
Best Practices: Building Solutions 1

BUILDING SOLUTIONS

Pega Robotic Automation Studio lets you create solutions that integrate and automate desktop
applications without writing code. When creating solutions, you go through many of the same logical
steps and practices required by software programming. This document describes both general advice
applicable to any programming project, and specific practices recommended for creating solutions
with Studio.

To use this guide, you should be proficient creating Studio solutions and have completed the Pega
Robotic Automation Architect Essentials course.

This document includes these topics:

• “Installation considerations” on page 2
• “Naming and design considerations” on page 3
• “Interrogating applications” on page 8
• “Using integration processes” on page 9
• “Using automations” on page 12
• “Presenting your solutions” on page 19
• “Debugging your solutions” on page 20
• “Deploying your solutions” on page 24
• “Finding additional information” on page 25

https://www.pega.com/insights/resources/pega-robotic-automation-architect-essentials

Building Solutions | Installation considerations

Best Practices: Building Solutions 2

Installation considerations
Keep in mind these considerations when installing Studio:

• Do not install Studio or the Studio plug-in and Runtime on the same machine. Doing so is not
supported and can cause issues if you are also installing Studio Services and you plan to use
MonitorAll.

• Review the Minimum Requirements topic in the appropriate installation instructions before you
launch the Setup wizard. You can find these installation instructions on the Robotic Automation
site:

Robotic Automation
• Launch the Setup wizard by right-clicking on it and selecting the Run as Administrator option.
• Install from a local drive, not a mapped drive.

https://pdn.pega.com/node/1296006

Best Practices: Building Solutions 3

Building Solutions | Naming and design considerations

Naming and design considerations

Designing solutions based on user actions
Capture the sequence of actions you want to automate in a series of screen shots and make a note
of all your keyboard and mouse interactions. The more detail you capture, the easier the design and
testing process will be. Base your solution design on the user interactions with the applications and
processes you plan to automate. Remember, each automation in your solution must begin with an
event, therefore user and system actions play an important role in solution design.

Naming convention for solutions, projects, adapters,
controls, and components
Establish a standardized naming convention for all parts of the solution. By doing so, you can quickly
identify the target in the event you need to diagnose a problem or troubleshoot match rules.
Standardized naming conventions are especially helpful when working with a group of designers who
are designing separate areas of a solution.

Naming solutions and projects
Solutions and projects should be named in such a way that lets you easily identify the high-level
function they perform.

Naming adapters
Adapters should be named in such a way that lets you easily identify the application they represent.
We suggest naming adapters identically to their current application shortcut names. It is also
recommended that the names be readable since they are visible to the user on the Runtime menu.

For example, in the CRM web solution you created in the Pega Robotic Automation Architect
Essentials course, the adapter for the Windows application is named: CRM Information, and the
adapter for the web application is named ACME Product Search System, making them easily identifiable
in the Solution Manager. In a more complex solution, it can become difficult to locate the correct
adapter without a logical naming convention.

Building Solutions | Naming and design considerations

Best Practices: Building Solutions 4

Naming automations
Automations should be named in such a way that lets you easily identify the action they perform. We
suggest that automations follow the same naming conventions as methods in their code
counterparts. Essentially, if you have a verb-noun rule for method names, use the same for
automations that behave like methods. For other automations, we suggest naming them based on
what they are trying to accomplish.

For example, in the CRM web solution, automations relating to the CRM Information Windows
adapter are:

Naming controls
Establishing a standardized naming convention for controls and components is extremely important.
Whether you are building an automation, debugging a solution, or troubleshooting match rules,
being able to quickly identify the controls makes the task much easier.

Here are some examples of standardized naming convention prefixes for several common controls.

You can modify the default prefixes used by Studio for common controls by using the Auto-Naming
Rules feature. Access this feature from the Tools > Options > OpenSpan > Naming Rules > Type
Prefixes option. Here is an example of the dialog:

Automation Name Action Performed
Set Account Window Sets focus on the New Call Account window.

Get Account Window Gets data from the Account window.

Common Control Standard Prefix
Button btn

Check box cbx

Combo box cmb

Label lbl

List box lbx

List view lv

Radio button rbtn

Text box txt

Toolbox tb

Windows form frm

Best Practices: Building Solutions 5

Building Solutions | Naming and design considerations

Creating a Solution Manager hierarchy based on tasks
Keep the Solution Manager hierarchy organized. Use folders to group related items.

Building Solutions | Naming and design considerations

Best Practices: Building Solutions 6

For example, using the CRM web solution from the Pega Robotic Automation Architect Essentials
course, you can create folders to store common CRM, ACME, and User Interface (UI) elements. This
lets you easily locate objects when working with the solution. See the following example:

In addition to grouping related functionality or automations, we suggest using the top-level folders to
group items into Systems. For this purpose, a System is defined as a group of related functionality
surrounding an individual adapter (or possibly multiple adapters) with the ability to share the entire
contents of the system between different solutions.

Best Practices: Building Solutions 7

Building Solutions | Naming and design considerations

For example, you can create a CRM folder that completely encompasses the functionality of CRM.
When another solution needs CRM, you can simply take the entire system (that is, copy the existing
folder, including all of its contents), into the solution where CRM is needed.

You can then access any of the properties, methods, or events which have been exposed. This lets
you test individual pieces of functionality separate from the overall solution.

Saving backup deployment packages of your
solutions
As with any development project, it is essential that you backup your solutions at regular intervals.
We strongly recommend using a source control system for solutions.

Building Solutions | Interrogating applications

Best Practices: Building Solutions 8

Interrogating applications

Interrogating all applications before building
automations
It is always a good practice to interrogate every application you need in the solution before building
the automations. By doing so, you can uncover any potential application integration issues before
building the automation logic.

Testing applications in the Studio environment by unit
testing solutions
For complex applications, create a solution and add a Windows form and the application. Interrogate
all areas of the application that you want to use in your final solution. Add controls to the Windows
form to unit test interaction with the application.

When you are satisfied that the application runs properly in the Studio environment, add the adapter
by adding an Existing Project Item to the final solution.

Following match rules best practices
Each application type – Windows, web, text – has special considerations regarding how match rules
are applied. Refer to the Best Practice: Using Match Rules document for details on working with
match rules.

https://pdn.pega.com/best-practices-using-match-rules

Best Practices: Building Solutions 9

Building Solutions | Using integration processes

Using integration processes

Starting applications as required
When you add an adapter to a project, the StartOnProjectStart property for the adapter is set to True
by default. This means that the application starts when the project starts, whether it is required at
startup or not. It is a good practice to only start the applications that are required at the start of the
project.

Use the Start method in an automation for the adapter to start an application as needed by the
project execution. By controlling the number of applications running during the execution of your
project, you improve the overall performance of the project.

Building Solutions | Using integration processes

Best Practices: Building Solutions 10

For example, you can use a main automation that uses the Started event to start anything you need.
By default, you can turn all the adapters off and start them from the automation as needed.

Setting the UseKeys property when required
When working with applications that contain objects that can be cloned, such as Multiple-Document
Interface (MDI) child windows, you can use the UseKeys property. See the following example from the
CRM application used in the Core Training where multiple instances (clones) of the New Call
(New_Call_1) window are created.

Best Practices: Building Solutions 11

Building Solutions | Using integration processes

By default, this property is False, indicating that keys are not assigned to the object. However, if
multiple copies of the object exist at runtime, and your solution needs to distinguish between the
various instances of the object, then set the property to True.

Make sure to set the property to True for the object that is cloned. This means you need to set the
value for the base object in the hierarchy that can be cloned to True. If your solution does not use
objects that can be cloned, leave this value set to False.

Building Solutions | Using automations

Best Practices: Building Solutions 12

Using automations

Adding comment text as header to all automations
Comments within an automation can be extremely helpful when working with multiple designers. It
will enable a designer to look at an automation and quickly discern the logic and flow or the process.
For example, a standard Automation header comment such as the following can be used:

Keeping automations with the task or adapter
In a complex solution, you are likely have many automations. Keeping those automations with the
task or adapter makes it much easier to locate when you debug or edit your solution.

In this example, you can see the automation associated with the ACME web application and the
automations associated with the CRM application.

Best Practices: Building Solutions 13

Building Solutions | Using automations

Setting the automation’s ShowDesignCompNames
property to True
By setting the Automation property ShowDesignCompNames to True, Studio displays the full design
name of the components in the automation design blocks.

Building Solutions | Using automations

Best Practices: Building Solutions 14

See the following example:

Using this option, viewed or printed automations clearly show the adapter or form associated with
each component.

Using WaitForCreate and IsCreated
Before using the properties, methods, or events of a component in an automation, confirm that the
component is created and matched. Use error trapping for unmatched targets in automations.

You do not need to check for all objects on a web page to be created before using them in the
automation. Once one object is loaded, you can use the rest of the objects on the page without
checking the matching status. The following are helpful checking the matching status:

• WaitForCreate Method — Waits for an object to be created. Returns True if the object is
matched before the WaitTimeout period elapses. Otherwise, it returns False.

• IsCreated Property — Returns True if the object is matched at a specific instance in time.
Otherwise, it returns False.

The following example of the Find Store automation from the CRM web solution in the Pega Robotic
Automation Architect Essentials course shows how the IsCreated property is used to make sure
certain web objects are created (matched) before being used by the automation logic.

Best Practices: Building Solutions 15

Building Solutions | Using automations

Terminating branched event paths
Anytime the event path in your automation branches, make sure all event paths terminate logically.
The illustrations below shows the wrong way and the correct way to handle a branched event path:

Building Solutions | Using automations

Best Practices: Building Solutions 16

In this example, a message dialog was used to terminate the False event path. If you do not want to
alert the user or take any action based on the event, try using the DiagnosticLog component to
capture the event in the Studio log. See “Adding diagnostic logging” on page 21 for an example of
logging automation that can be called from any automation in a solution.

Using global storage for variables and a release notes
automation
It is a good organizational practice to set up global storage for variables or components that can be
called from multiple locations within the solution.

Another good practice is to include an automation for storing notes and tracking any revisions to the
solution. The Project_Template solution available in “Finding additional information” on page 25
provides examples of these automations.

Best Practices: Building Solutions 17

Building Solutions | Using automations

Using a single script with multiple methods
If you require Script components in your solution, use a single Script component and add multiple
methods to the component rather than using multiple Script components containing only one
method. Each Script component adds an assembly file to the deployed project so by using a single
Script with multiple methods, you reduce the overhead of the project.

Following threading best practices
Design your automations following the guidelines set forth in the Best Practices: Understanding
Threading document. This document provides details on threading in the Studio framework.

https://pdn.pega.com/best-practices-understanding-threading
https://pdn.pega.com/best-practices-understanding-threading

Building Solutions | Using automations

Best Practices: Building Solutions 18

Running only one connector line from a design block
execution point
It is a good practice to run just one connector line from a single design block execution point. When
there is a required order of operations and multiple connector lines originating from the same design
block execution point, the correct order of operations cannot be determined and the automation
might fail.

In the above automation example, the connector line labeled 1 (Finance_Yahoo_Com.Company
Name.Text -> Earnings Yield UI.Company Name Text Box.Text) must execute before the connector line
labeled 2 (Finance_Yahoo_Com.PE Field.Text -> Numeric Expression).

Best Practices: Building Solutions 19

Building Solutions | Presenting your solutions

Presenting your solutions
Agile Desktop was designed for Studio developers who create solutions for Runtime end users. It
provides a framework for presenting the solutions you design to the end user. This framework
ensures a user-friendly and attractive design and one that brands your work appropriately.

Agile Desktop includes these ready-to-go plug-ins which you can use to create a unified user
experience:

• Customer 360 View — Presents the most critical client information to the user.
• Automated Notes — Agile Desktop automatically creates notes using text templates populated

by pre-defined activities. You can easily add comments about an interaction and review the notes
you have already entered and generated.

• Shortcuts — Lets you define and present frequently used shortcuts to your users. These
shortcuts can start an executable or a solution or go to a web address. These shortcuts can start
an execution, navigate to a web page, start an activity, or execute an automation.

You configure Agile Desktop using the interaction.xml file. During this configuration, you define the
information which will be presented to end users and set options specific to each plug-in. For more
information, see Using the Interaction.xml File.

When an end user installs Runtime, the Setup wizard installs both the standard Runtime application
and Agile Desktop. The wizard also prompts you to decide whether you will use the standard Runtime
application or Agile Desktop. For more information, see the applicable Runtime Installation Guide.

For more information, see the Agile Desktop Implementation Guide.

https://pdn.pega.com/documents/pega-robotic-automation-agile-desktop-implementation-guide
http://help.openspan.com/80/index.htm#Platform_Configuration/Using_the_Interaction.xml_File.htm

Building Solutions | Debugging your solutions

Best Practices: Building Solutions 20

Debugging your solutions

Using message dialogs
Add MessageDialog components to automations when you are building and testing solutions to
confirm event handling. Using the MessageDialog component creates and displays a message dialog
from a solution.

In this example, if the menu is not created, WaitForCreate will return a False result and the message
dialog displays this message:

Menu was not created.

Using error trapping around data entry
Most solutions minimize the need for data entry. If, however, your solution requires data input, make
sure you provide the logic to make sure the input is valid for use in your solution. For example, the
following logic uses the StringUtilities.IsRegexMatch method to determine if an entry contains five (5)
digits:

Best Practices: Building Solutions 21

Building Solutions | Debugging your solutions

Adding diagnostic logging
The LogBefore and LogAfter execution functions enable you to set messages to be written to the
diagnostics file. These messages are written before and after execution of a particular event link or
transfer of data across a data link on an automation.

Add the DiagnosticLog component to automations to track solution processing. Create a logging
automation that can be called by any automation in the solution.

To invoke this type of diagnostics, select the link for which you want to enable messaging, the
following properties display in the Properties Grid:

• Log Before Execution
• Log After Execution

Building Solutions | Debugging your solutions

Best Practices: Building Solutions 22

Setting up a universal diagnostic automation
Creating a single diagnostic automation that can be called from anywhere in the project is an efficient
way to implement diagnostic logging in a larger, more complex solution.

Here is an example of a diagnostic logging automation that can be called from anywhere in the
project and will write with a standard format to the diagnostic log file:

Best Practices: Building Solutions 23

Building Solutions | Debugging your solutions

The Logging automation in the Project_Template solution (see“Finding additional information” on
page 25) contains this logic.

Building Solutions | Deploying your solutions

Best Practices: Building Solutions 24

Deploying your solutions

Using Studio’s Deployment Portal
There are three ways to deploy the solutions (packages) you build:

• Deployment Portal
• File share
• Web site

We recommend that you use the Deployment Portal to deploy packages to your various Runtime
machines. For more information on deploying solutions, refer to the Deployment Portal User Guide.

Using a common extract directory
By default, Runtime extracts the deployment package to each user’s application data folder. It is
recommended that a common extract directory is used. Change the Deployment Extract Directory
key in the RuntimeConfig.xml file from blank to the designated location.

Here is an example:

<add key="DeploymentExtractDirectory" value="C:\OpenSpan_Runtime\" />

https://pdn.pega.com/documents/pega-robotic-automation-deployment-portal-user-guide
https://pdn.pega.com/documents/pega-robotic-automation-deployment-portal-user-guide

Best Practices: Building Solutions 25

Building Solutions | Finding additional information

Finding additional information

Using Pega Robotic Automation Studio Help
To access material within Studio, choose Help > Help Contents. You can also access the Help system
via this website:

help.openspan.com/80/

Using the Support Portal
The Pega Support Portal lets you search our extensive Knowledge Base of support articles, how-tos,
and documentation. If you can't find the answer here, ask a question in our Product Support
Community.

Viewing example solutions
You can also view example solutions to see how to build Studio solutions.

http://help.openspan.com/80/
https://www.pega.com/services/support
https://pdn.pega.com/node/1296006

	Building Solutions
	Installation considerations
	Naming and design considerations
	Designing solutions based on user actions
	Naming convention for solutions, projects, adapters, controls, and components
	Naming solutions and projects
	Naming adapters
	Naming automations
	Naming controls
	Creating a Solution Manager hierarchy based on tasks
	Saving backup deployment packages of your solutions

	Interrogating applications
	Interrogating all applications before building automations
	Testing applications in the Studio environment by unit testing solutions
	Following match rules best practices

	Using integration processes
	Starting applications as required
	Setting the UseKeys property when required

	Using automations
	Adding comment text as header to all automations
	Keeping automations with the task or adapter
	Setting the automation’s ShowDesignCompNames property to True
	Using WaitForCreate and IsCreated
	Terminating branched event paths
	Using global storage for variables and a release notes automation
	Using a single script with multiple methods
	Following threading best practices
	Running only one connector line from a design block execution point

	Presenting your solutions
	Debugging your solutions
	Using message dialogs
	Using error trapping around data entry
	Adding diagnostic logging
	Setting up a universal diagnostic automation

	Deploying your solutions
	Using Studio’s Deployment Portal
	Using a common extract directory

	Finding additional information
	Using Pega Robotic Automation Studio Help
	Using the Support Portal
	Viewing example solutions

	Go to the PDN
	Go to Support
	Go to Help

