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Rare events: examples

Medicine:

Side effects of treatment
Hospital-acquired infections
Epidemiologic studies of rare diseases

Engineering:

Rare failures of systems

Economy:

E-commerce click rates

Political science:

Wars, election surprises, vetos

1/1000s to fairly common
9.8/1000 pd

1/1000 to 1/200,000
0.1-1/year

1-2/1000 impressions

1/dozens to 1/1000s



Problems with rare events

,Big’ studies needed to observe enough events
Difficult to attribute events to risk factors

Low absolute number of events

Low event rate



Our interest

Models
— for prediction of binary outcomes
— should be interpretable,
i.e., betas should have a meaning
- explanatory models



Logistic regression
Pr(Y =1) = =[1+ exp(—Xp)]™?

Leads to odds ratio interpretation of exp(f):

_Pr(Y = 1|X = xg + 1)/Pr(v=0|X=x0+1)
exp(f) = Pr(Y = 1|X = xg)/Pr(v=0|Xx=x,)

Likelihood: L(B|X) = [T~ &7 (1 — @)t~
Its n' root: Probability of correct prediction

How well can we estimate [ if events (y; = 1) are rare?



Rare event problems...
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Logistic regression with 5 variables:
* estimates are unstable (large MSE) because of few events
. removing some ,non-events’ does not affect precision




Penalized likelihood regression

logL™(B) = log L (B) + A(B)

Imposes priors on model coefficients, e.g.
e A(B) = =AY p? (ridge: normal prior)
« A(B) = -] (LASSO: double exponential)

« A(B) = %log det(I(B)) (Firth-type: Jeffreys prior)

in order to

e avoid extreme estimates and stabilize variance (ridge)
* perform variable selection (LASSO)

* correct small-sample bias in f (Firth-type)



Firth type penalization

In exponential family models with canonical parametrization the
Firth-type penalized likelihood is given b Jeffrevs invariant
errreys invarian
L*(6) = L(O)@et(1(0)) /By e
where I1(0) is the Fisher information Tratrix.
This removes the first-order bias of the ML-estimates.

Software:
* |ogistic regression: R (logistf, brglm, pmlr), SAS, Stata...
* Cox regression: R (coxphf), SAS...

Firth, 1993; Heinze and Schemper, 2002; Heinze, 2006; Heinze, Beyea and Ploner, 2013



Firth type penalization

We are interested in logistic regression:
Here the penalized log likelihood is given by

logL(B) + %log det(XtWX)
with
W = diag(expit(XB)(1 — expit(XB))").

W is maximised at § = 0, i.e. the ML estimates are
shrunken towards zero,

 fora 2 X 2 table (logistic regression with one binary
regressor), Firth’s bias correction amounts to adding 1/2
to each cell.



Separation

(Complete) separation: a combination of the explanatory variables
(nearly) perfectly predicts the outcome
— frequently encountered with small samples,
— “monotone likelihood”,
— some of the ML-estimates are infinite,
— but Firth estimates do exist!

Example: complete separation quasi-complete separation

0 10 0 7
10 0 10 3



Separation

(Complete) separation: a combination of the explanatory variables
(nearly) perfectly predicts the outcome
— frequently encountered with small samples,
— “monotone likelihood”,
— some of the ML-estimates are infinite,
— but Firth estimates do exist!

qguasi-complete ratio
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Impact of Firth correction on predictions

Example from Greenland & Mansournia, 2015

no separatlon qua5| complete separatlon

-nn -nn
0 9 296 ~ 0 10 2966

ML predictions:

A | B
C | 10%  0.53%

Firth predictions:

A | B |
13.6% 0.55%

[ A | B
. 0% 053%

A | B |
- 45%  0.55%
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Impact of Firth correction on predictions

Example from Greenland & Mansournia, 2015

no separatlon qua5| complete separatlon

-“n -“n
0 9 296 ~ 0 10 2966
1 16  0.56% 0 16  0.53%

ML predictions:

n 10% 0.53% 0.56%

- 0% 0.53%  053%

Firth predictions:

13.6% 0.55% 0.59%

- 45% 055%  0.56%

13.11.2015 Georg Heinze
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Example: Bias in logistic regression

Consider a model containing only intercept, no regressors:
logit (P(Y = 1)) = a.
With n observations, k events, the ML estimator of « is given by:
a = logit (k/n).

Jensen’s inequality

T
. . . q“ .
:> Since k/n is unbiased, ——
A . . M -
@ is biased! - logltmean(X))
2 .-
g
ﬁ"il -
(If & was unbiased, -
expit(@) would be biased!)
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Penalized logistic regression: ridge

The penalized likelihood is given by

logL(8) — AlIBIIZ

 where Ais an unknown tuning parameter,
* and the ['s should be suitably standardized.

e Usually, X‘s are standardized to unit variance before
application, and A is tuned by cross-validation

e After application, ,[? can be back-transformed to original scale

See, e.g., Friedman et al, 2010



Known und unknown features of ridge

It reduces RMSE of predictions

It reduces RMSE of beta coefficients

It introduces bias in the beta coefficients
The bias is towards the null



Known und unknown features of ridge

It reduces RMSE of predictions

It reduces RMSE of beta coefficients

It introduces bias in the beta coefficients
The bias is towards the null ?



The ,we won't let you down* effect of ridge
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For comparison: Firth

LogReg with 15
correlated
covariates,

N=3000,
Marginal event rate
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Recent criticisms on Firth for prediction

* Elgmati et al (Lifetime Data Analysis 2015):
upwards bias in predictions for rare events

* Greenland and Mansournia (Statistics in Medicine 2015):
,Bayesian non-collapsibility’ caused by including
correlations in Jeffreys prior



Generalized Firth correction

* Elgmati et al studied a generalized Firth correction:
logL(B) + A log det(X'WX)
with A € [0,0.5]

* (In the two-group case, this corresponds to adding A to each
cell.)

 They derived formulae for bias and MSE of predicted
probabilities in the two-group case, and evaluated the impact
of A.



Generalized

From Elgmati et al, 2015

Two group case,

* Ng=Nq = E;(),

. 1, = 0.03,
. 1, = 0.06
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Generalized Firth correction

From Elgmati et al, 2015
Two group case,
* Ng=Nq = 50,

. 1, = 0.03,
. 1, = 0.06

—>They suggest a

weak Firth correction
with A = 0.1 to minimise
MSE of predictions
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Problems (of Bayesians) working with the
Jeffreys prior

Greenland and Mansournia (Statistics in Medicine 2015):

,The Jeffreys prior (=Firth correction) is data-dependent and
includes correlation between covariates”

,This correlation is needed as also the MLE bias to be corrected has
correlations”

,The marginal prior for a given § can change in opaque ways as
model covariates are added or deleted”

,It may give surprising results in sparse data sets”

,Itis not clear in general how the penalty translates into prior
probabilities for odds ratios”



Bayesian non-collapsibility

* Intheir data example, G&M show that the Firth-corrected
estimate is further away from 0 than the ML estimate:

9 2966

Firth estimate of [;:

ML estimate of B;:  3-35(1.07, 4.9)
3.03 (0.08, 4.8)



The logF(1,1) prior

 Greenland and Mansournia (SiM 2015) suggest the logF(1,1) prior, leading
to the penalized likelihood representation

logL(B) + % — log(1 + exp B;)
J
 They show that this prior coincides with the Jeffreys prior in a one-
parameter model (e.g., matched pairs case-control)

* They strongly argue against imposing a prior on the intercept

Implementation of the logF(1,1) is amazingly simple with standard software:

* Just augment the original data by adding two pseudo-observations per
variable with a value of 1 for that variable, and O‘s for all other variables
(including the constant)

* The pseudo-observations have y=0 and y=1, with weights 0.5 and 0.5
e.g. ,Constant’ X Y Weight

0 1 0 05
0 1 1 05



Example, again

* Intheir data example, G&M show that the Firth-corrected
estimate is further away from 0 than the ML estimate:

9 2966

1 16
logF(1,1) estimate of [54: Firth estimate of [;:
2.41 (-064, 44) ML estimate of ﬁl; 3.35 (107, 49)

3.03 (0.08, 4.8)



Solving the issue by simulation

* By simulating 1000 2x2 tables with the expected cell
frequencies (conditional on marginals of X), we obtain:

ML n.a. n.a.
Firth 0.18 0.81
logF(1,1) 1.10 1.63

True value = 3.03
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Summary so far

We observe that the original Firth penalty results in good bias
and MSE properties for betas

There is an upwards bias (towards 0.5) in predictions

,weak’ Firth penalty optimizes MSE of predictions, but induces
bias in betas

logF is simple to implement, yields unbiased mean
predictions, but possibly too much correction for betas

We would like to keep the good properties for the betas,
but improve the performance for prediction



We called the flic

Austrian flic (,,Kibara“)
(unknown outside A)

French flic
(very popular in A)

13.11.2015
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FLIC: Firth Logistic regression with
Intercept Correction

Consists of the Firth model,
but with adjusted intercept to fulfill . y; = Y. 7r;

Two stage estimation:
e First fit Firth-corrected model

 Then hold betas fixed, but re-estimate intercept without
penalization

* Corrects the bias in mean prediction



Re-simulating the example of Elgmati

From Elgmati et al, 2015
Two group case,
¢ no — n1 — 50
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Other approaches for rare events

Considering uncertainty in estimated [ coefficients, King and
Zeng (2001) propose a correction of estimated probabilities:

Pr(Y; = 1) = j Pr(Y; = 1|8*)P(B*)dB"

where ™ is a bias-corrected estimate of §,
and P(S*) is the posterior distribution of 5’

—~ k

%
[~

This can be approximated by :
Pr(Y; =1) = T; + C;°7

where C; = (0.5 — m;)T; (1 — ﬁi)xiv(ﬁ)xi’ .

XXXX



A simulation study

X matrix

/@\ /@
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N (500, 1400, 3000)

Figure 2: Partial correlation structure of the underlving vanables, rectangles indicating
underlying vanables of metnie vanables, circles that of categorial.

Y (1-10%)

Puhr, 2015; Binder et al, 2011
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Bias of beta estimates

Scenario with N=3000, 1% event rate
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bias of predictions (scaled by exp. SE)

N=3000, 1% event rate, bias of predictions

N=3000, a=1, ybar=0.01, b.sign=-1
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bias of predictions (scaled by exp. SE)

N=3000, 1% event rate, bias of predictions

* Rescaled by expected standard error of predictions

N=3000, a=1, ybar=0.01, b.sign=-1

w
w Ly
g T
ML
"gr —
g FL
N B PP o htanhie L FLIC
e S i 2 RR
| e "'\! !_-:"'__-.::-':‘—._ g LF
o e T —
‘\‘ \\ = 0 - wF
\‘ - {_=} K
N, T w -
T = \\
. &
9 - \ 5
L i1 1 i 1 \ I{Jﬂj o L i1 1 i 1
T T % T I I T
-8 -6 -4 -2 -8 -6 -4 -2
true linear predictor true linear predictor

13.11.2015 Georg Heinze 37



Conclusions

Prediction and effect estimation

Ridge models perform best for prediction (RMSE but not bias),
but should be seen as black boxes

Always ,on the safe side‘: sometimes overly pessimistic

Among the less conservative methods, FLIC performed well
It does not sacrifice the bias-preventive properties of Firth
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