Penalized likelihood logistic regression with rare events

Georg Heinze¹, Angelika Geroldinger¹, Rainer Puhr², Mariana Nold³, Lara Lusa⁴

¹ Medical University of Vienna, CeMSIIS, Section for Clinical Biometrics, Austria
 ² University of New South Wales, The Kirby Institute, Australia
 ³ Universitätsklinikum Jena, Institute for Medical Statistics, Computer Sciences and Documentation, Germany
 ⁴ University of Ljubljana, Institute for Biostatistics and Medical Informatics, Slovenia

Rare events: examples

Medicine:

• S	ide effects of treatment	1/1000s to fairly common
-----	--------------------------	--------------------------

•	Hospital-acquired infections	9.8/1000 pd
---	------------------------------	-------------

•	Epidemiologic studies of rare diseases	1/1000 to 1/200,000
---	--	---------------------

Engineering:

•	Rare failures of systems	0.1-1/year
•	Rare failures of systems	0.1-1/yea

Economy:

•	E-commerce c	lick rates	1-2/1000 impressi	ons
---	--------------	------------	-------------------	-----

Political science:

Wars, election surprises, vetos
 1/dozens to 1/1000s

• • •

Problems with rare events

- ,Big' studies needed to observe enough events
- Difficult to attribute events to risk factors

- Low absolute number of events
- Low event rate

Our interest

- Models
 - for prediction of binary outcomes
 - should be interpretable,
 - i.e., betas should have a meaning
 - → explanatory models

Logistic regression

•
$$Pr(Y = 1) = \pi = [1 + exp(-X\beta)]^{-1}$$

• Leads to odds ratio interpretation of $\exp(\beta)$:

•
$$\exp(\beta) = \frac{\Pr(Y = 1|X = x_0 + 1)/\Pr(Y = 0|X = x_0 + 1)}{\Pr(Y = 1|X = x_0)/\Pr(Y = 0|X = x_0)}$$

- Likelihood: $L(\beta|X) = \prod_{i=1}^n \hat{\pi}_i^{y_i} (1 \hat{\pi}_i)^{1-y_i}$
- Its n^{th} root: Probability of correct prediction
- How well can we estimate β if events ($y_i = 1$) are rare?

Rare event problems...

- estimates are unstable (large MSE) because of few events
- removing some non-events does not affect precision

 13.11.2015

 removing some non-events does not affect precision

Penalized likelihood regression

$$\log L^*(\beta) = \log L(\beta) + A(\beta)$$

Imposes priors on model coefficients, e.g.

•
$$A(\beta) = -\lambda \sum \beta^2$$
 (ridge: normal prior)

•
$$A(\beta) = -\lambda \sum |\beta|$$
 (LASSO: double exponential)

• $A(\beta) = \frac{1}{2} \log \det(I(\beta))$ (Firth-type: Jeffreys prior)

in order to

- avoid extreme estimates and stabilize variance (ridge)
- perform variable selection (LASSO)
- correct small-sample bias in β (Firth-type)

Firth type penalization

In exponential family models with canonical parametrization the **Firth-type penalized likelihood** is given by

$$L^*(\theta) = L(\theta) \det(I(\theta))^{1/2}$$
, Jeffreys invariant prior

where $I(\theta)$ is the Fisher information matrix.

This **removes the first-order bias** of the ML-estimates.

Software:

- logistic regression: R (logistf, brglm, pmlr), SAS, Stata...
- Cox regression: R (coxphf), SAS...

Firth, 1993; Heinze and Schemper, 2002; Heinze, 2006; Heinze, Beyea and Ploner, 2013

Firth type penalization

We are interested in logistic regression:

Here the penalized log likelihood is given by

$$\log L(\beta) + \frac{1}{2}\log \det(X^t W X)$$

with

$$W = \text{diag}(\text{expit}(X\beta)(1 - \text{expit}(X\beta))').$$

- W is maximised at $\beta=0$, i.e. the ML estimates are shrunken towards zero,
- for a 2×2 table (logistic regression with one binary regressor), Firth's bias correction amounts to adding 1/2 to each cell.

Separation

(Complete) separation: a combination of the explanatory variables (nearly) perfectly predicts the outcome

- frequently encountered with small samples,
- "monotone likelihood",
- some of the ML-estimates are infinite,
- but Firth estimates do exist!

Example:

complete separation

	А	В
0	0	10
1	10	0

quasi-complete separation

	А	В
0	0	7
1	10	3

Separation

(Complete) separation: a combination of the explanatory variables (nearly) perfectly predicts the outcome

- frequently encountered with small samples,
- "monotone likelihood",
- some of the ML-estimates are infinite,
- but Firth estimates do exist!

Example: comp

Impact of Firth correction on predictions

Example from Greenland & Mansournia, 2015

no separation

	Α	В
0	9	2966
1	1	16

quasi-complete separation

	Α	В
0	10	2966
1	0	16

• ML predictions:

	Α	В
1	10%	0.53%

	Α	В
1	0%	0.53%

Firth predictions:

	A	В
1	13.6%	0.55%

	А	В
1	4.5%	0.55%

Impact of Firth correction on predictions

0.56%

Example from Greenland & Mansournia, 2015

no separation

	Α	В
0	9	2966
1	1	16

quasi-complete separation

	Α	В
0	10	2966
1	0	16

0.53%

ML predictions:

	Α	В	
1	10%	0.53%	0.56%

	Α	В	
1	0%	0.53%	0

0.53%

• Firth predictions:

	А	В	
1	13.6%	0.55%	0.59%

	Α	В
1	4.5%	0.55%

0.56%

Example: Bias in logistic regression

Consider a model containing only intercept, no regressors:

$$logit (P(Y = 1)) = \alpha.$$

With n observations, k events, the ML estimator of α is given by:

$$\hat{\alpha} = \text{logit (k/n)}.$$

Since k/n is unbiased, $\hat{\alpha}$ is biased!

(If $\hat{\alpha}$ was unbiased, expit($\hat{\alpha}$) would be biased!)

Penalized logistic regression: ridge

The penalized likelihood is given by

$$\log L(\beta) - \lambda \|\beta\|_2^2$$

- where λ is an unknown tuning parameter,
- and the β 's should be suitably standardized.
- Usually, X's are standardized to unit variance before application, and λ is tuned by cross-validation
- After application, $\hat{\beta}$ can be back-transformed to original scale

See, e.g., Friedman et al, 2010

Known und unknown features of ridge

- It reduces RMSE of predictions
- It reduces RMSE of beta coefficients
- It introduces bias in the beta coefficients
- The bias is towards the null

Known und unknown features of ridge

- It reduces RMSE of predictions
- It reduces RMSE of beta coefficients
- It introduces bias in the beta coefficients
- The bias is towards the null?

The ,we won't let you down' effect of ridge

LogReg with 15 correlated covariates, N=3000, Marginal event rate 1%

True effects:

0 for X1 0.25 for X2-X15

Plot shows the betas (simulation)

13.11.2015 Georg Heinze 18

For comparison: Firth

LogReg with 15 correlated covariates, N=3000, Marginal event rate 1%

True effects:

0 for X1 0.25 for X2-X15

Plot shows the betas (simulation)

13.11.2015

Recent criticisms on Firth for prediction

Elgmati et al (Lifetime Data Analysis 2015):
 upwards bias in predictions for rare events

Greenland and Mansournia (Statistics in Medicine 2015):
 ,Bayesian non-collapsibility' caused by including correlations in Jeffreys prior

Generalized Firth correction

Elgmati et al studied a generalized Firth correction:

$$\log L(\beta) + \lambda \log \det(X^t W X)$$

with $\lambda \in [0,0.5]$

- (In the two-group case, this corresponds to adding λ to each cell.)
- They derived formulae for bias and MSE of predicted probabilities in the two-group case, and evaluated the impact of λ .

Generalized Firth correction

From Elgmati et al, 2015 Two group case,

•
$$n_0 = n_1 = 50$$
,

•
$$\pi_0 = 0.03$$
,

•
$$\pi_1 = 0.06$$

Generalized Firth correction

From Elgmati et al, 2015 Two group case,

•
$$n_0 = n_1 = 50$$
,

•
$$\pi_0 = 0.03$$
,

•
$$\pi_1 = 0.06$$

 \rightarrow They suggest a weak Firth correction with $\lambda=0.1$ to minimise MSE of predictions

Problems (of Bayesians) working with the Jeffreys prior

- Greenland and Mansournia (Statistics in Medicine 2015):
- "The Jeffreys prior (=Firth correction) is data-dependent and includes correlation between covariates"
- "This correlation is needed as also the MLE bias to be corrected has correlations"
- "The marginal prior for a given β can change in opaque ways as model covariates are added or deleted"
- "It may give surprising results in sparse data sets"
- "It is not clear in general how the penalty translates into prior probabilities for odds ratios"

Bayesian non-collapsibility

• In their data example, G&M show that the Firth-corrected estimate is further away from 0 than the ML estimate:

	X=1	X=0
Y=0	9	2966
Y=1	1	16

Firth estimate of β_1 :

3.35 (1.07, 4.9)

ML estimate of β_1 : 3.03 (0.08, 4.8)

The logF(1,1) prior

 Greenland and Mansournia (SiM 2015) suggest the logF(1,1) prior, leading to the penalized likelihood representation

$$\log L(\beta) + \sum_{j} \frac{\beta_{j}}{2} - \log(1 + \exp \beta_{j})$$

- They show that this prior coincides with the Jeffreys prior in a oneparameter model (e.g., matched pairs case-control)
- They strongly argue against imposing a prior on the intercept

Implementation of the logF(1,1) is amazingly simple with standard software:

- Just augment the original data by adding two pseudo-observations per variable with a value of 1 for that variable, and 0's for all other variables (including the constant)
- The pseudo-observations have y=0 and y=1, with weights 0.5 and 0.5

Example, again

• In their data example, G&M show that the Firth-corrected estimate is further away from 0 than the ML estimate:

	X=1	X=0
Y=0	9	2966
Y=1	1	16

logF(1,1) estimate of β_1 : 2.41 (-0.64, 4.4)

ML estimate of β_1 : 3.03 (0.08, 4.8)

Firth estimate of β_1 : 3.35 (1.07, 4.9)

Solving the issue by simulation

• By simulating 1000 2x2 tables with the expected cell frequencies (conditional on marginals of X), we obtain:

Method	Bias	RMSE
ML	n.a.	n.a.
Firth	0.18	0.81
logF(1,1)	1.10	1.63

 $True\ value = 3.03$

28

Summary so far

- We observe that the original Firth penalty results in good bias and MSE properties for betas
- There is an upwards bias (towards 0.5) in predictions
- ,weak' Firth penalty optimizes MSE of predictions, but induces bias in betas
- logF is simple to implement, yields unbiased mean predictions, but possibly too much correction for betas
- We would like to keep the good properties for the betas,
- but improve the performance for prediction

We called the flic

 \uparrow

Austrian flic ("Kibara") (unknown outside A)

French flic (very popular in A)

FLIC: Firth Logistic regression with Intercept Correction

Consists of the Firth model, but with adjusted intercept to fulfill $\sum y_i = \sum \widehat{\pi}_i$

Two stage estimation:

- First fit Firth-corrected model
- Then hold betas fixed, but re-estimate intercept without penalization
- Corrects the bias in mean prediction

Re-simulating the example of Elgmati

From Elgmati et al, 2015 Two group case,

• $n_0 = n_1 = 50$

Other approaches for rare events

Considering uncertainty in estimated β coefficients, King and Zeng (2001) propose a correction of estimated probabilities:

$$Pr(Y_i = 1) = \int Pr(Y_i = 1|\beta^*)P(\beta^*)d\beta^*$$

where β^* is a bias-corrected estimate of β , and $P(\beta^*)$ is the posterior distribution of β^*

This can be approximated by

$$\Pr(Y_i = 1) \approx \widetilde{\pi}_i + C_i^{\frac{1}{2}}$$

where $C_i = (0.5 - \widetilde{\pi}_i)\widetilde{\pi}_i(1 - \widetilde{\pi}_i)x_iV(\widetilde{\beta})x_i'$

A simulation study

Puhr, 2015; Binder et al, 2011

Scenario with N=3000, 1% event rate

Bias of beta estimates

variable4, cont., stand. true effect=0.53

variable6, bin., stand. true effect=-0.33

N=3000, 1% event rate, bias of predictions

N=3000, 1% event rate, bias of predictions

Rescaled by expected standard error of predictions

N=3000, a=1, ybar=0.01, b.sign=-1

Conclusions

- Prediction and effect estimation
- Ridge models perform best for prediction (RMSE but not bias), but should be seen as black boxes
- Always ,on the safe side': sometimes overly pessimistic
- Among the less conservative methods, FLIC performed well
- It does not sacrifice the bias-preventive properties of Firth

References

- Binder H, Sauerbrei W, Royston P. Multivariable Model-Building with Continuous Covariates: Performance Measures and Simulation Design. Unpublished Manuscript, 2011.
- Elgmati E, Fiaccone RL, Henderson R, Matthews JNS. Penalised logistic regression and dynamic prediction for discrete-time recurrent event data. *Lifetime Data Analysis* 21:542-560, 2015
- Firth D. Bias reduction of maximum likelihood estimates. Biometrika 80:27-38, 1993
- Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent. *Journal of Statistical Software* 33:1, 2010
- Greenland S, Mansournia M. Penalization, bias reduction, and default priors in logistic and related categorical and survival regressions. *Statistics in Medicine* 34:3133-3143, 2015
- Heinze G, Schemper M. A solution to the problem of separation in logistic regression. *Statistics in Medicine* 21:2409-2419, 2002
- Heinze G. A comparative investigation of methods for logistic regression with separated or nearly separated data. Statistics in Medicine 25:4216-4226, 2006
- Heinze G, Ploner M, Beyea J. Confidence intervals after multiple imputation: combining profile likelihood information from logistic regressions. *Statistics in Medicine* 32:5062-5076, 2013
- King G, Zeng L. Logistic Regression in Rare Events Data. *Political Analysis* 9:137-163, 2001.
- Puhr R. Vorhersage von seltenen Ereignissen mit p\u00f6nalisierter logistischer Regression. Master's Thesis, University of Vienna, 2015.