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Tikhonov regularization (TR) has been successfully applied to form spectral multivariate calibration models by
augmenting spectroscopic data with a regulation operator matrix. This matrix can be set to the identity matrix I
(ridge regression), yielding what shall be considered rough regression vectors. It can also be set to the i-th deriv-
ative operator matrix iL to form smoothed regression vectors. Two new penalty (regularization) methods are pro-
posed that concurrently factor both roughness and smoothness in forming the model vector. This combination
occurs by augmenting calibration spectra simultaneously with independently weighted I and iL matrices. The
results of these two new methods are presented and compared with results using ridge regression forming rough
model vectors and only using the smoothing TR processes. Partial least squares regression is also used to combine
roughness and smoothness, and these results are compared with the TR variants. The sum of ranking differences
algorithm and the two fusion rules sum and median are used for automatic model selection, that is, the appropri-
ate tuning parameters for I and iL and partial least squares latent vectors. The approaches are evaluated using
near-infrared and ultraviolet-visible spectral data sets. The near-infrared set consists of corn samples for the anal-
ysis of protein and moisture content. The ultraviolet-visible set consists of a three-component system of inorganic
elements. The general trends found are that when spectra are originally generally smooth, then using the smooth-
ing methods provides no improvement in prediction errors. However, when spectra are considered noisy, then
smoothing methods can assist in reducing prediction errors. This is especially true when the spectroscopic noise
is more widespread across the wavelength regions. There was no difference in the results between the different
smoothing methods. Copyright © 2016 John Wiley & Sons, Ltd.

Keywords: smooth regression vectors; penalty smoothing; partial least squares; Tikhonov regularization; sum of ranking
differences

1. INTRODUCTION

Characteristics of model vectors generated through spectral multi-
variate calibration methods can have significant impacts on predic-
tion accuracy (and precision) as well as model robustness. Rough (or
jagged) model vectors can be found to predict accurately under the
given calibration conditions. However, such model vectors can be
overfitted to the specific calibration conditions used and can fail
to predict new samples accurately. A smooth model vector on the
other hand can be more robust to prediction than its rough coun-
terpart [1–3]. For example, small changes in temperature or pres-
sure have been found to cause shifts in measured sample spectra.
Smoothness in the model vector may be useful, permitting robust-
ness to spectral perturbations.

There are a number of calibration smoothing approaches
reported in the literature [1–14]. Many of these approaches are
penalty based such as the efficient Whittaker smoother [10],
and some methods incorporate flexibility with B-splines allowing
vectors to be unimodal, convex, or concave [11]. The focus of
these processes is to smooth spectra as data pre-processing. Also
used is Savitzky–Golay smoothing. While the goal of these
methods is to increase the spectral signal-to-noise ratio, there
are concerns that through the smoothing process, some useful
spectral information may be lost and not carried forward to the
calibration model [15].

An alternative to using penalty smoothing processes directly
on spectra is to smooth basis vectors (such as partial least
squares (PLS) latent vectors (LVs)) prior to forming calibration
model vectors [12–14]. Penalty-based approaches have been
used as well a Savitzky–Golay process. However, as with smooth-
ing spectra, no significant advantages have been found unless
the original spectra contain large measurement noise.
Rather than using penalties on spectra or the basis vectors, the

approach used in this study, and found to be successful in many
situations [2–9], is to form smooth regression vectors directly via
in-process regression vector penalties. New here are Tikhonov
regularization (TR) variants that simultaneously optimize the
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degree of model smoothness and roughness by applying sepa-
rate smoothing and roughness penalties in the minimization.
This is similar to the TR penalty variant known as the elastic
net that balances full variables models with sparseness [16,17].
The method of PLS regression is a common method to gener-

ate model vectors. Thus, PLS variants analogous to the new TR
variants are also studied and compared.

2. MODELING PROCESSES

2.1. Tikhonov regularization and variants

The fundamental TR approach applied to spectral multivariate cal-
ibration relies on a regulation operator matrix (L) that augments
the spectral data [17–22]. The L matrix is adjusted by a regulariza-
tion (tuning or penalty) parameter (λ). This tuning parameter has
values from 0 to ∞, and the value determines the effectiveness of
the generated model. Hence, the model characteristics are deter-
mined by the choice of L and λ. Setting L= I (identity matrix) yields
the standard form of TR (referred to hereafter as ridge regression
(RR) [23]) expressed by

y
0

� �
¼ X

λI

� �
r (1)

with solutions from the minimization expression

min Xr� yk k2 þ λ2 rk k2� �
(2)

where X denotes the m×n matrix of calibration spectra, y repre-
sents the corresponding vector of reference values for the predic-
tion property to be model, r signifies the model vector to be
estimated, and ‖ • ‖ symbolizes Euclidean vector norm (L2 norm).
The model vector is denoted r because the RR modeling process
tends to generate rough model vectors with spectroscopic data.
The degree of roughness depends on the value chosen for λ. A
small λ value produces roughmodels, while larger λ values generate
smoother models. The method of RR in Eq. 1 is labeled Method 1 in
Table I and shall be referred to as either RR or Method 1, and the TR

variants defined in the following are referred to as TR variants or the
respective Method number. A similar statement is true for the PLS
variants introduced in Section 2.2.

Setting L= 2L, the second derivative operator defined by the
discrete matrix approximation of the second derivative operator

2L ¼
1 �2 1

⋱ ⋱ ⋱
1 �2 1

" #
∈ℝ n�2ð Þ�n (3)

and using
y
0

� �
¼ X

ηL

� �
s (4)

with solutions for the minimization

min Xs� yk k2 þ η2 Lsk k2� �
(5)

forms smoothed model vectors s subject to the η tuning param-
eter value that can vary from 0 to ∞. As with RR, small η tuning
parameter values for this TR variant [18–22] produce rougher
models than those with larger η values. Essentially, the derivative
operator in the second minimization term of expression 5 penal-
izes (constrains) the model vector roughness. Higher order deriv-
atives place a stronger constraint on the model vector roughness,
leading to smoother and broader regression vectors [2]. For the
remainder of the paper, when the symbol L is used, it is assumed
to represent the second derivative operator. The approach noted
by Eq. 4 is labeled Method 2 in Table I.

A new variant of TR, termed Method 3 in Table I, can be
formed by combining Eqs. 1 and 4, obtaining

y
0
0

 !
¼

X
λI
ηL

 !
b (6)

with the minimization expression

min Xb� yk k2 þ λ2 bk k2 þ η2 Lbk k2� �
(7)

By tuning the identity and the derivative penalties indepen-
dently, the degrees of roughness and smoothness can be simul-
taneously varied in forming regression vectors. Because this TR
modeling process concurrently penalizes roughness and smooth-
ness, the model vector in Eq. 6 is designated b. As noted previ-
ously, these dual penalties are similar to the concept of the
elastic net where two separate penalties on the regression vector
are also used, one favoring full variables and the other preferring
sparseness (selected variables) [16].

A second new TR variant studied in this paper and previously
proposed in general terms [24] is expressed as

y
0
0

 !
¼

X X
λI 0
0 ηL

 !
r
s

� �
(8)

with minimization

min X rþ sð Þ � yk k2 þ λ2 rk k2 þ η2 Lsk k2
� �

(9)

This TR variant, Method 4 in Table I, can also factor in a
smoothing penalty simultaneously with a roughness penalty.
However, this method produces two regression vectors. One is

Table I. TR and PLS method names

Method name Equation

TR Method 1 (RR) y
0

� �
¼ X

λI

� �
r

TR Method 2 y
0

� �
¼ X

ηL

� �
s

TR Method 3
y
0
0

 !
¼

X
λI
ηL

 !
b

TR Method 4
y
0
0

 !
¼

X X
λI 0
0 ηL

 !
r
s

� �

PLS Method 1 (PLS) y=Xr

PLS Method 3
y
0

� �
¼ X

ηL

� �
s

ya ¼ Xas

PLS Method 4
y
0

� �
¼ X X

0 ηL

� �
r
s

� �
ya ¼ Xaba
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formed through the rough penalty, and as such, is designated by
r. The other vector incorporates the smoothing penalty con-
straint and is designated by s. The analyte present in a new sam-
ple spectrum is predicted by the sum of the two regression
vectors; that is, the final model prediction vector is b= r+ s.

2.2. Partial least squares solutions to augmented arrays

The PLS regressionmethod (also referred to as PLSR) [25,26] has been
widely used in the literature for a number of different applications.
For this reason, the PLS approach has been adapted to the afore-
mentioned TR variants for regression purposes. It is assumed that
the reader is familiar with PLS regression and the variants of PLS
relative to the aforementioned TR methods are only briefly noted.

Essentially, a PLS algorithm is used on each of the aforemen-
tioned augmented arrays in Eqs. 1, 4, and 8 with the correspond-
ing 0 and λI arrays removed. The augmented arrays are treated
as respective y and X single arrays for the PLS algorithm. The
PLS LVs replace the λ tuning parameter. The TR and PLS variants
are identified in Table I with regard to specific method numbers
as discussed in this paper. The PLS methods are not sequentially
numbered in order to better correlate the TR and PLS methods
that operate on obtaining similar model vectors.

2.3. Model quality measures and tuning parameter selection

Three fusion processes known as sum, median, and sum of rank-
ing differences (SRD), sum, and median [27,28] are used with
numerous model quality measures in order to select the best cal-
ibration tuning parameter values for λ, η, and/or LVs as the case
may be. From fusion of model quality measures favoring biased
models (leading toward overfitted models), low variance models
(preferring underfitted models), and combinations of bias and
variance measures, tuning parameters are selected, balancing
the bias/variance trade-off needed with inverse regression
models [29]. The SRD, mean, and median fusion process have
been shown to be effective in selecting up to two calibration
tuning parameters [30,31].
Specific model measures used are the root-mean-squared

error (RMSE) of calibration (RMSEC) and cross validation
(RMSECV), both of which assess the deviation of predicted values
from the known reference values, respective statistical measures
R2, slope, and y-intercept from plotting the corresponding pre-
dicted values against reference values, model vector L2 norms,

model jaggedness J where Ji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp
j¼2

bbij � bbi j�1ð Þ
� �2vuut for the

i-th model, U-shaped curves [29] formed by

Table II. Corn protein results

Modeling process Fusion rule Tuning parameter1 λ or PLS LVs, η RMSECV R2CV bb			 			
TR Method 1 SRD 0.004 (48) 0.153 0.905 92.4

Sum 0.005 (47) 0.152 0.906 79.3
Median 0.005 (47) 0.152 0.906 79.3
Minimum2 0.005 (47) 0.152 0.906 79.3

TR Method 2 SRD 0.048 (48) 0.199 0.851 322
Sum 0.494 (37) 0.166 0.890 106
Median 2.17 (30) 0.180 0.870 71.0
Minimum2 0.324 (39) 0.165 0.892 126

TR Method 3 SRD 0.002 (50), 0.060 (47) 0.158 0.900 121
Sum 0.004 (48), 0.074 (46) 0.154 0.904 88.4
Median 0.004 (48), 0.009 (56) 0.154 0.905 91.5
Minimum2 0.005 (47), 0 (100) 0.152 0.906 79.3

TR Method 4 SRD 5.88e-4 (55), 0.007 (57) 0.295 0.718 1.02e3
Sum 0.004 (48), 149 (10) 0.154 0.905 92.4
Median 0.004 (48), 530 (4) 0.154 0.905 92.4
Minimum2 0.005 (47), 1000 (1) 0.152 0.906 79.3

PLS Method 1 SRD 17 0.186 0.864 277
Sum 16 0.182 0.868 234
Median 10 0.153 0.905 75.6
Minimum2 10 0.153 0.905 75.6

PLS Method 3 SRD 80, 0.001 (67) 0.369 0.628 1.87e3
Sum 34, 0.060 (47) 0.155 0.903 79.9
Median 31, 0.060 (47) 0.154 0.904 77.2
Minimum2 15, 0.032 (50) 0.152 0.906 73.5

PLS Method 4 SRD 80, 0.009 (56) 0.251 0.778 811
Sum 70, 0.172 (42) 0.155 0.903 81.3
Median 20, 0.048 (48) 0.154 0.904 79.4
Minimum2 15, 0.048 (48) 0.152 0.906 72.6

1Values in parenthesis are respective tuning parameter index.
2Not fusion minimum rule but instead, model at actual minimum RMSECV.
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C1i ¼ bk ki � bk kmin

bk kmax � bk kmin

� �
þ RMSECi � RMSECmin

RMSECmax � RMSECmin

� �
(10)

C2i ¼ RMSECi þ RMSECVi
RMSECi=RMSECVi

� � (11)

with three other variations of Eq. 10 by replacing the model vec-
tor L2 norms with the model vector jaggedness J and/or the
RMSEC with the RMSECV term, and lastly, measures formed from
modifying Eq. 11 by exchanging the RMSEC and RMSECV terms
in the numerator with 1� R2cal

� �
and 1� R2CV

� �
. These combina-

tions of measures were found to be useful with SRD in selecting
RR and PLS tuning parameters and intermodal comparison, but
others can be added or used instead of those presented [30].

2.4. Fusion processes

Previous work involving selection of single tuning parameter
values for RR and PLS (respective Methods 1) used only SRD
and evaluated all possible tuning parameter values [30]. Work
presented here is the same for RR and PLS Method 1 and TR
Method 2. As noted previously, the fusion rules sum and median
are used in addition to SRD. Previous work on selecting two
tuning parameters (as required for Methods 3 and 4) considered

three fusion methods (SRD, sum, and median) using different ap-
proaches of dealing with the large number of models from all the
possible combinations of tuning parameter values [31]. While no
one approach was better than another, the process of using
thresholds to preliminarily filter all the possible models before
fusion was used in this study. This procedure consists of using R2

values for the calibration samples (R2cal) where the lower 50% and
top 10% of all models are removed from further consideration for
selecting the pair of tuning parameter values to/from the model.

Regardless of whether one or two tuning parameters are
being selected, the matrix of model quality measures for
column-wise fusion is composed of a row for each model quality
measure and a column for each tuning parameter pair. All values
are row-wised normalized to unit length before applying the
fusion rules. The SRD process is then used to rank the columns
(models). The sum fusion rule sums the values in each column
and then ranks the column. The median rule identifies the
median value in each column and then ranks the columns.

In order to validate rankings, an internal cross validation is
used on the matrix of model quality measures. In this case, some
model quality measures are removed, and the fusion rules are
applied on the remaining model quality measures to obtain
rankings. The process is repeated depending on the type of cross
validation being used, that is, n-fold, leave multiple out, and so
on. From the internal cross validation, statistical difference test-
ing is possible [27,32] if desired. Additionally, a rank reliability

Table III. Corn moisture results with simulated noise added to spectra

Modeling process Fusion rule Tuning parameter1 λ or PLS LVs, η RMSECV R2CV bb			 			
TR Method 1 SRD 0.119 (35) 0.192 0.763 7.12

Sum 0.346 (31) 0.249 0.603 2.07
Median 8.38 (19) 0.331 0.434 0.093
Minimum2 6.42e-6 (72) 0.108 0.926 17.7

TR Method 2 SRD 1.15 (33) 0.072 0.966 25.5
Sum 6.25 (25) 0.076 0.962 22.7
Median 4.10 (27) 0.074 0.964 22.6
Minimum2 1.42 (32) 0.071 0.966 24.6

TR Method 3 SRD 0.003 (49), 0.007 (57) 0.073 0.964 22.2
Sum 0.019 (42), 1.76 (31) 0.070 0.967 19.8
Median 0.001 (52), 7.72 (24) 0.080 0.958 18.6
Minimum2 0.011 (44), 0.754 (35) 0.068 0.969 22.3

TR Method 4 SRD 0.001 (52), 0.014 (54) 0.075 0.962 29.2
Sum 0.006 (46), 0.039 (49) 0.081 0.956 31.8
Median 0.005 (47), 0.032 (50) 0.081 0.956 31.5
Minimum2 0.451 (30), 1.42 (32) 0.071 0.966 24.6

PLS Method 1 SRD 5 0.109 0.925 16.8
Sum 2 0.261 0.570 2.27
Median 2 0.261 0.570 2.27
Minimum2 7 0.108 0.926 17.6

PLS Method 3 SRD 45, 6.87e-5 (79) 0.075 0.962 21.3
Sum 21, 0.048 (48) 0.072 0.965 23.4
Median 56, 0.091 (45) 0.072 0.964 26.4
Minimum2 80, 0.400 (38) 0.066 0.970 21.6

PLS Method 4 SRD 71, 0.003 (62) 0.089 0.950 18.3
Sum 15, 0.021 (52) 0.091 0.947 18.2
Median 25, 0.001 (65) 0.094 0.944 18.1
Minimum2 80, 0.932 (34) 0.087 0.952 17.8

1Values in parenthesis are respective tuning parameter index.
2Not fusion minimum rule but instead, model at actual minimum RMSECV.
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measure (RRM) was developed to use with the results from the
internal cross validation [31]. The RRM for each model is the
sum of the range scaled mean and standard deviations of model
rankings. This measure favors low overall rank and consistency
in that rank. A potential concern is some models could result
in low RRM values where overall model rank is not low but are
extremely closely ranked over the cross validations (very low
standard deviation). Such models could have artificially low
RRM values, but not the lowest RRM values. For this reason, only
the 100 lowest mean ranked models are included in the compu-
tation of RRM, thereby placing a greater weight on the actual
data fusion ranks than on the standard deviation of those ranks.

3. EXPERIMENTAL

3.1. Algorithms

All algorithms (RR, PLS, TR and PLS variants, SRD, RRM, and all
measures of model quality) were written by the authors using
MATLAB 8.1 (The MathWorks, Natick, MA, USA). The MATLAB
SRD algorithm is available for download at [33]. The PLS regres-
sion algorithm is that based on reference [25].

3.2. Near-infrared corn data

Spectra were measured for 80 samples of corn over 700 wave-
lengths from 1100 to 2498 nm at 2 nm intervals [34]. Included
in the data set are spectra for the same 80 samples measured
on three near-infrared spectrometers designated m5, mp5, and
mp6. Reference values for moisture, oil, protein, and starch
content for each sample are available. For the purpose of this

study, the focus was protein using spectra from mp6 and mois-
ture using m5. The η and λ tuning parameters ranged exponen-
tially from 1000 to 10�6 for 80 and 100 values, respectively,
for RR and the other TR variants. For PLS models, the number
of PLS LVs was limited to 80 in order to facilitate easier
comparison between the TR (including RR) and PLS model
measures.
In a separate study, noise based on a random normal distribu-

tion with mean zero and standard deviation one was added to
the corn spectra to further characterize the rough and smoothing
processes. Noise added was homoscedastic at 0.25% of the max-
imum peak amplitude for each spectrum and heteroscedastic at
0.25% of each spectral wavelength intensity. No correlated noise
was used, and other distributional noise structures were not
studied. Other than the altered spectra, the modeling procedures
were the same as those described previously. The analyte studied
was moisture on the instrument designated m5.

3.3. Ultraviolet-visible inorganic data

Three-component mixtures of three metal ions, cobalt II, chro-
mium III, nickel II, with varying concentrations for each ion were
measured at 176 wavelengths from 300 to 650 nm at 2 nm inter-
vals on a diode array spectrophotometer. Reference concentra-
tion values (mM) are available for a total of 128 samples [35].
Analytes nickel and cobalt were studied. For RR and the TR vari-
ants, η tuning parameter values ranged exponentially from 1000
to 10�6 for 80 values, and the λ ranged exponentially from 105 to
10�4 for 100 values. For PLS models, the number of PLS LVs was
limited to 80 in order to facilitate easier comparison between the
TR (including RR) and PLS model measures.

Figure 1. Corn moisture model vectors based on adding simulated noise to spectra. Model vectors are selected by SRD. Modeling processes are (a)
Method 1, (b) Method 2, (c) Method 3, and (d) Method 4 for TR (purple line) and PLS (green dots).
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3.4. Cross validation

Confidence in the significance of the model rankings and selec-
tion is essential in order to form any conclusions. To this end,
cross validation is performed. Twenty leave-multiple-out cross
validation was used for both data sets. In this case, 60% of the
full data are randomly removed, forming the calibration set,
and the remaining 40% make up the validation set. The process
is repeated 20 times. In each case, the data were mean centered
by column based on the calibration set. All of the model mea-
sures previously noted are computed for each of the cross-
validation splits. Thus, for the fusion rules, there are 20 rows for
measures of model quality. Thus, instead of the usual practice
of using the mean model quality measures to select tuning
parameters, the model quality measures generated for each CV
split are used. This process guards against overfitting, and the con-
sensus of the tuning parameters is assessed. Further characteriza-
tion of the SRD fusion rule relative to data splitting is available
[36]. For the internal cross validations of the model measures, a
10-fold cross validation was performed on each model quality
measure block of 20 rows.

4. RESULTS AND DISCUSSION

Results from the TR (including RR) and PLS variants are discussed
together as this best facilitates a comparison between the variety

of methods. Two elements are included in the comparison of the
modeling methods. The first compares the model with the abso-
lute minimum cross validation error for each method. The second
utilizes the three automatic tuning parameter selection methods
in order to compare models selected for each modeling method
in a realistic setting (rather than the best-case scenario). The
results are similar for the two data sets studied, and the general
trends for each data set as a whole are discussed.

4.1. Corn data

The following sections discuss results observed for the corn data
set predicting protein and moisture contents on two different
near-infrared instruments. Results from the seven penalty methods
listed in Table I are first presented for protein as the analyte. Model-
ing moisture resulted in similar trends to protein, and as such,
those results are only compared qualitatively. The results for the
artificially noisy corn spectra are discussed independently as they
represent a different experimental situation.

4.1.1. Protein

Table II shows the results for the seven methods applied to the
mp6 spectra using protein as the analyte. The models selected
at the minimum RMSECV values in Table II indicate that no dis-
cernable improvement in prediction is achieved by incorporating

Table IV. Inorganic nickel results

Modeling process Fusion rule Tuning parameter1 λ or PLS LVs, η RMSECV R2CV bb			 			
2

TR Method 1 SRD 0.001 (52) 9.64e-4 0.999 0.144
Sum 0.054 (38) 8.35e-4 0.999 0.080
Median 0.070 (37) 8.42e-4 0.999 0.078
Minimum2 0.041 (39) 8.31e-4 0.999 0.083

TR Method 2 SRD 0.003 (83) 5.97e-4 1.00 0.476
Sum 0.164 (64) 3.28e-4 1.00 0.172
Median 7.37 (46) 6.64e-4 1.00 0.083
Minimum2 0.250 (62) 3.24e-4 1.00 0.155

TR Method 3 SRD 0.024 (41), 0.133 (65) 4.65e-4 1.00 0.093
Sum 0.070 (37), 2.07 (52) 4.87e-4 1.00 0.079
Median 3.16e-5 (66), 0.250 (62) 3.24e-4 1.00 0.155
Minimum2 0 (80), 0.250 (62) 3.24e-4 1.00 0.155

TR Method 4 SRD 0.001 (52), 0.020 (74) 7.59e-4 0.999 0.182
Sum 0.032 (40), 0.070 (68) 4.53e-4 1.00 0.196
Median 0.092 (36), 0.024 (73) 4.26e-4 1.00 0.248
Minimum2 0.005 (47), 1000 (1) 3.24e-4 1.00 0.155

PLS Method 1 SRD 13 9.81e-4 0.999 0.074
Sum 11 1.00e-3 0.999 0.074
Median 15 9.83e-4 0.999 0.075
Minimum2 30 9.11e-4 0.999 0.082

PLS Method 3 SRD 68, 2.07 (52) 4.38e-4 1.00 0.159
Sum 74 4.49e-4 1.00 0.083
Median 74 3.77e-4 1.00 0.098
Minimum2 80 3.54e-4 1.00 0.108

PLS Method 4 SRD 74, 32.4 (39) 8.11e-4 1.00 0.101
Sum 30, 40.0 (38) 8.15e-4 1.00 0.081
Median 25, 49.4 (37) 8.40e-4 1.00 0.078
Minimum2 59, 75.4 (35) 7.96e-4 0.999 0.085

1Values in parenthesis are respective tuning parameter index relative to figures.
2Not fusion minimum rule but instead, model at actual minimum RMSECV.
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a smoothing penalty into the modeling process (Methods 2, 3,
and 4). Additionally, there is little difference between the new
methods (Methods 3 and 4) and Methods 1 and 2. The results
for the m5 spectra predicting moisture similarly showed no dis-
cernable improvement between the seven methods.

Tabulated results in Table II for the models selected by the
fusion processes show a similar lack of variation between the
smoothing and unsmoothed methods. Models selected by the
SRD fusion rule always had a slightly greater prediction error than
the other selected models. However, this trend is not present for
the m5 corn moisture analysis; that is, the three fusion rules select
models with equivalent measures of model quality.

This clear lack of any consistent variation for predicting protein
and moisture can be attributed to the nature of the data itself.
There is a high level of collinearity and very low noise across
the corn spectra for all instruments. Specifically, the spectra them-
selves are already fairly smooth. Hence, nothing further is gained
by incorporating a smoothing penalty in the modeling process.

4.1.2. Moisture with simulated noisy spectra

Noise was added to the corn spectra in order to distort the
collinearity and cause modeling difficulties. Table III shows the
results for the seven methods, and the smoothing penalty
methods all have lower minimum prediction errors and higher
R2CV values than Methods 1. This trend is accentuated when the
models selected by the fusion processes are compared.

The improvements observed do appear to be significant, with
an increase in R2CV values from below 0.65 (in general) to approx-
imately 0.95 for the models selected with a smoothing con-
straint. Coupled with the decrease in the prediction error, these

markers clearly show that incorporating a smoothing penalty in
the modeling process is beneficial when spectra contain noise
across the full wavelength range. There are, however, no predic-
tion improvements by incorporating two tuning parameters
(Methods 3 and 4) compared with the prediction by Method 2
with only the smoothing tuning parameter.
Figure 1 shows the regression vectors selected by the SRD

fusion rule for each of the modeling methods studied. It is clear
that, with the exception of the PLS solution to Method 4, incor-
porating a smoothing condition in the modeling process does
yield regression vectors that are less noisy (compared with
Methods 1). Another interesting feature is that, although the
regression vectors selected for Methods 2, 3, and 4 have differ-
ent shapes and degrees of smoothness, all of these models have
nearly identical prediction errors, R2CV, and L2 norm values. Only
the one noise structure was studied (described in Section 3),
and it may be that different noise structures could generate dif-
ferent results. Such a full noise study has not been performed.

4.2. Inorganic data

Both nickel and cobalt were studied, but because the results for
cobalt are similar to nickel, only the nickel results are detailed.
The inorganic spectra show less collinearity than the corn spec-
tra, and there are two highly noisy regions in the spectra.
Because adding artificial noise to the corn spectra did show
marked improvements in prediction using smoothing regression
methods, it is of interest to see whether this trend is consistent
for a data set that includes noise. Listed in Table IV are the results
for the seven methods with nickel as the analyte. In this case,
there is a clear difference in the minimum error of prediction

Figure 2. Nickel inorganic data landscape images for TR and PLS Method 3 with (a) RMSECV from TR, (b) model vector L2 norm from TR, (c) RMSECV
from PLS, and (d) model vector L2 norm from PLS. Log scales are used for (a) and (c), and all color bar values correspond to actual calculated values. In
each case, landscapes represent mean values of the 20 cross-validation splits. In all landscapes, the tuning parameter values decrease from left to right
and bottom to top (the number of PLS latent vectors used increases where applicable from bottom to top).
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between some of the smoothing methods (Methods 2, 3, and 4
for TR), and Method 1 with no smoothing constraints. These
trends are consistent with the results for prediction with cobalt
as the analyte.
The models selected by the three fusion processes exhibit sim-

ilar trends. In general, the modeling methods using a smoothing
penalty (except for Method 4 by PLS) have models with lower er-
ror of prediction and higher R2CV values than the standard
methods incorporating no smoothing, albeit there are greater
differences in prediction errors than the R2CV values. This result
may be attributed to the fact that the spectra are fairly noise free
apart from the two noisy wavelength regions on each end of the
spectra. Hence, analyte spectral information can be well modeled
by the non-noisy spectral region. Specifically, the modeling methods
generated model vectors with nearly zero coefficients at points cor-
responding to the isolated noisy spectral regions (Figure 3b). The
near-zero model coefficients negate any influence on predictions
by these regions. These result trends are also the case when cobalt
is used as the analyte, with the exception of Method 3 by TR, where
two of the fusion rules selected models with very poor prediction as
compared with the other methods.
Figure 2 contains images of the two model quality measures

RMSECV and L2 norm for Method 3 evaluated by the respective
TR and PLS variants. As previously observed [31], the PLS pro-
cesses can lead to more discrete results, as seen in Figure 2c.
The transition zone for the bias/variance trade-off occurs in the
first five LVs for η indices greater than 30. However, this discrete-
ness does not appear to produce a difficulty in tuning parameter
selection as was the situation observed for model updating [31].
This could be attributed to the fact that the experimental config-
uration in this study is easier than model updating, leading to a
larger minimum zone in prediction error. Additionally, the larger
sample size of this data set allows LVs to better decompose the
space.
Figure 3 illustrates the formation of the final nickel model vec-

tor for TR Method 4 using the sum fusion rule. Similar regression
vectors are identified by the other two fusion rules and PLS
Method 4. From Figure 3a, the two model vector components
are as expected from the design; one component is smooth
(blue), while the other is rougher (red). Varying the relative
values of the two tuning parameters dictates the relative magni-
tudes of the two modeling components. The final model plotted
in Figure 3b is a sum of the two components in Figure 3a. From
Figure 3b, it is noticeable that there is more significant weight on
the smoothing penalty parameter, leading to the overall fairly
smooth regression vector.

5. CONCLUSION

This study showed that directly forming smoothed model vec-
tors has some targeted benefits. Specifically, advantages are
observed when the calibration spectra contain noise, especially
when that noise is spread across the entire wavelength range
and not localized. This observation was evident when the
models were selected based on the minima RMSECV as well as
models selected by the fusion processes. When improvement
was observed, it was generally characteristic of all of the
methods that include a smoothing process. Specifically, through-
out the cases studied, no noticeable decrease in prediction error
was gained for the smoothing methods by including a second
tuning parameter (Methods 3 and 4). The improvement of
Methods 3 and 4 over Method 1 can be attributed to the benefit
of the smoothing penalty, because Methods 3 and 4 show no im-
provement over Method 2. That is, when provided the opportu-
nity, smoothing takes precedence over roughness even if
roughness can be simultaneously included in the procedure.
For this reason, Method 2 is recommended when dealing with
noisy spectra as the method uses a single tuning parameter.
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