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Positron emission tomography (or PET) has been utilized for years in medical

diagnosis. The PET reconstruction problem consists of recovering the image from

the data gathered by the detectors in the machine. Penalized maximum likelihood

techniques allow for the recovery of the image with a smoothing term to improve

the image. Previous methods using this technique forced the use of a weak penalty

term in order to gain convergence. Using a new method, this restriction is removed

while retaining convergence. In addition, the method is extended to the problem of

recovering multiple PET images along with a vector describing the motion between

the images.
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CHAPTER 1
MATHEMATICS OF POSITRON EMISSION TOMOGRAPHY (PET)

1.1 Introduction To PET

Emission tomography has been used for years to study metabolic processes

in the body. In this procedure, a patient is injected with a short-lived radioactive

isotope. While the substance is being absorbed by the tissues in the body, the

patient is placed in a scanner. As the isotope decays, it begins to emit positrons.

These emitted positrons travel only a short distance before interacting with

a nearby electron. In positron emission tomography (PET), the subsequent

annihilation produces a pair of photons traveling in opposite directions on a line

oriented in a uniformly random direction. A PET scanner consists of individual

detector crystals arranged around the patient in a cylindrical manner. Each pair

of detectors forms a virtual detection tube. Figure 1–1 displays a tube formed by

detectors α and β. A near-simultaneous arrival of two photons at opposite ends of

Figure 1–1: A 2-D PET tube registering an emission
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the tube is then registered as a single detection. The tube shown in Figure 1–1 will

register the displayed emission at point B but not the emission at point A.

In single photon emission computed tomography (SPECT), a single photon is

emitted. In this method (more widely applied than PET due to the relative costs

of the scanning machines), the detectors are located only on one side of the patient

and a single detection results in a count. This scan is performed for different angles

between the patient and detector to provide a full image.

In both procedures, the aim is to determine the number of emissions from

the various locations in the patient. The resulting intensity images are used to

make medical diagnoses. This work will consider the problem of PET image

reconstruction using the maximum likelihood (ML) method with the addition

of a penalty term. Although developed for PET reconstruction, the method can

be extended for SPECT reconstruction. Unlike previous methods, the revised

algorithm presented uses a more general penalty term, allowing for a wider range

of settings. Proof of convergence and reconstruction results are obtained using this

method.

1.2 Mathematical Model for PET

The 2-dimensional PET scanner consists of a circle of detectors surrounding

the region of interest, Ω, which can be taken to be rectangular. There are I

virtual detector tubes, each one formed by two of the detectors composing the

scanner ring. Ω is partitioned into J smaller-sized rectangles, called voxels. An

emission in voxel j is detected by tube i if the emitted positrons are detected

simultaneously in the two detectors forming the tube. Shepp and Vardi [16]

introduced a mathematical model for PET in 1982. In the model, the random

emissions from voxel j are modeled by a Poisson process with mean fj. Thus the
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detector count in tube i, Yi, will also be governed by a Poisson process with mean

λi =
∑

j

pi,jfj (1–1)

where pi,j is the geometric probability that an emission in voxel j is registered by

detector tube i. Using the properties of the Poisson distribution, the probability

that there are yi counts registered in detector i is given by

e−λiλyi

i

yi!
.

To recover the emission intensity, it is necessary to estimate f = [f1, f2, ..., fJ ] based

on a random sample from Y = [Y1, Y2, ..., YI ].

1.3 PET Probability Function

The probability function pi,j for the 2-dimensional PET scanner can be

defined using the geometry of the scanner. Given any tube i formed by two

detectors, it can be divided into six regions as shown in Figure 1–2. The voxels

Figure 1–2: Tube regions

are assumed to be so small that the probability can be assumed approximately

constant on the entire voxel. If z is the center of voxel j, then pi,j is defined by the
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probability that the path of a pair of photons emitted from the center of the voxel,

z, intersects both detectors defining the tube. This probability is proportional to

the angle-of-view of the tube from z. Thus, if CẑD is defined to be the acute angle

formed by the lines passing through C and z and D and z, the following definition

results [12].

πpi,j =





CẑD if z ∈ R1

π −BẑC if z ∈ R2

AẑB if z ∈ R3

π −DẑA if z ∈ R4

0 if z ∈ R22 or R44

(1–2)

1.4 Reconstruction Techniques

The reconstruction problem is to recover the emission intensity f given the

scanner data y, assumed to be Poisson-distributed. Several methods have been

used to accomplish this reconstruction. If the detectors are treated as points, the

model reduces to line integrals along detector lines. Filtered-back projection (FBP)

is a popular method utilized to recover the emission intensity, as it provides a quick

way to invert the Radon transform. However, it has been seen to produce images

with streaking artifacts [16]. In 1998, Carroll [3] decomposed the data, probability

matrix and intensity functions into basis functions, transforming the problem into

an infinite set of linear equations to solve. Our algorithm though is based on a

third method, Maximum likelihood estimation (ML).

1.4.1 Maximum Likelihood

In the ML method, a search is made for the emission intensity f that

maximizes the probability of obtaining the Poisson-distributed data. Each detector

count yi is assumed to be an independent sample from a Poisson distribution with

a mean corresponding to λi = Pfi =
∑

j pi,jfj. Thus the probability that there are
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yi counts in detector i is given by

P (Yi = yi|λi) =
e−λiλyi

i

yi!
(1–3)

The detector counts are independent random variables, so these probabilities are

multiplied together to yield the probability of obtaining the data from an emission

intensity map of f . An ML estimate is an intensity f that maximizes the following

probability.

Πi
e−λiλyi

i

yi!
= Πie

−Pfi(Pfi)
yi/yi!

In addition, the intensity map, f is constrained to be non-negative ({f |fj ≥ 0}).
An equivalent problem is to apply the negative logarithm and perform a

minimization of the term

∑
i

(Pfi − yi log Pfi − log yi!).

As yi! does not depend on the unknown intensity f , it can be safety dropped from

the term resulting in the ML objective function.

L(f) =
∑

i

Pfi − yi log Pfi (1–4)

The Expectation-Maximization (or EM) algorithm developed by Shepp and Vardi

[16] can then applied to find the minimizer of this term, resulting in the EMML

algorithm.

fn+1
j = fn

j

∑
i yipi,j/Pfi∑

i pi,j

(1–5)

where fn refers to the nth step in the iteration.

Alternately, the EMML iteration can be expressed as a descent algorithm.

fn+1
j = fn

j − fn
j

∂L

∂fj

(fn)/
∑

i

pi,j
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Restated in matrix form yields the equation

fn+1 = fn − αD(fn)∇L(fn).

where α = 1 is the step-size and D is the diagonal matrix whose diagonal

entries consist of dj,j = fn
j /

∑
i pi,j. While the EM algorithm has been shown

to monotonically decrease the objective function and be globally convergent, a

well-known deficiency is a tendency to produce noisy images if the iteration is run

too long [8].

1.4.2 Penalized Maximum Likelihood (PML)

To help reduce the noise, a smoothing term can be added to the likelihood

term resulting in the penalized maximum likelihood (PML) method. Equivalently,

this method can be considered as an application of MAP (maximum a-posteriori),

in that the recovered image is assumed to have a known local Gibbs probability

distribution. This method, used by Geman and McClure [7], is employed by first

choosing a penalty function φ and then forming the term

U(f) =
∑

i

∑
j

ωi,jφ(fi − fj) (1–6)

where ω is a weighting factor that associates pixels. This can be used to link

neighboring pixels, forcing them to have similar intensities. For example, Ni,

can be defined on each voxel i to be the set of pixels in a neighborhood lattice

of that voxel. Thus the weight ωi,j = 0 if j /∈ N(i). If j ∈ N(i), the weight is

defined to be a nonzero constant. One possibility is to let Ni consist of the eight

neighboring voxels as shown in Figure 1–3 with associated weights. In addition,

a constant value, γ is multiplied to the penalty term to control the influence of

the penalty in the reconstruction. As γ → 0, the reconstructions approach those

of the EM algorithm. However, if γ is chosen to be too large, the images will be

oversmoothed.
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Figure 1–3: Sample neighborhood system with associated weights

There exist many choices for the penalty function φ(r). A frequently used

choice is a penalty of the form φ(r) = log cosh r
δ

[8],where δ is a previously chosen

constant that allows for some fine-tuning of the penalty. This constant determines

how the prior is scaled with respect to r, as the log cosh penalty will smooth all

differences above a certain cutoff value, determined by δ. As δ → ∞, the method

will approach results of the EM Algorithm (as no smoothing will occur). This

penalty is useful as it approximates quadratic smoothing for small values of r, but

its derivative remains bounded.

In 1993, Lalush and Tsui [9] developed a new penalty function that allowed

for even greater control over the penalized range of intensities. Noting that current

PML methods did not require the penalty function to be calculated, they instead

built the function from properties of its derivative. Thus, they produced

∂φ

∂r
=

r

|r| [1 + α2(
r

δ
− δ

r
)2]−1/2 (1–7)

where α and δ are constants that affect the spread and location respectively of

peak of the derivative. As α increases, the peak becomes more narrow and as δ
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increases, the peak away from the origin. The plot of the derivative shows the

majority of the smoothing occurring in the region under the peak of the derivative

[9]. Thus altering the values of α and δ will affect the range of smoothing in the

image. By comparing this function to the derivative of the logcosh function,

φ′(r) = (1/δ) tanh
r

δ

it can be seen that while the logcosh function does not have a peaked derivative

0 20 40 60 80 100
0
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(a) Derivative of the Lalush-Tsui penalty
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0.004
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0.008
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0.012

0.014

0.016

0.018

0.02

(b) Derivative of the logcosh penalty

Figure 1–4: Derivatives of the penalty terms

(it increases to an asymptotic limit), it can be considered as an infinitely-wide

peak. Thus, Green’s logcosh penalty can be approximated as a Lalush-Tsui penalty

by taking α close to zero (producing a near infinitely-wide peak). Integrating the

Lalush-Tsui penalty term results in their penalty function:

φ(r) =
δ

2α
log[1− 2α2(1− r2

δ2
) +

2α

δ2

√
α2(δ4 + r4) + δ2r2(1− 2α2)].

While Green’s original OSL algorithm does not require the calculation of this

term, other algorithms do require the frequent calculation of the objective function.

In that case, the Lalush-Tsui penalty will have a larger computation time than

other penalties. In addition, the general Lalush-Tsui penalty does not have the

strict convexity condition needed for convergence to a unique minimizer.
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1.5 Minimizing Function

Given a choice of penalty term U and constant γ, the PML objective function

thus becomes

E(f) =
∑

i

Pfi − yi log Pfi + γU(f) (1–8)

In Maximum Likelihood, this objective function must be minimized over the set of

positive intensity values {f |fj ≥ 0}. This minimum must satisfy the Kuhn-Tucker

optimality conditions for the problem. In this situation, those two conditions are

that for all j

∂E

∂fj

(f) ≥ 0 (1–9)

fj
∂E

∂fj

(f) = 0

It will be shown that the revised algorithm presented in Chapter 3 will meet these

conditions at convergence.



CHAPTER 2
PML RECONSTRUCTION METHODS

2.1 Green’s One Step Late Algorithm

Applying the Maximum Likelihood method, a search is made to minimize the

penalized objective function:

E(f) =
∑

i

(Pfi − yi log Pfi) + γU(f)

Differentiating the objective function and replacing it in the 2nd Kuhn-Tucker

optimality condition (1–9) yields the condition that for all j:

fj[
∑

i

(pi,j − yipi,j

Pfi

) + γ
∂U

∂fj

(f)] = 0.

Regrouping terms in this sum produces

fj[
∑

i

pi,j + γ
∂U

∂fj

(f)] = fj

∑
i

yipi,j

Pfi

.

Now define

rj(f) = (
∑

i

pi,j + γ
∂U

∂fj

(f))−1.

With this definition, it can be seen that the second Kuhn-Tucker condition is

equivalent to

fj = fjrj(f)
∑

i

yipi,j

Pfi

. (2–1)

This form for the optimality condition is useful as it reformulates the equation into

a fixed point condition.

In 1990, Green developed the One-Step-Late (OSL) algorithm [8] to apply the

EM algorithm to the Penalized Maximum Likelihood problem. The One-Step-Late

name comes from the choice to evaluate the penalty at the current iterate rather

10
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than the (unknown) update, as it allowed the EM algorithm to be applied to the

PML problem. In Green’s OSL, the update to iterate fn is given by

fn+1
j = fn

j rj(f
n)

∑
i

yipi,j

Pfn
i

.

Using the fact that ∂E
∂fj

(f) =
∑

i pi,j − yipi,j

Pfi
γ ∂U

∂fj
(f), the update can be expressed in

the alternative form:

fn+1 = fn + v(fn) (2–2)

where

vj(f) = −fjrj(f)
∂E

∂fj

(f). (2–3)

Thus if Green’s OSL algorithm converges, it will satisfy the same fixed point

condition as the second Kuhn-Tucker condition. Note that if γ = 0, Green’s OSL

algorithm reduces to the EMML Algorithm (1–5). However, Green’s OSL algorithm

does not guarantee positivity of the iterates or convergence.

2.1.1 Lange’s Improvement to Green’s OSL

In 1990, Lange showed that altering Green’s algorithm to include a line search

could enforce convergence and positivity [10]. In Lange’s algorithm, rj(f
n) is

required to be be positive for all j. To meet this condition, the penalty parameter

γ be must be chosen small enough to keep rj(f
n) > 0 for all possible iterates fn

and voxels j. In the method, Green’s OSL update is altered to include a step-size

parameter s (taking s=1 reduces the method to the original OSL method). Thus

the update becomes

fn+1 = fn + snv(fn) (2–4)

where v is defined as before. The step-size sn is chosen to be a positive value that

gives both positivity of the new iterate (taking sn < 1 enforces this condition) and

a decrease in the objective function E. To decrease the objective function, define

P (s) = E(fn + sv(fn)) (2–5)
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If P ′(0) < 0, the algorithm will be decreasing for small values of the step-size. With

this condition that rj(f
n) > 0, it follows that P ′(0) = −∑

j fn
j rj(f

n)( ∂E
∂fj

)2(fn) < 0

if fn
j

∂E
∂fj

(fn) 6= 0 for some j. Since P ′(0) < 0, the objective function will be

decreasing for small values of the step-size s. A line-search is then performed for

an appropriate step-size that will give a positive update and a decrease in the

objective function. In Lange’s algorithm, the step-size that gives the greatest

decrease in the objective function is denoted s̄ and a search is performed to find a

value s < s̄ within ε of s̄. This condition requires an exact line search, eliminating

the possibility of faster inexact search algorithms.

2.1.2 Mair-Gilland Method

One way to remove the restriction of positivity of the r-term is to allow the

constant s to be a negative value. In this method (developed for use in the RM

Algorithm [14]), the step-size sn is allowed to be negative. The sign of sn depends

on the sign of P ′(0). If P ′(0) < 0, the objective function will be decreasing for

small positive values of the step-size. In this case, the step-size is chosen as in

Lange’s method. A search is made for a value that ensures positivity of the iterate,

but is also within ε of the value that gives the greatest decrease. If P ′(0) > 0,

then E will be increasing for small positive values of s. In this case, sn is allowed

to be negative. The search is made in the negative direction, again for a value that

ensures positivity and is within ε of the value that gives the greatest decrease in

the objective function. Although this method will decrease the objective function

and convergence, the limit may not satisfy the second Kuhn-Tucker optimality

condition.

2.2 Accelerated Penalized Maximum Likelihood Method (APML)

The accelerated penalized maximum likelihood method (APML) was developed

in 2004 by Chang et al [5]. In the APML method, surrogate functions to decrease

the objective function and provide convergence. In the method, a penalty function
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φ(r) and associated neighborhood system is chosen as described in Chapter 1. In

addition, the related function γ(r) = ˙φ(r)/r is required to be non-increasing. In the

method, the trial iterate is formed by

f̃n+1
j = −Gj(f

n) +
√

Gj(fn)2 − 8Ej(fn)Fj(fn)/4Fj(f
n) (2–6)

with the defined functions given by

Ej = − yipi,jf
n
j∑

j pi,jfn
j

Fj = 2β
∑

k∈Nj

ωi,jγ(fj − fk)

Gj =
∑

i

pi,j − 2β
∑

k∈Nj

ωi,jγ(fj − fk)(fj + fk)

As this was seen to converge slowly, an acceleration factor (the APML Method)

was added to the algorithm [4]. As in Lange’s method, a step-size factor is added

to the algorithm. In APML, the accelerated update is given by

fn+1 = f̃n + sv(fn) (2–7)

with v(fn) = f̃n+1 − fn. In Lange’s method, a search method is employed to find a

suitable choice for the step-size. Here, surrogate functions are used to find the best

possible step-size needed to decrease the objective function. Surrogate functions

were first applied to PET reconstruction by DePierro [6]. In order to minimize a

function f over a set S using the method of surrogate functions, another function ψ

must be found satisfying

• f(xn) = ψ(xn)

• f(x) ≥ ψ(x) for all x ∈ S.

The difficulty in using this method lies in finding an appropriate function ψ. In

APML, creating the surrogate function requires the calculation of four separate

functions related to the penalty function, possibly increasing the computation
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time. Reconstructions gathered using the APML algorithm will be compared to

reconstructions using the revised algorithms presented in this paper.



CHAPTER 3
GENERAL PML ALGORITHM

3.1 General Algorithm Statement

In the maximum likelihood method, a search is made for an emission intensity

f that minimizes the objective function

E(f) = L(f) + γU(f)

under the restriction that fj ≥ 0 for all j. In this chapter, an iterative algorithm

to find this minimum will be presented. Under specific conditions, convergence to a

minimizer will be proven.

3.1.1 General Algorithm Update

The new algorithm is formed by taking Lange’s modification to OSL, but

treating the step-size as a vector instead of a constant. To apply the algorithm,

initialize first by taking f0
j =

∑
i yi/J . Given a current iterate fn, the next iterate,

fn+1 can be constructed by the following update:

fn+1 = fn + sn ¯ v(fn) (3–1)

where

• sn is the step-size vector

• rj(f) = (
∑

i pi,j + γ ∂U
∂fj

(f))−1

• vj(f) = −fjrj(f)
∂E
∂fj

(f)

• (x¯ y)j = xjyj (the Hadamard product).

Note that v(f) and r(f) are the same defined functions as in the OSL algorithm.

15
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Given a current iterate fn, the step-size vector sn = [sn
1 , ..., s

n
J ] is chosen to

produce the next step in the algorithm. This vector must satisfy the conditions:

0 < |sn
j | < K for some large constant K (3–2)

|sn
j | < (|rj(f

n)
∂E

∂fj

(fn)|)−1 (3–3)

E(fn + sn ¯ v(fn)) < E(fn)if||v(fn)|| 6= 0 (3–4)

(sn ¯ r(fn))j > 0. (3–5)

The first three conditions on the step-size vector enforce respectively boundedness

of the step-size, positivity of the iterate and decrease in the objective function.

The final condition requires that for each voxel j, the sign of sj matches the sign

of rj(f). Note that a unique s is not guaranteed. The revised algorithm presented

after the proof provides an example of one way to choose a suitable step-size

vector. Once a penalty function and method of constructing a step-size vector

(both matching the required criteria) have been chosen, the algorithm can proceed.

Continue iterating until a suitable stopping criteria has been reached. Convergence

of this algorithm will now be investigated.

3.1.2 Penalty function criteria

The general penalty term U(f) is of the form

U(f) =
∑

i

∑
j

ωi,jφ(fi − fj) (3–6)

where φ(r) is required to satisfy the following properties:

• φ(0) = 0

• limr→∞ φ(r) →∞
• φ(−r) = φ(r) (φ is an even function)

• φ ∈ C1 (φ has a differentiable first derivative)

• φ is a strictly convex function (φ′′(r) > 0).
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The first three conditions are basic conditions for a penalty function, while the

latter two conditions are required for convergence. Functions that match these

conditions include the logcosh and quadratic penalties. Note that the general

Lalush-Tsui penalty does not meet these conditions due its lack of convexity.

3.2 Proof of Convergence

Theorem 1. Let φ be a penalty function satisfying the conditions stated in Section

(3.1.2). Let E be the PML objective function E(f) = L(f) + γU(f). Define

f0
j =

∑
i yi/J for all j (the algorithm is initialized with a flat emission intensity).

Let the algorithm update be given by (3–1) with the step-size vector chosen such

that conditions (3–2 - 3–5) are satisfied. The algorithm will then converge to a

unique minimizer.

The proof (extended from Lange’s PML proof [10]) will demonstrate that the

algorithm converges to a unique vector that satisfies both Kuhn-Tucker optimality

conditions, hence is the minimizer of E. It consists of two parts. In the first,

Zangwill’s convergence theorem is applied to prove that the objective function

converges and that all limit points will fulfil the second Kuhn-Tucker condition. In

the second part of the proof, it will be shown that there is a single limit point and

this point will also fulfil the first Kuhn-Tucker condition.

Definition 1. A stationary point is defined to be any intensity function f where for

all j, f ¯∇E(f) = 0.

By this definition, the 2nd Kuhn-Tucker condition will be met at a stationary

point. Zangwill’s Convergence Theorem [11] is now applied.

Theorem 2. Zangwill’s Convergence Theorem. Let T be a point-to-set function

defined on a metric space X. Generate a sequence {xn} such that xn+1 ∈ T (xn). Let

a solution set, S ⊆ X, be given along with a continuous function E. Suppose that

1. the sequence {xn} is contained in a compact subset of X

2. if x /∈ S, E(y) < E(x) for all y ∈ T (x)
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3. if x ∈ S, E(y) ≤ E(x) for all y ∈ T (x)

4. the mapping T is closed at points outside of S.

Then the limit of any convergent subsequence lies in S and {E(xn)} converges

monotonically to ES = E(y) for some y ∈ S.

To apply Zangwill, let X = Rn
+, S be the set of stationary points and let E the

PML objective function. For any emission intensity f , define the set Sf to be the

set of all possible step-size vectors s fulfilling condition (3–2 - 3–5). Then define the

point-to-set function T by the equation:

T (f) = {f + s¯ v(f) : s ∈ Sf}. (3–7)

Note that if f ∈ S, v(f) = 0, thus T (f) = {f}. In the PML algorithm, the next

iterate is created by taking fn+1 = fn + s¯ v(fn) for a particular choice of s ∈ Sfn ,

hence fn+1 ∈ T (fn).

Lemma 1. The point-set mapping T is closed at all nonstationary points θ.

The closure definition requires that if θn → θ /∈ S, ψn ∈ T (θn), and ψn → ψ,

then ψ ∈ T (θ). Hence it must be shown that there exists a step-size vector s ∈ Sθ

such that ψ = θ + s ¯ v(θ) holds for all θ /∈ S. By the definition of the update, for

each n there is a step-size vector sn ∈ Sθn such that

ψn = θn + sn ¯ v(θn).

Since ∂U
∂fj

is assumed to be continuous, rj(f) is continuous and hence vj(f) will also

be continuous. Let W = {j : vj(θ) 6= 0}. Since θ is not a stationary point, W

is nonempty. For each j ∈ W , there exists a constant Mj > 0 such that for all

mj > Mj, vj(θ
m) 6= 0. Therefore for all j ∈ W and m > maxj(Mj),

sm
j =

ψm
j − θm

j

vj(θm)
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which converges to

ψj − θj

vj(θ)
.

For j ∈ W , define sj to be
ψj−θj

vj(θ)
. Therefore for all j ∈ W , ψj = θj + sjvj(θ). If

j /∈ W , vj(θ) = 0 and hence ψj = θj. Thus for all j, ψj = θj + sjvj(θ) where sj = 1

for j /∈ W . By the continuity of E, v, θ and ψ, s ∈ Sθ and hence ψ ∈ T (θ).

Lemma 2. The iterates belong to a bounded and compact set.

It will be shown that if ||fn|| → ∞, E(fn) → ∞ as well. The log-likelihood

term L is a function of the form
∑

i ci − yilog(ci), where ci = Pfi and yi are both

positive terms. If ||fn|| → ∞, then for some i, fn
i → ∞ as well. For each voxel

j, there exists at least one tube i with pi,j 6= 0. Hence if the intensity at voxel j

becomes unbounded, ci = Pfi →∞ forcing ci − yilog(ci) →∞. Thus if the iterates

become unbounded, the log-likelihood function will also become unbounded. Hence

if ||fn|| → ∞, E(fn) = L(fn) + γU(fn) → ∞. By construction, E(fn) ≤ E(f0)

for all n. Thus, it cannot be true that E(fn) → ∞. Therefore, the iterates must

belong to a bounded set. By construction, E(fn+1) ≤ E(fn). Thus E(fn) ≤ E(f0)

for all n. Therefore the iterates belong to the set {θ|E(θ) ≤ E(f0)}. Due to the

the continuity of E, the set is closed. Since the set is closed and bounded, it is a

compact set.

Theorem 3. The limit of any convergent subsequence is a stationary point.

Zangwill’s theorem is now applied. Let X = Rn
+ and S = the set of stationary

points. If fn ∈ S, v(fn) = 0 and hence T (fn) = {fn}. If fn /∈ S, by construction,

E(fn + sn ¯ v(fn)) < E(fn) for any step-size vector sn satisfying conditions

(3–2 - 3–5). By Lemma 1, the point-to-set mapping T is closed at non-stationary

points. Thus Zangwill’s theorem applies and all limit points are stationary points.

In addition, E(fn) → ES = E(y) for some y ∈ S. It must be shown that ES

is well-defined. If x ∈ S, then x is a limit point of the sequence. Hence there is
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a subsequence {fnj} converging to x. Since E(fn) → E(y), it must be true that

E(x) = E(y).

Lemma 3. If E(fn) = ES for some n, then fn ∈ S.

In the proof of Zangwill’s conditions, E(fn+1) < E(fn) if f /∈ S and E(fn+1) ≤
E(fn) if f ∈ S. Thus if fn /∈ S, E(fn+1) < E(fn) = ES. But E(fn) converges

monotonically to ES, giving a contradiction. Thus fn ∈ S.

Lemma 4. The set of limit points is finite.

The results of Zangwill’s Theorem state that all limit points of the sequence

are stationary points. A stationary point has been defined to be one where for each

index j, fj
∂E
∂fj

(f) = 0. With the requirement that U is a strictly convex (penalty)

term, E will be a strictly convex function [10]. Therefore, given any subset W of

[1, J ], E will remain a strictly convex function on the plane {fj = 0|j ∈ W}. Hence

there is a unique point on this plane that is a minimizer for E. Denote this point

fW . Thus for any subset W, there is only one point fW with ∂E
∂fj

(fW ) = 0 for j /∈ W

and fj = 0 for j ∈ W . Since there are a finite number of possible subsets W, the

set of stationary points is finite.

Lemma 5. The distance between successive iterates tends to zero.

||fn+1 − fn|| = ||sn ¯ v(fn)||. Since |sn
j | < K for all n, j, it suffices to

prove that vj(f
n) goes to zero. The function v is continuous and is zero for any

stationary point. Since the set of limit points is finite, given ε > 0, a single

δ > 0 can be found such that if ||fn − y|| < δ for any y ∈ S, then ||v(fn)|| =

||v(fn) − v(y)|| < ε. Let Z be the set of all sequence points within δ of a limit

point and the W be the remaining sequence points. If W is infinite, it contains a

convergent subsequence (the iterates are contained in a compact set). Thus there

are points in W arbitrarily close to a limit point, a contradiction. Hence W must

be finite. Let N be the largest sequence index in W . Thus if n > N , ||fn − y|| < δ

for some y ∈ S. Hence ||v(fn)|| < ε. Therefore v(fn) → 0.
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Lemma 6. The set of limit points consists of a single stationary point.

By Lemma 5, the distance between iterates goes to zero. Ostrowski proved

that the set of limit points of such a sequence is both compact and connected [15].

Since this set is finite, it must consist of a single point. Denote this intensity by f̄ .

Theorem 4. The iterates converge to the minimizer of E.

There is a single limit point for the sequence, hence the sequence will converge

to f̄ . Assume this function is not the minimizer of E. Since the limit is a stationary

point, the second Kuhn-Tucker criterion f̄j
∂E
∂fj

(f̄) = 0 is satisfied, so the first

optimality condition must be violated. Therefore, an index j can be found such

that f̄j = 0 and ∂E
∂fj

(f̄) < 0 and hence there is an N such that ∂E
∂fj

(fn) < 0 for all

n > N . By construction, rj(f
n) and sj(f

n) have the same sign and fn
j > 0. Thus for

n > N ,

fn+1
j = fn

j + sn
j vj(f

n) = fn
j − sn

j fn
j rj(f

n)
∂E

∂fj

(fn) > fn
j

and fn
j does not converge to zero, contrary to the assumption. Therefore, both

Kuhn-Tucker conditions hold at the convergence point and hence it is the

minimizer of E.

If the penalty function lacks convexity (as in the generalized Lalush-Tsui

penalty (1–7), the proof of Theorem 4 will not apply as it requires convexity. Thus,

as with the modified RM algorithm discussed in the following chapter, the only

result that can be proved is that all of the limit points generated from the sequence

will be minimizers.

3.3 New PML Algorithm

The general statement does not guarantee the existence of a method of

choosing the step-size vector with the needed conditions. However, there do

exist several ways of meeting the necessary conditions. In Lange’s algorithm [10],

all entries in the step-size vector are the same positive value. In this method,

conditions (3–2 - 3–5) are satisfied by assuming that rj(f) is positive for all
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emission intensities f and voxels j. With this restriction, the objective function

will be decreasing for small positive values of the step-size s. However, in order to

ensure the positivity of r(f), the strength of the penalty term γ may need to be

decreased, which alters the objective function needed to be minimized. The revised

algorithm presented below has been designed to remove this strong condition on

the penalty term by using a different method to choose the step-size, while still

providing for the convergence of the iterates.

3.3.1 Non-Uniform Step-Size Method

In this algorithm, the step-size vector consists of two values, one positive

and one negative. To find these values at the nth step in the iteration, form the

two sets, D+(fn) := {j|rj(f
n) > 0} and D−(fn) := {j|rj(f

n) < 0}. Since
∑

i pi,j + γ ∂U
∂fj

(fn) will be finite for each j, r(fn) can never be zero. Therefore,

D+(fn) and D−(fn) will partition the set of voxels. These sets will determine which

value of the step-size will be applied to the appropriate voxel. Define the equations

gn
j (t1, t2) =





fn
j + t1vj(f

n) if j ∈ D+(fn)

fn
j + t2vj(f

n) if j ∈ D−(fn)
(3–8)

ψ(t1, t2) = E(gn(t1, t2)). (3–9)

The current value of the objective function at step n is given by ψ(0, 0) = E(fn).

Since the goal is to decrease the value of E, a search is made for a new update in

the direction of the negative gradient. This will give the direction of the steepest

descent of E. If a single value is used for our constant (as in Lange’s method [10] or

the Mair-Gilland method [14]), it corresponds to using (t,t) as the search direction

in (3–8). This may not be the direction of the greatest decrease. In order to achieve

the greatest decrease in the objective function, the vector (t1, t2) is assumed to be

in the direction of the negative gradient. Therefore, define (t1, t2) = −s∇ψ(0, 0) for
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some s ≥ 0 to be chosen later. Calculating the two partial derivatives yields:

∂ψ

∂t1
(0, 0) =

∑
j∈Dn

+

∂E

∂fj

(fn)vj(f
n) = −

∑
j∈Dn

+

fn
j rj(f

n)(
∂E

∂fj

)2(fn)

∂ψ

∂t2
(0, 0) =

∑
j∈Dn

−

∂E

∂fj

(fn)vj(f
n) = −

∑
j∈Dn

−

fn
j rj(f

n)(
∂E

∂fj

)2(fn).

Therefore by defining

τ+(f) =
∑

j∈D+(f)

fjrj(f)(
∂E

∂fj

)2(f) (3–10)

τ−(f) =
∑

j∈D−(f)

fjrj(f)(
∂E

∂fj

)2(f)

it can be seen that (t1, t2) = s(τ+(fn), τ−(fn)). Since (τ+, τ−) provides a search

direction only, it can be normalized at this stage to produce a unit vector

(τ+(f), τ−(f)) (τ+ and τ− will now refer to the normalized vector). The new

iterate is thus formed by:

fn+1 = fn + sτ(fn)¯ v(fn) (3–11)

where τj(f) = τ+(f) if j ∈ D+(f) and τj(f) = τ−(f) if j ∈ D−(f). The problem has

thus been reduced from a 2-dimensional search for (t1, t2) to a 1-dimensional search

for s. Defining P (s) = E(fn + sτ(fn)¯ v(fn)), yields

P ′(0) = ∇E(fn + sτ(fn)¯ v(fn)) · d

ds
(fn + sτ(fn)¯ v(fn))|s=0

=
∑

j

−(
∂E

∂fj

)2(fn)τj(f
n)fn

j rj(f
n) ≤ 0.

The final inequality comes from the fact that τj has the same sign as rj (and so

(s τjrj ≥ 0 for all j, proving the fourth criteria for the step-size vector). Thus for

small positive values of the step-size coefficient s, E will be decreasing. It remains

to be shown that the method of selecting the step-size coefficient s will result in a

step-size vector, sτ , fulfilling the conditions stated in (3–2 - 3–5).
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3.3.2 Line Search Methods

In the non-uniform step-size method discussed above, the step-size vector

consists of sτ . Now, a search must be made for an appropriate step-size coefficient

to ensure the decrease in the objective function and positivity of the iterate. First,

a bounding value, smax must be found to ensure positivity. Using the definition of

the update,

fn+1
j = fn

j + snτj(f
n)vj(f

n)

= fn
j − snτj(f

n)fn
j rj(f

n)
∂E

∂fj

(fn)

= fn
j (1− snτj(f

n)rj(f
n)

∂E

∂fj

(fn)).

Therefore, by defining

sn
max = minj(|rj(f

n)τj(f
n)

∂E

∂fj

(fn)|)−1, (3–12)

it can be seen that if sn < sn
max, then fn+1

j ≥ 0. If K < sn
max, let sn

max = K. Now

a search is made for a step-size coefficient within the bounding value that decreases

the algorithm. If P (s) is defined to be E(fn+1(s)) = E(fn+sτ(fn)¯v(fn)), then the

algorithm will decrease the objective function if the constant sn satisfies P ′(sn) < 0.

Using the definition of P (s),

P ′(s) = ∇E(fn+1(s)) · dfn+1

ds

= −
∑

j

∂E

∂fj

(fn+1(s))τj(f
n)fn

j rj(f
n)

∂E

∂fj

(fn).

In order to find a constant sn to produce a negative value, a search algorithm

is employed. One possible choice is the bisection rule, which produces a result

within a specified precision. The algorithm proceeded with this choice, but with

slow computation speeds as it requires multiple calculations of P ′(s). In order

to decrease the iteration time, the Armijo rule [1] was employed. The Armijo
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rule is an inexact search algorithm, here used to approximate where P ′(s) = 0.

The value returned by the Armijo rule will be a constant s that will decrease the

objective function as required. To apply the Armijo rule, the search begins with

an initial guess (here taken to be the minimum of smax and K). The initial value

is decremented this by a constant factor β (taken to be 1/3) until the following

relationship holds (δ is a positive constant chosen to be close to 0):

P (0) + sδP ′(0) ≥ P (s).

The following figure illustrates one application of the Armijo rule and the value

that would be returned by the method. The use of the Armijo rule produced much

Figure 3–1: Armijo rule

smaller computation times than the bisection method. The former requires the

calculation of the derivative only at the origin and thereafter calculates values of

P (s) to give a rough approximation to the solution. Even though it does not give

the best value for the step-size coefficient, it was seen that the number of iterations

needed to reach a stopping point did not significantly increase when the Armijo

Rule was applied. Hence, the savings in computation time caused it to be used in

the reconstructions.

Since the step-size coefficient sn satisfies P ′(sn) < 0, the objective function

decreases as needed. The update is then formed by

fn+1 = fn + snτ(fn)¯ v(fn)
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and the iteration proceeds. It remains to be shown that this choice of step-size

vector will satisfy the required conditions for convergence. By construction,

(sτj(f)) < K. By specifying that (sτj(f)) < smax, (3–3) is met. (sτ) decreases the

objective function, satisfying (3–4). Finally, by construction, τj(f) and rj(f) have

the same sign, proving (3–5). Since conditions (3–2 - 3–5) have been satisfied, the

iteration will converge as proven in Theorem 1.

3.3.3 Stopping Criteria

The algorithm should terminate when the Kuhn-Tucker optimality conditions

(1–9) are realized. The projected gradient function 1 can be used to accomplish

this. This function is defined by

pgd(f) = |max(fj − ∂E

∂fj

(f)), 0)− fj|∞. (3–13)

Theorem 5. pgd(f) = 0 if and only if the Kuhn-Tucker optimality conditions are

met.

Assume the Kuhn-Tucker conditions are not met. If the first condition is not

true, then ∂E
∂fj

(f) < 0, resulting in pgd(f) > 0. If the second condition is not met,

fj and ∂E
∂fj

(f) are nonzero for some j. If fj ≥ | ∂E
∂fj

(f)|, pgd(f) ≥ | ∂E
∂fj

(f)| > 0.

If the other inequality holds, then pgd(f) ≥ fj ≥ 0. Thus if the Kuhn-Tucker

conditions do not hold, the projected gradient function is nonzero. Now assume the

Kuhn-Tucker conditions are met. For each j, ∂E
∂fj

(f) > 0 and at least one of fj and

∂E
∂fj

(f) are zero. If fj ≥ ∂E
∂fj

(f), then ∂E
∂fj

(f) = 0 and |max(fj − ∂E
∂fj

(f), 0) − fj| =

∂E
∂fj

(f) = 0. If ∂E
∂fj

(f) ≥ fj, then fj = 0 and |max(fj − ∂E
∂fj

(f), 0)− fj| = fj = 0.

Given some choice of small ε > 0, the algorithm can be terminated when

pgd(f) < ε.

1 as suggested by Prof. Hager



CHAPTER 4
MULTIPLE IMAGE-MOTION RECONSTRUCTION

4.1 Algorithm Desription

4.1.1 RM Algorithm

The Penalized Maximum Likelihood method discussed in Chapter 3 can be

extended for use in the reconstruction of time-delayed images. In this problem,

a series of CT-generated images of an object are reconstructed along with any

motion of the object between the scans. The RM algorithm, as developed by

Gilland and Mair [13] [2] [14], can be used to reconstruct this series. However,

its convergence to a minimizer has not been proven. A modification of their work

allows for convergence of an altered objective function. As in their work, the

algorithm will be described initially in the continuous case, then discretized to

produce the iteration. In this reconstruction, a total of K time-lapsed scans (or

frames) are analyzed. In the continuous case, the frame number will be denoted

in the subscript, fk(z). In the discrete case, the frame number will be the first

subscript, fk,j referring to the jth voxel in frame k. Along with the unknown

emission intensities in each frame k, fk(w), the motion vector, mk(z) from frame k

to frame k + 1 is also unknown. This motion vector describes the movement of each

point z in frame k, as z moves to z + mk(z) in frame k + 1. In the continuous case,

the negative log-likelihood of the reconstruction is given by

L(f) =
K∑

k=0

∑
i

[Pfk(i)− yk(i) log Pfk(i)] (4–1)

where Pfk(i) is the continuous projection operator given by Pfk(i) =
∫

pi(z)fk(z)dz

and pi(z) is the probability that an emission at w will be registered in detector i

27
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(compare with the discrete projection operator given by Pfi =
∑

i pi,jfj). The

penalty term U now measures how well the motion term matches up points

between frames. Ideally, fk(z) = fk+1(z + mk(z)) but it is to be expected that this

will not occur with real data. Hence the image-matching term between frames k

and k + 1 is given by

Uk(fk, fk+1,mk) =

∫
[fk(z)− fk+1(z + mk(z))]

2dz (4–2)

and the penalty term becomes the sum of these individual terms.

U(f ,m) =
K∑

k=1

Uk(fk, fk+1,mk) (4–3)

In addition, the objective function includes a third term ES =
∑K

k=1 ESk modeling

the elastic strain of the material.

ESk(mk) = 1/2

∫
λ(z)(uk,x + vk,y + wk,z)

2dz

+

∫
µ(z)(u2

k,x + v2
k,y + w2

k,z)dz

+1/2

∫
µ(z)[(uk,y + vk,x)

2 + (uk,x + wk,x)
2 + (vk,z + wk,y)

2]dz

where λ and µ are material parameters,uk, vk, wk are the components of mk and

uk,x is the partial derivative of uk with respect to x.

Thus after adding constants to balance the contribution of each term, the

continuous objective function becomes

E(f ,m) = αL(f) + U(f ,m) + βES(m). (4–4)

The reconstruction problem thus becomes a minimization of E(f ,m) with the

restriction that the intensities in each frame remain positive.

At each iteration of the RM Algorithm (the outer loop), two processes are

run in succession - the R-Step and the M-Step. In the R-Step (an inner loop), the
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previous motion iterate is used to improve the reconstruction of the frames. Since

ES does not depend on f , the R-Step is applied only to αL(f) + U(f ,m) with the

motion vector held constant. A PML reconstruction method can be applied (such

as the non-uniform step-size method described Chapter 3) to decrease this term

and produce the next iterate. In the M-Step (an inner loop), the motion vector is

updated using the frames generated from the R-Step. In this step, the conjugate

gradient algorithm is applied to decrease U(f ,m) + βES(m) with f now held

constant.

4.1.2 Image-Matching Penalty

In order to run the algorithm, the image space is partitioned into J equally

sized voxels. However, after discretizing the image space, it cannot be assumed

that the center of a voxel is mapped to the center of another voxel by the motion

vector. Thus, it is necessary to distribute the motion over adjoining voxels.

To accomplish this, let (uk,i, vk,i, wk,i) be the components of the motion vector

mapping voxel i in frame k into frame k + 1. Now define di, dj and dk to be the

decimal portions of u, v and w respectively. If (ai, bi, ci) are the coordinates of

the center of voxel i, then the motion vector will map this voxel to the ”voxel”

in frame k + 1 centered at (ai + uk,i, bi + vk,i, ci + wk,i). The target voxel to be

approximated will lie in at most eight real voxels. Define d000 to be the voxel

located at ([ai + uk,i], [bi + vk,i], [ci + wk,i]). Then the target voxel will lie in a cube

of dimension 2-voxels with d000 in the lower left corner. The emission intensity in

the target voxel can then be found by a trilinear approximation using the voxels

forming the cube, with the weights proportional to the distance from center of

each voxel to the center of the target voxel. Thus, the discrete version of the

image-matching term (4–3) is given by:

Uk(fk, fk+1,mk) =
∑

i

(fk,i −
∑

j∈Nk,i

ck,i,jfk+1,j)
2 (4–5)
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where Nk,i is the 8-voxel cube formed by mk,i and the weights, ck,i,j, are given by

Table 4–1. This form for the image-matching term is currently implemented in the

voxel voxel center weight
d000 ([ai + uk,i], [bi + vk,i], [ci + wk,i]) (1− di)(1− dj)(1− dk)
d100 ([ai + uk,i] + 1, [bi + vk,i], [ci + wk,i]) di(1− dj)(1− dk)
d010 ([ai + uk,i], [bi + vk,i] + 1, [ci + wk,i]) (1− di)dj(1− dk)
d110 ([ai + uk,i] + 1, [bi + vk,i] + 1, [ci + wk,i]) didj(1− dk)
d001 ([ai + uk,i], [bi + vk,i], [ci + wk,i] + 1) (1− di)(1− dj)dk

d101 ([ai + uk,i] + 1, [bi + vk,i], [ci + wk,i] + 1) di(1− dj)dk

d011 ([ai + uk,i], [bi + vk,i] + 1, [ci + wk,i] + 1) (1− di)djdk

d111 ([ai + uk,i] + 1, [bi + vk,i] + 1, [ci + wk,i] + 1) didjdk

Table 4–1: RM voxel neighborhood

objective function used in the RM Algorithm. However, it is difficult to perform

the conjugate gradient (M-Step) on this term. it has proven difficult to implement

the M-Step on the this term since the neighborhood system Nk,i depends on the

motion vector. To solve this problem, the M-Step has instead been performed on a

linearization of the image-matching term [14] given by

Qk(m) =

∫
fk(w)− fk+1(w)− (mk(w)− m̃k(w)) · ∇fk+1(w + m̃k(w)dw

with the previous motion estimate given by m̃. However, it has not been proven

that a decrease in the linearized term Qk will result in a decrease in the original

image-matching term Uk as required. One possible way to solve this problem is

to perform the linearization at the objective function level rather than at each

inner loop. Hence, the original objective function is modified to replace Uk with

a linearized version Ũk. With this change, the algorithm will now be referred

to as the modified RM algorithm. Since the objective functions are different, a

minimizer for the modified RM algorithm is not expected to be a minimizer for

the original RM algorithm. However, a decrease in the modified objective function

can be proven, allowing for convergence results. To describe the modified objective
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function, define the term

Ũ =
K∑

k=1

Ũk(fk, fk+1,mk)

Ũk =

∫
(fk(z)− fk+1(z)−mk(z)) · ∇fk+1(z))

2dz (4–6)

and update the objective function to become

Ẽ(f ,m) = αL(f) + Ũ(f ,m) + βES(m). (4–7)

In addition, linearizing the image-matching term gains convexity in the objective

function (the RM image-matching term is not convex in m). However, this

linearization is valid only for small displacements. If the motion between the

frames is large, the reconstruction may not be valid. Using this modified objective

function, the two inner loop sub-processes can now be described in detail.

4.1.3 Modified RM Iteration

The R-Step consists of minimizing αL(f) + Ũ(f ,m) over the set of positive

intensities f . As this in the same form as the objective function in Chapter 3, the

non-uniform step-size algorithm (3–1) can be utilized. Thus, the continuous R-Step

update for each frame k is given by

fn+1
k = fn

k + sv(fn) (4–8)

= fn
k − sfn

k rk(f
n)DkE(f ,m)
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with rk(f)(z) = (α
∑

i pi(z)+DkU(f ,m))−1. As derived in the Appendix of [14], the

derivatives DkE (taken with respect to fk) are given by

DkE(f ,m) = α
∑

i

(pi(z)− yk(i)pi(z)

Pfk(i)
) + DkŨ(f ,m)

DkŨ(f ,m) = DkŨk(fk, fk+1,mk) + DkŨk−1(fk−1, fk,mk−1)

DkŨk(fk, fk+1,mk) = 2(fk − fk+1 −mk · ∇fk+1)

DkŨk−1(fk−1, fk,mk−1) = −2(fk−1 − fk −mk−1 · ∇fk)

+2(∇fk−1 −∇fk −∇(mk · ∇fk)) ·mk−1

+2(fk−1 − fk −mk−1 · ∇fk)(∇ ·mk−1).

The last derivative can be seen (in the 2-frame case without loss of generality) by

using the formula

D2Ũ1(f1, f2,m1) =
d

dt
E(f1(z), f2(z) + th(z),m1(z))|t=0 (4–9)

to obtain

D2Ũ1(f1, f2,m1) = −2

∫
(f1(z)− f2(z)−m1(z) · ∇f2(z))h(z)dz

−2

∫
(f1(z)− f2(z)−m1(z) · ∇f2(z))(m1(z) · ∇h(w))dz.

D2Ũ1(f1, f2,m1) = ψ if equation (4–9) can be written as
∫

ψ(z)h(z)dz. As the first

term is already in this form, only the second needs to be simplified. This can be

done by applying the identity

∫
gm · ∇h(z) = −

∫
(∇ · gm)h(z) = −

∫
(∇g ·m)h(z) + (g∇ ·m)h(z)

to yield the equality for the second term:

= 2

∫
((∇(f1(z)− f2(z)−m1(z) · ∇f2(z)) ·m1)h(z)dz

+2

∫
(f1(z)− f2(z)−m1(z) · ∇f2(z))(∇ ·m1)h(z)dz.
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Distributing the ∇ in the first integral and adding the results to the first term

yields the desired derivative.

After discretizing the voxels (and approximating derivatives with central

differences), (4–8) reduces to the discrete iteration:

fn+1
k,j = fn

k,j + sn
k,jvk,j (4–10)

where vk,j = −fk,jrk,j(f)
∂Ẽ

∂fk,j
(f) and rk,j(f) = (α

∑
i pk,i,j +DkŨ(f ,m))−1. As before,

the step-size sn vector must be chosen so that (3–2 - 3–5) are satisfied. The method

described in Chapter 3 can be used to find such a vector.

Once the emission intensity has been updated by the R-Step, the M-Step

is run to update the motion vector. This step consists of minimizing Ũ(f ,m) +

βES(m) over all possible motion vectors m. The conjugate gradient algorithm

(using the Polak-Ribiere variant) is then applied to the discretized voxels to update

the motion vector [14].

In practice, at each iteration of the RM algorithm (the outer loop), one

iteration each of the R-Step and M-Step occurs (the inner loop). Continue running

the outer loop under a stopping criteria has been reached, such as the projected

gradient (3–13) falling under a chosen critical value.

4.2 Convergence Results

Although the new objective function Ẽ = αL + Ũ + βES is convex in f , Lemma

4 does not apply in this situation (unless a single motion vector is fixed). Hence,

convergence to a single minimizer is not guaranteed.

Theorem 6. If {fn} is a sequence of iterates produced by (4–10), then each

limit point of the sequence is a minimizer for the objective function Ẽ and Ẽ(fn)

converges.
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As before, Zangwill’s Convergence Theorem is applied. The definition of the

point-to-set function T is expanded to the following:

T1(f ,m) = {(g,mCG)|g ∈ T (f)} (4–11)

where T is the previous point-to-set function defined in (3–7) (with a range of

possible step-size vectors) and mCG is the motion vector outputted from applying

the conjugate gradient algorithm to Ũ(g,m) + βES(m). Let Ẽ be the linearized

objective function and define the set of stationary points S to be the set of all

points (f ,m) with v(f) = 0. If f ∈ S, then T (f) = {f} and the R-Step will not

change the value of L + γŨ . The M-Step (which does not affect the reconstructed

image f) has been defined to decrease γŨ + ES . Thus Ẽ(T1(f ,m)) ≤ Ẽ(f ,m) if

f ∈ S. If f /∈ S, then the R-Step will decrease L + γŨ as desired. Following this,

the M-Step will decrease the value of γŨ + ES. Hence Ẽ(T1(f ,m)) < Ẽ(f ,m) if

f /∈ S. The closure condition is proved by noting that T1 can be split into its two

parts, thus allowing the critical closure condition on f to be proved as in Lemma 1.

Thus by Zangwill, all limit points of the sequence {(fn,mn)} lie in S and

Ẽ(fn,mn) will monotonically converge to Ẽ(y,m) for some (y,m) ∈ S.

Now to prove all limit points are minimizers, let y be a limit point for the

algorithm. Consider the subsequence fnj where for each j, ||fnj − y|| < 1/j (the

definition of a limit point gives the existence of such points). Now as in Theorem

4, assume y does not meet the first K-T condition for a minimizer (By Zangwill,

y ∈ S, hence the second K-T condition minimizer of E is met). Therefore, an index

k can be found such that yk = 0 and ∂E
∂fk

(y) < 0 and hence there is an J such that

∂E
∂fj

(fnj) < 0 for all j > J . By construction, rk(f
nj) and sk have the same sign and

f
nj

k > 0. Thus for j > J ,

f
nj+1

k = f
nj

k + s
nj

k vk(f
nj) = f

nj

k − s
nj

k f
nj

k rk(f
nj)

∂E

∂fk

(fnj) > f
nj

k
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and f
nj

k does not converge to yk = 0, contrary to the assumption. Therefore, both

K-T conditions hold at the limit point.

If the modified M-Step is terminated after iteration K (locking in a specific

value for the motion vector) and the modified R-Step is used exclusively afterwards,

the convergence proof for penalized maximum likelihood presented in Chapter 3

will suffice to give convergence for the modified RM algorithm.



CHAPTER 5
RECONSTRUCTIONS

5.1 PML Reconstructions

To test the non-uniform step-size algorithm presented in Chapter 3, a series of

reconstructions was performed on a phantom source image 1 , λ = [λ1, ..., λJ ], of

dimension J=128x128. As displayed below, the phantom image is that of a typical

cardiac scan, with lungs, heart, spine and other tissues. Higher intensity values

correspond to regions of greater metabolic activity (in particular the heart and

lung regions). The detector data, Y = [y1, ..., yI ], was created by calculating the

Figure 5–1: Phantom chest source image

probability matrix P using (1–2). The chest emission was then projected into the

detector space using yi =
∑

j pi,jλj. Finally, random Poisson noise was added to the

1 created by Dr.Anderson

36
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data. The PML objective function is formed by the sum

E(f) = L(f) + γU(f).

The penalty term, U(f) was formed using the logcosh function with δ taken to be

50.

U(f) =
∑

i

∑
j∈Ni

wi,j log cosh
fi − fj

δ
(5–1)

The corresponding neighborhood system, Ni is formed by the 8 closest voxels, with

the diagonal elements having a weight of 1√
2
, and the 4 axial neighbors a weight

of 1, as seen in Figure 1–3. The strength of the penalty term, γ, ranged over a

set of values to provide a comparison. The reconstructions were formed by the

non-uniform step-size method (3–1). In separate trials, the search for the step-size

coefficient, s, was performed with the Armijo Rule and the bisection method. For

each value of γ, the algorithm was run until the projected gradient (3–13) fell

under 10−2. The resulting reconstructions were then compared to the source image

with a root-mean-square calculation

√∑
j(fj − λj)2

128 ∗ 128

to determine optimal values to use for the penalty strength.

As a comparison, the same phantom scanner data was used in the APML

algorithm (2–7). The reconstructions outputted from APML were visually identical

to the reconstructions gained using the non-uniform step-size algorithm. In all

trials, the objective function decreased rapidly, then leveled off. It was seen

that the image quality did not improve significantly after this leveling off of

the objective function. As can be seen in Figure 5–2, initially the objective

function decreases faster with the non-uniform step method than with APML,

but eventually both fall to the same level. The computation times for APML

were approximately the same as the computation time using the non-uniform
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Figure 5–2: Comparing the decrease in the objective function

step-size method with the Armijo Rule. The APML algorithm was able to reduce

the projected gradient factor in less iterations than with the non-uniform step-size

method.

Table 5–1 gives both the RMS error and the iterations required for algorithm

termination, occuring when the projected gradient fell below 10−2. In Figure 5–3,

γ Method Iterations CPU time RMS error
0.015 Bisect 219 475 49.5
0.020 Bisect 227 492 46.5
0.025 Bisect 235 631 45.5
0.030 Bisect 183 530 45.4
0.015 Armijo 220 118 49.6
0.020 Armijo 228 125 46.4
0.025 Armijo 268 129 45.5
0.030 Armijo 229 100 45.4

Table 5–1: PML reconstruction data

the RMS error is plotted against the penalty paramter γ. Reconstruction using

the non-uniform step-size algorithm (applying either bisection or Armijo in the

line search produced an identical RMS error) produced a smaller RMS error than

reconstruction of the image than using the APML reconstruction method. Thus,

these methods were able to produce a reconstruction closer to the source phantom

image. Due to its inexact search, the Armijo rule reduced the projected gradient
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Figure 5–3: Comparing the root-mean-square (RMS) error

criteria in a significantly shorter cputime than the bisection method (although the

iterations were approximately the same). The RMS plot in Figure 5–3 shows that

a penalty parameter taken from [0.03,0.04] resulted in the closest reconstruction to

the original phantom.

The reconstructions seen in Figure 5–4 were formed by applying the bisection

method. Although the iteration time was longer than using the Armijo method,

the bisection method gave a visually better image with higher values of the penalty

parameter, γ. The next set of reconstructions found in Figure 5–5 were formed

by applying the Armijo Rule. In this case, as γ increased, the Armijo rule did not

perform as well in high-intensity regions. This can be observed in the heart region

of the later reconstructions. Figure 5–6 displays a plot formed by a vertical line

thru the heart region. In this region, the exact bisection rule was able to produce a

smoother image in the high-intensity heart region than the non-exact Armijo rule.

Note that both methods produced similar intensities except in the heart region.

With further iterations, it was seen that the non-smooth intensity in the heart

region was reduced (using a smaller value for the projected gradient cutoff would

accomplish this). A tradeoff has thus been made between reconstruction speed (the

Armijo rule) and accuracy in the step-size choice (bisection). One possible solution
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(a) γ = 0.020 (b) γ = 0.025

(c) γ = 0.030 (d) γ = 0.035

Figure 5–4: Phantom image reconstruction using bisection rule
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(a) γ = 0.020 (b) γ = 0.025

(c) γ = 0.030 (d) γ = 0.035

Figure 5–5: Phantom image reconstruction using Armijo rule

Armijo
Bisect

Figure 5–6: Line plot of heart region
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is to combine these methods - begin with the Armijo method to approximate the

solution, then use bisection for precision.

Originally, the new algorithm was designed to remove the restrictions on

the penalty function imposed by Lange’s algorithm (2–4). Figure 5–7 shows two

reconstructions of the chest, the first using the non-uniform step-size method

and the second using Lange’s algorithm (and the Armijo Rule). In this case,

a quadratic penalty was used in place of the logcosh function. With a penalty

parameter of γ = 0.03, the r(f) function becomes negative (a situation not covered

in Lange’s algorithm). As can be seen from the reconstructions, the non-uniform

step-size method is able to reconstruct the image correctly, but Lange’s algorithm

(together with the Armijo Rule) produces artifacts.

(a) Non-uniform step-size method (b) Lange’s method

Figure 5–7: Comparing reconstruction algorithms

5.2 Modified RM Reconstructions

The modified RM algorithm presented in Chapter 4 was tested on a 2-frame

NCAT phantom image of a heart. The algorithm reconstructs both images with the

assistance of the motion vector between the frames. The objective function used in

the modified RM algorithm is given by

Ẽ(f ,m) = αL(f) + Ũ(f ,m) + βES(m)
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with the constants taken to be α = 0.02 and β = 0.005 as in previous

reconstructions. The linearized penalty term Ũ was used in the reconstruction

instead of the virtual voxel method used in the RM algorithm of Mair and

Gilland [14]. Although the use of the virtual voxels was seen to produce useful

reconstructions, the convergence of the RM objective function was unproven (but

was observed numerically).

In addition, the use of the linearized penalty produced a decreasing objective

function as seen in Figure 5–8. The second plot in Figure 5–8 shows the functions

involved in the M-Step, Ũ and βES. As can be seen, both Ũ and βES are
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Figure 5–8: Modified RM function plots

increasing for each outer loop. Despite this, the M-Step is reducing their sum

for each M-Step as can be seen in the sample RM data found in Table 5–2.

Typically, the R-step increases the value of Ũ while reducing αL. Then the M-Step

decreases Ũ and increases βES to give a decrease in the objective function. The

reconstructions formed using the modified RM algorithm (with the linearized

penalty, Ũ), were comparable to those outputted using the original RM algorithm

(using the approximated voxels penalty method (4–1)). Figure 5–9 displays

a quiver plot of the reconstructed Slice 20 combined with the motion vector.

Figure 5–10 displays a comparison of the methods. The top reconstructions were
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Iteration αL Ũ βES Objective
1 - R-Step 2866.4 1.326 2867.76
1 - M-Step 1.262 0.0203 2867.72
2 - R-Step 2728.4 1.678 2730.11
2 - M-Step 1.673 0.0228 2730.11
3 - R-Step 2569.1 2.341 2571.48
3 - M-Step 2.232 0.0750 2571.42
4 - R-Step 2374.0 3.367 2377.44
4 - M-Step 3.315 0.104 2377.42
5 - R-Step 2116.4 5.638 2122.11
5 - M-Step 5.330 0.277 2121.97

Table 5–2: RM data α = 0.02, β = 0.005
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Figure 5–9: Quiver plot of Slice 20
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performed with the modified RM algorithm. The lower plots were reconstructed

using the original RM algorithm, both using the parameters α 0.02 and β = 0.005.

Although the original RM method gives a better estimate of the motion penalty,

(a) Frame 1 Slice 20 Modified RM (b) Frame 2 Slice 20 Modified RM

(c) Frame 1 Slice 20 Original RM (d) Frame 2 Slice 20 Original RM

Figure 5–10: RM reconstructions

a decrease in the objective function (and hence convergence) remains unproven.

The use of the linearized penalty in the modified RM algorithm produces a similar

reconstruction, while in addition giving the needed decrease in the objective

function.

5.3 Conclusions

Several methods exist to solve the problem of image recovery in Emission

Tomography. Green’s OSL algorithm as extended by Lange provides for convergence

in a reduced set of penalty functions (which do not include the image-matching
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penalty used in the RM algorithm). Although Lange’s algorithm can be employed

in larger settings, neither its convergence to a minimizer nor a decrease in the

objective function is guaranteed. If the step-size is allowed to become negative

[2], a decrease in the objective function and algorithm convergence is once

again guaranteed, but this minimizer may not satisfy the first Kuhn-Tucker

optimality condition. However, a further extrapolation to a step-size vector will

both guarantee convergence to a minimizer and allow for a larger set of penalty

functions. Unlike previous methods, the convergence proof of the generalized

method allows for the use of inexact faster line searches, such as the Armijo Rule.

The non-uniform step-size algorithm provides one way of constructing a step-size

vector that meets the conditions required for convergence. This generalized method

can be extended to other image recovery problems, such as multiple image-motion

recovery. In this case, the generalized algorithm is incorporated into the modified

RM algorithm for reconstruction. Future work in this area will concentrate on

refining the algorithm to increase speed without losing image quality.



APPENDIX
SAMPLE ALGORITHM FORTRAN CODE

This Fortran code can be utilized to run the non-uniform step method as

described in Chapter 3. Code to calculate the penalty term (and its derivative) is

required. The probability matrix pi,j is stored in a sparce matrix format consisting

of hrow, hcol and hv preserving the non-zero entries of p.

The iteration loop consists of the following code:

do j=1,nhdim

temp = hcol(j)

hsum(temp) = hsum(temp) + hv(j)

enddo

do j=1,nhdim

temp1 = hrow(j)

temp2 = hcol(j)

AX(temp1) = AX(temp1) + hv(j)*f(temp2)

enddo

do j=1,nhdim

temp1 = hrow(j)

temp2 = hcol(j)

if(AX(temp1).ne.0)then

AY(temp2) = AY(temp2) + hv(j)*Y(temp1)/AX(temp1)

endif

enddo

call findderivpenalty(f,dU)

do j=1,NVOXX

47
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dE(j) = hsum(j) - AY(j) + gamma*dU(j)

enddo

tau(1) = 0

tau(2) = 0

do j=1,NVOXX

r(j) = sA(j) + gamma*dU(j)

f1(j) = f(j)*AY(j)/r(j)

v(j) = f1(j) - f(j)

enddo

temp1 = 0

do j=1,NVOXX

if(r(j).le.0)temp1 = 1

enddo

if(temp1.eq.1)then

do j=1,NVOXX

if(r(j).ge.0.)then

tau(1)=tau(1)+(f(j)*dE(j)**2)/r(j)

else

tau(2)=tau(2)+(f(j)*dE(j)**2)/r(j)

endif

enddo

else

tau(1) = 1

endif

tau(3) = sqrt(tau(1)**2 + tau(2)**2)
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tau(1) = tau(1) / tau(3)

tau(2) = tau(2) / tau(3)

do j=1,NVOXX

if (r(j).ge.0.)then

v(j) = v(j)*tau(1)

else

v(j) = v(j)*tau(2)

endif

enddo

smax=0

do j=1,NVOXX

if(r(j).ge.0)then

smax = max(smax, tau(1)*dE(j)/r(j))

else

smax = max(smax, tau(2)*dE(j)/r(j))

endif

enddo

if(smax.eq.0.)then

smax = 1

else

smax = 1/smax

endif

sopt =find-s(f,smax,v,hcol,hrow, hv,Y,dE,gamma)

do j=1,NVOXX

f(j) = f(j) + sopt*v(j)

enddo
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Utilizing the Armijo rule in the line-search can be accomplished by the code

(called by find-s in the main loop):

dEdotv = 0

do j=1,NVOXX

dEdotv = dEdotv + dE(j)*v(j)

enddo

tol = 0.1

k = 0

rho = 3

30 continue

alpha = smax / (rho**k)

do j=1,NVOXX

f1(j) = f(j) + alpha*v(j)

enddo

do j=1,nhdim

temp1 = hrow(j)

temp2 = hcol(j)

AX(temp1) = AX(temp1) + hv(j)*f1(temp2)

enddo

call findpenalty(f1,U)

E = 0

do j=1,ndet

if(AX(j).ne.0)then

E = E + AX(j) - Y(j)*log(AX(j))

endif

enddo
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do j=1,NVOXX

E = E + gamma*U(j)

enddo

flag = E0 + alpha * tol * dEdotv

k = k+1

if(E.gt.flag)goto 30

find_s = alpha
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