b c d

lreplace: Replaces one or more elements of a list with zero or more substitute elements. You
can also use this to delete elements by specifying no replacements:

% lreplace {a b c d} 1 2 "Bee" "Cee"
a Bee Cee d
% lreplace {a b c d} 1 2
a d

lreverse: Reverses a list:

% lreverse {a b c d}
d c b a

20

lrepeat: Creates a list by repeating a set of elements n times. Note that the order of the elements
and the count is reversed from that of the string repeat command, due to historical
reasons:

% lrepeat 3 a b c
a b c a b c a b c

join: The inverse of the split operation, this creates a string by joining together elements of a
list with the given joining string:

% join {a b c d} ", "
a, b, c, d

Note that join and split aren’t complete inverses. In particular, it is not guaranteed that
joining a list by a certain delimiter and then splitting that list on the same delimiter will
result in the original list. Consider this example:

% set x [list a b "c,d" e]
a b c,d e
% set xstr [join $x ,]
a,b,c,d,e
% split $xstr ,
a b c d e

foreach: The foreach command can be used to loop through each element of a list, performing
an action at each step. The full syntax of this command is detailed in Section 3.2.4:

% set xs {a b c d}
a b c d
% foreach x $xs { puts $x }
a
b
c
d

2.3.1 List Variable Commands

A number of commands operate on variables containing lists, rather than directly on lists, for rea-
sons of efficiency and convenience, much like the append command for strings. These commands
also follow the l-prefix convention:

lappend: Appends zero or more elements to a list contained in a variable, storing the new list in
the same variable:

% set xs [list a b]
a b
% lappend xs c d
a b c d
% set xs
a b c d

21

lset: Updates a list in a variable, replacing the element at the given index with a new value.
This command will throw an error if the index given is outside of the range of the list (i.e.,
less than 0 or greater than the final index in the list):

% set xs [list a b c d]
a b c d
% lset xs 1 Bee
a Bee c d

lassign: Assigns the elements of a list to the local variables given, returning any unassigned
extra elements:

% set xs [list a b c d]
a b c d
% lassign $xs first second
c d
% puts "$first, $second"
a, b

2.3.2 Nested Lists

As well as string and number elements, Tcl lists can also contain other lists as elements. Some
Tcl commands, such as lindex, can automatically extract elements from nested lists in a single
operation. For instance, we might represent a person as a list of three elements: a name, an
address, and a date of birth. The address field is itself a list of strings. For example:

% set jon [list "Jon Doe" [list "A House" "Somewhere"] "1-Jan-1970"]
{Jon Doe} {{A House} Somewhere} 1-Jan-1970

We can then retrieve the first line of Jon’s address using lindex and specifying multiple indices.
The indices act like a ‘path’ through the nested list: the first index specifies where to look in the
outer list, then the next index where to look in that list, and so on. In this case, the address is the
second element of the jon list (i.e., element at index 1), and the first line is then element 0 of the
address list, so the complete path is 1 0:

% lindex $jon 1 0
A House

The lset command also recognises nested lists, and can be used to alter variables containing
them. For instance, if we wanted to change Jon’s house name, we can use:

% lset jon 1 0 "Jon’s House"
{Jon Doe} {{Jon’s House} Somewhere} 1-Jan-1970
% lindex $jon 1 0
Jon’s House

2.3.3 Sorting and Searching

Tcl builds in powerful facilities for sorting and searching lists of elements, in the form of the lsort
and lsearch commands:

lsort ?-option value . . . ? list

lsearch ?-option value . . . ? list pattern

22

Sorting a list rearranges the elements into sequence based on some ordering relation. Tcl’s lsort
command is based on an efficient merge sort algorithm, which has O(n log n) performance charac-
teristics (i.e., for a list of length n, lsort is able to sort that list in time proportional to n log n).
The sort is stable, meaning that the ordering of elements that compare as equal will be preserved
after the sort. By default, lsort sorts elements by comparing their string values, using the same
ordering as string compare:

% lsort {b c e g f a d}
a b c d e f g

The comparison function can be changed by specifying one of the following options:

-ascii Use string comparison with Unicode code-point collation order (the name is historical).
This is the default.

-dictionary Sort using ‘dictionary’ comparison. This is the same as -ascii, except that case
is ignored and embedded numbers within the strings are compared as integers rather than
as character strings. For example, ‘x10y’ will sort after ‘x2y’. Note though, that negative in-
tegers sort without regard for the leading minus sign, so for instance ‘-10’ will be considered
‘greater’ than ‘-5’.

-integer Treats the elements of the list as integers, and sorts using integer comparisons.

-real Treats the elements of the list as floating-point numbers.

-command cmd Allows specifying an arbitrary comparison command. This command will be
called with pairs of values (as two separate arguments), and should return an integer: less
than 0 to mean that the first argument is less than the second, 0 if equal, and greater than
0 otherwise. For instance, lsort -command {string compare} is equivalent to the
default ASCII sorting order.

Tip: The -command option is very slow, as it has to call a Tcl com-
mand multiple times during the sort. It is often much faster to mas-
sage the list into a format where it can be sorted using one of the
built-in comparison functions, typically by creating a collation key. The
wiki article “Custom sorting” [3] provides a general solution to this prob-
lem, along with much useful discussion of performance optimisations.

A number of other options can be used to change the sorting order:

-increasing Sorts the elements from smallest to largest (the default).

-decreasing Sorts the elements from largest to smallest.

-indices Returns the indices of elements in the list, rather than their values. This is useful if
you are sorting one list based on information contained in another list.

-index indexList This useful option allow you to sort a list of lists based on one particular
element in each sub-list. You can even pass multiple indices, in which case they will be
treated as a path through each nested sub-list, exactly as for lindex (see Section 2.3.2).
For example, if we have a list of people, where each person is represented a list of name,
age, we can sort based just on the age using the following command:

% set people {{Jon 32} {Mary 24} {Mike 31} {Jill 20}}
{Jon 32} {Mary 24} {Mike 31} {Jill 20}
% lsort -integer -index 1 $people
{Jill 20} {Mary 24} {Mike 31} {Jon 32}

23

-stride strideLength Since Tcl version 8.6 This option can be used in conjunction with
-index to specify that each sub-list is not a nested list, but instead the entire list should be
taken as being grouped into strideLength lists of elements. For example, if our list of people
was instead represented as a flat list of name-age-name-age. . . , then we could still sort it
using the following command:

% set people {Jon 32 Mary 24 Mike 31 Jill 20}
Jon 32 Mary 24 Mike 31 Jill 20
% lsort -integer -index 1 -stride 2 $people
Jill 20 Mary 24 Mike 31 Jon 32

-nocase Causes ASCII/Unicode comparisons to be case-insensitive. Only meaningful with -ascii
sort mode.

-unique Causes duplicate elements to be eliminated from the resulting list. Duplicate elements
are those which compare as equal. The last duplicate element from the input list will be the
one that is preserved. For example, if -index 0 is specified and the two elements {1 a}
and {1 b} are present, in that order, then only {1 b} will be present in the output.

As an example, we can retrieve a list of all commands defined in a Tcl interpreter, sort them,
and then print them out, one per line, using the following ‘one-liner’:

puts [join [lsort [info commands]] \n]

As well as sorting lists, you can also search for elements within them using the lsearch
command. Like lsort, this command comes with a somewhat bewildering array of options to
control its operation. However, its basic usage is very straight-forward: given a list and a pattern
to search for, it will return the index of the first element that matches the pattern, or -1 if it cannot
be found. By default this uses ‘glob’-style matching, as described in Section 2.1.2:

% lsearch {foo bar jim} b*
1

You can control the way that matching is performed using the following options:

-exact Use exact string matching.

-glob Use glob-style matching (the default).

-regexp Use regular-expression matching (see Section 2.6).

-sorted Specfies that the elements of the list are in sorted order. This allows the search to use a
more efficient algorithm. This option cannot be used with the -glob or -regexp options.

-inline Causes the command to return the actual value rather than the index:

% lsearch -inline {foo bar jim} b*
bar

-all Causes the command to return a list of every matching index (or value in the case of
-inline). Returns an empty list for no matches.

-not Negates the match, returning the index of the first element that does not match the pattern.

-start index Causes the search to start from $index.

The lsearch command also supports options for specifying the contents of each element (as for
lsort), e.g., -ascii, -integer etc., as well as specifying the sort order of sorted lists, finding
the nearest element to a given pattern (if it is not exactly matched), or searching within nested
lists.

24

2.4 Dictionaries

Since Tcl version 8.5
While a list is an ordered collection of elements, a dictionary is an unordered3 mapping from

keys to values. Other languages might refer to such data structures as maps or (hash-)tables.
Rather than each element having a position and an integer index, as in a list, each element in
a dictionary is given a string name. The elements of a Tcl dictionary can be any string value,
allowing them to also be used in a similar manner to records or structures in typed languages.
The format of a Tcl dictionary is that of a list with an even number of elements: the even indexed
elements (0, 2, 4, . . .) corresponding to the keys, and the odd indexed elements correspond to the
values for those keys. For instance, we can represent a person in the following format:

set jon {
name "Jon Doe"
address {{A House} {Somewhere}}
dob 1-Jan-1970

}

Viewed as a list, the $jon variable contains 6 elements. Viewed as a dictionary, it contains 3 map-
pings for the keys name, address, and dob. As well as creating dictionaries using a literal string,
you can also use the dict create constructor command, that works like the list command,
but creates a dictionary. We can retrieve the value associated with a key using the dict get
command:

% dict get $jon dob
1-Jan-1970

You can check whether a dictionary contains a mapping for a given key using the dict exists
command:

% dict exists $jon dob
1
% dict exists $jon some-other-key
0

Both of these commands can take a series of keys (as separate arguments), allowing you to access
elements in nested dictionaries, in a similar manner to that for nested lists. Some other useful
dictionary commands are as follows:

dict size: Returns the number of key-value mappings in the dictionary.

dict keys: Returns a list of the keys contained in the dictionary. You can optionally specify a
glob-pattern to restrict which keys are returned.

dict values: Returns a list of the values contained in the dictionary. Again, you can specify a
glob-pattern to restrict which values are returned (note: this pattern matches the value, not
the associated key).

dict replace: Returns a new dictionary value with some key/value pairs altered, and possibly
new entries add to the dictionary:

% set jane [dict replace $jon name "Jane Doe" gender female]
name {Jane Doe} address {{A House} {Somewhere}} dob 1-Jan-1970
gender female

3Actually, dictionaries preserve the order of elements as they are given, adding any new keys to the end.

25

dict set: Manipulates a dictionary-holding variable to change the value under one (possibly
nested) key:

Change Jon’s date-of-birth
dict set jon dob 2-Jan-1970

dict merge: Returns a new dictionary that combines the entries from each dictionary given
as arguments. If two or more dictionaries contain entries for the same key, then the value
of the last dictionary containing that key will be used. For instance, you could use this to
implement something like CSS’s cascading style options:

set default {
font-weight: normal
font-shape: roman

}
set user {

font-family: sans-serif
}
set author {

font-family: serif
font-weight: bold

}
Merge the styles, preferring author over user over defaults
set style [dict merge $default $user $author]
Extract final values from the combined dictionary
set family [dict get $style font-family:]
set weight [dict get $style font-weight:]
set shape [dict get $style font-shape:]
puts "Paragraph font: $family $shape $weight"

dict remove: Returns a new dictionary with entries for the given keys removed. Note that this
command will not error if the given keys do not exist in the dictionary.

dict unset: Removes a (possibly nested) key from a dictionary contained within a variable,
updating the variable in-place.

dict for: Loops through each key/value pair in the dictionary. This is similar to the foreach
loop for lists, but specialised (and optimised) for dictionary values:

dict for {key value} $jon {
puts "$key = $value"

}

In addition to these commands, the dict command also includes a number of convenience com-
mands for manipulating common data in-place within a dictionary. For example, the dict incr
command allows efficient in-place incrementing of an integer value stored within a dictionary. For
example, we can print a summary of word counts within a text using the following code (ignoring
punctuation for now):

set word_counts [dict create]
foreach word [split $text] {

dict incr word_counts $word

26

}
Display the results
dict for {word count} $word_counts {

puts [format "%-30s : %d" $word $count]
}

You can sort a dictionary using lsort, but not with the -dictionary option! (The name clash
is accidental). Instead, you can use the -stride and -index options, taking advantage of the
fact that all dictionaries are also lists:

set sorted_words [lsort -integer -stride 2 -index 1 $word_counts]

2.4.1 Filtering a Dictionary

The dict command comes with powerful functionality for filtering a dictionary value to select
just those key-value pairs that match some criteria. The dict filter command supports three
different forms of filtering:

• key and value filtering returns those key-value pairs whose key or value (respectively) matches
one of a set of glob patterns, similar to lsearch.

• script filtering allows a script to be run on each key-value pair of the dictionary, and includes
only those elements for which the script returns a true value.

For example, given our dictionary of word counts from the previous section, we can return the
counts of all words beginning with ‘a’ using:

set a_words [dict filter $word_counts key a*]

Or we could return all words with a count in double figures:

set d_words [dict filter $word_counts value ??]

Finally, we could return all words with a count greater than 15 using:

set frequent [dict filter $word_counts script {key value} {
expr {$value > 15}

}]

2.4.2 Updating a Dictionary

The dict command also includes a very convenient feature for updating the contents of a dictio-
nary variable in-place using an arbitrary script. The dict update and dict with commands
unpack a dictionary value into a set of local variables with the names and values given by the
contents of the dictionary. A script can then be executed that manipulates these variables. At the
end of the script, any changes are read back from the variables and the corresponding changes are
made to the original dictionary. For example, if we consider our ‘jon’ dictionary from the start of
Section 2.4:

set jon {
name "Jon Doe"
address {{A House} {Somewhere}}
dob 1-Jan-1970

}

We can use the dict with command to unpack this data and manipulate it more concisely than
by using individual dict get and dict set commands:

27

dict with jon {
puts "Name: $name"
puts "Addr: [join $address {, }]"
puts "DOB : $dob"

Change Jon’s name
set name "Other Jon"

}
puts "Jon’s name is now: [dict get $jon name]"

The dict update command works in a similar fashion, except that it allows you to specify ex-
actly which entries should become variables and also to specify what those variable names should
be (rather than just using the key name). This approach can be used to make batch manipulations
to a dictionary value, using the full range of Tcl commands for manipulating ordinary variables.

Tip: While this update facility is very useful and convenient, there are a few
‘gotchas’ to be aware of. Firstly, you should avoid using the dict with com-
mand with dictionary values that may come from user input as this could allow
a malicious user to override private variables with incorrect information. In-
stead, always use the dict update command so that you can control exactly
which variables will be created or updated. Secondly, be aware that entries
from the dictionary could accidentally overwrite the dictionary variable itself,
causing an error. For example, suppose our ‘jon’ dictionary happened to con-
tain a key called ‘jon’. In that case, dict with would overwrite our initial
dictionary with the contents of the jon key, either creating an error or (even
worse) silently destroying some information:

% dict set jon jon "garbage"
...
% dict with jon { }
missing value to go with key
% set jon
garbage

2.5 Arrays

Tcl’s arrays are similar in some respects to dictionaries: they are unordered mappings from string
keys to some value.4 In contrast to dictionaries, however, arrays map from string keys to variables
rather than values. This means that arrays are not themselves first-class values in Tcl and cannot
be passed to and from procedures without some extra work. On the other hand, arrays provide a
convenient syntax and can be updated in-place just like other variables. It is an error to have an
array variable and a normal variable with the same name.

Array variables can be created and manipulated just like regular variables, but using the special
array syntax, which consists of a normal variable name followed by a string key in parentheses.
For example, to create an array variable named ‘jon’ containing name, address, and date-of-birth
fields, we would write:

set jon(name) "Jon Doe"
set jon(address) {"A House" "Somewhere"}
set jon(dob) 1-Jan-1970

4This may be confusing to users from other languages where an ‘array’ is usually indexed by an integer rather than a
string. Tcl’s arrays are really ‘associative arrays’ or hashtables.

28

The array set command can also be used to create an array in one go:

array set jon {
name "Jon Doe"
address {"A House" Somewhere}
dob 1-Jan-1970

}

Once an array has been created, we can use the array syntax to manipulate its elements using
normal variable commands. An array entry can be used pretty much everywhere that a normal
variable can be:

puts "Name: $jon(name)"
set jon(name) "Other Jon"
lappend jon(address) "Planet Earth"

The parray command can be used to display the contents of an array variable:

% parray jon
jon(address) = {A House} Somewhere {Planet Earth}
jon(dob) = 1-Jan-1970
jon(name) = Other Jon

Given the apparent similarity between arrays and dictionaries, it may not seem obvious when
you should use one or the other. In fact, the two are quite different things and are useful in
different situations. A dictionary should be used when your primary objective is to create a data
structure which is naturally modelled as a collection of named fields. Using a dictionary gives you
all the advantages of a normal Tcl value: it can be passed to and from procedures and other com-
mands, it can be sent over communication channels (covered in Chapter 5), and it can be easily
inserted into other data structures. Tcl also automatically manages the memory for dictionaries, as
for other values, so you do not need to worry about freeing up resources when you have finished
with it. An array, on the other hand, is a complex stateful entity, and is best used when you want
to model a long-lived stateful component in your application. For instance, it can be very useful
to associate an array with a graphical user interface component, to hold current information on
the state of the display and user interactions. Such information typically lasts a long time and is
constantly changing in response to user inputs. A dictionary could also be used in this situation,
but an array as a collection of variables brings advantages such as variable traces that really shine
in these kinds of situations.

2.6 Regular Expressions

Regular expressions are a compact means of expressing complex patterns for matching strings
and extracting information. If you are not already familiar with regular expressions from other
languages, such as Perl, then they can be quite daunting at first, with their terse and cryptic syntax.
However, once you have mastered the basics they soon become an indispensable tool that you will
wonder how you ever managed without! This tutorial will give only a very brief introduction to
the basic features of regular expressions and the support provided for them in Tcl. There are many
tutorials and good books devoted to the subject available on the Web and in technical bookstores
if you wish to learn more. Readers who have come across regular expressions in other languages
will find that Tcl uses the familiar POSIX-style syntax for basic regular expressions. Note that
Tcl does not use the popular Perl-Compatible Regular Expression (PCRE) syntax used in several
modern programming languages, so some advanced features may be slightly different.5

5It is also worth noting that Tcl’s regular expression engine, written by Henry Spencer, is of a different design to most
other languages, with different performance characteristics. Patterns that are slow in some implementations may be faster
in Tcl, and vice-versa.

29

ˆ Matches the beginning of the string.
$ Matches the end of the string.
. Matches any single character.

[...] Matches any character in the set between the brackets.
[a-z] Matches any character in the range a..z.
[ˆ...] Matches any character not in the set given.
(...) Groups a pattern into a sub-pattern.
p|q Matches pattern p or pattern q.
* Matches any count (0–n) of the previous pattern.
+ Matches at least 1 occurrence of the previous pattern.
? Matches 0 or 1 occurrence of the previous pattern.

{n} Matches exactly n occurrences of the previous pattern.
{n,m} Matches between n and m occurrences of the previous pattern.

Table 2.1: Basic regular expression syntax.

Before getting into the technicalities of regular expressions (REs) in Tcl, it is worth pointing
out a little of the theoretical origins and practical limitations. A regular expression is so-called
because it is capable of matching a regular language. Such languages are relatively simple in the
grand scheme of things: no popular computer programming language has a grammar that simple,
for instance. As an example, no regular expression is capable of matching a string only if the braces
within it are balanced (i.e., each open brace is paired with exactly one close brace). It is therefore
good to be aware of the limits of regular expressions, and when a more appropriate technology
should be used. A classic example is extracting information from XML or HTML documents: at
first it can look as if a simple RE will do the trick, but it usually then becomes apparent that XML
is more complicated than it looks. Soon you end up with a large and unwieldy RE that still doesn’t
match every example. The solution is to use a proper XML parser. However, this is not to say that
regular expressions are not a powerful tool. Firstly, almost all regular expression engines—and
Tcl is no exception here—implement more than the basic regular expressions (BREs) of theory.
Various extensions to REs allow writing quite complex patterns quite succinctly, making them a
handy tool to have in your toolbox. Even when your problem requires more than a RE can provide,
regular expressions can still help when building a more comprehensive parser. In terms of parsing
theory, regular expressions are most useful for lexical analysis while more sophisticated tools (such
as recursive descent parsers) are more suited to syntactic analysis.

Tcl supports regular expressions primarily through two commands:

regexp ?options? RE string ?matchVar ...?

regsub ?options? RE string subSpec ?varName?

The regexp command searches string for the pattern RE. If it matches, then the command
returns the index at which it matched, and optionally copies the matched string, and any sub-
matches, into one or more named variables supplied at the end. The regsub command also
matches a regular expression against a string, but in this case is substitutes the matching string
with the string given in subSpec. Table 2.1 gives the basic elements of regular expression syntax.

Regular expressions are similar to the glob-matching that was discussed in Section 2.1.2. The
main difference is the way that sets of matched characters are handled. In globbing the only way
to select sets of unknown text is the * symbol, which matches any quantity of any character. In
regular expression matching, this is much more precise. Instead of using such ‘wild-card’ matching,
you instead can say exactly which characters you wish to match and then apply a modifier to this
pattern to say how many times you wish to match it. For example, the RE a* will match 0, 1
or any number of a characters in a sequence. Modifiers can also be applied to sub-patterns, not

30

just individual characters, so that [abc]* will match strings of any length containing just the
characters a, b, or c (e.g., ‘bbacbaababc’). Another way of writing this pattern would be to use
a character range: [a-c]*, which again matches strings of any length (including empty strings)
consisting of just characters between a and c in the Unicode alphabet. You can also create negated
patterns which match anything that isn’t in a certain set of characters, for example: [ˆa-c] will
match any character that isn’t a, b, or c. As elsewhere in Tcl, a backslash character can be used to
escape any of this special syntax to include literal asterisks and so on in a pattern. For instance, to
match any number of dots, we can use \.*. Here are some examples of regular expressions:

Match an Internet Protocol (IP4) address in dotted-form:
set re(ip) {([0-9]{1,3}\.){3}[0-9]{1,3}}
Example:
regexp $re(ip) 192.168.0.1 ;# returns 1 (i.e., matched)

Match a Web URL
set re(web) {ˆhttps?://([ˆ:/]+)(:[0-9]+)?(/.*)?$}
regexp $re(web) http://www.tcl.tk:80/docs/ ;# matches
regexp $re(web) www.slashdot.org ;# no match

Match an email address
set re(email) {ˆ([ˆ@]+)@(.*\.(com|org|net))$}
regexp $re(email) jeff@example.org ;# matches

As you can see from these examples, regular expressions are both difficult to read, but also capable
of performing quite complex matching. Let’s examine one of these patterns in more depth to see
what is going on. If we take the Web URL pattern, we can break it apart step by step:

1. Firstly, the entire pattern is surrounded by a ˆ...$ pair of anchors. These ensure that the
pattern only matches the entire string that is given, as ˆ will only match at the start of the
string, and $ will only match at the end. This is a common pattern which you will see on
many regular expressions.

2. The first part of the pattern then matches against the protocol part of the URL: the initial
http:// bit that tells us that this is a HyperText Transfer Protocol (HTTP) link. The pattern
here is just a literal string, with the exception that we also allow secure HTTPS URLs using
the optional pattern s?. Note that as this pattern follows the initial ˆ anchor, it will only
match as the very first characters of the input string.

3. The next part of a link is the host name of the server we wish to connect to, for instance
wiki.tcl.tk. We could try and specify exactly which characters can appear in this part
of the URL, but it is often easier to specify those which cannot: in this case, we know that
the colon and forward-slash characters are forbidden in host names, and so we can use a
negated pattern to match anything but these: [ˆ:/]. As the host name is not optional, we
want to match at least one such character, but with no upper limit on the size. Therefore we
use the + modifier. Finally, we group this pattern into a sub-pattern to allow us to capture
the host name when matching: ([ˆ:/]+).

4. A HTTP URL can have an optional port number following the host name. This is simply a
colon followed by a simple positive integer, which we can match as just :[0-9]+ (a colon
followed by 1 or more digits). We again make this into a sub-pattern for capture and also
make the entire sub-pattern optional: (:[0-9]+)?.

5. Finally, we also match the path of the requested document on the target server. This part
is also optional, and we define it as simply anything else remaining at the end of the URL
following an initial forward-slash: (/.*)?.

6. Putting everything together, we arrive at our final pattern:

31

wiki.tcl.tk

ˆhttps?://([ˆ:/]+)(:[0-9]+)?(/.*)?$

Beyond simple matching, REs are also capable of extracting information from a string while it is
being matched. In particular, any sub-pattern in a RE surrounded by parentheses can be extracted
into a variable by the regexp command:

regexp $re(web) https://example.com:8080/index.php match host port path

After this command, the match variable will contain the full string that was matched (i.e.,
https://example.com:8080/index.php), while the host, port, and path variables will
each contain their respective parts of the URL: i.e., example.com, 8080 and /index.php re-
spectively. The regexp command can also be used to count the number of occurrences of a given
pattern, by passing the -all option as an initial argument:

puts "Number of words: [regexp -all {[ˆ]+} $text]"

The regsub command allows substitutions to be performed on a string based on the matching
of a regular expression pattern, either returning the modified string or saving it in a new variable.
The substitution string can itself refer to elements of the matched RE pattern, by using one or more
substitution escapes of the form \N where N is a number between 0 and 9: \0 will be replaced
with the string that matched the entire RE, \1 with the string that matched the first sub-pattern,
and so on. You can also use the symbol & in place of \0. For instance, if you want to take a plain
text file and convert it to HTML by making every instance of your own name highlighted in bold,
you could achieve that with a single regsub command:

regsub -all {Neil Madden} $text {\0} html

2.6.1 Crafting Regular Expressions

Regular expressions provide a very powerful method of defining a pattern, but they are a bit
awkward to understand and to use properly. In this section we will examine some more examples
in detail to help the reader develop an understanding of how to use this technology to best effect.
We start with a simple yet non-trivial example: finding floating-point numbers in a line of text.
Do not worry: we will keep the problem simple than it is in its full generality. We only consider
numbers like 1.0 and not 1.00e+01.

How do we design our regular expression for this problem? By examining typical examples of
the strings we want to match:

• Examples of valid numbers are: 1.0, .02,+0., 1,+1,−0.0120.

• Examples of invalid numbers (that is, strings we do not want to recognise as numbers but
which superficially look like them): −,+, 0.0.1, 0..2,+ + 1.

• Questionable numbers are: +0000 and 0001. We will accept them—because they normally
are accepted and because excluding them makes our pattern more complicated.

A pattern is beginning to emerge:

• A number can start with a sign (− or +) or with a digit. This can be captured with the
pattern [-+]?, which matches a single −, and single + or nothing.

• A number can have zero or more digits in front of a single period (.) and it can have zero or
more digits following the period. Perhaps [0-9]*\.[0-9]* will do . . .

• A number may not contain a period at all. So, revise the previous expression to: [0-9]*\.?[0-9]*

The complete expression is:

32

https://example.com:8080/index.php

[-+]?[0-9]*\.?[0-9]*

At this point we can do three things:

1. Try the expression with a bunch of examples like the ones above and see if the proper ones
match and the others do not.

2. Try to make the expression look nicer, before we start testing it. For instance, the class
of characters [0-9] is so common that it has a shortcut: \d. So, we could settle for
[-+]?\d*\.?\d* instead. Or we could decide that we want to capture the digits before
and after the period for special processing: [-+]?(\d*)\.?(\d*)

3. Or (and this is a good strategy in general!), we can carefully examine the pattern before we
start actually using it.

You may have noticed a problem with the pattern created above: all the parts are optional. That is,
each part can match a null string—no sign, no digits before the period, no period, no digits after
the period. In other words, our pattern can match an empty string! Our questionable numbers, like
‘+000’ will be perfectly acceptable and we (grudgingly) agree. But, more surprisingly, the strings
‘–1’ and ‘A1B2’ will be accepted too! Why? Because the pattern can start anywhere in the string,
so it would match the substrings ‘-1’ and ‘1’ respectively. We need to reconsider our pattern—it is
too simple, too permissive:

• The character before a minus or a plus, if there is any, cannot be another digit, period or a
minus or plus. Let is make it just a space or a tab or the beginning of the string: ˆ|[\t].
This may look a bit strange, but what it says is: either the beginning of the string (ˆ outside
the square brackets) or (the vertical bar) a space or tab (remember: the string \t represents
the tab character).

• Any sequence of digits before the period (if there is one) is allowed: \d+\.?

• There may be zero digits in front of the period, but then there must be at least one behind
it: \.\d+

• And, of course, digits in front and behind the period: \d+\.\d+

• The character after the string (if any) can not be a +, − or ‘.’ as that would get us into
the unacceptable number-like strings: $|[ˆ+-.] (the dollar sign signifies the end of the
string).

Before trying to write down the complete regular expression, let us see what different forms we
have:

• No period: [-+]?\d+

• A period without digits before it: [-+]?\.\d+

• Digits before a period, and possibly digits after it: [-+]?\d+\.\d*

Now the synthesis:

(ˆ|[\t])([-+]?(\d+|\.\d+|\d+\.\d*))($|[ˆ+-.])

Let’s put it to the test:

set pattern {(ˆ|[\t])([-+]?(\d+|\.\d+|\d+\.\d*))($|[ˆ+-.])}
set examples {

"1.0" " .02" " +0."
"1" "+1" " -0.0120"
"+0000" " - " "+."

33

"0001" "0..2" "++1"
"A1.0B" "A1"

}
foreach e $examples {

if {[regexp $pattern $e whole _ number digits _]} {
puts "PASS: >>$e<<: $number ($whole)"

} else {
puts "FAIL: >>$e<<: Does not contain a valid number"

}
}

The result is:

PASS: >>1.0<<: 1.0 (1.0)
PASS: >> .02<<: .02 (.02)
PASS: >> +0.<<: +0. (+0.)
PASS: >>1<<: 1 (1)
PASS: >>+1<<: +1 (+1)
PASS: >> -0.0120<<: -0.0120 (-0.0120)
PASS: >>+0000<<: +0000 (+0000)
FAIL: >> - <<: Does not contain a valid number
FAIL: >>+.<<: Does not contain a valid number
PASS: >>0001<<: 0001 (0001)
FAIL: >>0..2<<: Does not contain a valid number
FAIL: >>++1<<: Does not contain a valid number
FAIL: >>A1.0B<<: Does not contain a valid number
FAIL: >>A1<<: Does not contain a valid number

Our pattern correctly accepts the strings we intended to be recognised as numbers and rejects the
others. See if you can adapt it to accept more valid forms of numbers, such as scientific notation
(1.03e-2) or hexadecimal (0x12).

Here are a few other examples of uses for regular expressions:

• Text enclosed in quotes: This is ‘quoted text’. If we know what character will be used for the
quotes (e.g., a double-quote) then a simple pattern will do: "([ˆ"]*)". If we do not know
the enclosing character (it can be " or ’) then we can use a so-called ‘back-reference’ to the
first captured sub-string:

regexp {(["’])[ˆ"’]*\1} $string

The \1 reference is replaced with whichever character matched at the start of the string.

• You can use this technique to see if a word occurs twice in the same line of text6:

set string "Again and again and again ..."
if {[regexp {(\y\w+\y).+\1} $string -> word]} {

puts "The word $word occurs at least twice"
}

• Suppose you need to check the parentheses in some mathematical expression, such as (1 +
a)/(1− b× x). A simple check is to count the open and close parentheses:

6This RE uses some advanced features: the
y anchor matches only at the beginning or end of a word, and
w matches any alpha-numeric character. The -> symbol is not a new bit of syntax but just a handy name for the variable
that captures the entire match. This idiom is used frequently in Tcl code to indicate that the whole match was not required.

34

if {[regexp -all {(} $exp] != [regexp -all {)} $exp]} {
puts "Parentheses unbalanced!"

}

Of course, this is just a rough check. A better one is to see if at any point while scanning the
string there are more close parentheses than open ones. We can easily extract the parenthe-
ses into a list and then check that (the -inline option helps here):

set parens [regexp -all -inline {[()]} $exp]
set counts [string map {(1) -1} $parens]
set balance 0
foreach c $counts {

if {[incr balance $c] < 0} { puts "Unbalanced!" }
}
if {$balance != 0} { puts "Unbalanced!" }

We use a trick here by replacing the parentheses in the list with either +1 or -1. This allows
us to quickly sum the list to check for balanced parentheses.

A number of tools are available to help experimenting with regular expressions, and a number of
books cover the topic in depth, such as J. Friedl’s “Mastering Regular Expressions” [7].

35

36

Chapter 3

Control Structures

In this chapter we introduce the various commands that Tcl includes for controlling how the
program executes. These include conditional branches for making decisions, loops for counting
and iterating over data structures, constructs for dealing with error conditions, and procedures for
creating new commands.

3.1 Branching with if and switch

3.1.1 The if Command

Like most languages, Tcl supports an if command for branching based on a simple Boolean
condition. The syntax is as follows:

if cond ?then? body1 ?elseif cond2 body2 . . . ? ?else bodyN?

The then and else keywords are optional. Typically, then is left out whereas else is usually
used, as in the following example:

if {$x < 0} {
puts "$x is negative"

} elseif {$x > 0} {
puts "$x is positive"

} else {
puts "$x is zero"

}

The test expression should return a value that can be interpreted as representing ‘true’ or ‘false’.
Valid Boolean values are shown in Table 1.2. The string constants ‘yes’/‘no’ and ‘true’/‘false’ are
case-insensitive, so ‘True’ and ‘FALSE’ and ‘YeS’ etc. are all valid truth values. If the test condition
expression evaluates to true then body1 is executed, otherwise any further conditional checks,
specified in elseif clauses are tested in turn. Finally, if no conditional expression evaluates to true,
then the final body following an else clause is executed (if supplied). All test expressions are
evaluated in the same manner as the expr command, discussed in Section 1.5. Each body is an
arbitrary Tcl script (sequence of commands separated by newlines or semi-colons). As for expr,
it is good style to surround all test expressions with braces. The if command returns the result of
the last command executed in the selected code body, or the empty string if no condition matched
(and no else clause was supplied).

37

Tip: The if command in Tcl is just another command, and is not a special
piece of syntax as in other languages. This is a feature of Tcl, and part of
what makes the language so powerful. However, you should be aware that
this also means that if statements have to follow the same syntax rules as all
other commands. In particular, each word in the command must be separated
by whitespace, and you must be careful where newlines are inserted in the
command.

INCORRECT examples of if
if {$x < 0}{ ;# no space between the braces!

...
}
if {$x < 0} { ... }
else { ... } ;# "else" cannot go on a line by itself!

3.1.2 The switch Command

An alternative to a long sequence of if/elseif/else branches is to use the switch command.
Tcl’s switch is similar to the switch statements found in languages such as C or Java, except that
it allows switching on arbitrary strings rather than just integers and builds in some sophisticated
pattern matching machinery. The switch command matches a value against a list of patterns; the
first pattern that matches the value is chosen and an associated code body is executed. A switch
command can often be easier to read than a long if command, but is more restricted in the types
of conditions it can match. The syntax of the command takes one of two forms:

switch ?options? value pattern1 body1 ?pattern2 body2? . . . ?patternN bodyN?
— or —

switch ?options? value { pattern1 body1 ?pattern2 body2? . . . ?patternN bodyN? }

The second form is the one most commonly used, with the first form only being used in specific
situations (usually only when the patterns themselves are held in variables or otherwise computed
at runtime). The value argument is the string that you wish to match, and the pattern arguments
are the patterns to match it against. If the value matches a pattern then the associated body
argument will be executed. The return value of that body becomes the return value of the switch
command. Only a single pattern will be matched. If the last pattern is the word default, then
that pattern will match any value that is not matched by a previous pattern. This is similar to the
else clause in the if command. If there is no default pattern, and no other pattern matches the
value, then switch returns an empty string. Unlike in other languages, you do not have to use a
break statement to terminate the body of a switch branch, as Tcl will not fall through to the next
branch anyway. Instead, you may use the special body ‘-’ (a single hyphen/dash) to indicate that
the next branch should be used for multiple conditions:

Use the same branch body for multiple conditions
switch $x {

0 - 1 - 2 -
3 { puts "$x is between 0 and 3" }
default { puts "$x > 3 or $x < 0" }

}

38

Tip: The syntax of switch can not contain comments! This is a frequently
made mistake for newcomers to Tcl from other languages. Remember that a
comment is only valid where Tcl expects the start of a new command. The
switch command however expects a list of patterns and bodies rather than a
sequence of commands, so you cannot insert arbitrary comments:

switch $x {
This is not a comment!
default {

But this is, because Tcl expects a command here
puts "Test"

}
}

By default, Tcl uses exact string matching when determining which pattern matches the input
value1. A number of options can be given to the switch command to change the matching process:

-exact Use exact string matching (the default).

-glob Use ‘glob-style’ pattern matching (see Section 2.1).

-regexp Use regular-expression pattern matching (see Section 2.6).

-nocase Use case-insensitive matching.

-- Indicates ‘end of options’, and should always be specified if the value being matched may start
with a dash.

A handful of other options can also be specified to further control the matching process. These are
listed in the switch manual page [10].

3.2 Loops: while and for

Tcl includes two general commands for looping, the while and for commands. Both of these
commands implement imperative loops, as found in languages such as C or Java. That is, these
loops work by making updates to some state at each iteration until some termination condition has
been satisfied. In addition to the general looping commands, Tcl also has a number of specialised
loop commands, such as foreach, which loop over the elements of a particular collection, e.g., a
list. The foreach loop is discussed in Section 3.2.4, while other loops are introduced elsewhere
in the book.

3.2.1 The while Loop

The while command evaluates a script repeatedly while some condition remains true. The syntax
of the command is as follows:

while test body

The test argument is an expression, in the same format as for expr (see Section 1.5), which
must evaluate to a Boolean value. If the test evaluates to true, then the body script is executed,
and then the loop is repeated. If the test evaluates to false, then the loop terminates and control

1In earlier versions of Tcl, glob-matching was the default, so it is good to get into the habit of always specifying what
sort of matching you require.

39

moves on to the next command in the program. For example, we can use a while loop to count
from 1 to 102:

set i 1
while {$i <= 10} {

puts "i = $i"
incr i

}
puts "Done!"

It is important to note that changes made to variables within the loop persist once the loop has
terminated. In this case, the variable i will be set to 10 after the loop has finished. If the test
condition evaluates to false when the while loop is first executed, then the body is never exe-
cuted, as in this example:

set x "no"
if {$x} { puts "Cannot happen!" }

The test condition to while must be placed within braces. The reason for this is that the
while command, like every statement in Tcl, is just another command and the same syntax rules
apply. In particular, only a single round of substitution is done on the command, If braces were
not used then Tcl would substitute the current values for any variables in the expression when
the command is originally called, and these would then never be updated, resulting in the test
condition never evaluating to false, which would then cause an infinite loop.

3.2.2 The for Loop

Tcl supports an iterated loop construct similar to the for loop found in C or Java. The for
command in Tcl takes four arguments: an initialisation, a test, a ‘next’ script, and the body of code
to evaluate on each pass through the loop:

for init test next body

During evaluation of the for command, firstly the init argument is evaluated before any other
evaluation takes place. This can be used to initialize any variables and other resources used in the
loop body. After the start code has been evaluated, the test expression is evaluated. As for the
while loop, this is a braced expression of any format acceptable to expr. If the test evaluates
to true, then the body script is evaluated, just like in while. However, once the loop body has
completed, for then evaluates the next argument to prepare the loop for the next iteration. The
loop then repeats from evaluating the test. The complete cycle is as follows:

1. Evaluate the init script.

2. Evaluate the test expression: if false then terminate; otherwise continue.

3. Evaluate the loop body script.

4. Evaluate the next script.

5. Go to step 2.

By including init and next arguments, the for loop helps to separate those parts of the code
that are part of the application logic (i.e., everything in the loop body), from those parts that are
just there to control the loop. Compare the following for loop for counting from 1 to 10 to the
example shown in Section 3.2.1:

2It is conventional to name loop variables as i or j. Any name could be used, but experienced programmers will
recognise i and j as loop variables.

40

for {set i 1} {$i <= 10} {incr i} {
puts "i = $i"

}
puts "Done!"

Notice how all references to the loop variable, i are now entirely contained within the for loop,
and clearly separated from the loop body. Please note, though, that this does not mean that the
scope of the i variable is confined to the loop. In fact, like a while loop, the variable will still
exist after the loop with the value it was last assigned (10 in this case).

The init and next arguments can contain arbitrary Tcl scripts. In particular, you can initialise
and update multiple loop variables in these scripts, or perform other resource initialisation. For
instance, here is a program to display all the lines in a text file3 with line numbers:

for {set i 1; set in [open myfile.txt]} {[gets $in line] != -1} {incr i} {
puts "$i: $line"

}
close $in

While such code is possible, it is not always a good idea. In this example, for instance, the test
expression is also being used to actually read a line of the file into the line variable, which may
not be immediately obvious to a reader of this code. The choice of when to use a for loop and
when to use a plain while loop is largely one of determining which form is most readable. If
your loop can be cleanly broken into initialisation, iteration, and test invariants, then a for loop
can be a good choice, otherwise a while loop may be clearer. Ultimately, what matters most is
whether the resulting code is understandable to somebody reading it later.

As for the while loop, the test expression should always be enclosed in braces. It is good
style to also enclose the other arguments in braces.

3.2.3 Early termination: break and continue

Sometimes even the for command is not flexible enough to accurately capture all the termination
and iteration conditions of your loop (i.e., when to stop and when to start the next cycle through
the loop). Tcl provides two further commands that can be used with for and while to allow
finer control over these conditions: the break and continue commands. These commands can
be used within the loop body, and when encountered, they cause the loop to stop processing that
iteration and to perform a special action:

break: Causes the loop to terminate completely.

continue: Causes the loop to stop this iteration and begin on the next.

The continue command essentially just ends the current loop iteration early. Any test conditions
and next steps are still evaluated before the next iteration. The break command stops the loop
altogether. One common use of these commands is to code apparently infinite loops, in which the
termination condition is actually hidden within the body of the loop. Here is an example, in which
we want to read user input until they enter a special ‘quit’ message:

An infinite loop
while 1 {

set input [gets stdin]
if {$input eq "quit"} { break }
puts "You said: $input"

}
puts "Goodbye!"

3The commands for reading files are covered in more detail in Chapter 5

41

Tip: Unlike some other languages, where break and continue are spe-
cial syntax that applies only to loops, in Tcl even they are just ordinary
commands! They use Tcl’s very powerful and general exception mechanism
to indicate special conditions to the loop command. You will learn more
about other exceptions in Section 3.4, and how to create your own excep-
tions and even your own loop commands in Chapter 7. These and other
capabilities allow you to design programming interfaces that look and be-
have just like the built-in commands, creating ‘little languages’ that are
specialised to a particular problem domain or application. Such domain-
specific languages, or DSLs, are a powerful way of structuring complex
software, and Tcl excels at them. We’ll encounter more examples of
this approach in later sections, and show how you can build your own.

3.2.4 The foreach Loop

The foreach loop at first glance appears to be much more limited than the other loops we have
discussed. It’s purpose is to simplify iterating over the elements of a list (Section 2.3) in order:

foreach varName list body

However, iterating over the elements of a list is such a common and useful operation that we can
really view the foreach command as being a general loop. Indeed, many operations that you
might use a for loop for can often be expressed quite succinctly using a foreach loop. Let’s take
a look at foreach in action:

puts {The authors of "Practical Programming in Tcl/Tk" are:}
foreach x {"Brent Welch" "Ken Jones" "Jeff Hobbs"} {

puts $x
}

The foreach loop is actually much more flexible than the simple version we’ve just presented. It
can iterate over multiple lists simultaneously, and it can also extract more than one element from
a list at a time. The full syntax is as follows:

foreach varlist1 list1 ?varlist2 list2 . . . ? body

Here’s an example using these advanced features:

set people {
John 24
Mary 39
Simon 33

}
set salaries {

10000
20000
30000

}
foreach {name age} $people salary $salaries {

puts "$name ($age) earns \$$salary"
}

42

3.3 Procedures

In Tcl there is actually no distinction between commands (often known as ‘functions’ in other
languages), and ‘syntax’. There are no reserved words (like if or while) as exist in C, Java,
Python, Perl, etc.. When the Tcl interpreter starts up there is a list of known commands that
the interpreter uses to parse a line. These commands include while, for, set, puts, and so
on. They are, however, still just regular Tcl commands that obey the same syntax rules as all Tcl
commands, both built-in, and those that you create yourself. New commands can be created in
a Tcl script using the proc command, short for ‘procedure’. The syntax of this command is as
follows:

proc name params body

When the proc command is evaluated, it creates a new command with the name name that takes
the arguments given in params. When the procedure is called, by invoking the command name,
it assigns any arguments it is given to the variables named in the params and then executes the
body script, returning the result of the last command as its result. Here is an example that returns
the sum of two numbers:

proc sum {x y} {
expr {$x + $y}

}
puts "9 + 13 = [sum 9 13]"

Procedures can be used to package up parts of a script into a new command. This can be used
to clearly structure your code into separate functional areas, and also to allow reuse, as the same
procedure can be called many times with different arguments from different parts of your program.
For instance, imagine we were designing a program to fetch stock quotes from the internet, process
them in some manner, and then display them. We could write a single long script that performed
each step in turn. However, this would be difficult to read and understand. By using procedures we
can break the task up into independent chunks that can be understood in isolation. Our program
would then look something like the following:

Define the parts of our program
proc FetchQuotes {} { ... }
proc Process {quotes} { ... }
proc Display {quotes} { ...}
Now use them:
set quotes [FetchQuotes]
set processed [Process $quotes]
Display $processed
Alternatively:
Display [Process [FetchQuotes]]

The only constraint on using procedures is that you must define the procedure before you use
it. Some programming languages allow functions to be defined in a later part of the program to
where they are used. Tcl forbids this as the proc command needs to have been evaluated to create
the procedure before it can be used. One way to get around this is to put the main part of your
code into a procedure too, and then call it at the end:

proc Main {} { Display [Process [FetchQuotes]] }
proc FetchQuotes {} { ... }
proc Process {quotes} { ... }
proc Display {quotes} { ... }
Now call our main procedure
Main

43

The reason this works is that Tcl doesn’t look inside a procedure body until it is actually called, so
the Display and so on procedures are all created by the time the Main procedure is called.

Tip: As well as making your code easier to read and more structured, proce-
dures in Tcl also offer a further advantage: speed. The current implementation
of Tcl includes a byte-code compiler in addition to the standard interpreter. This
byte-code compiler can convert Tcl scripts from simple strings of source-code
into a more efficient byte-code format. This byte-code can then be very effi-
ciently interpreted, resulting in a considerable speed-up over normal scripts.
The use of the byte-code compiler is entirely hidden to the author of a script:
it is just something that the Tcl interpreter does behind the scenes to improve
performance. Traditionally, only code contained in procedures was sent to
the byte-code compiler as this was code that was likely to be executed multi-
ple times. In more recent Tcl versions, other code, such as loop bodies, may
also be byte-compiled, but it is good style to put most of your code into pro-
cedures, especially if you are targetting older Tcl versions. The technically-
minded can find more details of the byte-code compiler in [8], which
also discusses other important elements of the current interpreter design.

You can actually define procedures with the same name as existing Tcl commands. In this case,
Tcl will silently replace the existing command with the new version. This can be useful in certain
advanced situations (such as when building a debugger), but can also cause unexpected behaviour.
In general you should avoid overwriting standard Tcl commands, or commands from any packages
that you use. One simple way to ensure this is to adopt a consistent naming convention for your
procedures that is different from the standard naming convention. For example, you could choose
to start all of your procedure names with a capital letter, or better yet, use a namespace (Section
4.1).

3.3.1 Parameters and Arguments

In addition to just specifying a name for each parameter, Tcl also allows some parameters to be
given a default value. This is done by specifying the parameter as a list of two elements: the name
and the default value:

proc sum {x {y 1}} { expr {$x + $y} }

The following sum command can be called with either one or two arguments. If only one argument
is given then the y variable will be given the default value of 1, much like in the built-in incr
command. Default parameters should only appear after ordinary parameters to avoid confusion
as to which argument will be assigned to which parameter.

You can also define commands which take an arbitrary number of arguments. This is done by
using the special args parameter name. When this name is used as the name of the last parameter
in the parameter list then Tcl will treat that parameter differently. Instead of assigning it a single
argument value, it will instead assign it a list of any further arguments that are given. To illustrate:

% proc test {a b args} { puts "a = $a, b = $b, args = {$args}" }
% test 1 2
a = 1, b = 2, args = {}
% test 1 2 3
a = 1, b = 2, args = {3}
% test 1 2 3 4 5 6
a = 1, b = 2, args = {3 4 5 6}

The args parameter can only be the last parameter and it cannot have a default value. The name
is not special anywhere else in the parameter list (it will be treated as just an ordinary parameter
elsewhere).

44

3.3.2 Global and Local Variables

As mentioned in the previous section, when a procedure is called, Tcl first creates new variables
with the names given in the procedure’s parameter list and assigns them the values of any argu-
ments passed, in order. If the number of arguments doesn’t match the number of parameters then
an error will be produced:

% proc sum {x y} { expr {$x + $y} }
% sum 1
wrong # args: should be "sum x y"

Unlike the loop variables used in the for and while commands, variables created inside procedures—
either as parameters, or by using the set command—do not continue to exist after the command
exits:

% sum 1 2
3
% set x
can’t read "x": no such variable

In fact, when a procedure is called, Tcl creates a new variable scope that is distinct from the variable
scope that we have previously been using. This new variable scope contains only the variables that
were created for the parameters. Note that in Tcl only variables defined within a procedure, or
explicitly imported (as described later), are visible to the body of the procedure. This is in contrast
to some other languages in which variables defined outside of a procedure are also visible. If you
wish to make use of a variable defined outside of a procedure, you can import it using the global
command4:

proc foo {} {
global x
puts "x = $x"
incr x

}
set x 12
foo
puts "Now, x = $x" ;# displays "Now, x = 13"

Another way of referring to global variables within a procedure is by using a fully-qualified variable
name. This is done by prefixing the variable name with two colon characters, ::. This tells Tcl
that the variable being referred to is a global variable:

proc foo {} {
puts "x = $::x"
incr ::x

}

In both cases, the variable being referred to doesn’t have to exist when it is referred to: you can
also create global variables from within a procedure, using the usual set command:

proc initialise {} {
global name lang
set name "John Ousterhout"
set lang "Tcl"

}
initialise
puts "$name invented $lang!"

4Variables defined at the top level of a script are known as global variables, and the top level itself is known as the global
scope.

45

The info vars command, introduced in Section 1.3 can be used to get a list of all the variables
that are visible in a procedure, either local variables (that have been defined in the procedure),
or those that have been imported. You can list just the local variables with the info locals
command, and you can list all global variables with the info globals command.

3.3.3 The return Command

A procedure usually returns the value of the last command that executed in that procedure. You
can force a procedure to return a specific value by using the return command. In its most
basic form, this command takes a single value argument. When executed it will cause the current
procedure to exit, returning the value as its result:

proc test a {
if {$a > 10} { return "big" }
return "small"

}

The return command can actually do much more than simply returning a result, as it is the basis
of Tcl’s exception mechanism. See Section 3.4.3 for details.

3.3.4 The Procedure Call Stack

Each time you call a procedure, a new variable scope is created, and when that procedure returns,
the scope is destroyed, destroying any variables that were created inside it. Two calls to the same
procedure will result in two separate variable scopes being created. If the body of one procedure
calls another procedure then another new variable scope is created and pushed on top of the
previous one. When that procedure returns its scope is destroyed and the previous scope on this
stack is reinstated. As with global variables, you can also import variables that have been defined
in other procedures that are on the stack: a form of explicit dynamic scoping. To do this, you use
the upvar command that creates a new local variable that is linked to a local variable defined in
another procedure scope. The syntax of the command is:

upvar ?level? otherVar localVar ?otherVar localVar ...?

The first argument specifies the level of the target procedure in the current procedure stack. Each
level (or frame) in the stack is numbered: the global scope is level #0, the first procedure called
is #1, and the procedure it called is #2, and so on. You can also specify the level relative to the
current level: the currently executing scope is then level 0 (without the #), the procedure that
called it is level 1, and so on. Consider the following program:

proc foo {} { puts "Here!" }
proc bar {} { foo }
proc jim {} { bar }
jim

At the point at which the ‘Here!’ message is displayed, there will be four frames on the stack,
labelled as follows:

Procedure Absolute Relative
foo #3 0
bar #2 1
jim #1 2
global #0 3

Therefore, in order to import a variable into the foo procedure from it’s caller (in this case,
bar), we could use either upvar #2 or upvar 1. Note, though, that we usually cannot be
guaranteed that bar will be the only procedure that will call foo, so it is generally bad style to
make assumptions about what variables will be available in a particular scope. In fact, most Tcl

46

code only makes use of upvar in a few very limited situations. The most important of these is to
mimick the pass-by-reference style of calling available in some other languages. In this style, we
explicitly pass a reference to a variable in one scope as an argument to another procedure which
then manipulates that variable using upvar. For instance, we can write our own version of the
incr command that doubles the variable as follows:

proc double varName {
upvar 1 $varName n
set n [expr {$n * 2}]

}
set x 12
double x
puts "x = $x" ;# displays "x = 24"

The upvar command is almost always used with a level of 0, 1 or #0 in real code. If you find
yourself using other levels frequently then it may indicate a design problem, and your code may
be difficult to read later on. Generally, good Tcl style is to avoid the use of global variables as
much as possible.

As with global, the upvar command can also be used to create variables. The info level
command can be used to examine the procedure call stack at runtime.

3.3.5 Recursion: Looping without loops!

Note: The next few sections cover some relatively advanced material. You may wish to skip ahead
to Section 3.4 on a first reading, or if you are short of time.

As well as calling other commands, a procedure may also call itself, either directly or indirectly
(via another procedure). Such circular calls are known as recursion, and can be used to implement
lots of interesting control logic. For instance, we can implement loops without using any of the
loop commands by just using procedure calls:

proc count {i end} {
if {$i > $end} { return }
puts "i = $i"
count [expr {$i + 1}]

}
count 1 10

This example prints the numbers from 1 to 10, just like our earlier examples with for and while,
but without using an explicit loop. While recursion can be difficult to grasp, especially for problems
that have a simple solution using an iterative for loop, many problems can often be concisely
expressed using recursive procedures, including many mathematical inductive definitions. For
instance, given the following inductive definition of the factorial function (n!), we can easily
define a recursive implementation:

n! =
{

1 n ≤ 1
n(n− 1)! n > 1

proc fac n {
if {$n <= 1} { return 1 }
if {$n > 1} { expr {$n * [fac [incr n -1]]} }

}

In the case of mathematical functions, we can make this look a bit nicer by making the procedure
a function as described in Section 1.5.3:

47

proc tcl::mathfunc::fac n { ::fac $n }
proc fac n {

if {$n <= 1} { return 1}
if {$n > 1} { expr {$n * fac($n-1)} }

}

Generally, recursive definitions will run slower and use more memory than their iterative counter-
parts. This is due to the construction and deletion of the stack frames that are needed for each
recursive call. From Tcl 8.6, you can use the new tailcall command to convert a recursive def-
inition into an iterative version almost automatically. The tailcall command effectively turns
a procedure call into a simple jump: instead of creating a new stack frame, the tailcall command
simply reuses the current one for the new procedure. This eliminates the extra memory required
for recursive calls as only a single stack frame is required, but it can only appear as the very last
operation in a procedure (it is similar to the return command in this regard). This means that
our original definition cannot be simply reused, as the recursive call to fac is not the final opera-
tion: its result is then used in an expression. Instead, we must add a new accumulator parameter
to transform the procedure into tail-recursive form:

proc fac {n {accum 1}} {
if {$n <= 1} { return $accum }
if {$n > 1} { tailcall fac [expr {$n-1}] [expr {$n*$accum}] }

}

The main advantage of the tailcall command is that it enables recursive definitions to run in
constant memory space, and to avoid running out of stack memory (which can happen if you try
to create too many stack frames). Try both recursive definitions of fac with an argument of 1000:
the first will error, whereas the second will produce the correct result.

While the tailcall command solves the problem of memory usage for recursive functions,
procedures using it will still run more slowly than their iterative counterparts. Most recursive
procedures can be naturally rewritten into an iterative form, using for or while. For example:

proc fac n {
for {set accum 1} {$n > 1} {incr n -1} {

set accum [expr {$accum*$n}]
}
return $accum

}

This version also uses constant space, but runs much quicker than the recursive definitions. Notice
how this version also uses an accumulator parameter, but here it is used as the loop variable,
rather than as an extra argument.

3.3.6 Higher-Order Procedures and Callbacks

All of the procedures we have seen so far have taken simple string values as arguments. As Tcl
procedures are commands, and commands have string names, we can also pass the name of a
procedure as an argument to a command. Commands in Tcl are therefore first-class: i.e., they can
be treated just like other values in the language, with the caveat that you are always passing the
name of a command, rather than the command itself. This means that we can write procedures
that take other procedures and commands as arguments. Such procedures are known as higher-
order procedures in Computer Science.5 We have already seen some examples of ‘higher-order’
commands, such as the lsort command, which can take a -command option. For instance, we
can sort a list of strings by size using the following approach:

5The origin of this term is in mathematical logic. You might like to think of higher-order commands as being a bit like
adverbs in natural languages such as English.

48

proc comp-len {a b} { expr {[string length $a] - [string length $b]} }
lsort -command comp-len $strings

Here the comp-len (‘compare length’) procedure is being passed as an argument to the lsort
command. Many other Tcl commands also work in this manner. The comp-len argument is
sometimes referred to as a ‘callback command’, or just ‘callback’, as a frequent use of such argu-
ments is to allow a command to ‘call back’ or notify the application when something interesting
happens.

As well as supplying some examples of higher-order commands, Tcl also makes it very simple
to write your own. Such procedures are very useful for packaging up commonly-used patterns of
code (‘design patterns’) into reuseable commands. For example, when processing lists a common
operation is to iterate through each element of the list applying some function and building up a
new list as we go. For instance, we may want to extract the names from a list of people (where
each person is represented as a dictionary):

set people [list {name Neil age 28} {name Mary age 37}]
proc name {record} { dict get $record name }
foreach person $people { lappend names [name $person] }
puts $names ;# displays "Neil Mary"

We can use the same pattern to get the ages, or addresses, and so on. The code is mostly identical,
with just a different operation being applied to each element to extract the appropriate field. We
can package up this pattern of code into a reuseable procedure, map 6:

proc map {f xs} {
set result [list]
foreach x $xs { lappend result [{*}$f $x] }
return $result

}

This procedure takes a command f and a list xs and then applies the command to each element
of the list, returning a list of the results. The {*} operator is used to expand the command before
we call it, so that we can pass in commands such as string length and Tcl will know to look
for the length subcommand of the string command, rather than for a (non-existent) ‘string
length’ command. We can use this to implement our original loop in very little code:

set names [map name $people]

If we expand the definition of map by replacing the arguments with their values, we can see that
this performs exactly the same loop as before:

Expanded definition of map: $f = "name"
set result [list]
foreach x $people { lappend result [name $x] }

The advantage of this style of coding is that we can then re-use this map procedure for selecting
other elements, or indeed for completely unrelated tasks:

proc age person { dict get $person age }
set ages [map age $people]
proc plus {a b} { expr {$a + $b} }
set future-ages [map {plus 10} $ages]

Other common higher-order operations on lists include filtering a list to select just those that
satisfy some predicate condition:

6Named after the same function in functional programming languages.

49

proc filter {p xs} {
set result [list]
foreach x $xs { if {[{*}$p $x]} { lappend result $x } }
return $result

}
proc less-than {amount x} { expr {$x < $amount} }
filter {less-than 30} $ages

A particularly useful operation is known as a ‘fold’ or ‘reduce’ operation. This operation takes a
list of data and folds an operator between each pair of elements:

fold + {1 2 3 4 5} ⇒ 1 + 2 + 3 + 4 + 5 = 15

As well as specifying the operator to apply, we can also specify a ‘zero’ or ‘identity’ value that
is used when the list is empty. We name the procedure foldl to indicate that this version is
‘left-associative’, i.e., that it calculates the result from left-to-right (((1 + 2) + 3) + . . .):

proc foldl {f z xs} {
foreach x $xs { set z [{*}$f $z $x] }
return $z

}

We can use this for instance to provide general sum and product operations on lists of integers:

proc + {a b} { expr {$a + $b} }
proc * {a b} { expr {$a * $b} }
proc sum xs { foldl + 0 $xs }
proc product xs { foldl * 1 $xs }
sum {1 2 3 4 5} ;# results in 15

A foldr command can be defined similarly, and is a useful exercise (hint: you may wish to use
a for loop instead of foreach). We can even use this definition to write our factorial example!
First, we define a helper procedure for generating all natural numbers from 1 up to a given limit
(giving it a cute name):

proc 1.. n {
set range [list]
for {set i 1} {$i <= $n} {incr i} { lappend range $i }
return $range

}

We can then simply define the factorial function as the product of all integers from 1..n:

proc fac n { product [1.. $n] }

This definition is as efficient as the iterative version, as it reduces to just a pair of iterative loops,
yet it is clearer even than the original recursive definition.7 The main remaining inefficiency is
that it must generate the complete list of integers up to n before computing the result. We can
eliminate this inefficiency by creating a specialised version of fold especially for operating on
integer ranges, n..m8:

proc fold-range {f z n m} {
for {set i $n} {$i <= $m} {incr i} {

set z [{*}$f $z $i]

7See http://www.willamette.edu/∼fruehr/haskell/evolution.html for a humourous look at the many
ways of defining the factorial function.

8Another way of removing this inefficiency would be to use a lazy list or stream that only computes its elements as they
are needed. Such an extension is left as an exercise for the curious reader.

50

http://www.willamette.edu/~fruehr/haskell/evolution.html

}
return $z

}
proc fac n { fold-range * 1 1 $n }

3.3.7 Anonymous Procedures

Since Tcl version 8.5
In addition to creating named procedures, Tcl also allows you to create un-named anonymous

procedures (sometimes referred to as ‘lambdas’ after the anonymous functions of the Lambda Cal-
culus). An anonymous procedure in Tcl is simply a list consisting of two elements9: a parameter
list and a procedure body. These take exactly the same form as they do for normal procedures.
As an anonymous procedure has no command name, you cannot call it directly. Instead, it can be
called with the apply command:

apply anonymousProc ?arg ...?

For example, to define an anonymous plus command that sums two numbers, we can use:

set plus {{x y} { expr {$x + $y} }}
apply $plus 3 4 ;# returns 7

Many standard Tcl commands that take callbacks will also accept anonymous procedures. The
reason for this is that these commands actually accept command prefixes—a list consisting of a
command name followed by some initial arguments. Any further arguments are then appended
to this command prefix before it is called as a command (recall that a command in Tcl is a list of
words). We can pass an anonymous procedure to these commands by making a list consisting of
the command name apply followed by our anonymous procedure. For example, we can sort a
list by string length in a single command using an anonymous procedure:

lsort -command {apply {{a b} {
expr {[string length $a] - [string length $b]}

}}} $strings

Such in-line anonymous procedures can be useful for short procedures, as they keep the logic of
the callback in the same place in the source-code as it is used. For longer procedures, it is still
generally better to use a named procedure, so long as you choose a descriptive name. We can
make the use of the anonymous procedure easier to read by using a constructor function. This is
simply a procedure that constructs some data (in this case, another procedure) and returns it. We
will call our anonymous procedure constructor ‘lambda’ in honour of similar constructs in other
languages:

proc lambda {params body} { list apply [list $params $body] }
lsort -command [lambda {a b} {

expr {[string length $a] - [string length $b]}
}] $strings

It is generally good style to always use a constructor function for complex data like anonymous
procedures. You can even define specialised constructors that use different behaviour. For in-
stance, here is a version that uses the expr command to evaluate the body of the procedure (see
if you can work out how it works):

proc func {params body} { list apply [list $params [list expr $body]] }
set plus [func {x y} {$x + $y}]

9A third element is also permitted: a namespace. See Section 4.1.

51

The higher-order procedures given in Section 3.3.6 will all work with anonymous procedures, due
to the use of the {*} operator:

proc fac n { fold-range [func {x y} {$x * $y}] 1 1 $n }
set future_ages [map [func x { $x + 10 }] $ages]

3.3.8 Command Aliases

Tcl also provides a way to convert a command prefix (i.e., a command name plus a list of initial
arguments) into a new named command, using the interp alias command. In basic usage,
the syntax is as follows:

interp alias {} newCommand {} oldCommand ?arg ...?

The {} arguments can be ignored for now—they are explained in Section 7.4. This command cre-
ates a new command called newCommand, which, when called, will immediately call oldCommand
passing any initial arguments defined in the alias, followed by any other arguments passed in this
call. For example, we can define a sumRange command that sums all of the integers in a given
range, using our previous fold-range command, as follows:

proc plus {x y} { expr {$x + $y} }
interp alias {} sumRange {} fold-range plus 0
sumRange 1 5 ;# returns 15

When this command is called, the alias is expanded as follows:

sumRange 1 5 => fold-range plus 0 1 5 => 15

Command aliases can be used to convert anonymous procedures back into named procedures:

interp alias {} add {} apply {{x y} { expr {$x + $y} }}

Indeed, with these components we can even define our own version of the proc command!

proc myproc {name params body} {
interp alias {} $name {} apply [list $params $body]

}
myproc add {x y} { expr {$x + $y} }

This new myproc command acts virtually identically to the built-in proc command. This should
give you some indication of the flexibility of Tcl, and we have just started to scratch the surface!

Tip: Command names, parameter names and argument values in Tcl are just
ordinary strings, just like everything else. This can be used to good effect to
create natural looking ‘syntax’ for commands, by just using interesting choices
for various names. For instance, we can wrap up the interp alias com-
mand to remove those ugly braces and to make our source-code look more
elegant and readable, simply by defining a little wrapper procedure:

proc define {name = cmd args} {
interp alias {} $name {} $cmd {*}$args

}
proc + {x y} { expr {$x + $y} }
define sumRange = foldl + 0

The use of + and = as names here is not special: to Tcl they
are just more strings. However, by carefully choosing sym-
bols which are widely recognised, we can make our definition of
sumRange more readable. In fact, Tcl already defines command
versions of all the expr operators in the tcl::mathop namespace.

52

3.3.9 Examining Procedures

As for variables, Tcl provides methods for listing the procedures (and other commands) that are
defined in the interpreter, through the info command. The info commands and info procs
commands can be used to get a list of all commands (including procedures), and just procedures,
respectively:

info commands ?pattern?

info procs ?pattern?

Beyond just listing the names of defined procedures, you can also examine their definitions,
using the info args, info default, and info body commands, which return the argument
(parameter) list, the default values of any arguments, and the body of a procedure, respectively:

info args procName

info default procName param varName

info body procName

The info default command doesn’t directly return the default value, but instead returns
1 or 0 to indicate whether the argument has a default value, and then sets the given variable
varName to the default value, if it exists. This allows you to determine whether a default value has
been specified, even if it is the empty string (""). To illustrate how to use these commands, here
is a small procedure that can recreate the source-code of any procedure defined in an interpreter
(inspired by the functionality in the tkcon application):

dump -- dumps the source code of a procedure
proc dump procName {

set body [info body $procName]
set params [list]
foreach param [info args $procName] {

if {[info default $procName $param default]} {
lappend params [list $param $default]

} else {
lappend params [list $param]

}
}
return [list proc $procName $params $body]

}

Entering this into an interactive interpreter session and then running it on itself (i.e., dump dump)
results in the same source code being displayed. Such a procedure is a useful tool when developing
procedures interactively and debugging.

3.4 Dealing with Errors

Up until now, the Tcl programs we have shown have all assumed that every command succeeds
without problems. In the real world, however, things are rarely that simple: a file doesn’t exist, or
a network connection cannot be made, or an input that should have been a number turns out to be
a name. These are just some examples of the sorts of errors that can occur in everyday programs.
Whenever Tcl encounters an error it reacts by generating an error condition, or exception. If any
procedures are currently executing, then by default, Tcl will immediately cause them to terminate
one-by-one, unwinding the call stack until the top level is reached. At this point an error message
is printed. If Tcl is running in interactive mode, you are then presented with the familiar prompt

53

and can continue entering commands. If Tcl was processing a script file, then the interpreter will
exit and additionally print a stack trace showing the procedures that were active at the time of the
call. For instance:

proc a {} { b }
proc b {} { c }
proc c {} { d }
proc d {} { some_command }
a

When executed, this script will produce the following error:

invalid command name "some_command"
while executing

"some_command "
(procedure "d" line 1)
invoked from within

"d "
(procedure "c" line 1)
invoked from within

"c "
(procedure "b" line 1)
invoked from within

"b "
(procedure "a" line 1)
invoked from within

"a"

This stack trace is built up as the call stack is unwound, and is additionally recorded in the
errorInfo global variable. You can print the contents of this variable from the Tcl interac-
tive prompt to help with debugging errors. In addition to this stack trace, a Tcl error also produces
two additional pieces of information:

• A simple string message that describes the error in human-readable terms.

• An ‘error code’, which is a list designed to be easily processed by a Tcl script (an exception
handler). For example, a divide-by-zero error in expr results in an error code of {ARITH
DIVZERO {divide by zero}}. The first element gives the general class of error (ARITH-
metic), and subsequent elements give more specific details. The error code of an error is
available in the errorCode global variable.

3.4.1 The try Command

Since Tcl version 8.6
Tcl also allows a script to intercept error exceptions before they completely unwind the call

stack. The programmer can then decide what to do about the error and act accordingly, instead
of having the entire application come to a halt. Dealing with errors appropriately is an important
part of writing robust software. In fact, Tcl offers two commands for handling errors: the newer
try command, and an older catch command. The try command is simpler to use for most
cases, whereas the catch command can provide more flexibility in certain circumstances. Most
new code should use the newer try command, unless you have very complex requirements or
need to support Tcl versions prior to 8.6.

The syntax of the try command is as follows:

try body ?handler . . . ? ?finally script?

54

The first argument to the command is a normal Tcl script. The script is first evaluated just like a
normal script. If the script completes normally, then the try command returns its result. If an
error or other exception occurs, however, then the try command behaves differently. Instead of
unwinding the call stack all the way back to the top level, Tcl instead unwinds the stack only until
the try command. At that point the error is matched against any specified handlers, one at a
time. An error handler is specified with the following syntax:

trap pattern varList script

The arguments are as follows:

pattern: A pattern used to match against the error code of the error. The pattern can specify
the full error code, or any prefix of it. For instance, we can trap all arithmetic errors by using
the pattern ARITH. An empty list ({}) will match all errors.

varList: A list of variables to contain information about the error. The list takes the following
format: ?msgVar? ?detailVar?. The first element, if specified, names a variable into
which to copy the human-readable error message of the error. The second element names
a variable into which to copy the additional detail of the error, in the form of a dictionary
value (see Section 2.4), the elements of which are shown below.

script: A script to run if an error matches this pattern. The script will be run in the same
variable scope that the try command was originally called from. Any variables defined in
that scope, including those specified in the varList are visible. Note that at this point the
main body script of the try command has exited, along with any procedures it may have
called.

More than one trap clause may be specified in a single try command. When an error is detected,
each clause will be tried in the order they are specified until one matches the error code. If no
clauses match then the error is propagated as if it had never been caught. If more than one clause
matches the error, then only the first in the list will be executed.

Once an error has been trapped, the associated script can perform actions to either recover
from the error, or to simply record it and carry on. Typical actions might include logging the error
and then ignoring it, or returning a default value. The result of the handler script becomes the
new result of the try command. Any errors that occur within the error handler script itself are
treated as normal errors: in particular, they are not handled by the error handlers in that try
command, but they may be caught by other try commands either within the error handler, or
defined in scopes that are still on the call stack.

To illustrate how to use the try command, here is a function that performs integer division on
two numbers, x and y, i.e., x/y. In the case when y is zero, this would result in a divide-by-zero
error. In this example, we convert such errors into a default value of 0:

proc div {x y} {
try {

expr {$x/$y}
} trap {ARITH DIVZERO} {} {

return 0
}

}

Of course, we could have achieved the same thing in this case by testing the value of y before
performing the division, but in many cases errors are not so simple to prevent.

Error Options Dictionary

If both variable names are given in a trap clause of the try command, then the second will be
filled with a special value called the error options dictionary. This is a dictionary value consisting

55

of a series of attributes and associated values that give extra information about the error that
occurred. The keys available in the options dictionary are as follows:

-errorcode: Contains the full error code of the error, as also found in the errorCode global
variable.

-errorinfo: Contains the stack trace of the error up to this point, as found in the errorInfo
global variable.

-errorline: An integer indicating which line of the original script passed to the try command
was executing when the error occurred.

Two other keys are also available: -code and -level. These will be discussed later, in Section
3.4.1. The values of each of these attributes can be extracted using the dict get command,
described in Section 2.4. Here is an example procedure that shows some information about any
errors that occur within a script:

proc show-error script {
try $script trap {} {msg opts} {

puts "Error: $msg"
puts " Code: [dict get $opts -errorcode]"
puts " Line: [dict get $opts -errorline]"
puts "Stack:"
puts [dict get $opts -errorinfo]

}
}

For example, here is the output from a script that produces a divide-by-zero error:

% show-error { expr {1/0} }
Error: divide by zero
Code: ARITH DIVZERO {divide by zero}
Line: 1

Stack:
divide by zero

invoked from within
"expr {1/0} "

("try" body line 1)

The finally Clause

In addition to catching errors, the try command also allows you to specify a script that will be
run regardless of if any errors occur or not. This is the purpose of the finally clause. The finally
clause can be used to clean up any resources that were acquired prior to the try command being
executed. The script supplied to a finally clause will be run after the main body script, and after
any error handlers have run. It will always be run, even if an error handler itself produces an
error. This is very useful for guaranteeing that certain actions always get performed no matter
what happens (short of the Tcl interpreter terminating). For example, we can write a procedure to
read and return the contents of a file, and guarantee that if the file is opened at all, it will always
be closed before the procedure returns10:

proc readfile file {
set in [open $file]
try { read $in } finally { close $in }

}

10The commands for reading the file are described in Chapter 5.

56

Code Exception
0 OK
1 Error
2 Return
3 Break
4 Continue

. . . User-defined

Table 3.1: Tcl exception codes

The finally clause in this example ensures that the file is always closed after its contents have been
read, regardless of any errors that may occur in the process. These errors are still passed on to the
caller of the readfile command, but they do not prevent the file being closed.

Tip: It is important to note that a finally clause is most useful for clean-
ing up resources that were acquired before the try command was executed.
While it may be tempting to also move the acquiring of the resources into
the try command (to handle any errors), this is not correct in most cases.
The reason for this is that if an error occurs in acquiring the resource then it
does not need to be cleaned up. In this case, the finally clause will proba-
bly produce an error, masking the original error. In such cases, Tcl will add a
-during option to the error options dictionary for the new error that contains
the options dictionary of the original error. To properly handle errors occur-
ring when acquiring resources, you should use two separate try commands.

Other Exceptions

As well as handling errors, the try command can also catch other types of exceptions. In Section
3.2.3 we explained that the break and continue commands were also types of exceptions. The
return command of Section 3.3.3 is another type of exception! The try command can handle
all of these types of exceptions, and any more that might be defined. This is done using a different
clause in the list of exception handlers:

on code varList script

The varList and script arguments to this clause are exactly as they were for the trap clause.
The ‘message’ variable will contain the result value in the case of a return exception, or an empty
string in most other cases. The options dictionary for a non-error exception typically contains just
the -code and -level options. The code argument specifies an exception code rather than the
error code pattern of a trap. In Tcl, each different type of exception is assigned a unique integer
code, listed in Table 3.1: errors have code 1, the return command has code 2, break has code
3, and continue has code 4. You can even define your own exception types and assign them
their own codes, but this is not frequently done. The on clause also accepts the following literal
words for the corresponding standard exception codes: error, return, break, and continue.
You can even catch the ‘normal’ (i.e., non-exceptional) condition, in which the script given to try
completes without any exceptions, using the code 0 or the keyword ok.

Catching non-error exceptions is mostly useful in the context of defining custom control struc-
tures, such as new loops. These uses are discussed in Section 7.1.

3.4.2 The catch Command

In older versions of Tcl, the only way to catch errors and exceptions was with the simple catch
command. This command will catch all exceptions (including normal/ok completion) that are

57

raised in the script it is given, returning the code of the exception and optionally setting variables
to contain the message/result and options dictionary of the exception:

catch script ?resultVar? ?optionsVar?

The main disadvantage of catch when compared to try is that it catches absolutely everything,
and the programmer then has to perform extra steps to discover if this is an exception that can
be dealt with. The try command, on the other hand, allows the programmer to specify exactly
which errors and exceptions can be handled, and all others will be left untouched. Consider the
following version of the div command, reimplemented using catch:

proc div {x y} {
set code [catch { expr {$x / $y} } result options]
if {$code == 1} {

An error occurred
set errorcode [dict get $options -errorcode]
if {[string match {ARITH DIVZERO *} $errorcode]} { return 0 }

}
return -options $options $result

}

This example is harder to understand than the equivalent with try.

3.4.3 Throwing Errors and Exceptions

Tcl scripts can throw their own exceptions using one of three separate commands: throw, error,
and return.

The throw Command

Since Tcl version 8.6
The throw command takes the following form:

throw errorcode message

When evaluated, this command generates a new error with the given error-code and message. For
instance, to generate an error identical to expr’s divide-by-zero error, you can use:

throw {ARITH DIVZERO {divide by zero}} "divide by zero"

The error Command

The error command is similar to the throw command:

error message ?errorinfo? ?errorcode?

The difference between the two commands is in the order of arguments and that the error
command also allows specifying an initial stack trace to fill in the errorinfo field in the options
dictionary. The reason for the new throw command is to try to encourage the use of the error-
code field, which has traditionally not been well supported by Tcl code. This limits the usefulness
of the trap clause in the try command. New code should use the throw command for errors
where possible, and try to specify meaningful error-codes. In older versions of Tcl the throw
command can be emulated using error:

proc throw {code message} { error $message "" $code }

58

Throwing Other Exceptions

The most general method of throwing an exception is to use the return command, which is
the Swiss Army Knife of exception generation. In addition to simply returning a result, return
can also generate any exception, and specify values for the options dictionary. The full syntax of
return is as follows:

return ?-option value . . . ? ?result?

The options that can be specified are as follows:

-code: Specifies an exception code for a new exception to be generated. Can be one of: ok,
return, error, break, continue or an integer code.

-errorcode: Specifies the error code for a new exception.

-errorinfo: Specifies the stack trace for a new exception.

-level: Specifies how many levels of the call stack to unwind before generating the exception.
This defaults to 1, which means that the current procedure scope will be executed before
the exception is generated. A value of 2 would cause the caller of this procedure to also exit,
and so on.

-options: Allows specifying the complete options dictionary for the new exception.

Note that return -code error and error are not the same, as the former causes the current
procedure to exit before the error is generated, whereas the latter immediately generates the
error. The latter behaviour can be achieved by specifying a -level 0 argument to the return, or
by wrapping the return in a separate procedure:

proc myError msg { return -code error $msg }
proc myThrow {code msg} {

return -code error -errorcode $code $msg
}

The return command is also useful in error handlers when you wish to re-throw an exception
that could not be handled:

try {
...

} trap SOME_ERROR {msg opts} {
...
return -options $opts $msg

}

59

60

Chapter 4

Program Organisation

The chapters so far have covered the basic elements of day-to-day Tcl programming, so-called
‘programming in the small’. In this chapter we now consider how to take a body of Tcl code and
package it up so that it can be used and reused by others; ‘programming in the large’. There are a
number of issues involved when making some code available for use by other developers, whether
you are targetting a small number of colleagues, or making your code available for download by
the general public.

• Firstly, we wish to avoid name clashes. That is, if we have a procedure named do something,
then we want to ensure that this doesn’t interfere with any other procedure with the same
name in a different package.

• We will want to encapsulate our code into an integrated functional component, which is
insulated from other code in the system. This is done to maintain a clear separation between
the interface of our component, and it’s implementation. We then also want to ensure, as
much as possible, that the assumptions made in that implementation are robust against
accidental tampering.1

• We can package our code so that it is easy to load into an existing Tcl application. We can
also supply version information with our package, so that users can identify which revision
they require.

In addition, there are other matters which are important to consider when distributing code to
other users, such as writing clear documentation, implementing and using a unit and regression
test suite, and setting up some means of support, such as a mailing list or forum. These consider-
ations are largely non-Tcl specific, and so are not covered here. Use of the tcltest framework
for unit testing is covered in Section 4.4.

1Malicious tampering is a separate issue, covered in Section 7.4 on safe interpreters.

61

4.1 Namespaces

4.1.1 Ensembles

4.1.2 Import and Export

4.1.3 Creative Writing

4.1.4 Paths and Unknown Commands

4.1.5 Abstract Data Types

Example: Stacks and Queues

Example: Algebraic Types

4.2 Packages

4.2.1 Modules

4.3 Object Oriented Tcl

4.4 Testing

4.4.1 TclTest

62

Chapter 5

Input and Output

5.1 Command Line Arguments and Environment Variables

5.2 Channels

5.3 The File System

5.4 Processes

5.5 TCP/IP Networking

63

64

Chapter 6

The Event Loop

6.1 Introduction

6.2 Delayed Tasks

6.3 Channel Events

6.4 Variable and Command Traces

65

66

Chapter 7

Advanced Topics

7.1 Custom Control Structures

eval and uplevel.

7.2 Unknown Command Handlers

7.3 Coroutines

7.4 Interpreters

7.5 Threads

67

68

Part II

Tk: Graphical User Interfaces

69

Chapter 8

Basic Concepts

8.1 Introduction

Tk (short for “toolkit”) is the most widely used GUI toolkit for Tcl. There are several others, like
Gnocl, based on Gtk, but in this tutorial we will only look at Tk.

Here is a simple program to illustrate the style of programming:

#
For generality: load Tk
#

package require Tk

#
Define the callback procedure used by the pushbutton
#
proc handleMsg {} {

tk_messageBox -title Message -message $::msg -type ok
set ::msg ""

}

#
Create the widgets
#

label .label -text "Enter text:"
entry .entry -textvariable msg
button .button -text Run -command handleMsg

#
Make the widgets visible
#

grid .label .entry -sticky news
grid .button -

#
We want to be able to resize the entry ...
#
grid columnconfigure . 1 -weight 1

71

Figure 8.1: Example Tk GUI.

This program, when run in a Tk-enabled shell like wish, will show the window shown in
Figure 8.1 (with details depending on the operating system and windowing environment).

In fact, this program will run in the command-line shell tclsh as well, thanks to the package
require command.

You can fill in text in the text entry box at the right. If you press the pushbutton, a message
appears and the entry box is cleared. You can resize it and only the entry box will become wider
or narrower.

With just a few lines of code we have created a program that has a surprising amount of
functionality. Even though it is small and does not do much of any use, the code does show many
aspects you will find in actual GUI programs:

• Creating the widgets (the elements of your GUI) is separated from arranging them in a
window: the label command create a label widget (just some text that does not interact
with the user), but you put it into its parent window using a geometry manager, in this case
the grid geometry manager.

• Widgets are represented by commands whose names start with a dot (.) Warning: after the
dot you must have a lower-case letter. This has to do with the handling of display options.

• Widgets often take options that connect variables to them, like the -textvariable option
for the entry widget. Such variables should persist outside any procedure, so they are
global by default, but you can also specify namespace variables. If you change the value of
the variable, see the handleMsg procedure, then this is immediately shown in the connected
widget.

• Some types of widgets take a -command option that tells Tk to run a particular script when
the user activates the widget. For the button widget that is: the user clicks in it with the
mouse pointer. Since these scripts are not invoked in the context of any procedure, they
run in the global namespace. It is good practice to use separate procedures (handleMsg for
instance) instead of a complete script.

• The geometry manager controls the placement of the widgets but also the resizing — if
any. The grid geometry manager arranges widgets in rows and columns. More on geometry
management can be found in Chapter 11.

Here are a few more aspects not shown in this simple example, but they will be discussed later
on:

• Widgets can be arranged in a hierarchy to make the geometrical management easier

72

• You can create new independent windows (toplevel windows) that can be filled with their
own widgets

• Tk relies on options for the type of widget and on options that are set per widget. This gives
you the freedom to change the appearance significantly without altering the code.

• Besides the ‘classical’ widgets presented in the example, Tk as of version 8.5 also has so-
called themed widgets. They are discussed in Chapter 14.

One very important aspect that is very much hidden in the wish shell is this: when the shell
reaches the end of the script, it does not stop, but instead starts an event loop. Only when the
event loop is running is the GUI alive: then it will display the windows, respond to actions from
the user and so on.

As Tk is at least as dynamic as Tcl itself, you can easily experiment with widgets in an interactive
shell. Just start wish and try commands like:

text .t
pack .t

These two commands bring up what is essentially a complete text editor!

73

74

Chapter 9

Managing toplevel windows

At start-up Tk creates a window named ‘.’. This is the most important window when working
with Tk: closing it — either by the user or programmatically — means the program stops. It is
also most often used to hold the main part of the application’s graphical interface.

You can create any number of new windows via the toplevel command:

toplevel .draw
wm title .draw Drawing

creates a new toplevel window with the title ‘Drawing’ and an associated command .draw.
If you want to add a widget to this window, for instance a canvas widget (a widget suitable for
displaying graphs and images and so on), include this name in the name of the new widget:

canvas .draw.canvas
pack .draw.canvas -fill both ;# Make it visible

As you can imagine, the widget names/commands can get pretty long. Storing the name in a
variable makes it easier to set up or reorganise the GUI:

set c [canvas .draw.canvas]
pack $c -fill both ;# Make it visible

Toplevel windows can be resized, destroyed, brought to the front, minimized and so on pro-
grammatically with various commands. The command to do some of these things is wm, as these
actions require interaction with the windowing environment, the window manager.

• Bring the window to the front (this may or may not work directly, as the window manager
may intervene):

raise $window

• Bring it to the background:

lower $window

• Destroy the window and all the widgets it contains:

destroy $window

• Get the size and position of the window:

set geometry [wm geometry $window]

75

This command returns a string like: 200x200+132+174 — width and height and the coor-
dinates of the upper left corner

• Put the window in the lower right corner:

wm geometry $window -0-0

• Iconfiy the window and later show it again (after 2 seconds):

wm iconify $window
after 2000 {wm deiconify $window}

An important interaction with the window manager is to make sure that if the main window
(.) is about to be closed, your program knows about it and can ask the user for confirmation. If
you do not do that, the program will simply stop and the user may lose all his or her data. Here is
the command to take care of that:

wm protocol . WM_DELETE_WINDOW {okayToExit}

In the procedure okayToExit you can ask the user for confirmation, save all the data your
program is dealing with and then destroy the window. This command works on any toplevel win-
dow, not just the main window. The WM DELETE WINDOW signal is sent by the window manager
before the window is destroyed, allowing your application a chance to prevent it. If you just want
to execute some action when a window is actually destroyed (e.g., to clean up some associated
resources), then you can bind to the <Destroy> event on the window. This is called after the
window is destroyed1:

bind $window <Destroy> [list myCleanupProc $window]

The bind manual page [1] lists a number of other useful events that Tk will generate when a
toplevel window changes state (e.g., visibility, size, etc.).

A common functionality is the so-called splash screen: a window without decoration that the
user can not move around and that displays a logo or a short message and then disappears. This
is used to show the user the application is starting up. The code fragment that follows is a trivial
example:

toplevel .splash
wm overrideredirect .splash 1 ;# Make sure there is no title etc.

label .splash.msg -text "Tk tutorial\nversion 1.0" -font "Times 16"
grid .splash.msg ;# Make it visible

after 5000 {
destroy .splash

}

After 5 seconds the splash screen is removed and it is assumed that the application has been
initialised.

To be really useful, we will need to centre the window. So try this:

toplevel .splash -bg green ;# Make it stick out (on most screens)

wm overrideredirect .splash 1 ;# Make sure there is no title etc.

set screenwidth [winfo screenwidth .]

1Technically, the window still exists, but most operations on it will fail at this point.

76

set screenheight [winfo screenheight .]

set width 400
set height 300

wm minsize .splash $width $height ;# Make sure it has the right size
wm maxsize .splash $width $height

set xsplash [expr {($screenwidth - $width) / 2}]
set ysplash [expr {($screenheight - $height) / 2}]

wm geometry .splash +$xsplash+$ysplash

label .splash.msg -text "Tk tutorial\nversion 1.0" -font "Times 16" \

.splash.msg configure -bg blue ;# We want contrast!

grid .splash.msg ;# Make it visible

after 5000 {
destroy .splash

}

In the process we have used the winfo command to get information about the screen the
window is displayed on: its size in pixels. Also we have made sure, via wm minsize and wm
maxsize that we know in advance how large the window will be: Tk windows generally adjust
to the size of their contents or to the size the user requests.

If you want a window with a size the user can not change, use:

wm resizable $window 0 0

(the two zeros indicate: not resizable in horizontal or vertical direction)
The key commands to manipulate the behaviour of the window or finding out all manner of

information are wm and winfo.

77

78

Chapter 10

Basic Widgets

Some of the widgets available in Tk are very simple: labels, entry widgets and various types of
buttons. They are quite common in user-interfaces — they can be regarded as basic building
blocks.

10.1 Labels

Label widgets are intended to display (static) text or images. They do not allow interaction with
the user, but they have quite a few possibilities. To illustrate, see the screenshot below:

The code to create this window with its labels in various fonts and an image is this1:

#
Show some possibilities of labels
#

. configure -bg green

label .label1 -text "This is\nTimes Roman\nLeft justified" \
-font "Times" -justify left

label .label2 -text "The\nHelvetica font\nlooks\nlike this ..." \
-font "Helvetica" -justify center

label .label3 -text "The third standard font\nis Courier" \
-font "Courier" -justify right

set labelImage [image create photo -file pwrdLogo200.gif]

1The ‘Tcl-Powered!’ logo is available from http://www.demailly.com/tcl/about/logos.html.

79

http://www.demailly.com/tcl/about/logos.html

label .label4 -image $labelImage

grid .label1 .label2 .label3 .label4 -padx 4 -pady 4 -ipadx 10 -sticky news

As you can see, labels can display long text spread out over a number of lines. The -justify
option determines how the lines are justified with respect to each other. Using the -wraplength
option you can let the widget decide the wrapping for itself:

Wraplength is in pixels ...
label .label -text "This is Times Roman - left justified" -wraplength 60
grid .label

gives:

Besides static text, the label widget also accepts the name of a (global or namespace) variable:

#
Use a fixed-width font - otherwise the clock time seems to pulse
#
label .time -textvariable time -font Courier
grid .time

proc showTime {colon} {

#
time must be a _global_ or a _namespace_ variable
#
global time

if { $colon } {
set time [clock format [clock seconds] -format "%H:%M"]
after 1000 showTime 0

} else {
set time [clock format [clock seconds] -format "%H %M"]
after 1000 showTime 1

}
}

showTime 1

presents a simple clock:

80

10.2 Entry widgets

10.2.1 Validation

10.3 Buttons

10.4 Checkbuttons

10.5 Radio buttons

Radio buttons are a bit special in the sense that a number of widgets work on the same variable:

set ::fruit none
radiobutton .r1 -variable fruit -value melon -text "Melon"
radiobutton .r2 -variable fruit -value apple -text "Apple"
radiobutton .r3 -variable fruit -value pear -text "Pear"
radiobutton .r4 -variable fruit -value banana -text "Banana"

label .choice -text "Chosen:"
label .chosen -textvariable fruit

grid .r1 -sticky w
grid .r2 -sticky w
grid .r3 -sticky w
grid .r4 -sticky w
grid .choice .chosen -sticky w

which results in this window:

Each radiobutton is associated with the variable fruit and each has a string value that is
assigned to that variable when the button is checked. Only one button at a time is set, but if the
variable has a value that is not among the values of the buttons, none is set.

You can set the radiobuttons programmatically by setting the variable it is associated with. The
buttons are automatically updated.

81

10.6 Scales

To select a value from a range you can use the scale widget. For instance:

scale .scale -from 0 -to 100 -tickinterval 10 -variable percentage
grid .scale

gives the following window:

You can set the position of the slider programmatically by setting the value of the associated
variable. You can also specify a command to be run whenever the value is changed, for instance
to zoom in or out in a canvas widget:

scale .scale -from -5 -to 5 -tickinterval 1 -command {zoom}

canvas .c -width 200 -height 200

grid .c .scale -sticky news

.c create polygon {100 100 100 110 110 110} -fill red

set prevFactor 1.0
proc zoom {value}

if { abs($value) < 0.01 } {
set value 0.01 ;# Avoid division by zero!

}
set factor [expr {$value/$::prevFactor}]
.c scale all 100 100 $factor $factor
set ::prevFactor $value

}

10.7 Scrollbars

Scrollbars are designed to cooperate with other widgets, such as the text widget and the listbox.
They come in two flavours: horizontal and vertical scrollbars. Here is how you use them:

text .text -xscrollcommand {.hscroll set} \
-yscrollcommand {.vscroll set} \

82

-width 20 -height 10 \
-wrap none

scrollbar .hscroll -orient horizontal -command {.text xview}
scrollbar .vscroll -orient vertical -command {.text yview}

grid .text .vscroll -sticky news
grid .hscroll -sticky news
grid rowconfigure . 0 -weight 1
grid columnconfigure . 0 -weight 1

#
Fill the text widget with some text ...
#
set string ""
for { set i 0 } { $i < 20 } { incr i } {

append string " $i"
.text insert end "$string\n"

}

This cooperation is completely automatic: both widgets know how to deal with positioning the
“thumb” and how to react to the manipulation.

If you want to create a scrollable widget yourself, say to scroll a very large canvas, then you
need to implement the scrolling protocol yourself. The chapter on the canvas widget contains an
example.

10.8 Spinboxes

10.9 Comboboxes

10.10 Progressbars

10.11 Separators

83

84

Chapter 11

Geometry Management

11.1 Placing the widgets

As indicated before widgets only become visible when they are placed within their parent window
via a geometry manager. Tk has three different geometry managers: grid, pack and place.

The simplest of these is place. It is also the least used, as you are yourself responsible for
determining the coordinates of your widget. But in rare cases it is useful, for instance if you
want to create a “tooltip” — a window with explanatory text that appears and disappears near a
pushbutton or another widget. Here is an example, with the result shown in Figure 11.1:

button .help -text Help
bind .help <Enter> {showHelpTip %x %y}
bind .help <Leave> {removeHelpTip}

proc showHelpTip {xcoord ycoord} {
#
Show the tooltip after half a second
#
set ::after [after 500 [list displayHelpTip $xcoord $ycoord]]

}
proc removeHelpTip {} {

if { [winfo exists .helpTip] } {
destroy .helpTip

}
after cancel $::after ;# We do not want to have the tooltip appear

}
proc displayHelpTip {xcoord ycoord} {

label .helpTip -text "This button brings up\nthe online help" -bg green
place .helpTip -x $xcoord -y $ycoord
after 2000 removeHelpTip

}
grid .help

Note that we use the bind command to make Tk perform an action when the mouse enters
the area occupied by the Help button (the Enter event) and when it leaves that area again. (You
will probably want to enlarge the window when running this example — otherwise the message
remains hidden.)

The pack geometry manager puts widgets inside their parent either to the one of the side of
that parent or to other widgets already placed there:

label .label -text "Some text:"

85

Figure 11.1: An example ‘tooltip’ for a button.

entry .entry -textvariable X
button .ok -text OK

pack .label .entry .ok -side left -fill x

will put the label on the left side of the window, then the entry widget on the left side of the
label and finally the pushbutton on the left side of the entry widget. If there is not enough space
pack willl increase the size of the widnow. Due to the way this geometry manager works, it can
be tough to achieve the layout you want. For instance: try to put the pushbutton below the other
two with code like this:

pack .label .entry -side left -fill x
pack .ok -side top

This brings us to the most versatile geometry manager: grid. As suggested by its name, it
uses a grid of rows and columns to place the widgets. Here is a simple example:

text .text -xscrollcommand {.hscroll set} \
-yscrollcommand {.vscroll set} \
-width 20 -height 10 \
-wrap none

scrollbar .hscroll -orient horizontal -command {.text xview}
scrollbar .vscroll -orient vertical -command {.text yview}

grid .text .vscroll -sticky news
grid .hscroll -sticky news
grid rowconfigure . 0 -weight 1
grid columnconfigure . 0 -weight 1

This layout has two rows and two columns:

• The first grid command defines that there are two widgets on the first row

• The second grid command defines that there is only a single widget — the horizontal scroll-
bar. The second cell is left empty.

• By carefully setting the weight for the rows and columns we achieve that the text widget can
grow in both directions and the scrollbars only in the direction of their long axes.

We can vary this design by using ‘-’ and ‘ˆ’ to indicate that the widget to the left (-) or above
(ˆ) extends into the next cell:

86

Figure 11.2: The grid geometry manager.

grid .text .vscroll -sticky news
grid .hscroll ˆ -sticky news

gives this layout (the vertical scrollbar occupies the lower right corner too):
/screenshot/
and

grid .text .vscroll -sticky news
grid .hscroll - -sticky news

gives this layout (the horizontal scrollbar is elongated):
/screenshot/
We can also vary the amount of space between widgets by using the -padx and -pady options:

grid .text .vscroll -sticky news -padx 20 -pady 20
grid .hscroll -sticky news -padx 20 -pady 20

creates this window:
/screenshot/
The -sticky option lets us position and size the widgets within the cell they occupy. Leaving

them out like this:

grid .text .vscroll
grid .hscroll

gives:
/screenshot/
The scrollbars get a default length, as they are not in any geometrical way coupled to the text

widget.
This is not very attractive for scrollbars, but it is for pushbuttons:

label .label -text "The computation has finised"
button .ok -text "OK"
grid .label -sticky news
grid .ok

87

/screenshot/
The string “news” means ‘north-east-west-south’. Sometimes it is useful to stick the widgets to

one side only:

label .label1 -text "List of options"
radiobutton .r1 -text "Ice cream with chocolate" -variable dessert -value ice
radiobutton .r2 -text "Cheese" -variable dessert -value cheese

grid .label1
grid .r1
grid .r2

label .label2 -text "List of options"
radiobutton .r3 -text "Ice cream with chocolate" -variable dessert2 -value ice
radiobutton .r4 -text "Cheese" -variable dessert2 -value cheese

grid .label2 -sticky w
grid .r3 -sticky w
grid .r4 -sticky w

set dessert ice
set dessert2 ice

/screenshot/
If you want to vary the spacing, for instance indent the radio buttons, you can use the -ipadx

and -ipady options, these reserve space within the cells, instead of between rows and columns:

label .label -text "List of options"
radiobutton .r1 -text "Ice cream with chocolate" -variable dessert -value ice
radiobutton .r2 -text "Cheese" -variable dessert -value cheese

grid .label -sticky w
grid .r1 -sticky w -ipadx 10
grid .r2 -sticky w -ipadx 10

set dessert ice

/screenshot/

88

Chapter 12

The Text Widget

The text widget can be used to display and edit arbitrary amounts of text, but it can also hold
images and other widgets. It is a versatile widget with a large number of subcommands. We will
not cover all functionality in this tutorial. Instead we limit ourselves to the basic functionality and
some not so basic features.

Creating a text widget with a command like:

grid [text .t]

brings up a widget that is actually a reasonably capable text editor in its own right. You can
type in text, remove, copy and paste text as you go along in the usual ways.

Besides interactive use you can use subcommands like insert to add text programmatically:

set infile [open "readme.txt"]
set contents [read $infile]
close $infile

.t insert end $contents

Because the text that you want to display may not all fit on the screen, it is quite usual to add
scrollbars to select what part is shown:

scrollbar .h -orient horizontal -command {.t xview}
scrollbar .v -orient vertical -command {.t yview}
text .t -xscrollcommand {.h set} -yscrollcommand {.v set}

grid .t .v -sticky news
grid .h - -sticky news

and we have a text widget and scrollbars that allow us to display and edit a large file.
One possible use of the text widget is displaying the output from an external program. In that

case, you probably want to see the last lines of text by default as they are added to the widget.
This can be achieved with the see command:

.t see end

The chan event procedure that reads the output from the external process would look some-
thing like:

proc displayOutput {channel} {

if { [gets $channel line] >= 0} {

89

.t insert end "$line\n" ;# Add a newline explicitly

.t see end
} else {

...
}

}

12.1 Positions in the text

In the above examples ‘end’ is a special position in the text that is contained within the text widget.
You can use any position (or index as it is called in the manual pages) you like:

• Absolute positions:

– ‘1.0’ means the first line (1) and the first character on that line (0)

– ‘2.3’ means the second line and the fourth character

(For historical reasons the line count starts at 1 and the character count starts at 0.)

• Special positions:

– ‘end’ signifies the position after the last character

– ‘2.end’ signifies the position after the last character on the second line

– ‘insert’ is the position where the characters that you type are inserted

• You can add markers to indicate positions that you want the text widget to remember, like
bookmarks:

.t mark set Here 2.3

...

.t see Here

would ensure that the character at position 2.3 becomes visible — it will not necessarily be
visible on the first line in the widget!

Of course you will want to get the text from the text widget, once you are done editing. This is
easy:

set contents [.t get 1.0 end]

will get you the complete contents of the text widget. You specify the beginning and end of the
text you want to retrieve. So, if you are building a text editor, the procedure to save the contents
would take a form like:

proc saveText {filename} {

set outfile [open $filename w]
puts $outfile [.t get 1.0 end]
close $outfile

}

You can do calculations with indices:

• end - 1 chars (or end-1c) indicates the character before the very end of the text, i.e.,
the last actual character

90

• $index + 1 lines (or $index + 1 l) indicates the line after the position contained in
the variable index and the same character on the line

This allows you to do some very sophisticated tasks in an easy way, like searching the text for
particular words one by one (see below).

12.2 Tags

The text widget has a powerful mechanism for influencing the appearance of pieces of text: tags.
Text can be given a particular colour or font via tags. Here is an example:

.t tag configure header -font "Helvetica 16 bold"

.t insert 1.0 "The header\n\n" header

By setting the font for the tag ‘header’ to a different font family and font size than the default,
any text with that tag will stand out.

Tags can be used for more things than just the appearance:

• The option -elide can be used to make text visible and invisible.

• You can add event bindings to a tag, which provides you with hypertext capabilities (see
below)

Tags can be added like in the above example when you insert the text, but also later on:

.t insert 1.0 "The header\n\n"

.t tag configure header -font "Helvetica 16 bold"

.t tag add header 1.0 1.end

A tag has effect on one or more ranges of text and there can be more than one tag that has such
an effect:

.t tag configure large -font "Helvetica 16"

.t tag configure blue -foreground blue

.t insert end "This text has a blue colour" blue

.t tag add large 1.0 1.9

Of course, conflicts may occur — one tag imposing a green colour, the other a blue colour, for
instance. This is resolved by the priority of the tag - see the manual page on the tag raise and tag
lower subcommands.

To find where the tags are in the text you can use the tag nextrange, tag prevrange and tag
ranges subcommands. They return the indices of the first character that has the tag and the first
character that has not.

Last but not least, tags exist independently in the text widget: their properties remain defined
even if there is no text fragment that uses them. So you can prepare all the tags you need before
filling the text widget and you do not have to worry that they disappear inadvertently.

12.3 Searching

Another useful feature of the text widget is that you can search for text. The search subcommand
has a number of options, like: search for an exact string, ignore the case, use glob patterns or
regular expression patterns. In general it returns the position index of the first character of the
substring that fits the search pattern.

The following commands bring the first occurrence of the string ‘scroll’ into view:

91

set index [.t search -exact "scroll" 1.0]
.t see $index

You have to give the search subcommand a starting position, so in an editor application you can
continue searching by increasing the index:

set next [.t search -exact "scroll" $index+1c]

If you want to highlight the substring in green, use:

.t tag configure found -foreground green

.t tag add found $index $index+6c

or if you want to highlight the entire line:

.t tag configure found -background green

.t tag add found "$index linestart" "$index lineend"

Another nice feature is to highlight the word that contains the substring:

.t tag configure found -background green

.t tag add found "$index wordstart" "$index wordend"

That way computing the right positions is done entirely by the text widget itself.

12.4 Hypertext

As indicated before, you can define event bindings for tags. This means that you can enhance the
text widget with hypertext behaviour. A short example of how to do that is given below:

proc showMessage {} {
.t tag configure hidden -elide 0

}

.t tag configure hidden -elide 1

.t tag configure hypertext -underline 1

.t tag bind hypertext <Button-1> {showMessage}

.t insert end "Click "

.t insert end "here" hypertext

.t insert end "\nYou found the hidden message!" hidden

This illustrates the principle: you can do virtually anything you want with this mechanism. It has in
fact been used for a hypertext information system (see Wiki page http://wiki.tcl.tk/19649
for instance).

12.5 Formatted text

While it is easy to programmatically influence the appearance of the text or parts of the text, it is
a bit trickier to make the text widget behave as a word processor would if you selected ‘bold text’.
The widget must be instructed to add a tag to any text you type so that that text appears as bold.

One solution is to overload the bindings for key press events:

92

http://wiki.tcl.tk/19649

bind .text <KeyPress> {+insertChar %K}

proc insertChar {char} {

if { [string length $char] == 1 } {
.text insert insert $char $::texttag
return -code break

}
}

This technique is used in the program below.

Tip: As the text widget relies on bindings for its proper be-
haviour, we only override the default behaviour for ‘ordinary’
keystrokes. All other events are passed on. Hence the ‘+’ in
the bind command and the check on the length of the character.

The second problem that you need to solve is storing the text together with all the formatting.
The text widget can be instructed to return its contents in detail. That is what the storeText
procedure does in this program. From that information you can construct a storage format that
preserves the formatting.

proc mainWindow {} {

global bold
global italic
global texttag

#
Create the toolbar
#
set t [frame .toolbar]

ttk::button $t.store -text Store -style Toolbutton \
-command {storeText}

ttk::checkbutton $t.bold -text B -style Toolbutton \
-variable bold \
-command {toggleFont}

ttk::checkbutton $t.italic -text I -style Toolbutton \
-variable italic \
-command {toggleFont}

ttk::separator .sep

text .text

grid $t.store $t.bold $t.italic -padx 2 -sticky ns

grid $t -sticky w
grid .sep -sticky we
grid .text

#
Tags for the various fonts

93

#
.text tag configure bolditalic -font "Times 12 bold italic"
.text tag configure bold -font "Times 12 bold"
.text tag configure italic -font "Times 12 italic"
.text tag configure normal -font "Times 12"

.text tag add normal insert

bind .text <KeyPress> {+insertChar %K}

set texttag normal
set italic 0
set bold 0

}

insertChar --
Insert the typed character with the right tag
#
proc insertChar {char} {

if { [string length $char] == 1 } {
.text insert insert $char $::texttag
return -code break

}
}

toggleFont --
Make the text appear in bold or italic font or normal
#
Side effects:
Next letters typed in the text widget have the selected font
#
proc toggleFont {} {

global bold
global italic
global texttag

if { $italic } {
if { $bold } {

set texttag bolditalic
} else {

set texttag italic
}

} else {
if { $bold } {

set texttag bold
} else {

set texttag normal
}

}
}

storeText --
Dump the contents

94

#
Side effects:
Prints the contents of the text widget in a console
#
proc storeText {} {

console show
puts [.text dump 1.0 end]

}

main --
Start the program
#
#
mainWindow

12.6 More information

The text widget has many more options and subcommands than can be described in a tutorial like
this. To give an impression:

• Insert images and widgets in the text

• Undo and redo facilities

• Options for wrapping, margins, background colour and so on for the widget as a whole and
for individual tags

• Create peer widgets: the contents is the same (editing in one widget is reflected automati-
cally in the other widget), but you can show different parts of the text

95

96

Chapter 13

The Canvas Widget

The canvas widget is a general-purpose widget for displaying graphical objects: lines, rectangles,
circles, but also images and even other widgets. Furthermore it can be instructed to run commands
in response to mouse clicks or keystrokes, thus making it suitable for interactive use - you could
build a program for interactively drawing diagrams for instance.

Let us start with some short examples:

pack [canvas .c]

.c create oval 100 100 200 200 -fill green

.c create rectangle 120 150 180 200 -outline red -width 3

This creates a canvas widget with two graphical objects:

• A green circle (oval) with a black border

• A rectangle with a thick red border

Both the circle and the rectangle are created using two points — (100, 100) and (200, 200) for the
circle and (120, 150) and (180, 200) for the rectangle. The pair of points defines the (rectangular)
space that the objects is drawn in. As the two points (100, 100) and (200, 200) define a square, the
result is a circle. In general it would be an ellipse. For instance:

.c create oval 100 100 200 300 -fill green

Here are two more objects:

.c create line 10 50 50 10 120 100

.c create line {10 50 50 10 120 100} -smooth 1

Each line has three points, but the second line is drawn with the smoothing option, making it a
smooth curve rather than a series of line pieces. Also note that the coordinates are given as a list,
rather than individual arguments. This form is very useful if you have a large number of points or
if the number of points varies:

#
Polygons need not to be simple, as demonstrated by this pentagram
#
set angle [expr {3.1415926 * 4.0 / 5.0}]
set coords {}
for { set i 0 } { $i < 5 } { incr i } {

set x [expr {cos($i*$angle)}]
set y [expr {sin($i*$angle)}]

97

lappend coords [expr {150 + 100 * $x}] [expr {150 + 100 * $y}]
}

.c create polygon $coords -fill green -width 2

13.1 Identifying objects

Each creation command returns the ID of the graphical object. This allows you to manipulate the
object:

set obj [.c create text 100 100 -text Hello]

after 2000 [list .c itemconfig $obj -text Goodbye!]

Besides the object’s ID you can also use tags to manipulate the object, or better: all objects that
have that tag:

#
This text is hidden by the rectangle
#
.c create text 100 100 -text Goodbye -tag later
.c create text 100 120 -text "See you soon" -tag later

.c create text 100 100 -text Hello -tag welcome

.c create rectangle 50 50 250 250 -fill green

#
Show the texts
#
after 500 {.c raise welcome}
after 2500 {

.c raise later

.c lower welcome
}

This example exhibits yet another property of the graphical objects: they are drawn in a particular
order and you can influence that order via the raise and lower subcommands.

13.2 Coordinates

One thing to note about the canvas is that the y coordinate runs from top to bottom, as is common
with computer graphics, but it may surprise you. So the origin (0, 0) is at the top-left corner of the
canvas.

If you just specify a number, that number is interpreted as the number of pixels. But you can
use centimeters, millimeters, inches and points (1/72 of an inch) too:

.c create line 1c 2.5c 2c 3.5c

What is more: coordinates are considered to be floating-point numbers. This is very useful when
scaling the object for instance:

98

set obj [.c create oval 100 100 110 110]

for {set i 0} {$i < 10} {incr i} {
after [expr {$i*100}] [list .c scale $obj 100 100 1.1 1.1]

}

for {set i 0} {$i < 10} {incr i} {
after [expr {10+$i*100}] [list .c scale $obj 100 100 0.909 0.909]

}

The scale subcommand scales the coordinates of the object by a certain factor (they may be differ-
ent in both directions) with respect to a central point — (100, 100) in this case.

You can change the coordinates of a given object directly too:

.c coords $obj 20 20 200 200

and the oval grows and moves but the other attributes (colour, filled or not, etc.) remain the same.

13.3 Handling mouse events and keystrokes

For interactive applications it is very useful to be able to handle mouse events or keystrokes. In
Tcl/Tk this is done via bindings — you bind a particular command to a particular event. The
canvas widgets supports two types of bindings:

1. Bindings to the widget as a whole

2. Bindings to individual graphical objects

Here we consider the second type, as the first type is not specific to the canvas widget.
Consider the following script:

.c create rectangle 20 20 60 60 -fill grey -tag enterleave

.c create rectangle 60 20 100 60 -fill grey -tag enterleave

.c create rectangle 20 60 60 100 -fill grey -tag enterleave

.c create rectangle 60 60 100 100 -fill grey -tag enterleave

.c bind enterleave <Enter> {.c itemconfig current -fill green}

.c bind enterleave <Leave> {.c itemconfig current -fill grey}

If you move the mouse over these rectangles you will see that they turn green when it enters the
rectangle and grey again when it leaves. The tag ‘current’ is a special tag that is managed by
the canvas widget itself, and it indicates the topmost (last to be drawn) object that contains the
mouse.

13.4 Embedding widgets and images

For the canvas, widgets and images that you want to put in it are just ‘ordinary’ graphical objects.
Here is an example of how to create a widget inside a canvas:

button .c.button -text OK -command {.c create text 100 100 -text OK}
.c create window 100 200 -window .c.button

The widget can be a child of the canvas, or a child of one of the ancestors of the canvas. Pressing
the button will create a text ‘OK’ above the button, as you would expect.

Images can be handled in a similar way, there are in fact two types of images available: images
and bitmaps, which are two-colour images. As there are a number of built-in bitmaps, we will take
that as an example:

99

.c create bitmap 10 10 -bitmap question -anchor nw \
-background yellow -foreground red

Like all other graphical items, there are a number of options you can use to control the ap-
pearance of the image or the widget. In the above example we have used the -anchor option
to control how the image is displayed with respect to the coordinates we give. The value ‘nw’
(north-west) means that the given coordinates refer to the upper-left corner of the image.

13.5 More subcommands

The canvas has a large number of subcommands and they are all documented in the manual page.
Here are a few common ones, just to give an impression:

bbox: determine the smallest rectangle that holds one or more objects

delete: delete graphical objects by ID or tag

find: find the objects that meet certain conditions (have some tag, are near a particular point etc.)

move: move objects over a certain distance in one or two directions

postscript: store the contents in a PostScript file

xview, yview: used to interact with scrollbars if the canvas is actually larger than the portion
visible on the screen

Tip: If you issue the postscript subcommand while there is nothing visible on
the screen, the PostScript file will be empty. You need to wait until the canvas
has been drawn. This is a side-effect that you need to be aware of. Compare
the results of the following script:

pack [canvas .c]
.c create rectangle 100 100 200 200 -fill red
.c postscript rectangle1.ps
exit

and

pack [canvas .c]
.c create rectangle 100 100 200 200 -fill red
tkwait visibility .
.c postscript rectangle2.ps
exit

13.6 A more elaborate example

The program below will draw a fractal tree by first drawing a vertical line and then recursively
drawing two lines at an angle to the first one. To create a bit more detail, it also calculates the
colour for the new lines from the individual red, green and blue contributions. This way you can
produce shaded graphics.

pack [canvas .c -width 400 -height 300 -bg white]

proc drawBranch {xstart ystart length angle rgb} {

100

#
Compose the colour
#
foreach {red green blue} $rgb {break}
set colour [format "#%2.2x%2.2x%2.2x" $red $green $blue]

#
Determine the end point
#
set phi [expr {$angle * 3.1415926 / 180.0}]
set xend [expr {$xstart + $length * cos($phi)}]
set yend [expr {$ystart + $length * sin($phi)}]

#
The line thickness
#
set width 3
if { $length < 25 } { set width 2 }
if { $length < 5 } { set width 1 }

#
Draw the branch and the sub-branches
#
.c create line $xstart $ystart $xend $yend -fill $colour -width $width

if { $length > 1.0 } {

set rgbLeft [list [expr {int(0.8*$red)}] $green $blue]
set rgbRight [list $red $green [expr {int(0.8*$blue)}]]

set angleLeft [expr {$angle + 45.0}]
set angleRight [expr {$angle - 45.0}]

set length [expr {2.0*$length/3.0}]

drawBranch $xend $yend $length $angleLeft $rgbLeft
drawBranch $xend $yend $length $angleRight $rgbRight

}
}

drawBranch 200 280 100 270 {255 0 255}

The first line starts with an angle of 270 to avoid the somewhat awkward direction of the
vertical coordinate (later on it does not matter anymore because of the symmetry of the design).

Drawing stops automatically when the line length is shorter than a single pixel.
The colour contribution is reduced by 20% and the length by 33% per generation, figures that

were found experimentally to give a nice result.
Note: This example also shows that the canvas widget is capable of displaying large amounts

of graphical objects. There are more than 8000 individual lines in the tree.

101

102

Chapter 14

Themed Tk

103

104

Part III

Real-World Application Development

105

Chapter 15

Tcl Database Connectivity (TDBC)

107

108

Chapter 16

XML

109

110

Chapter 17

Web Applications and Services

111

112

Bibliography

[1] bind(n)—Tk Built-In Commands. http://www.tcl.tk/man/tcl8.6/TkCmd/bind.
htm.

[2] clock(n)—Tcl Built-In Commands. http://www.tcl.tk/man/tcl8.6/TclCmd/clock.
htm.

[3] Richard Suchenwirth et al. Custom sorting, 2008. http://wiki.tcl.tk/4021.

[4] Clif Flynt. Tcl/Tk: A Developer’s Guide. Morgan Kauffman, May 2003.

[5] Clif Flynt, Neil Madden, Arjen Markus, and David N. Welton. The Tcl tutorial, 2009. http:
//www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html.

[6] format(n)—Tcl Built-In Commands. http://www.tcl.tk/man/tcl8.6/TclCmd/
format.htm.

[7] Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly, third edition, August 2006.

[8] Brian T. Lewis. An on-the-fly bytecode compiler for Tcl. In Proceedings of 4th annual Tcl/Tk
Workshop, pages 103–114. USENIX, 1996. http://www.usenix.org/publications/
library/proceedings/tcl96/full papers/lewis/index.html.

[9] scan(n)—Tcl Built-In Commands. http://www.tcl.tk/man/tcl8.6/TclCmd/scan.
htm.

[10] switch(n)—Tcl Built-In Commands. http://www.tcl.tk/man/tcl8.6/TclCmd/
switch.htm.

[11] Tcl—Tool Command Language. http://www.tcl.tk/man/tcl8.6/TclCmd/Tcl.htm.

[12] Brent B. Welch, Ken Jones, and Jeffrey Hobbs. Practical Programming in Tcl and Tk. Prentice
Hall, 4th edition, June 2003.

[13] Wikipedia. Big O notation. http://en.wikipedia.org/wiki/Big O notation.

113

http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
http://www.tcl.tk/man/tcl8.6/TclCmd/clock.htm
http://www.tcl.tk/man/tcl8.6/TclCmd/clock.htm
http://wiki.tcl.tk/4021
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html
http://www.tcl.tk/man/tcl8.6/TclCmd/format.htm
http://www.tcl.tk/man/tcl8.6/TclCmd/format.htm
http://www.usenix.org/publications/library/proceedings/tcl96/full_papers/lewis/index.html
http://www.usenix.org/publications/library/proceedings/tcl96/full_papers/lewis/index.html
http://www.tcl.tk/man/tcl8.6/TclCmd/scan.htm
http://www.tcl.tk/man/tcl8.6/TclCmd/scan.htm
http://www.tcl.tk/man/tcl8.6/TclCmd/switch.htm
http://www.tcl.tk/man/tcl8.6/TclCmd/switch.htm
http://www.tcl.tk/man/tcl8.6/TclCmd/Tcl.htm
http://en.wikipedia.org/wiki/Big_O_notation

Index

expr
Functions, 11

args, 44

Arrays, 28

Byte-code Compiler, 44

Command, 4
append, 16, 21
apply, 51
array set, 29
bind, 76, 85, 93
break, 38, 41, 57
canvas, 97
catch, 54, 57, 58
chan event, 89
clock add, 18
clock clicks, 18, 19
clock format, 18
clock microseconds, 18
clock milliseconds, 18
clock scan, 18
clock seconds, 18
clock, 18
concat, 16
continue, 41, 57
dict create, 25
dict exists, 25
dict filter, 27
dict for, 26
dict get, 25, 27, 56
dict incr, 26
dict keys, 25
dict merge, 26
dict remove, 26
dict replace, 25
dict set, 26, 27
dict size, 25
dict unset, 26
dict update, 27, 28
dict values, 25
dict with, 27, 28
dict, 26, 27
encoding, 17

entry, 72
error, 58
expr, 8, 10–12, 37, 39, 40, 51, 52, 54, 58
foreach, 21, 26, 39, 42, 50
format, 11, 16, 17
for, 8, 39–43, 45, 47, 48, 50
global, 45, 47
glob, 17
grid, 72, 85–87
if, 8, 37, 38
incr, 12, 44, 47
info args, 53
info body, 53
info commands, 53
info default, 53
info globals, 46
info level, 47
info locals, 46
info procs, 53
info vars, 5, 46
info, 5, 13, 53
interp alias, 52
join, 21
lappend, 21
lassign, 22
lindex, 19, 20, 22, 23
linsert, 20
list, 19, 25
llength, 19
lrange, 19, 20
lrepeat, 21
lreplace, 20
lreverse, 20
lsearch, 17, 22, 24, 27
lset, 22
lsort, 22–24, 27, 48, 49
map, 49
package require, 72
pack, 85, 86
parray, 29
place, 85
proc, 43, 52
puts, 3, 4, 6, 43
regexp, 30, 32

114

regsub, 30, 32
return, 46, 48, 57–59
scan, 9, 16, 17
set, 5, 43, 45
split, 19, 21
string compare, 14, 23
string equal, 14
string first, 14
string index, 13
string is, 16
string last:, 14
string length, 13, 49
string map, 15
string match, 17, 18
string range, 14
string repeat, 15, 21
string replace, 15
string reverse, 15
string tolower, 15
string totitle, 15
string toupper, 15
string trimleft, 16
string trimright, 16
string trim, 16
string wordend, 15
string wordstart, 15
string, 13, 16, 19, 49
subst, 6
switch, 17, 37–39
tailcall, 48
throw, 58
time, 19
toplevel, 75
try, 54–58
unset, 5
upvar, 46, 47
while, 8, 39–41, 43, 45, 47, 48
winfo, 77
wm maxsize, 77
wm minsize, 77
wm, 75, 77
Ensembles, 13

Command prefix, 51
Comment, 4

Dictionaries, 25
Domain-Specific Languages (DSLs), 42

Exceptions, 53

Functions
cosh(), 8
rand(), 8
sqrt(), 8

Geometry Manager, 85
Glob matching, 17

Lists, 19
Sorting and Searching, 22

Loops, 39
Infinite, 40, 41

Procedures, 43

Recursion, 47

Stack trace, 54
Strings

Unicode, 17
Substitution

Double substitution—dangers of, 8

Variables, 5
Fully-qualified, 45
Global, 45

Window manager, 75

115

	Preface
	I Tcl: The Tool Command Language
	Getting Started
	Running Tcl
	Hello World!
	Variables and Values
	Evaluation and Substitution
	Backslash Substitution

	Arithmetic
	Operands
	Operators
	Math Functions
	Incrementing Integers

	Handling Data
	Strings
	Unicode
	Pattern Matching

	Dates and Times
	Lists
	List Variable Commands
	Nested Lists
	Sorting and Searching

	Dictionaries
	Filtering a Dictionary
	Updating a Dictionary

	Arrays
	Regular Expressions
	Crafting Regular Expressions

	Control Structures
	Branching with if and switch
	The if Command
	The switch Command

	Loops: while and for
	The while Loop
	The for Loop
	Early termination: break and continue
	The foreach Loop

	Procedures
	Parameters and Arguments
	Global and Local Variables
	The return Command
	The Procedure Call Stack
	Recursion: Looping without loops!
	Higher-Order Procedures and Callbacks
	Anonymous Procedures
	Command Aliases
	Examining Procedures

	Dealing with Errors
	The try Command
	The catch Command
	Throwing Errors and Exceptions

	Program Organisation
	Namespaces
	Ensembles
	Import and Export
	Creative Writing
	Paths and Unknown Commands
	Abstract Data Types

	Packages
	Modules

	Object Oriented Tcl
	Testing
	TclTest

	Input and Output
	Command Line Arguments and Environment Variables
	Channels
	The File System
	Processes
	TCP/IP Networking

	The Event Loop
	Introduction
	Delayed Tasks
	Channel Events
	Variable and Command Traces

	Advanced Topics
	Custom Control Structures
	Unknown Command Handlers
	Coroutines
	Interpreters
	Threads

	II Tk: Graphical User Interfaces
	Basic Concepts
	Introduction

	Managing toplevel windows
	Basic Widgets
	Labels
	Entry widgets
	Validation

	Buttons
	Checkbuttons
	Radio buttons
	Scales
	Scrollbars
	Spinboxes
	Comboboxes
	Progressbars
	Separators

	Geometry Management
	Placing the widgets

	The Text Widget
	Positions in the text
	Tags
	Searching
	Hypertext
	Formatted text
	More information

	The Canvas Widget
	Identifying objects
	Coordinates
	Handling mouse events and keystrokes
	Embedding widgets and images
	More subcommands
	A more elaborate example

	Themed Tk

	III Real-World Application Development
	Tcl Database Connectivity (TDBC)
	XML
	Web Applications and Services

	References

