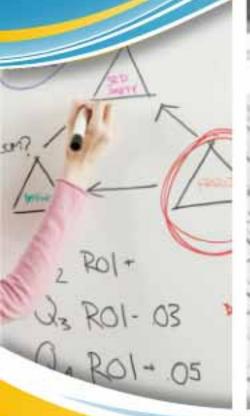


Pembahasan soal un

MATEMATIKA SMA TAHUN PELAJARAN 2009/2010 PROGRAM STUDI IPS


PEMBAHAS:

EDITOR:

1. Sigit Tri Guntoro, M.Si.

Dra. Puji Iryanti, M.Sc.Ed

- 2. Jakim Wiyoto, S.Si.
- 3. Marfuah, M.T.
- 4. Rohmitawati, S.Si.

PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN MATEMATIKA KEMENTERIAN PENDIDIKAN NASIONAL 2010

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS

PEMBAHAS:

- 1. Sigit Tri Guntoro, M.Si.
 - 2. Jakim Wiyoto, S.Si.
 - 3. Marfuah, M.T.
 - 4. Rohmitawati, S.Si.

EDITOR:

Dra. Puji Iryanti, M.Sc.

PPPPTK MATEMATIKA 2010

- 1. Nilai kebenaran yang tepat untuk pernyataan $(p \land q) \Rightarrow p$ pada tabel berikut adalah ...
 - A. SBSB
 - B. SSSB
 - C. SSBB
 - D. SBBB
 - E. BBBB

p	q	$(p \wedge q)$	~ p	$(p \land q) \Rightarrow \sim p$
В	В	В	S	S
В	S	S	S	В
S	В	S	В	В
S	S	S	В	В

Jawab: D

- 2. Negasi dari pernyataan " Jika ulangan tidak jadi maka semua murid bersuka ria" adalah
 - A. Ulangan tidak jadi dan semua murid tidak bersuka ria.
 - B. Ulangan tidak jadi dan semua murid bersuka ria.
 - C. Ulangan tidak jadi dan ada murid tidak bersuka ria.
 - D. Ulangan jadi dan semua murid bersuka ria.
 - E. Ulangan jadi dan semua murid tidak bersuka ria.

Penyelesaian:

Misalkan

p: "ulangan jadi"

q: "semua murid bersuka ria"

Pernyataan " Jika ulangan tidak jadi maka semua murid bersuka ria" dinotasikan dengan

$$\sim p \Rightarrow q$$
.

Nilai kebenaran $p \Rightarrow q$ sama dengan nilai kebenaran $\sim p \lor q$. (Coba selidiki hal ini dengan tabel kebenaran).

Sehinga nilai kebenaran dari negasi dari implikasi $p \Rightarrow q$ (dinotasikan dengan $\neg (p \Rightarrow q)$ sama dengan nilai kebenaran dari negasi dari $\neg (\neg p \lor q)$.

$$\sim \left(p \Rightarrow q\right) = \sim \left(\sim p \lor q\right)$$
$$= p \land \sim q$$

Negasi pernyataan " Jika ulangan tidak jadi maka semua murid bersuka ria" dinotasikan dengan

$$\sim \left(\sim p \Rightarrow q \right).$$

$$\sim \left(\sim p \Rightarrow q \right) = \sim \left(\sim (\sim p) \lor q \right)$$

$$= \sim (p \lor q)$$

$$= \sim p \land \sim q$$

 $\sim p \land \sim q$: Ulangan tidak jadi dan ada murid yang tidak bersuka ria.

Jawab: C

3. Diketahui beberapa premis berikut:

Premis 1: Jika Rini naik kelas dan ranking satu maka ia berlibur ke Bali.

Premis 2: Rini tidak berlibur di Bali.

Kesimpulan yang sah adalah

- A. Rini naik kelas dan tidak ranking satu.
- B. Rini naik kelas maupun ranking satu.
- C. Rini naik kelas atau tidak ranking satu.
- D. Rini tidak naik kelas atau tidak ranking satu.
- E. Rini tidak naik kelas tetapi tidak ranking satu.

Penyelesaian:

Soal nomor 3. Ini merupakan permasalahan penarikan kesimpulan dari argumen-argumen yang diberikan. Argumen adalah serangkaian pernyataan yang bias digunakan untuk menarik suatu kesimpulan. Argumen terdiri dari dua kelompok pernyataan, yaitu pernyataan-pernyataan sebelum kesimpulan biasa diistilahkan premis dan kesimpulan (konklusi).

Dalam ilmu logika, ada tiga bentuk argumentasi yang sah yaitu modus ponens, modus tollens, dan silogisma.

1. Modus ponens

Modus ponens berbentuk sebagai berikut:

Premis 1 suatu implikasi $p \Rightarrow q$.

Premis 2 anteseden dari implikasi tersebut p.

Konklusinya q.

2. Modus tollens

Modus tollens berbentuk sebagai berikut:

Premis 1 suatu implikasi $p \Rightarrow q$.

Premis 2 berupa negasi dari konsekuen $\sim q$.

Konklusinya $\sim p$

3. Silogisma

Silogisma berbentuk sebagai berikut:

Premis 1 suatu implikasi $p \Rightarrow q$.

Premis 1 suatu implikasi $q \Rightarrow r$.

Konklusinya $p \Rightarrow r$

Soal nomor 3 ini merupakan penarikan kesimpulan dengan modus tollens. Keabsahan modus tollens ini dapat ditunjukkan dengan mengingat bahwa nilai kebenaran suatu implikasi ekuivalen dengan nilai kebenaran kontraposisinya.

$$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$$

(Coba cek dengan membuat tabel nilai kebenaran).

Misalkan pernyataan p: Rini naik kelas.

q : Rini ranking satu.

r : Rini berlibur ke Bali.

Premis 1 suatu implikasi yang dinotasikan dengan $(p \land q) \Rightarrow r$.

Premis 2 pernyataan $\sim r$.

Konklusi
$$\sim (p \land q) = \sim p \lor \sim q$$

Jadi kesimpulannya: "Rini tidak naik kelas atau tidak ranking satu."

Jawab: D

- 4. Bentuk sederhana dari $\frac{\left(m^2\right)^{-2} \cdot n^5}{m^{-5} \cdot n^4}$ adalah
 - A. mn
 - B. $\frac{m}{n}$
 - C. $\frac{n}{m}$
 - D. $\frac{m^2}{n}$
 - E. m^2n

$$\frac{(m^2)^{-2} \cdot n^5}{m^{-5} \cdot n^4} = m^{-4} \cdot n^5 \cdot m^5 \cdot n^{-4}$$

$$= m^{-4} \cdot m^5 \cdot n^5 \cdot n^{-4}$$

$$= m^{-4+5} \cdot n^{5+(-4)}$$

$$= mn$$

Jawab: A

- 5. Hasil dari $(2\sqrt{2} \sqrt{6})(\sqrt{2} + \sqrt{6})$ adalah
 - A. $2(1-\sqrt{2})$
 - B. $2(2-\sqrt{2})$
 - C. $2(\sqrt{3}-1)$
 - D. $3(\sqrt{3}-1)$
 - E. $4(2\sqrt{3} + 1)$

Penyelesaian:

$$(2\sqrt{2} - \sqrt{6})(\sqrt{2} + \sqrt{6}) = (2\sqrt{2})(\sqrt{2}) + (2\sqrt{2})(\sqrt{6}) - (\sqrt{6})(\sqrt{2}) - (\sqrt{6})(\sqrt{6})$$

$$= 4 + 2\sqrt{12} - \sqrt{12} - 6$$

$$= \sqrt{12} - 2$$

$$= \sqrt{3 \cdot 4} - 2$$

$$= 2\sqrt{3} - 2$$

$$= 2(\sqrt{3} - 1)$$

Jawab: C

6. Nilai dari
$$\frac{1}{2}$$
log 5 × 5 log 4 × 2 log $\frac{1}{8}$ × $\left(^{5}$ log 25 $\right) ^{2}$ =

- A. 24
- B. 12
- C. 8
- D. -4
- E. -12

Ingat beberapa sifat logaritma berikut:

- 1). $a \log a = 1$
- $2). \quad {}^{a}\log b^{m} = m. \, {}^{a}\log b$
- 3). $a^n \log b = \frac{1}{n} \cdot a \log b$
- 4). $a \log b \cdot b \log c = a \log c$
- 5). $a \log \frac{b}{c} = a \log b a \log c$

$$\frac{1}{2}\log 5 \times {}^{5}\log 4 \times {}^{2}\log \frac{1}{8} \times \left({}^{5}\log 25\right)^{2} = {}^{\frac{1}{2}}\log 5 \times {}^{5}\log 2^{2} \times {}^{2}\log \left(\frac{1}{2}\right)^{3} \times \left({}^{5}\log 5^{2}\right)^{2} \\
= {}^{\frac{1}{2}}\log 5 \times 2 {}^{5}\log 2 \times 3 {}^{2}\log \left(\frac{1}{2}\right) \times \left(2 {}^{5}\log 5\right)^{2} \\
= {}^{\frac{1}{2}}\log 5 \times {}^{5}\log 2 \times {}^{2}\log \frac{1}{2} \times \left(2 \cdot 1\right)^{2} \times 2 \times 3 \\
= {}^{\frac{1}{2}}\log \frac{1}{2} \times 2^{2} \times 2 \times 3 \\
= 1 \times 2^{2} \times 2 \times 3 \\
= 24$$

Jawab: A

- 7. Koordinat titik potong grafik fungsi kuadarat $f(x) = (x-1)^2 4$ dengan sumbu X adalah ...
 - A. (1,0) dan (3,0)
 - B. (0,1) dan (0,3)
 - C. (-1,0) dan (3,0)
 - D. (0,-1) dan (0,3)
 - E. (-1,0) dan (-3,0)

Grafik fungsi $f(x) = (x-1)^2 - 4$ memotong sumbu X di f(x) = 0

$$f(x) = (x-1)^2 - 4 = 0$$

$$x^2 - 2x + 1 - 4 = 0$$

$$x^2 - 2x - 3 = 0$$

$$(x-3)(x+1)=0$$

$$(x-3) = 0$$
 atau $(x+1) = 0$

$$x = 3$$
 atau $x = -1$

Jadi fungsi $f(x) = (x-1)^2 - 4$ memotong sumbu X di (3,0) dan (-1,0).

Jawab: C

- 8. Koordinat titik balik dari grafik fungsi kuadarat yang persamaannya y = (x 6)(x + 2) adalah
 - A. (-2,0)
 - B. (-1, -7)
 - C. (1,-15)
 - D. (2,-16)
 - E. (3, -24)

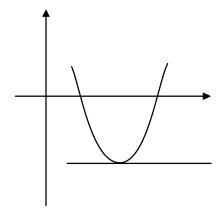
Cara I:

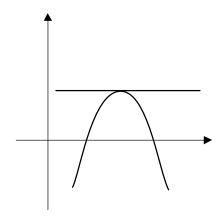
Titik balik suatu fungsi adalah titik optimum (maksimum/minimum) yang dicapai oleh fungsi bersangkutan. Untyuk fungsi kuadarat $y=ax^2+bx+c$ titik balik terjadi pada sumbu simetri grafiknya, yaitu $x=-\frac{b}{2a}$.

Di
$$x = -\frac{b}{2a}$$
 nilai $y = a\left(-\frac{b}{2a}\right)^2 + b\left(-\frac{b}{2a}\right) + c = \frac{D}{-4a}$, dengan $D = b^2 - 4ac$.

Sumbu simetri untuk fungsi
$$y = (x - 6)(x + 2) = x^2 - 4x - 12$$
 adalah $x = -\frac{-4}{2} = 2$,

Nilai y di x = 2 adalah y = -16.


Jadi titik balik terjadi di titik (2, -16).


Jawab: D

8

Cara II:

Titik balik suatu fungsi adalah titik optimum (maksimum/minimum) yang dicapai oleh fungsi bersangkutan. Garis singgung pada titik balik tersebut sejajar sumbu X.

Garis yang sejajar sumbu X mempunyai kemiringan/gradient 0.

Gradien garis singgung suatu fungsi y = f(x) adalah $\frac{dy}{dx}$

Untuk mencari turunan fungsi y = (x - 6)(x + 2) dapat dilakukan melalui dua cara.

Cara pertama, kalikan dulu faktor-faktornya kemudian dicari turunannya.

$$y = (x - 6)(x + 2)$$

$$= x^{2} - 6x + 2x - 12$$

$$= x^{2} - 4x - 12$$

$$\frac{dy}{dx} = 2x - 4$$

Cara kedua, dengan mengingat sifat berikut:

Untuk suatu fungsi
$$y = f(x)g(x)$$
 berlaku $\frac{dy}{dx} = \frac{df}{dx}g(x) + \frac{dg}{dx}f(x)$

Untuk fungsi y = (x-6)(x+2),

$$f(x) = (x-6) \operatorname{dan} g(x) = (x+2).$$

$$\frac{df}{dx} = 1 \operatorname{dan} \frac{dg}{dx} = 1$$

Jadi
$$\frac{dy}{dx} = 1(x+2) + 1(x-6)$$

= 2x - 4

Di titik balik, kemiringan garis singgung sama dengan 0.

$$\frac{dy}{dx} = 2x - 4 = 0$$
$$2x - 4 = 0$$

$$x = 2$$

Untuk x = 2 nilai y = (2-6)(2+2) = -16.

Jadi titik balik dari grafik fungsi kuadarat yang persamaannya y = (x - 6)(x + 2) adalah (2, -16).

Jawab: D

9. Persamaan grafik fungsi kuadrat mempunyai titik ekstrim (-1,4) dan melalui (0,3) adalah

A.
$$y = -x^2 + 2x - 3$$

B.
$$y = -x^2 + 2x + 3$$

C.
$$y = -x^2 - 2x + 3$$

D.
$$y = -x^2 - 2x - 5$$

E.
$$y = -x^2 - 2x + 5$$

Penyelesaian:

Cara I:

Persamaan grafik fungsi kuadarat yang memiliki titik ekstrim (p, q) adalah $y = a(x - p)^2 + q$. Untuk grafik fungsi kuadrat yang memiliki titik ekstrim di (-1,4), memenuhi persamaan $y = a(x + 1)^2 + 4$.

Grafik melalui (0,3) maka $3 = a(0 + 1)^2 + 4$

$$\Leftrightarrow$$
 3 = a + 4

$$\Leftrightarrow a = -1$$

Jadi persamaan grafiknya adalah

$$y = -1(x + 1)^{2} + 4$$
$$= -1(x^{2} + 2x + 1) + 4$$
$$= -x^{2} - 2x + 3$$

Jawab: C

Cara II:

Misalkan fungsi kuadrat tersebut adalah $y = ax^2 + bx + c$.

Fungsi tersebut mempunyai titik ekstrim (-1,4). Di titik (-1,4) garis singgung fungsi tersebut mempunyai kemiringan/gradient nol.

Di titik
$$(-1,4)$$
, $\frac{dy}{dx} = 2ax + b = 0$
 $-2a + b = 0$
 $b = 2a$ (i)

Grafik fungsi ini melalui (0,3).

Jadi memenuhi persamaan $3 = a0^2 + b0 + c$

$$c=3$$
(ii)

Grafik fungsi ini juga melalui (-1,4)

Jadi memenuhi persamaan $4 = a(-1)^2 + b(-1) + c$

$$4 = a - b + c$$
(iii)

Mengingat kesamaan (ii) c = 3

$$4 = a - b + 3$$

$$1 = a - b$$

Mengingat kesamaan (i) b = 2a

$$1 = a - 2a$$

$$a = -1$$

$$a = -1 \Rightarrow b = -2$$

Jadi fungsi kuadrat tersebut adalah $y = -x^2 - 2x + 3$.

Jawab: C

10. Diketahui fungsi $f: R \to R$, $g: R \to R$ yang dinyatakan $f(x) = x^2 - 2x - 3$ dan g(x) = x - 2Komposisi fungsi yang dirumuskan sebagai $(f \circ g)(x) = \dots$

A.
$$x^2 - 6x + 5$$

B.
$$x^2 - 6x - 3$$

C.
$$x^2 - 2x + 6$$

D.
$$x^2 - 2x + 2$$

E.
$$x^2 - 2x - 5$$

Penyelesaian:

$$(f \circ g)(x) = f(g(x))$$

$$= (x-2)^2 - 2(x-2) - 3$$

$$= (x^2 - 4x + 4) - (2x - 4) - 3$$

$$= x^2 - 4x + 4 - 2x + 4 - 3$$

$$= x^2 - 6x + 5$$

Jawab: A

11. Diketahui fungsi $f(x) = \frac{3x-4}{2x+5}$; $x \neq -\frac{5}{2}$. Invers dari f adalah $f^{-1}(x) = ...$

A.
$$\frac{5x-4}{2x+3}$$
; $x \neq -\frac{3}{2}$

B.
$$\frac{-3x-4}{2x-5}$$
; $x \neq \frac{5}{2}$

C.
$$\frac{4x-3}{5x+2}$$
; $x \neq -\frac{2}{5}$

D.
$$\frac{5x-2}{4x-3}$$
; $x \neq -\frac{3}{4}$

E.
$$\frac{-5x-4}{2x-3}$$
; $x \neq \frac{3}{2}$

Pembahasan:

Misalnya y = f(x).

Berarti
$$y = \frac{3x-4}{2x+5}$$
 $\Leftrightarrow 3x-4 = 2xy+5y$

$$\Leftrightarrow 3x - 2xy = 5y + 4$$

$$\Leftrightarrow x(3-2y) = 5y + 4$$

$$\Leftrightarrow x = \frac{5y+4}{3-2y} = \frac{-5y-4}{2y-3}.$$

Jadi
$$f^{-1}(x) = \frac{-5x-4}{2x-3}$$
; $x \neq \frac{3}{2}$

Jawaban: E

12. Akar-akar persamaan $x^2-2x-3=0$ adalah x_1 dan x_2 . Jika $x_1>x_2$, maka nilai $x_1-x_2=...$

- A. 4
- B. 2
- C
- D 1
- F /

Cara I:

Persamaan tersebut dicari akarnya secara langsung. Yaitu

$$x^2 - 2x - 3 = 0 \Leftrightarrow (x - 3)(x + 1) = 0$$
 yang menghasilkan $x_1 = 3$ dan $x_2 = -1$

Dari sini diperoleh $x_1 - x_2 = 3 - (-1) = 4$.

Cara II:

$$(x_1 - x_2)^2 = x_1^2 + x_2^2 - 2x_1 x_2$$

$$= (x_1 + x_2)^2 - 4x_1 x_2$$

$$= (2)^2 - 4(-3) = 16. \text{ Jadi } (x_1 - x_2)^2 = 16$$

Karena $x_1 > x_2$ maka $x_1 - x_2$ positip sehingga $x_1 - x_2 = 4$

Jawaban: E

- Akar-akar persamaan kuadarat $x^2 5x + 3 = 0$ adalah α dan β . Nilai $\frac{1}{\alpha} + \frac{1}{\beta} = ...$

 - A. $-\frac{5}{3}$ B. $-\frac{3}{5}$ C. $\frac{3}{5}$ D. $\frac{5}{3}$ E. $\frac{8}{3}$

Pembahasan:

Karena persamaan kuadrat $x^2 - 5x + 3 = 0$ mempunyai akar α dan β maka

 $\alpha + \beta = 5 \operatorname{dan} \alpha . \beta = 3$. Dengan demikian diperoleh

$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{5}{3}$$

Jawaban: D

14. Himpunan penyelesaian dari $x^2 - 10x + 21 < 0$, $x \in R$ adalah....

A.
$$\{x | x < 3 \text{ atau } x > 7; x \in R\}$$

B.
$$\{x \mid x < -7 \text{ atau } x > 3; x \in R\}$$

C.
$$\{x \mid -7 < x < 3; x \in R\}$$

D.
$$\{x \mid -3 < x < 7; x \in R\}$$

E.
$$\{x \mid 3 < x < 7; x \in R\}$$

Pembahasan:

 $x^2 - 10x + 21 < 0 \Leftrightarrow (x - 3)(x - 7) < 0$. Untuk mempermudah dalam menentukan penyelesaian digunakan bilangan.

Karena yang dicari hasil negatif maka penyelesaiannya adalah 3 < x < 7

Jawaban: E

15. Diketahui m dan n merupakan penyelesaian dari sistem persamaan $\begin{cases} 3x + 2y = 17 \\ 2x + 3y = 8 \end{cases}$.

Nilai dari $m + n = \dots$

- A. 9
- B. 8
- C. 7
- D. 6
- E. 5

Pembahasan:

Karena m dan n merupakan penyelesaian dari $\begin{cases} 3x + 2y = 17 \\ 2x + 3y = 8 \end{cases}$ maka harus berlaku

 $3m+2n=17\,\mathrm{dan}\,\,2m+3n=8$. Selanjutnya keduanya dijumlahkan menghasilkan

5m + 5n = 25. Perhatikan bahwa $5m + 5n = 25 \Leftrightarrow 5(m + n) = 25 \Leftrightarrow m + n = 5$

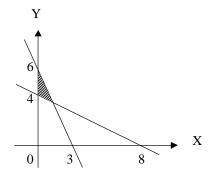
- 16. Pak Temon bekerja dengan perhitungan 4 hari lembur dan 2 hari tidak lembur serta mendapat gaji Rp740.000,00 sedangkan Pak Abdel bekerja 2 hari lembur dan 3 hari tidak lembur dengan gaji Rp550.000,00. Jika Pak Eko bekerja dengan perhitungan lembur selama lima hari , maka gaji yang diterima Pak Eko adalah
 - A. Rp450.000,00
 - B. Rp.650.000,00
 - C. Rp700.000,00
 - D. Rp750.000,00
 - E. Rp1.000.000,00

Sistem persamaan linear yang menggambarkan permasalahan di atas adalah

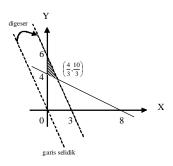
4x + 2y = 740000; 2x + 3y = 550000 dengan x = besarnya upah lembur tiap hari dan y = besarnya upah tidak lembur tiap hari. Dengan menggunakan metode eliminasi

$$4x + 2y = 740000 \| \times 3 | 12x + 6y = 2220000$$

$$2x + 3y = 550000 \times 2 |4x + 6y = 1100000$$


diperoleh penyelesaian x = 140000 dan y = 90000. Karena Pak Eko bekerja lembur selama 5 hari maka ia mendapat gaji $5 \times 140000 = 700000$.

Jawaban: C


17. Perhatikan gambar!

Nilai maksimum f(x, y) = 60x + 30y untuk (x, y) pada daerah yang diarsir adalah

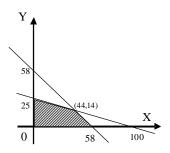
- A. 200
- B. 180
- C. 120
- D. 110
- E. 80

Garis selidik yang bersesuaian dengan fungsi sasaran adalah 6x + 3y = k. Dengan menggeser garis selidik ke kanan maka nilai maksimum diperoleh yaitu pada titik-titik yang memenuhi 6x + 3y = k yang berada pada daerah yang diarsir. Perhatikan gambar di bawah

Berarti di titik (0,6) atau di perpotongan kedua garis itu yaitu titik $(\frac{4}{3},\frac{10}{3})$ akan menghasilkan nilai f(x,y)=60x+30y maksimum. Jadi nilai maksimum dari f adalah f(0,6)=60(0)+30(6)=180. Sama nilainya dengan

$$f(\frac{4}{3}, \frac{10}{3}) = 60(\frac{4}{3}) + 30(\frac{10}{3}) = 80 + 100 = 180$$

Jawaban: B


- 18. Tempat parkir seluas 600 m² hanya mampu menampung 58 kendaraan jenis bus dan mobil. Tiap mobil membutuhkan tempat seluas 6 m² dan bus 24 m². Biaya parkir tiap mobil Rp2.000,00 dan bus Rp 3.500,00. Berapa hasil dari biaya parkir maksimum, jika tempat parkie penuh?
 - A. Rp87.500,00
 - B. Rp116.000,00
 - C. Rp137.000,00
 - D. Rp163.000,00
 - E. Rp203.000,00

Permasalahan di atas dapat dituangkan dalam sistem pertidaksamaan linear sebagai berikut:

 $6x + 24y \le 600$; $x + y \le 58$; $x \ge 0$; $y \ge 0$. Nilai maksimum yang akan dicari adalah f(x, y) = 2000x + 3500y dimana x dan y berada dalam daerah peyelesaian sistem pertidaksamaan tersebut. Daerah penyelesaian dapat ditentukan sebagai berikut:

 $6x + 24y \le 600$; $x + y \le 58$; $x \ge 0$; $y \ge 0$ disederhanakan dulu menjadi

 $x + 4y \le 100$; $x + y \le 58$; $x \ge 0$; $y \ge 0$ yang mempunyai daerah penyelesaian

Dengan mencoba snua titik pada daerah penyelesaian, diperoleh penyelesaian yang menghasilkan nilai maksimum yaitu

$$f(44,14) = 2000(44) + 3500(14) = 137000$$

Jawaban: C

- 19. Diketahui $P = \begin{pmatrix} x & 5 \\ 5x & x y \end{pmatrix}$, $Q = \begin{pmatrix} y & 0 \\ 5 & 2y \end{pmatrix}$ dan $R = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$ Jika P + Q = 5R, maka nilai $x, y = \dots$
 - A. 6
 - B. 5
 - C. -5
 - D. -6
 - E. -14

$$P + Q = 5R \iff \begin{pmatrix} x & 5 \\ 5x & x - y \end{pmatrix} + \begin{pmatrix} y & 0 \\ 5 & 2y \end{pmatrix} = \begin{pmatrix} 5 & 5 \\ 20 & 5 \end{pmatrix}$$
$$\Leftrightarrow \begin{pmatrix} x + y & 5 \\ 5x + 5 & x + y \end{pmatrix} = \begin{pmatrix} 5 & 5 \\ 20 & 5 \end{pmatrix}$$

Dari sini diperoleh hubungan 5x+5=20, x+y=5 yang menghasilkan penyelesaian x=3 dan y=2. Jadi x.y=3. 2=6

Jawaban: A

- 20. Diketahui matriks-matriks $A = \begin{pmatrix} 2 & 1 \\ 4 & 5 \end{pmatrix} \operatorname{dan} B = \begin{pmatrix} 3 & 2 \\ 6 & 1 \end{pmatrix}$. Nilai determinan matriks 2A 3B adalah
 - A. 5
 - B. -45
 - C. -65
 - D. -75
 - E. -85

Pembahasan:

$$2A - 3B = \begin{pmatrix} 4 & 2 \\ 8 & 10 \end{pmatrix} - \begin{pmatrix} 9 & 6 \\ 18 & 3 \end{pmatrix} = \begin{pmatrix} -5 & -4 \\ -10 & 7 \end{pmatrix}.$$

Jadi det
$$(2A-3B)$$
 = det $\begin{pmatrix} -5 & -4 \\ -10 & 7 \end{pmatrix}$ = -5(7) - (-4).(-10) = -35 - 40 = -75

21. Diketahui matriks
$$A = \begin{bmatrix} 1 & 2 \\ 5 & 6 \end{bmatrix}$$
, dan $B = \begin{bmatrix} 3 & 5 \\ 6 & 7 \end{bmatrix}$. Jika $C = A - B$ maka invers matriks C adalah $C^{-1} = \cdots$

A.
$$\begin{bmatrix} 1 & -3 \\ 1 & 2 \end{bmatrix}$$

B.
$$\begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}$$

C.
$$\begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$$

D.
$$\begin{bmatrix} 1 & -3 \\ -1 & 2 \end{bmatrix}$$

E.
$$\begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$$

$$C = A - B$$

$$C = \begin{bmatrix} 1 & 2 \\ 5 & 6 \end{bmatrix} - \begin{bmatrix} 3 & 5 \\ 6 & 7 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 - 3 & 2 - 5 \\ 5 - 6 & 6 - 7 \end{bmatrix}$$

$$C = \begin{bmatrix} -2 & -3 \\ -1 & -1 \end{bmatrix}$$

Invers matriks berordo 2x2 jika $C = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ maka $C^{-1} = \frac{1}{\det(C)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

$$det(C) = |C| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$C = \begin{bmatrix} -2 & -3 \\ -1 & -1 \end{bmatrix}$$

$$det(C) = |C| = (-2x - 1) - (-1x - 3)$$
$$= 2 - 3$$

$$= -1$$

$$C^{-1} = \frac{1}{-1} \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$$

$$C^{-1} = -1 \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$$

$$C^{-1} = \begin{bmatrix} 1 & -3 \\ -1 & 2 \end{bmatrix}$$

Jawaban : D

- 22. Diketahui persamaan matriks $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} A = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$. Maka matriks A = ...
 - A. $\begin{bmatrix} -6 & -5 \\ 5 & 4 \end{bmatrix}$
 - B. $\begin{bmatrix} -5 & -6 \\ 4 & 5 \end{bmatrix}$
 - C. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - D. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
 - E. $\begin{bmatrix} 2 & -1 \\ -\frac{1}{2} & -1\frac{1}{2} \end{bmatrix}$

$$AX = B \text{ maka } X = A^{-1} \cdot B$$

$$A = \frac{1}{4-6} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$$

$$A = -\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} 4 & 3\\ 2 & 1 \end{bmatrix}$$

$$A = -\begin{bmatrix} -8 + 2 & -6 + 1 \\ 6 - 1 & \frac{9}{2} + \left(-\frac{1}{2}\right) \end{bmatrix}$$

$$A = \begin{bmatrix} -6 & -5 \\ 5 & 4 \end{bmatrix}$$

Jawaban: A

- 23. Dari suatu deret aritmetika diketahui suku ke-6 adalah 17 dan suku ke-10 adalah 33. Jumlah tiga puluh suku pertama deret itu adalah ...
 - A. 1.650
 - B. 1.710
 - C. 3.300
 - D. 4.280
 - E. 5.300

Diketahui $U_6 = 17 \, \mathrm{dan} \, U_{10} = 33$

Rumus umum suku ke-n dengan suku pertama a dan beda b adalah $U_n=a+(n-1)b$

Sehingga diketahui

$$U_6 = a + 5b$$
(i)

$$U_{10} = a + 9b$$
(ii)

Dengan (i) dan (ii) diperoleh

$$U_6 = a + 5b$$

$$U_{10} = a + 9b$$

$$U_6 - U_{10} = -4b$$

$$17 - 33 = -4b$$

$$-16 = -4b$$

$$b = 4$$

Sehingga

$$U_6 = a + 5b$$

$$a=U_6-5b$$

$$a = 17 - 20$$

$$a = -3$$

$$S_n = \frac{n}{2}(2a + (n-1)b)$$

$$S_{30} = \frac{30}{2}(2.(-3) + (30 - 1)4)$$

$$S_{30} = 15(-6 + 166)$$

$$S_{30} = 15 \times 110$$

$$S_{30} = 1.650$$

Jawaban: A

- 24. Suku ketiga dan ketujuh suatu barisan geometri berturut-turut adalah 6 dan 96. Suku ke-5 barisan tersebut adalah ...
 - A. 18
 - B. 24
 - C. 36
 - D. 48
 - E. 54

Penyelesaian:

Misalkan terdapat suatu barisan geometri U_1, U_2, \dots, U_n maka rumus umum suku ke-n dengan suku pertama a dan rasio r adalah $U_n = ar^{n-1}$.

Diketahui $U_3 = 6 \text{ dan } U_7 = 96$

$$U_7 = ar^6$$

$$U_3 = ar^2$$

$$\frac{U_3 = ar^2}{r^4 = \frac{U_7}{U_3}} \quad :$$

$$r^4 = \frac{96}{6} = 16$$

$$r = \pm 2$$

r deret geometri diatas = 2.

$$U_3 = ar^2$$

$$6 = 4a \Rightarrow a = \frac{3}{2}$$

Sehingga suku kelima deret geometri tersebut =

$$U_5 = ar^4$$

$$U_5 = \frac{3}{2} \cdot 2^4$$

$$U_5 = 18$$

Jawaban: A

25. Jumlah deret geometri tak hingga 18 + 6 + 2 + $\frac{2}{3}$ + \cdots adalah ...

A.
$$26\frac{2}{3}$$

D.
$$38\frac{7}{6}$$

Penyelesaian:

Diketahui a = 18

$$U_2 = ar$$

$$r = \frac{U_2}{a} = \frac{6}{18} = \frac{1}{3}$$

Oleh karena -1 < r < 1 maka nilai r^n akan semakin kecil dan mendekati nol. Dalam hal ini untuk $n \to \infty$ maka $r^n \to 0$, sehingga diperoleh

$$S_{\infty} = \frac{a}{1-r} - \frac{a(0)}{1-r}$$

$$S_{\infty} = \frac{a}{1 - r}$$

Sehingga jumlah deret geometri tak hingga diatas adalah sebagai berikut:

$$S_{\infty} = \frac{18}{1 - \frac{1}{3}}$$

$$S_{\infty} = \frac{18}{\frac{2}{3}}$$

$$S_{\infty} = 27$$

26. Nilai
$$\lim_{x\to 2} \frac{x^2 - 8x + 12}{x^2 - 4} = \cdots$$

$$\lim_{x \to 2} \frac{x^2 - 8x + 12}{x^2 - 4} = \lim_{x \to 2} \left(\frac{(x - 6)(x - 2)}{(x + 2)(x - 2)} \right)$$

$$= \lim_{x \to 2} \left(\frac{(x - 6)}{(x + 2)} \right)$$

$$= \lim_{x \to 2} \left(\frac{(x - 6)}{(x + 2)} \right)$$

$$= \frac{(2 - 6)}{2 + 2}$$

$$= -\frac{4}{4} = -1$$

Jawaban: B

27. Nilai
$$\lim_{x\to\infty} \frac{x^2 - 2x - 1}{3x^2 + 6x - 1} = \cdots$$

B.
$$-\frac{1}{3}$$

D.
$$\frac{1}{3}$$

Penyelesaian:

Fungsi dan limit diatas berbentuk $\frac{f(x)}{g(x)}$ dengan $g(x) \neq 0$. Penyelesaian dapat ditentukan dengan cara membagi pembilang dan penyebut dengan x^2 (karena pangkat tertingginya 2). Sehingga :

$$\lim_{x \to \infty} \frac{x^2 - 2x - 1}{3x^2 + 6x - 1} = \lim_{x \to \infty} \frac{\frac{x^2}{x^2} - \frac{2x}{x^2} - \frac{1}{x^2}}{\frac{3x^2}{x^2} + \frac{6x}{x^2} - \frac{1}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{2}{x} - \frac{1}{x^2}}{3 + \frac{6}{x} - \frac{1}{x^2}} = \frac{1 - \frac{2}{\infty} - \frac{1}{\infty^2}}{3 + \frac{6}{\infty} - \frac{1}{\infty^2}}$$

$$= \frac{1 - 0 - 0}{3 + 0 - 0}$$

$$= \frac{1}{3}$$

Jawaban: D

- 28. Diketahui $f(x) = 6x^4 2x^3 + 3x^2 x 3$ dan f' adalah turunan pertama dari f. Nilai dari $f'(1) = \cdots$
 - A. 20
 - B. 21
 - C. 23
 - D. 24
 - E. 26

$$f(x) = 6x^4 - 2x^3 + 3x^2 - x - 3$$

$$f'(x) = 24x^3 - 6x^2 + 6x - 1$$

$$f'(1) = 24(1)^3 - 6(1)^2 + 6(1) - 1$$
$$= 24 - 6 + 6 - 1$$
$$= 23$$

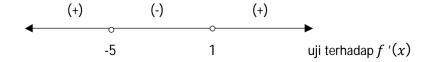
Jawaban: C

- 29. Grafik fungsi $f(x)=x^3+6x^2-15x+3$ naik pada interval ...
 - A. -1 < x < 5
 - B. -5 < x < 1
 - C. x < 1 atau x > 5
 - D. x < -5 atau x > 1
 - E. x < -1 atau x > 5

Penyelesaian:

$$f(x)=x^3+6x^2-15x+3 \rightarrow f'(x) = 3x^2+12x-15$$

untuk menentukan dimana f'(x) > 0, misalkan


$$f'(x) = 0 \rightarrow 3x^2 + 12x - 15 = 0$$

$$(3x + 15)(x - 1) = 0$$

$$(3x + 15) = 0 \Rightarrow x = -5$$

$$(x-1)=0 \Rightarrow x=1$$

dengan garis bilangan riil :

jadi dapat di simpulkan bahwa grafik fungsi f(x) naik pada interval x < -5 dan x > 1.

Jawaban: D

- 30. Hasil penjualan x unit barang dinyatakan oleh fungsi $p(x) = 50.000 + 400x 4x^2$ (dalam ratusan rupiah). Hasil penjualan maksimum yang diperoleh adalah ...
 - A. Rp. 2.000.000,00
 - B. Rp. 4.000.000,00
 - C. Rp. 5.000.000,00
 - D. Rp. 6.000.000,00
 - E. Rp. 7.000.000,00

Penyelesaian:

$$p(x) = 50.000 + 400x - 4x^2$$

Nilai p(x) akan mencapai nilai maksimum dari nilai x yang diperoleh dari p'(x) = 0.

$$p'(x) = 400 - 8x$$

$$400 - 8x = 0$$

$$8x = 400$$

$$x = \frac{400}{8} = 50$$

$$p''(x) = -8$$

p''(50) = -8 < 0 (negatif) maka p(x) mempunyai nilai maksimum yaitu p(x).

Nilai maksimum p(x) =

$$p(50) = 50.000 + 400(50) - 4(50)^{2}$$
$$= 50.000 + 20.000 - 10.000$$
$$= 60.000$$

fungsi $p(x) = 50.000 + 400x - 4x^2$ (dalam ratusan rupiah), sehingga hasil penjualan maksimum yang diperoleh adalah Rp. 6.000.000,00

Jawaban : D

31. Diketahui matriks
$$A = \begin{bmatrix} 1 & 2 \\ 5 & 6 \end{bmatrix}$$
, dan $B = \begin{bmatrix} 3 & 5 \\ 6 & 7 \end{bmatrix}$. Jika $C = A - B$ maka invers matriks C adalah $C^{-1} = \cdots$

F.
$$\begin{bmatrix} 1 & -3 \\ 1 & 2 \end{bmatrix}$$

G.
$$\begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}$$

H.
$$\begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$$

I.
$$\begin{bmatrix} 1 & -3 \\ -1 & 2 \end{bmatrix}$$

J.
$$\begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$$

$$C = A - B$$

$$C = \begin{bmatrix} 1 & 2 \\ 5 & 6 \end{bmatrix} - \begin{bmatrix} 3 & 5 \\ 6 & 7 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 - 3 & 2 - 5 \\ 5 - 6 & 6 - 7 \end{bmatrix}$$

$$C = \begin{bmatrix} -2 & -3 \\ -1 & -1 \end{bmatrix}$$

Invers matriks berordo 2x2 jika $C = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ maka $C^{-1} = \frac{1}{\det(C)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

$$det(C) = |C| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$C = \begin{bmatrix} -2 & -3 \\ -1 & -1 \end{bmatrix}$$

$$det(C) = |C| = (-2x - 1) - (-1x - 3)$$

= 2 - 3

$$C^{-1} = \frac{1}{-1} \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$$

$$C^{-1} = -1 \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$$

$$C^{-1} = \begin{bmatrix} 1 & -3 \\ -1 & 2 \end{bmatrix}$$

Jawaban: D

32. Diketahui persamaan matriks $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} A = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$. Maka matriks A = ...

F.
$$\begin{bmatrix} -6 & -5 \\ 5 & 4 \end{bmatrix}$$

G.
$$\begin{bmatrix} -5 & -6 \\ 4 & 5 \end{bmatrix}$$

H.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

I.
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$J. \quad \begin{bmatrix} 2 & -1 \\ -\frac{1}{2} & -1\frac{1}{2} \end{bmatrix}$$

Penyelesaian:

$$AX = B \text{ maka } X = A^{-1} \cdot B$$

$$A = \frac{1}{4-6} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$$

$$A = -\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} 4 & 3\\ 2 & 1 \end{bmatrix}$$

$$A = -\begin{bmatrix} -8 + 2 & -6 + 1 \\ 6 - 1 & \frac{9}{2} + \left(-\frac{1}{2}\right) \end{bmatrix}$$

$$A = \begin{bmatrix} -6 & -5 \\ 5 & 4 \end{bmatrix}$$

Jawaban: A

- 33. Dari suatu deret aritmetika diketahui suku ke-6 adalah 17 dan suku ke-10 adalah 33. Jumlah tiga puluh suku pertama deret itu adalah ...
 - F. 1.650
 - G. 1.710
 - H. 3.300
 - I. 4.280
 - J. 5.300

Diketahui $U_6 = 17 \operatorname{dan} U_{10} = 33$

Rumus umum suku ke-n dengan suku pertama a dan beda b adalah $U_n=a+(n-1)b$

Sehingga diketahui

$$U_6 = a + 5b$$

$$U_{10} = a + 9b$$

Dengan (i) dan (ii) diperoleh

$$U_6 = a + 5b$$

$$U_{10} = a + 9b$$

$$U_6 - U_{10} = -4b$$

$$17 - 33 = -4b$$

$$-16 = -4b$$

$$b = 4$$

Sehingga

$$U_6 = a + 5b$$

$$a = U_6 - 5b$$

$$a = 17 - 20$$

$$a = -3$$

$$S_n = \frac{n}{2}(2a + (n-1)b)$$

$$S_{30} = \frac{30}{2}(2.(-3) + (30 - 1)4)$$

$$S_{30} = 15(-6 + 166)$$

$$S_{30} = 15 \times 110$$

$$S_{30} = 1.650$$

Jawaban: A

- 34. Suku ketiga dan ketujuh suatu barisan geometri berturut-turut adalah 6 dan 96. Suku ke-5 barisan tersebut adalah ...
 - F. 18
 - G. 24
 - H. 36
 - I. 48
 - J. 54

Penyelesaian:

Misalkan terdapat suatu barisan geometri U_1, U_2, \dots, U_n maka rumus umum suku ke-n dengan suku pertama a dan rasio r adalah $U_n = ar^{n-1}$.

Diketahui $U_3 = 6 \text{ dan } U_7 = 96$

$$U_7=ar^6$$

$$U_3 = ar^2$$

$$\frac{U_3 = ar^2}{r^4 = \frac{U_7}{U_3}} \quad :$$

$$r^4 = \frac{96}{6} = 16$$

$$r = \pm 2$$

r deret geometri diatas = 2.

$$U_3 = ar^2$$

$$6 = 4a \Rightarrow a = \frac{3}{2}$$

Sehingga suku kelima deret geometri tersebut =

$$U_5 = \alpha r^4$$

$$U_5 = \frac{3}{2} \cdot 2^4$$

$$U_5 = 18$$

Jawaban: A

35. Jumlah deret geometri tak hingga 18 + 6 + 2 + $\frac{2}{3}$ + \cdots adalah ...

F.
$$26\frac{2}{3}$$

I.
$$38\frac{7}{6}$$

Penyelesaian:

Diketahui a = 18

$$U_2 = ar$$

$$r = \frac{U_2}{a} = \frac{6}{18} = \frac{1}{3}$$

Oleh karena -1 < r < 1 maka nilai r^n akan semakin kecil dan mendekati nol. Dalam hal ini untuk $n \to \infty$ maka $r^n \to 0$, sehingga diperoleh

$$S_{\infty} = \frac{a}{1-r} - \frac{a(0)}{1-r}$$

$$S_{\infty} = \frac{a}{1 - r}$$

Sehingga jumlah deret geometri tak hingga diatas adalah sebagai berikut:

$$S_{\infty} = \frac{18}{1 - \frac{1}{3}}$$

$$S_{\infty} = \frac{18}{\frac{2}{3}}$$

$$S_{\infty} = 27$$

36. Nilai
$$\lim_{x\to 2} \frac{x^2 - 8x + 12}{x^2 - 4} = \cdots$$

$$\lim_{x \to 2} \frac{x^2 - 8x + 12}{x^2 - 4} = \lim_{x \to 2} \left(\frac{(x - 6)(x - 2)}{(x + 2)(x - 2)} \right)$$

$$= \lim_{x \to 2} \left(\frac{(x - 6)}{(x + 2)} \right)$$

$$= \frac{(2 - 6)}{2 + 2}$$

$$= -\frac{4}{4} = -1$$

Jawaban: B

37. Nilai
$$\lim_{x\to\infty} \frac{x^2 - 2x - 1}{3x^2 + 6x - 1} = \cdots$$

G.
$$-\frac{1}{3}$$

$$1. \frac{1}{3}$$

Penyelesaian:

Fungsi dan limit diatas berbentuk $\frac{f(x)}{g(x)}$ dengan $g(x) \neq 0$. Penyelesaian dapat ditentukan dengan cara membagi pembilang dan penyebut dengan x^2 (karena pangkat tertingginya 2). Sehingga :

$$\lim_{x \to \infty} \frac{x^2 - 2x - 1}{3x^2 + 6x - 1} = \lim_{x \to \infty} \frac{\frac{x^2}{x^2} - \frac{2x}{x^2} - \frac{1}{x^2}}{\frac{3x^2}{x^2} + \frac{6x}{x^2} - \frac{1}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{2}{x} - \frac{1}{x^2}}{3 + \frac{6}{x} - \frac{1}{x^2}} = \frac{1 - \frac{2}{\infty} - \frac{1}{\infty^2}}{3 + \frac{6}{\infty} - \frac{1}{\infty^2}}$$

$$= \frac{1 - 0 - 0}{3 + 0 - 0}$$

$$= \frac{1}{3}$$

Jawaban: D

- 38. Diketahui $f(x) = 6x^4 2x^3 + 3x^2 x 3$ dan f' adalah turunan pertama dari f. Nilai dari $f'(1) = \cdots$
 - F. 20
 - G. 21
 - H. 23
 - I. 24
 - J. 26

$$f(x) = 6x^4 - 2x^3 + 3x^2 - x - 3$$

$$f'(x) = 24x^3 - 6x^2 + 6x - 1$$

$$f'(1) = 24(1)^3 - 6(1)^2 + 6(1) - 1$$
$$= 24 - 6 + 6 - 1$$
$$= 23$$

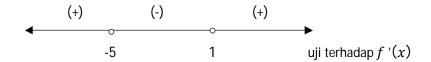
Jawaban: C

- 39. Grafik fungsi $f(x)=x^3+6x^2-15x+3$ naik pada interval ...
 - F. -1 < x < 5
 - G. -5 < x < 1
 - H. x < 1 atau x > 5
 - I. x < -5 atau x > 1
 - J. x < -1 atau x > 5

Penyelesaian:

$$f(x)=x^3+6x^2-15x+3 \rightarrow f'(x) = 3x^2+12x-15$$

untuk menentukan dimana f'(x) > 0, misalkan


$$f'(x) = 0 \rightarrow 3x^2 + 12x - 15 = 0$$

$$(3x + 15)(x - 1) = 0$$

$$(3x + 15) = 0 \Rightarrow x = -5$$

$$(x-1)=0 \Rightarrow x=1$$

dengan garis bilangan riil:

jadi dapat di simpulkan bahwa grafik fungsi f(x) naik pada interval x < -5 dan x > 1.

Jawaban : D

- 40. Hasil penjualan x unit barang dinyatakan oleh fungsi $p(x) = 50.000 + 400x 4x^2$ (dalam ratusan rupiah). Hasil penjualan maksimum yang diperoleh adalah ...
 - F. Rp. 2.000.000,00
 - G. Rp. 4.000.000,00
 - H. Rp. 5.000.000,00
 - I. Rp. 6.000.000,00
 - J. Rp. 7.000.000,00

Penyelesaian:

$$p(x) = 50.000 + 400x - 4x^2$$

Nilai p(x) akan mencapai nilai maksimum dari nilai x yang diperoleh dari p'(x) = 0.

$$p'(x) = 400 - 8x$$

$$400 - 8x = 0$$

$$8x = 400$$

$$x = \frac{400}{8} = 50$$

$$p''(x) = -8$$

p''(50) = -8 < 0 (negatif) maka p(x) mempunyai nilai maksimum yaitu p(x).

Nilai maksimum p(x) =

$$p(50) = 50.000 + 400(50) - 4(50)^{2}$$
$$= 50.000 + 20.000 - 10.000$$
$$= 60.000$$

fungsi $p(x) = 50.000 + 400x - 4x^2$ (dalam ratusan rupiah), sehingga hasil penjualan maksimum yang diperoleh adalah Rp. 6.000.000,00

Jawaban: D