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Peptides: Production, bioactivity, functionality, and applications

Mona Hajfathaliana, Sakhi Ghelichia,b, Pedro J. Garc�ıa-Morenoa, Ann-Dorit Moltke Sørensena, and Charlotte Jacobsena

aDivision of Food Technology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; bDepartment of Seafood Science
and Technology, Faculty of Fisheries and Environmental Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

ABSTRACT
Production of peptides with various effects from proteins of different sources continues to receive
academic attention. Researchers of different disciplines are putting increasing efforts to produce bioactive
and functional peptides from different sources such as plants, animals, and food industry by-products. The
aim of this review is to introduce production methods of hydrolysates and peptides and provide a
comprehensive overview of their bioactivity in terms of their effects on immune, cardiovascular, nervous,
and gastrointestinal systems. Moreover, functional and antioxidant properties of hydrolysates and isolated
peptides are reviewed. Finally, industrial and commercial applications of bioactive peptides including their
use in nutrition and production of pharmaceuticals and nutraceuticals are discussed.
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Introduction

Dietary protein is an important source of energy (4 kcal/g pro-
tein) and essential amino acids, which are needed for growth
and maintenance of physiological functions such as repair of
tissues and cell signaling. In the body, proteins are broken
down to peptides upon digestion by endogenous enzymes in
the gastrointestinal system. These peptides are inactive within
the sequence of the parent protein, but after they are released
by enzymatic hydrolysis, they exert various physiological func-
tions. Recent research has shown that peptides from different
sources such as dairy products, plants, animals and seafood
have a wide range of bioactivities, e.g., antimicrobial (Tang
et al., 2015), immunomodulatory (Mechkarska et al., 2014),
antihypertensive (Capriotti et al., 2015), and antioxidant
(Babini et al., 2017) activities, among others.

Bioactive peptides can also be produced by commercial
exogenous enzymes, which hydrolyze proteins into peptides.
The greatest number of bioactive peptides isolated to date is
from milk proteins. Other sources include meat, fish, eggs,
plant sources such as soy and wheat (Hartmann and Meisel,
2007). The most commonly used enzymes for the production
of bioactive peptides, for instance, from fish proteins include
Alcalase 2.4 L FG, Papain, Pepsin, Trypsin, a-chymotrypsin,
Pancreatin, Flavourzyme, Pronase, Neutrase, Protamex, Bro-
melain, Cryotin F, Protease N, Protease A, Orientase, Thermo-
lysin, and Validase (Raghavan and Kristinsson, 2008; Ren et al.,
2008; Samaranayaka and Li-chan, 2008; Je et al., 2009; Hsu,
2010; Ngo et al., 2010). Some of these enzymes are also used for
production of bioactive peptides from other sources.

A large proportion of the global production of dietary pro-
teins is being discarded as waste or sold at a low price for ani-
mal feed after the main products have been produced from the
original raw material. For example, rapeseed meal with a low

solubility is produced as a by-product from the production of
rapeseed oil (Tan et al., 2011). Likewise, head, bones, tails and
intestines are by-products from the seafood production, which
currently provide the manufacturer with low or no revenue.
Therefore, it seems crucial to find avenues toward making the
best use of such protein sources, for example by using them for
the production of protein hydrolysates containing bioactive
peptides for human consumption (Sila and Bougatef, 2016).
One of the challenges associated with this strategy is the
removal of bitterness from such peptide formulations because
the bitterness negatively affects consumer perception (Zhao
et al., 2015).

Protein hydrolysates and peptides from natural resources
can be used as “functional foods” and “nutraceuticals” on the
basis of their bioactivity, or as technological components
thanks to their functional properties. The functional products
and nutraceuticals may contain the whole hydrolysate and/or
isolated and purified peptides (Lafarga et al., 2016). Since the
bioactivity and functionality of peptides depend on their amino
acid composition, sequence, and molecular mass (Lassoued
et al., 2015a), peptides with varying effects might be derived
from a single hydrolysate. Therefore, sometimes additional
stages of isolation and purification are required in order to
incorporate peptide(s) with intended effect(s) in the final prod-
uct. This isolation process is predominantly carried out by con-
trolling the process of enzymolysis (Zou et al., 2016).

This review aims to provide an overview of state-of-the-art
technologies for the production and purification of protein
hydrolysates including technologies for the removal of bitter-
ness. A second aim is to provide a comprehensive overview of
the activities that have been reported for protein hydrolysates
from various protein sources such as dairy, egg, animal, fish,
and plants. The review will cover bioactivities with a potential

CONTACT Charlotte Jacobsen chja@food.dtu.dk; www.food.dtu.dk Professor mso and group leader Research group for Bioactives - Analysis and Application
Division of Food Technology DTU Food Technical University of Denmark National Food Institute Kemitorvet Building 204, room 112 2800 Kgs, Lyngby, Denmark.
© 2017 Taylor & Francis Group, LLC

CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION
https://doi.org/10.1080/10408398.2017.1352564

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
0:

33
 0

9 
Ja

nu
ar

y 
20

18
 

https://crossmark.crossref.org/dialog/?doi=10.1080/10408398.2017.1352564&domain=pdf&date_stamp=2017-09-07
mailto:chja@food.dtu.dk
mailto:www.food.dtu.dk
https://doi.org/10.1080/10408398.2017.1352564


impact on human health including effects on the immune, car-
diovascular, nervous and gastrointestinal systems. Functional
properties of protein hydrolysates such as emulsifying, water
binding, and antioxidant properties in foods will also be dis-
cussed. A final aim of the review is to critically assess potential
applications of protein hydrolysates/bioactive peptides in phar-
maceutical, sports nutrition, food and feed applications on the
basis of the current knowledge and documentation of their
bioactivity.

Production of bioactive and functional peptides

In order to exhibit their beneficial effects on health, bioactive
peptides must be released from the primary structure of food
proteins, where they remain bonded to other amino acids.
Moreover, protein hydrolysis can also lead to hydrolysates with
improved techno-functional properties (e.g., solubility, emulsi-
fying, foaming, oil and water binding, and gelling) (Wouters
et al., 2016). The release of bioactive peptides is achieved by
degrading the original proteins by using chemicals (e.g., acids
and alkalis) or enzymes. Proteolysis caused by enzymes is pre-
ferred to chemical hydrolysis since: (i) the reaction is carried
out at mild conditions of pH (e.g., 4–8) and temperature (e.g.,
40–60�C), (ii) side reactions are avoided because of the high
specificity of the enzymes, and (iii) the peptides obtained main-
tain their nutritional value (Guerard, 2006). Therefore, this
review focuses on the production of bioactive peptides by enzy-
matic hydrolysis, including fermentation where enzymes are
secreted by the microorganism(s) taking part in the process.
Technologies for removal of bitterness are also discussed. In
addition, the fractionation, purification and identification of
bioactive peptides, including bioinformatics-driven approaches,
are covered in this section.

Enzymatic protein hydrolysis

Enzymatic hydrolysis of proteins is catalyzed by proteases,
which cleave peptide bonds between two amino acids consum-
ing a molecule of water per bond cleaved (Eq. 1). Hence, the
continuous cleavage of peptide bonds breaks down proteins
into products of lower molecular weight such as peptones, pep-
tides, and amino acids (Adler-Nissen, 1986).

P1¡CO¡NH¡P2 ! P1¡COOHC P2¡NH2 (1)

Independently of the type of food protein, the enzymatic
hydrolysis process commonly comprises the following stages
(Fig. 1): grinding the raw material and homogenization in water
(or buffer), temperature equilibration and pH adjustment to the
optimum values of the enzyme employed, followed by enzyme
addition (Garc�ıa-Moreno et al., 2010). Recently, ultrasonic-
assisted hydrolysis was evaluated with the purpose of facilitat-
ing the production of low molecular weight peptides (Kadam
et al., 2015). Upon completion of the reaction, the enzyme
needs to be inactivated by heating or pH adjustment. Alterna-
tively, continuous membrane reactor, where the enzyme is con-
tinuously recycled to the reaction tank, might also be used in
order to stop the reaction and save enzyme costs (Prieto et al.,
2010a). Subsequently, the digested material, which contains the

bioactive peptides, is separated from the precipitate and lipids
(e.g., centrifugation/decantation), fractionated, and further sta-
bilized (e.g., by spray-drying) (Abdul-Hamid et al., 2002;
Espejo-Carpio et al., 2014a).

Employing a proper enzyme and having good control over
processing conditions (e.g., pH, temperature, enzyme/protein
ratio, and time) are critical aspects for the production of pro-
tein hydrolysates with the required properties (Kristinsson,
2006). Indeed, these process variables determine the extent of
the hydrolysis reaction for a protein–enzyme system. This is
normally indicated by the degree of hydrolysis (DH), which is
defined as the percentage of peptide bonds cleaved. There are
several methods to determine the DH such as pH-stat, trinitro-
benzenesulfonic acid (TNBS), o-phthaldialdehyde (OPA), tri-
chloroacetic acid soluble nitrogen (SN-TCA), and formol
titration methods. Among them, the pH-stat method is the
most commonly employed since it allows maintaining the pH
constant at the optimum of the enzyme and measuring the DH
in real time (Rutherfurd, 2010). However, because this method
is based on the titration of the proton released or consumed
after the cleavage of the peptide bond, it is only suitable when
the reaction is carried out under alkaline (>7.5–7.8) or acidic
(<3.1–3.6) pH, respectively (Adler-Nissen, 1986). Another
drawback of this method is the high salt content of the final
hydrolysate as a consequence of the alkali or acid addition,
which is required to maintain the pH constant and monitor the
DH (Whitehurst and van Oort, 2009). As suggested by a recent
study on whey protein, an interesting alternative could be to
carry out the hydrolysis reaction without controlling pH (Le
Maux et al., 2016). This work indicated that the bioactive prop-
erties of the hydrolysates (e.g., antioxidant and antidiabetic)
might or might not be influenced by the control of the pH,
depending on the enzyme employed (e.g., papain or a micro-
bial-derived alternative).

Figure 1. Flow diagram for the production of bioactive peptides.
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In the enzymatic hydrolysis process, the specificity of the
enzyme used is particularly important. This is because it affects
size, amount, amino acid composition and amino acid
sequence of the peptides produced, which in turn influences
the bioactive and functional properties of the hydrolysates (Sar-
madi and Ismail, 2010). Although crude proteases extracts (e.g.,
from fish) have been successfully used as catalysts in enzymatic
hydrolysis (Bougatef et al., 2010; Lassoued et al., 2015b), com-
mercially purified enzymes are preferably employed since they
allow a better control over the hydrolysis process (e.g., shorter
reaction time for a desired DH, more consistent peptides size
and composition) (Samaranayaka and Li-Chan, 2011). Conse-
quently, industrial proteases derived from different sources
such as microorganisms (e.g., Alcalase, Neutrase, Protease P
“Amano” 6, Flavourzyme, Protamex) (Halldorsdottir et al.,
2013; Venuste et al., 2013), animals (e.g., PTN, pepsin, trypsin,
a-chymotrypsin, pancreatin) (Wu et al., 2015a, b; Garc�ıa-Mor-
eno et al., 2017) and plants (e.g., papain, bromelain) (Salam-
pessy et al., 2015; Elavarasan et al., 2016) have been widely
employed for the production of protein hydrolysates exhibiting
bioactive and/or functional properties. These marketable pro-
teases may mainly contain endopeptidases (e.g., trypsin, subtili-
sin, papain), or a combination of endopeptidases and
exopeptidases (e.g., carboxypeptidases, aminopeptidases).
Additionally, several enzymes can be utilized in the production
of only one protein hydrolysate. Although they may be added
simultaneously (Yamada et al., 2013; Garc�ıa-Moreno et al.,
2017), sequential addition (e.g., after progressive decrease in
the reaction rate) is normally carried out in order to achieve
hydrolysates with a higher DH (Va�stag et al., 2011; Garc�ıa-
Moreno et al., 2014, 2015).

Fermentation

In addition to proteolysis through chemical digestion and/or
addition of commercial enzymes to substrate, certain microbial
strains secreting proteases can also be used to hydrolyze pro-
tein-rich substrates. The released peptides can have a high level
of bioactivity with health-related benefits and better functional
properties (Elfahri et al., 2016; Sanjukta and Rai, 2016; Rai
et al., 2016).

The higher bioactivity of peptides from fermented products
compared to the raw materials could be attributed to the
change in amino acid composition in addition to size and
sequence of the peptides. Xu et al. (2015) reported that the
amounts of essential amino acids increased greatly following
fermentation of soybean. Kleekayai et al. (2015) identified two
ACE-inhibitory peptides (SV and IF) and one antioxidant pep-
tide (WP) from fermented shrimp pastes. Pan et al. (2005)
obtained two antihypertensive peptides with amino acid
sequences of VPP and IPP from skimmed milk hydrolysate
digested by cell-free extract of Lactobacillus helveticus. They
proposed that the amino acid composition of the peptides
accounts for bioactive effects of the fermented products.

Lactobacillus spp. is one of the most widely used genera for
fermentation of protein-rich resources to release bioactive pep-
tides. Upon the use of Lactobacillus, the foodstuff rapidly
becomes acidified due to the production of lactic acid (Vallabha
and Tiku, 2014). Production of lactic acid, which is an organic

acid, may elongate the shelf life and render microbial safety
and sensory quality to the final product (De Vuyst and Leroy,
2007). Besides, Lactobacillus can influence polypeptide quality
by controlling cellular proteolysis. This is presumably done by
degradation of protein into oligopeptides through their cell-
envelope proteinase; cells absorb the oligopeptides via their
peptide transport systems and transform them into shorter
peptides and/or amino acids by intracellular peptidases (Savi-
joki et al., 2006). Lactic fermentation is useful not merely to
attain bioactive peptides, but also to recover other components
such as chitins, lipids, and minerals (L�opez-Cervantes et al.,
2006). Fermentation by lactic acid bacteria may also enhance
organoleptic properties of final products (Aguirre et al., 2014).
The efficiency of lactic acid bacteria in production of bioactive
peptides can be related to their elaborate proteolytic system. It
consists of a cell envelope proteinase, which initializes protein
degradation, a transport system, and many intracellular pepti-
dases (Pescuma et al., 2015).

Lactic fermentation has been adopted to attain bioactive
peptides from milk resources such as antioxidant peptides from
camel milk (El Hatmi et al., 2016), antioxidant, ACE inhibitory,
antimicrobial, and immunomodulating peptides from whey
b-lactoglobulin (Pescuma et al., 2015), and antimutagenic and
anti-inflammatory peptides from b-casein (Espeche Turbay
et al., 2012). In addition, Amadou et al. (2011) performed frac-
tionation on the fermented soy protein meal hydrolysate by
Lactobacillus plantarum and found that some fractions had
great antioxidant activities. Jain and Kumar Anal (2017) pro-
duced functional and bioactive protein hydrolysates through
fermentation of chicken eggshell membrane by using Lactoba-
cillus plantarum. The resulting hydrolysates exhibited favorable
functional properties with respect to solubility, foaming capac-
ity, and emulsification activity as well as bioactivity in terms of
DPPH-radical scavenging, reducing power, angiotensin-I con-
verting enzyme inhibition, and protection against foodborne
pathogens. Furthermore, Mechmeche et al. (2017) reported the
production of bioactive peptides with antioxidant activity by
using the fermentative strain Lactobacillus plantarum and
tomato seed meal extract as the substrate.

Fermentation of protein resources have also been performed
by using other genera of fermenting bacteria. Meinlschmidt
et al. (2016) studied fermentation of soy protein isolate by
Bacillus spp., Rhizopus spp., and Saccharomyces spp. in addi-
tion to Lactobacillus spp. and found that all fermented products
were more soluble and had less off-flavor than nonfermented
protein isolate. Moreover, Jemil et al. (2016) obtained antioxi-
dant and ACE-inhibitory peptides (NVPVYEGY, ITA-
LAPSTM, SLEAQAEKY, and GTEDELDKY) from sardinelle
protein hydrolysates fermented by two species of Bacillus spp.
namely B. subtilis and B. amyloliquefaciens. Furthermore, Jemil
et al. (2014) prepared protein hydrolysate from sardinelle, zebra
blenny, goby, and ray via fermentation by Bacillus subtilis and
found that the hydrolysate had antioxidant and antimicrobial
effects. Zhao et al. (2016a, b) produced protein hydrolysate
from surimi through fermentation by Actinomucor elegans;
they stated that the end product had a higher sensory accept-
ability compared to surimi before fermentation. Kumar Rai
et al. (2017) produced protein hydrolysates rich in bioactive
polyphenols by using three fermentative strains from Bacillus
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spp. namely B. subtilis KN12C, B. amyloliquefaciens KN2G, and
B. licheniformis KN13C. They claimed that these strains pos-
sessed high protease, a-amylase and b-glucosidase activities.

On the whole, fermentation is a promising method in order
to prepare bioactive peptides from protein resources, especially
those with limited consumption and/or from discarded sources.
Lactobacillus spp. is the most prevalent genus to obtain bioac-
tive peptides via fermentation although other genera such as
Bacillus spp. are also used. Fermentation is prioritized over
acid/base digestion since it does not cause the loss of essential
amino acid and environmental pollution. It can also be an eco-
nomical substitute for the use of efficient but expensive com-
mercial enzymes.

Removing bitterness

Bitter taste is considered the most important barrier in
commercial use of protein hydrolysates in food industry.
Low molecular weight peptides account for the bitter taste
of hydrolysates. These peptides are known to contain
hydrophobic amino acids such as leucine, proline, phenylal-
anine, and tyrosine (Ishibashi et al., 1988; Meinlschmidt
et al., 2016). In this regard, Aubes-Dufau et al. (1995) men-
tioned that the peptides with molecular weights up to
roughly 6 kDa and Q values exceeding 1400 cal¢mol¡1 can
be considered bitter; Q value is a predictive index for bitter-
ness of a given peptide and is defined as the hydrophobicity
of the side chain of amino acids in the peptide (Ney, 1971).
Bitterness of hydrolysates is not only caused by hydropho-
bic amino acid themselves but by their locations in peptide
sequence, as well (Spellman et al., 2009). Hydrophobic
amino acids caused more bitterness when they were inside
the peptide chain rather than the N- or C-terminus of pep-
tides (Matoba and Hata, 1972).

FitzGerald and O’Cuinn (2006) listed different methods of
removing bitterness from protein hydrolysates: (i) absorption
of bitter peptides on activated carbon; (ii) chromatographic
removal using different matrices; (iii) selective extraction with
alcohols; (iv) masking hydrolysates by addition of polyphos-
phates, specific amino acids such as Asp and Glu, and a-cyclo-
dextrins; (v) mixing hydrolysates with intact protein samples;
(vi) formation of plasteins; and (vii) cross-linking using trans-
glutaminase. However, they also pointed to drawbacks of these
methods such as loss of some amino acid residues and decrease
in solubility.

Recently, the formation of plasteins, which are less soluble
aggregated macromolecular structures formed by incubation of
higher concentrations of the hydrolyzed proteins or peptides
with suitable proteases, has gained an increasing attention
(Udenigwe and Rajendran, 2016). Plasteins were found to have
lower bitterness than the peptides in hydrolysates (Liu et al.,
2014). Proposed mechanisms of plastein formation include
peptide condensation, transpeptidation, and physical forces in
peptide aggregation (for more elaboration on the mechanisms,
readers are referred to Gong et al., 2015). Plastein reaction was
successfully adopted to reduce bitterness in the hydrolysates
prepared from bovine red blood cells (Synowiecki et al., 1996)
and yellowfin tuna (Zhao et al., 2015) as well as in synthetic
dipeptides (Stevenson et al., 1998).

One of the most important factors influencing the taste
of hydrolyzed protein is the sequence and nonpolarity of
amino acids like F, W, Y, I, P, and H. Bitter taste percep-
tion of these amino acids can be changed by addition of
a-cyclodextrin to protein hydrolysate resulting in reduction
of its bitterness (Linde et al., 2009). In addition, microen-
capsulation of hydrolysates plus incorporation of masking
agents are effective alternatives for attenuation of bitterness
in hydrolysates. Daskaya-Dikmen et al. (2017) claimed that
encapsulation of peptides in hydrolysates is the most favor-
able technique in order to reduce bitterness. Favaro-Trin-
dade et al. (2010) reported that bitter taste decreased when
casein hydrolysates were spray-dried and mixed with gelatin
and soy protein isolate as carriers. It is noteworthy that the
debittering ability of gelatin might be attributed to its
endogenous amino acid glycine to mask bitterness in hydro-
lysates (Stanley, 1981). Furthermore, Ma et al. (2013) com-
pared freeze- and spray-drying of whey protein hydrolysates
and found that the latter had higher efficiency of microen-
capsulation and therefore, resulted in less bitter
hydrolysates.

The protease used to hydrolyze protein can also affect
the taste of final product. Recently, Cheung et al. (2015)
found that exopeptidase-treated hydrolysates are less bitter
and have higher levels of umami and salty tastes as well as
increased overall acceptability compared to those produced
by endopeptidases. Moreover, when determing the influence
of sequential hydrolysis using endo- and exo-peptidase on
bitter taste of protein hydrolysates from wheat gluten, Liu
et al. (2016) found that the hydrolysate produced within a
300-min reaction with Proteax had the lowest bitterness.
Raksakulthai and Haard (2003) also indicated application of
exopeptidases to reduce bitter taste of protein hydrolysate.
Moreover, Nishiwaki et al. (2002) reported that an amino-
peptidase from the edible basidiomycete Grifola frondosa
can yield less bitter protein hydrolysates. However, Hou
et al. (2011) claimed that all these procedures lead to a seri-
ous loss of essential amino acids. They suggested that using
a combination of exo- and endopeptidases along with high-
pressure cooking can prevent the loss.

Besides, Newman et al. (2015) recommended the use of
sweeteners and flavoring agents to reduce bitterness of protein
hydrolysates. They added sucralose as a sweetener and vanilla
as a flavoring agent to a model beverage containing sodium
caseinate hydrolysate and concluded that this method was very
effective in reducing the bitter taste of the beverage caused by
the hydrolysate.

Although several methods have been proposed to reduce or
remove bitterness from protein hydrolysates, the majority of
them seemingly suffer from side effects like loss of amino acids
and alteration of functional properties of the bioactive peptides
obtained by the hydrolysis process. Besides, to the best of our
knowledge, no study has been done to assess economic feasibil-
ity of the hitherto-proposed debittering solutions in industrial
scale. Therefore, future studies should be directed towards find-
ing the most effective and economical debittering methods
with the least side effects in order to operationalize the adop-
tion of bioactive peptides from hydrolyzed proteins in
foodstuffs.
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Fractionation, purification and identification of bioactive
peptides including bioinformatics-driven approaches

Fish protein hydrolysates are generally complex mixtures of
peptides with different chain lengths and amino acids composi-
tion, as well as other nondesired compounds such as enzymes,
nondegraded proteins and free amino acids. Hence, fraction-
ation technologies are required to separate peptides from resid-
ual enzymes, and remaining nonreacted native proteins and
free amino acids, which can induce allergenic responses and
lead to osmotically-unbalanced products, respectively. Besides,
the fractionation process makes it possible to control the
molecular-weight distribution of the hydrolysates and to con-
centrate the desired bioactive or functional peptides (Akin
et al., 2012). For that purpose, pressure-driven membrane tech-
niques (e.g., ultrafiltration) are commonly used since they can
easily be scaled-up (Langevin et al., 2012). Although most of
the studies reported in the literature utilize polymeric mem-
branes (Chabeaud et al., 2009; Jiang et al., 2010; Hwang et al.,
2016), ceramic membranes are preferred at industrial scale due
to their high chemical resistance, wider operational limits of
pH and temperature, as well as extended operational lifetime
(Lin et al., 2011; Espejo-Carpio et al., 2014b). In addition, tan-
gential-flow filtration is recommended instead of cross-flow fil-
tration membranes in order to limit membrane fouling (Prieto
et al., 2010b).

Over the past few decades, due to the increasing interest in
the production of natural biomolecules, there has been a boom
in the number of publications dealing with the concentration
of bioactive peptides by ultrafiltration. Generally, fractions con-
taining low-molecular weight peptides have been reported to
exhibit higher bioactivities in vitro. For instance, numerous
studies indicate that peptide fractions <1 kDa showed the
strongest Angiotensin-I converting enzyme (ACE)-inhibitory
activity, independently of the type of raw protein (e.g., terres-
trial plants or fish) (Zhao et al., 2007; Zou et al., 2014; Wu
et al., 2016a, b). Nevertheless, these differences on ACE-inhibi-
tory activity depending on the molecular weight of the peptides
might not be observed in vivo as reported for salmon protein
hydrolysate fractions (Ewart et al., 2009). As another example,
low molecular weight peptides (<1 kDa), obtained from the
hydrolysis of whey protein isolate, have also been reported to
exhibit a significant increase in the Fe2C chelating activity when
compared to larger peptide fractions (O’Loughlin et al., 2014).
On the other hand, higher molecular weight peptides (1–
3 kDa), obtained from hydrolysis of fish protein, were found to
show the highest radical scavenging activity when compared to
other peptide fractions (<1, 3–5 and 5–10 kDa) (Kim et al.,
2007).

Recently, more complex fractionation processes have been
studied for the concentration of bioactive peptides. As an
example, target bioactive peptides with similar molecular
weight, which cannot be separated by pressure-driven mem-
branes, have been concentrated by electrodialysis with ultrafil-
tration membranes (Doyen et al., 2014; He et al., 2016).
Furthermore, sequential ultrafiltration and nanofiltration stages
have also been tested in order to obtain even more concentrated
peptide fractions with a reduced salt content (Langevin et al.,
2012; Ranamukhaarachchi et al., 2013). In contrast,

fractionation techniques are seldom applied to improve func-
tional properties of protein hydrolysates. Among the few stud-
ies found in the literature, Jeon et al. (1999) reported that
fractions from cod frames hydrolysates containing large pepti-
des (>30 and >10 kDa) showed excellent emulsifying proper-
ties and whippability. Likewise, Taheri et al. (2014) indicated
that polypeptides (>50 kDa) obtained from proteins contained
in herring brine presented higher emulsion activity index,
when compared to fractions having peptides with lower molec-
ular weight. This indicates that only a limited hydrolysis of
native proteins is required to improve these technological prop-
erties (e.g., emulsifying and foaming).

Further purification and identification of bioactive peptides
are required in order to determine their structure-activity rela-
tionship. Initial peptide separation is normally performed by
using fast protein liquid chromatography (FPLC), employing
gel permeation or ion-exchange columns (Sampath Kumar
et al., 2011; Vavrusova et al., 2015). The fraction containing the
most active peptides is then subjected to high pressure liquid
chromatography (HPLC) separation using a reverse-phase col-
umn (RP-HPLC). This allows obtaining peptides subfractions
with different hydrophobic behavior, but more than one RP-
HPLC round will be required in order to obtain highly pure
peptides in a sufficient amount (de Gobba et al., 2014a; Chi
et al., 2015; Ruiz-Gim�enez et al., 2012). Furthermore, hydro-
philic interaction liquid chromatography (HILIC) has recently
been suggested for an improved separation of homologous
short peptides (Le Maux et al., 2015). Finally, these chro-
matographic techniques are coupled to mass spectrometry
(MS), in particular to tandem MS (MS/MS), for peptide
sequence determination. Traditional identification approaches,
which require the knowledge of the parent protein sequences,
match tandem spectra with theoretical spectra derived from
predicted peptides in a protein library (Espejo-Carpio et al.,
2013; Gu and Wu, 2013; de Gobba et al., 2014b). Primary struc-
ture of proteins can be accessed from online databases such as
UniProtKB/Swiss-Prot or NCBI and the identification process
can be carried out by using database search engines (e.g., Mas-
cot) (Dallas et al., 2015; Le-Maux et al., 2015). On the other
hand, de novo sequencing approach does not require a protein
library and deduces peptide amino acid sequence by calculating
mass differences between fragments from the tandem mass
spectra (Girgih et al., 2014; Garc�ıa-Moreno et al., 2015). For
that purpose, generally employed programs are Peaks (Marques
et al., 2015) and PepSeq (Liu et al., 2015). Alternatively to MS
techniques, automated Edman degradation has been also
widely employed for sequencing amino acids in a highly puri-
fied peptide (Je et al., 2005a; Sheih et al., 2009a, b; Chi et al.,
2015).

Other advances in bioinformatics, also known as in silico
analysis or software-based methods, allow predicting and iden-
tifying cryptic peptides likely to exhibit bioactivities, elucidate
structure-function relationships and propose mechanisms of
action (Li-Chan, 2015). BIOPEP, a database mainly focused on
peptides from food, is generally employed to determine the
occurrence frequency of embedded bioactive peptides in the
primary structure of the food proteins of interest (Udenigwe,
2014; Lacroix and Li-Chan, 2012). Peptide cutter programs
(e.g., ExPASy) are used to generate peptide profiles in silico

CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION 5

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
0:

33
 0

9 
Ja

nu
ar

y 
20

18
 



from specific primary protein structures using enzymes of
known specificity (Udenigwe et al., 2013; Nongonierma and
FitzGerald, 2016a). Peptide cutters have been also employed to
assay the potential cleavage by gastrointestinal tract enzymes of
bioactive peptides obtained experimentally (Fitzgerald et al.,
2012). Quantitative structure activity relationship models
(QSAR) have been successfully used to predict biological activ-
ity of peptide sequences based on physicochemical descriptors
(e.g., size, charge, polarity, sequence, etc.) (S�anchez-Rivera
et al., 2014). For instance, QSAR approaches have been applied
to study ACE-inhibitory, antioxidant and antimicrobial pepti-
des (see Jahangiri et al., 2014; Nongonierma and Fitzgerald,
2016b). Finally, molecular docking simulations have also been
developed to predict possible interactions of peptides with pro-
teins (e.g., active sites of enzymes), which are the target of the
biological activity (Li-Chan, 2015). Examples in the literature
include studies on ACE as well as DPP-IV inhibitory peptides
(Lin et al., 2017; Nongonierma et al. 2014). Thus, in silico tools
may expedite the discovery and production of bioactive pepti-
des from food proteins, although they still have some limita-
tions (e.g., do not consider secondary, tertiary and quaternary
structures of proteins to predict cleavage sites; and assume
enzymes with stringent substrate specificity, which is not
always the case in food applications where complex protease-
proteins interactions occur) (Li-Chan, 2015; Nongonierma and
FitzGerald, 2016a; Udenigwe, 2014).

Bioactivity of peptides

Effects on immune system

An overview of reported effects on immune system is given in
Table 1, which also shows the suggested peptides responsible
for the effects.

Antifungal effect
Past few decades have witnessed a dramatic increase in fungal
infections, especially the invasive ones with a high potential of
claiming lives (Wang et al., 2016). Not only are they perilous
for humans, they might have notorious influence on plants and
may even kill them (Luna-Vital et al., 2015). Therapeutic
options to fight against pathogen fungi seem to be very
restricted since there are only few antifungals specialized for
the pathogens (Wang et al., 2016). In addition, a global concern
on the use of synthetic antifungals has directed academic efforts
toward finding natural alternatives to combat against trouble-
making fungi.

In nature, antifungal peptides are considered the first
defense barrier between the organism and its surroundings.
These peptides are small cationic and amphipathic molecules
with not more than 50 amino acids (Shekh and Roy, 2012).
Antifungal proteins and peptides have been isolated from dif-
ferent sources (Table 1).

Antimicrobial effect
Drug resistance in bacteria has turned out to be a major prob-
lem in using antibiotics in recent years. Add to this the current
concern on using chemical preservatives in foods in order to
avoid different kinds of spoilage including microbial decay. In

this regard, one of the most interesting research breakthroughs
is the discovery of the so-called antimicrobial peptides (AMPs)
with a potential effect on even drug-resistant species (Tang
et al., 2015). Production of AMPs can guarantee the innate
immunity resistance against different pathogens. AMPs are
majorly small cationic molecules and they are very favorable
since their synthesis can be done with low metabolic cost and
they have the capability to diffuse rapidly to the point of infec-
tion (Pisuttharachai et al., 2009). AMPs have a very wide scope
in terms of their physiological roles, many of which are still to
be determined. These roles range from killing microbes to
modulating the immune system through increase in phagocyto-
sis (Battison et al., 2008). It seems very important to find new
resources from which the very promising alternatives for cur-
rent antibiotics, i.e., AMPs, can be obtained.

Antimicrobial proteins and peptides have been obtained
from a variety of sources such as aquatic organisms like shrimp
(Cuthbertson et al., 2002), sole (Oren and Shai, 1996), flounder
(Cole et al., 1997), and anchovy (Tang et al., 2015), plants (Cap-
riotti et al., 2015), blood (Fogaca et al., 1999), milk (McCann
et al., 2006), and egg (Mine et al., 2004), to name a few. One of
the latest investigations to derive antimicrobial peptides from
natural sources was the work performed by Capriotti et al.
(2015). They identified antimicrobial peptides from soybean
seeds and milk protein generated by simulated gastrointestinal
digestion (Capriotti et al., 2015).

Antiviral effect
Bioactive peptides and hydrolysates were found to have antivi-
ral activities against different species of viruses such as HSV-1
and HSV-2 (Conlon et al., 2014a). These peptides and hydroly-
sates were produced from different sources, e.g., oyster (Lee
and Maruyama, 1998; Shimizu et al., 2009), crab (Miyata et al.,
1989; Murakami et al., 1991; Masuda et al., 1992), mussel
(Mitta et al., 2000), and even, different frog species skins (Con-
lon et al., 2014b). Antiviral effect of these peptides has been
claimed to be in two ways: one through direct inactivation of
virus particles and the other via interference in reproductive
cycle of virus (Conlon et al., 2014a, b). Antiviral peptides from
natural sources are especially appealing because they require a
rather short contact time to induce their effect (Conlon et al.,
2014a, b).

Immunomodulatory effect
Proteins and peptides obtained from plant and animal sources
(Table 1) have been found to improve lymphocyte prolifera-
tion, natural killer (NK), cell activity, antibody synthesis and
cytokine regulation (Singh et al., 2014). Recently, milk bioactive
peptides released by selected Lactobacillus helveticus strains
(Elfahri et al., 2014) and the frog skin host-defense peptides
(Mechkarska et al., 2014) were shown to induce stimulatory
influence on the production of cytokines with pro- and anti-
inflammatory effects. In addition, an immunomodulatory pep-
tide derived from zebrafish phosvitin has been suggested to up-
regulate the expression of the anti-inflammatory and down-
regulate the expression of the pro-inflammatory cytokine genes
(Ding et al., 2012).

Parker et al. (1984) detected a hexapeptide with amino acid
sequence of VEPIPY with immunostimulatory effect. The
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Table 1. Effects of bioactive peptides on immune system.

Effects Origin Amino acid sequence (in single-letter code) Reference

Antifungal
peptides

AS Crab RRWCFRVCYRGFCYRKCR, RRWCFRVCYKGFCYRKCR,
RWCFRVCYRGICYRKCR, KWCFRVCYRGICYRRCR,
YLAFRCGRYSPCLDDGPNVNLYSCCSFY,
DYDWSLRGPPKCATYGQKCRTW
SPPNCCWNLRCKAFRCRPR

Miyata et al., 1989; Murakami
et al., 1991; Ohta et al.,
1992; Kawabata et al., 1996;
Osaki et al., 1999

Blood of immune-challenged
and untreated mussels
(Mytilus edulis)

DCCRKPFRKHCWDCTAGTPYYGYSTRNIFGCTC Charlet et al., 1996

Bass FFHHIFRGIVHVGKTIHKLVTG Lauth et al., 2002
Salmon — Kamal and Motohiro, 1986
Sea hare — Woyke et al., 2001; Pettit et al.,

1998
Shrimp YRGGYTGPIPRPPPIGRPPFRPVCNACYRLSVSD

ARNCCIKFGSCCHLVKG, QVYKGGYTRPIPRPPPFV
RPLPGGPIGPYNGCPVSCRGISFSQARSCCSRLGRCCHVGKGYSG,
LVVAVTDGDADSAVPNLHENTEYNHYGSHGVY,
VTDGDADSAVPNLHENTEYNH
YGSHGVYPDK, FEDLPNFGH
IQVKVFNHGEHIHH, PEVYKGGYTRPIPRPPPFVRPLPGGPIGPYNG
CPVSCRGISFSQARSCCSRLGRCCHVGKGYS, VYKGGYTRPVPRPPPF
VRPLPGGPIGPYNGCP
VSCRGISFSQARSCCSRLGRCCHVGKGYS,
VYKGGYTRPIPRPPFVRPVPG
GPIGPYNGCPVS
CRGISFSQARSCCSRLGRCCHVGKGYS

Destoumieux et al., 1991,
2000; Destoumieux-Garzon
et al., 2001

Oyster(Muscle) CLEDFYIG Liu et al., 2008
TP Mushroom AGTEIVTCYNAGTKVPRGPSAXGGAIDFFN, ATRVVYCNRRSGSV

VGGDDTVYYEG, AGTEIVTCYNAGTKVPRGPSAXGGAIDFFN
Wang and Ng, 2004; Lam and

Ng, 2001
Traditional Chinese medicinal

herbs
— Zhang et al., 2013

Bean KTCENLADTFRGPCFATSNC,KTCENLADTYKGPCFTTGSCDDHCK,
KTCENLADTYKGPCFTTG, TENLADTYWGPPFTRGS, KTCENLADTY,
KTCGNLANQYYPCFTTSNCDDHCKNKEHLRSGRCRDDFRCWCTK,
KTYENLADTYKGPYFTTGSHDDHYKNKEHLRSGRMRDDFF,
KTYENLADTYKGPYFTTGSHDDHYKNKEHLRSGRYRDDFF

Wong et al., 2012; Chan et al.,
2012; Chan and Ng, 2013;
Lam and Ng, 2013; Leung
et al., 2008; Lin et al., 2010;
Wang and Ng, 2007; Wu
et al., 2011

TA Venom of the social wasp
(Polybia paulista)

ILGTILGLLKSL Wang et al., 2016

Antimicrobial
peptides

AS Oyster(Muscle) CLEDFYIG Liu et al., 2008

Bass FFHHIFRGIVHVGKTIHKLVTG Lauth et al., 2002
Crab RRWCFRVCYRGFCYRKCR,RRWCFRVCYKGFCYRKCR,RWCFRVCYRGI

CYRKCR, KWCFRVCYRGICYRRCR,
YLAFRCGRYSPCLDDGPNVNLYSCCSFY,
DYDWSLRGPPKCATYGQKCRTWSPPNCCWNLRCKAFRCRPR

Miyata et al., 1989; Murakami
et al., 1991; Osaki et al.,
1999; Kawabata et al., 1996

Crayfish FKVQNQHGQVVKIFHH Lee et al., 2002
Flounder GWGSFFKKAAHVGKHVGKAALTHYL Cole et al., 1997
Loach RQRVEELSKFSKKGAAARRRK Park et al., 1997
Lobster IVENTSLEPHAGRCLLHTMCVKGDFTPPSPIR, QYGNLLSLLNGYR

MMKLVLLCVLGLAV,MLKLVLLCVLGLALG, MLKLVLLCVLGLALG,
MLRLVLLCVLGLAVG

Pisuttharachai et al., 2009;
Battison et al., 2008

Salmon — Uyttendaele and Debevere,
1994

Atlantic salmon rest raw
material

— Opheim et al., 2015

Shrimp MRLVVCLVFLASFALVCQG, YRGGYTGPIPRPPPIGRPPFRPVCNA
CYRLSVSDARNCCIKFGSCCHLVKG,
QVYKGGYTRPIPRPPPFVRPLPGGPIGPYNGCPV
SCRGISFSQARSCCSRLGRCCHVGKGYSG,
PEVYKGGYTRPIPRPPPFVRPLPGGPIGPYNGCP
VSCRGISFSQARSCCSRLGRCCHVGKGYS, VYKGGYTRPVPRPPPF
VRPLPGGPIGPYNGCP
VSCRGISFSQARSCCSRLGRCCHVGKGYS,VYK
GGYTRPIPRPPFVRPVPGGPIGPYNGCPVSCR
GISFSQARSCCSRLGRCCHVGKGYS

Cuthbertson et al., 2002;
Destoumieux et al., 1991,
2000

Sole GFFALIPKIISSPLFKTLLSAVGSALSSSGGQE Oren and Shai, 1996

(Continued on next page )
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Table 1. (Continued )

Effects Origin Amino acid sequence (in single-letter code) Reference

Marine mussels HPHVCTSYYCSKFCGTAGCTRYGCRNLHRGKLCFCLHCSR,
HSHACTSYWCGKFCGTASCTHYLCRVLHPGKMCACVHCSR,
QSVACRSYYCSKFCGSAGCSLYGCYLLHPGKICYCLHCSR,
SCASRCKGHCRARRCGYYVSVLYRGRCYCKCLRC,
GFGCPNNYACHQHCKSIRGYCGGYCASWFRLRCTCYRCG,
GFGCPNDYPCHRHCKSIPGRYGGYCGGXHRLRCTC,
GFGCPNDYCHRHCKSIPGRXGGYCGGXHRLRCTCYR,
GCASRCKAKCAGRRCKGWASASFRGRCYCKCFRC

Padhi and Verghese, 2008;
Balseiro et al., 2011; Mitta
et al., 2000; Charlet et al.,
1996

Anchovy cooking wastewater GLSRLFTALK Tang et al., 2015
Penaeid shrimp FEDLPNFGHIQVKVFNHGEHIHH Petit et al., 2016
Zebrafish phosvitin — Ding et al., 2012
Tegillarca granosa hemoglobin PSVQDAAAQISADVKK, VLASLNFGDR,ISAAEFGK, ISAEAFGAINEPMK,

GHAITLTYALNNFVDSLDDPSR, MGSYYSDECAAAWAALVAVVQAAL,
LNGHGLTLWYGIQNFVDQLDNADDLEDVARK

Bao et al., 2016

TP Traditional Chinese medicinal
herbs

— Zhang et al., 2013

Soybean FVLPVIRGNGGGIQVA, IIVVQGKGAIGF, WAISKDISEGPPAIKL,
ITLAIPVNKPG, LAFPGSAKDIENLIKSQ,
ASRGIRVNGVAPGPVWTPIQPA, IVTVKGGLRVTAPA,
KIGGIGTVPVGRVETGVLKPGMVV, LFVLSGRAIL,
GIRVNGVAPGPVWTPIQPA, LAGSKDNVIRQIQKQVKEL
NVLKVIPAGSSSGAKKA, IIIAQGKGALGV, SGGIKLPTDIISKISPLPVLKEI,
SGGIKLPTDIISKISPLPV, MIIIAQGKGALGV, IIVVQGKGAIG,
VLDFNSVADLTKGNVGGLIGTGL, ASLGGLQNVSGINFLIK,
AIVILVINEGDANIELVGIK, VDINEGALLLPHFNSKAIV, VLSGRAILTLV,
GKVKIGINGFGRIGRLV, IIYALNGRALVQV,IYALNGRALIQV

Capriotti et al., 2015

TA Bovine blood FLSFPTTKTYFPHFDLSHGSAQVKGHGAK,
VLSAADKGNVKAAWGKVGGHAAE,
VTLASHLPSDFTPAVHASLDKFLANVSTVL QADFQKVVAGVANALA
HRYH, STVLTSKYR,TSKYR,VTLASHLPSDFTPAVHASLDKFLAN
VSTVLTSKYR, VNFKLLSHSLLVTLASHL

Fogaca et al., 1999; Froidevaux
et al., 2001; Daoud et al.,
2005; Nedjar-Arroume
et al., 2006; Jang et al.,
2008

Beef muscle GFHI, DFHING, FHG, GLSDGEWQ Jang et al., 2008
Bovine hemoglobin VNFKLLSHSLLVTLASHL,

TKAVEHLDDLPGALSELSDLHAHKLRVDPVNFKLLSHSLL,
LDDLPGALSELSDLHAHKLRVDPVNFKLLSHSL,KLLSHSL,LLSHSL

Hu et al., 2011; Adje et al.,
2011

Deer, sheep, pig, and cattle
blood

— Bah et al., 2016

Frogs IKIPAVVKDTLKKVAKGVLSAVAGALTQ,
IKLSPETKDNLKKVLKGAIKGAIAVAKMV,
LKIPGFVKDTLKKVAKGIFSAVAGAMTPS,
IKIPAFVKDTLKKVAKGVISAVAGALTQ,
IKIPPIVKDTLKKVAKGVLSTIAGALST,
IKLSPETKDNLKKVLKGAIKGAIAVAKMV, GLVGTLLGHIGKAILG,
GLVGTLLGHIGKAILS

Mechkarska et al., 2012;
Mechkarska et al., 2013;
Mechkarska et al., 2014;
Conlon et al., 2014

Bovine mammary epithelial cell
line

— Malvisi et al., 2015)

Venom of the social wasp
Polybia paulista

ILGTILGLLKSL,IDWKKLLDAAKQIL Souza et al., 2005

DE Milk LRLKKYKVPQL, VYQHQKAMKPWIQPKTKVIPYVRYL, IKHQGLPQE,
VLNENLLR, SDIPNPIGSENSEK

Mohanty et al., 2015; McCann
et al., 2006; Hayes et al.,
2006

Human milk EQLTK, GYGGVSLPEWVCTTFALCSEK, CKDDQNPHISCDKF,
GRRRRSVQWCAVSQPEATKCFQWQR
NMRKVRGPPVSCIKRDSPIQCIQA

Pellegrini et al., 1999; Hunter
et al., 2005

Egg IVSDGDGMNAW, HGLDNYR Mine et al., 2004; Mine and
Kovacs-Nolan, 2006

Bovine milk YQEPVLGPVRGPFPI,YQEPVLGPVRGPFPIIV,EVFGKEKVN,
SDIPNPIGSENSEK,RPKHPIKHQGLPQEVLNENLLRF,VLNENLLR

Dallas et al., 2016

Antiviral peptides AS Oyster(Muscle) LLEYSI,LLEYSL Lee et al., 1998
Crab KWCFRVCYRGICYRRCR, RRWCYRKCYKGYCYRKCR Murakami et al., 1991; Masuda

et al., 1992
Sponge — Plaza et al., 2007; Plaza et al.,

2009; Andjelic et al., 2008
TP Mushroom AGTEIVTCYNAGTKVPRGPSAXGGAIDFFN Lam and Ng, 2001

Bean KTCGNLANQYYPCFTTSNCDDHCKNKEHLRSGRCRDDFRCWCTK Lin et al., 2010
TA Frog skin ALWMTLLKKVLKAAAKAALNAVLVGANA Bergaoui et al., 2013

Immunomodulatory
peptides

AS Atlantic salmon (Salmo salar) — Opheim et al., 2015

Musca domestica larvae — Sun et al., 2014
Chlorella vulgarian — Morris et al., 2009
Zebrafish phosvitin — Ding et al., 2012

(Continued on next page)
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Table 1. (Continued )

Effects Origin Amino acid sequence (in single-letter code) Reference

TP Soybean MITLAIPVNKPGR, MITLAIPVN, MITL, HCQRPR,
QRPR, MITLAIPVNKPGR

Yoshikawa et al., 2000; Singh
et al., 2014; Capriotti et al.,
2015

Rice GYPMYPLPR Takahashi et al., 1994
Mushroom — Sheu et al., 2004; Lin et al.,

2013
Wheat — Horiguchi et al., 2005
Buckwheat pollen RKYVD Liu et al., 1998
Turmeric (Curcuma longa) — Aravind and Krishnan, 2016
Chickpea — Clemente et al., 1999

TA Frog skin GLVGTLLGHIGKAILG, GLVGTLLGHIGKAILS, IKLSPE
TKDNLKKVLKGAIKGAIAVAKMV

Mechkarska et al., 2014;
Conlon et al., 2014;
Mechkarska et al., 2013

Bovine mammary epithelial cell
line

— Malvisi et al., 2015

DE Egg — Xie et al., 2002; Fan et al., 2003
Milk TTMPLW, YPFPAVPYPQRTTMPLW, YQEPVLGPVR, LLY Meisel, 2005; Mohanty et al.,

2015; Elfahri et al., 2014;
Hernandez-Ledesma et al.,
2004; Berthou et al., 1987

Camel milk QEPVPDPVRGLHP El Hatmi et al., 2016
Whey — Mercier et al., 2004
Bovine milk PGPIPN, YQEPVLGPVRGPFPIIV, PGPIPN, LYQEPVLGPVRGPFPIIV Boutrou et al., 2013; Dallas

et al., 2016
Bursa of Fabricius (BF) in chicken YEYAY, RMYEE, GPPAT, AGCCNG, RRL Feng et al., 2012
Human milk VEPIPY Parker et al., 1984
Egg SVNVHSSL,YRGGLEPIN Goldberg et al., 2003

Cytomodulatory
peptides

DE Bovine milk KAVPYPQ,PYPQ, RTLGYLE,RTLGYL, YPFPGPI YVPFPYPFPG, AVP
YPQR,RETIESLSSSEESIPEYK, QPTIPFFDPQIPK

Kampa et al., 1997; Nagaune
et al., 1989; Hernandez-
Ledesma et al., 2004

Camel milk KRKEMPLLQSPV El Hatmi et al., 2016
Casein EPVLGPVRGP Zhao et al., 2014

Antiproliferative,
anti-tumor, and
anti-cancer
peptides

TP Bean (Phaseolus vulgaris L.) KTYENLADTYKGPYF
TTGSHDDHYKNKEHLRSGRMRDDFF,
KTCGNLANQYYTPCFTTSNCDDHCKNKEHLRSGRCRDDFRCWCT
K, KTYENLADTYKGPYFTTGSHDDHYKNKEHLRSGRYRDDFF

Wang and Ng, 2007; Lin et al.,
2010; Wu et al., 2011

Mushroom Flammulina velutipes — Lin et al., 2013
Soybean XMLPSYSPY, SKWQHQQDSCRKQKQGV

NLTPCEKHIMEKIQGRGDDDDDDDDD
Kim et al., 2000; Valjakka et al.,

1997
Turmeric (Curcuma longa) — Aravind and Krishnan, 2016
Bean KTCGNLANQYYPCFTTSNCDDHCKNKEHLRSGRCRDDFRCWCTK Lin et al., 2010

TA Frog skin IKLSPETKDNLKKVLKGAIKGAIVAKMV,
GLWSKIKEAAKAAGKAALNAVTGLVNQGDQPS, GLVG
TLLGHIGKAILG,GLVGTLLGHIGKAILS

Attoub et al., 2013; Conlon
et al., 2007; Mechkarska
et al., 2014; Conlon et al.,
2014

AS Sea hare (Dolabella auricularia) XVXXX Madden et al., 2000; Pettit
et al., 1998; Turner et al.,
1998; Vaishampayan et al.,
2000

Musca domestica larvae — Sun et al., 2014
Fish sauce — Lee et al., 2003, 2004
Sea hare (Dolabella auricularia) XVXXX Madden et al., 2000
Cod, plaice, salmon — Xhindoli et al., 2016; Ngo et al.,

2012
Tuna muscle LPHVLTPEAGAT, PTAEGGVYMVT Hsu et al., 2011
Fish backbone — Zhang et al., 2013; Ngo et al.,

2012
Sardine muscle VY Matsui et al., 2005
Shrimp shell — Kannan et al., 2011
Sea slug (Pleurobranchus

forskalii)
— Wesson and Hamann, 1996

DE Bovine Milk VENLHLPLPLL,NLHLPLPLL, ENLHLPLPLL, ALNENLLRFFVAPFP
EVFG, LNENLLRFFVAPFPEVFG, NENLLRFFVAPFPEVFG,
ENLLRFFVAPFPEVFG, FVAPFPEVFG

Juillerat-Jeanneret et al., 2011

Antimutagenic and
antigenotoxic

DE Kefir — Guzel-Seydim et al., 2011

TA Bovine plasma, globulin and
albumin

— Park and Hyun, 2002

Silk fibroin — Park et al., 2002

AS, TP, TA, and DE stand for aquatic sources, terrestrial plants, terrestrial animals, and dairy & eggs, respectively.
Uncommon amino acids are denoted by “X.”
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peptide was claimed to stimulate in vitro phagocytosis of sheep
red blood cells by murine macrophages and to have in vivo pro-
tective effect in mice against lethal infection caused by Klebsi-
ella pneumonia (Parker et al., 1984).

On the other hand, application of bioactive peptides from
different resources has been limited due to their potential anti-
genicity and immunoreactivity in the body. In this regard, pro-
tein hydrolysates with hypoimmunoreactive effect are more
favorable to be used in industrial products. Clemente et al.
(1999) obtained extremely hypoimmunoreactive protein
hydrolysates from chickpea by sequential treatment using
endo- and exopeptidases. They defined hypoimmunoreactivity
by the loss of antigenicity through reduction in the interaction
capacity of antigenic determinants with specific antibodies
(Clemente et al., 1999).

Cytomodulatory effect
Bioactive peptides obtained from different sources (Table 1)
have been shown to have cytomodulatory effect. Zhao et al.
(2014) identified peptides from casein with cytomodulatory
effect (Zhao et al., 2014). Cytomodulation can be of a great
health importance since it is related to cell proliferation and
apoptosis as two attributes of cell viability (Zhao et al., 2014).
These peptides can also regulate immune cells and therefore,
they can play an important role in regulation of immune sys-
tem (Elfahri et al., 2014). However, the term cytomodulation
seems to include a wide spectrum of applications with key roles
in controlling cancer, tumor, and other cell-related disorders.
In other words, there is seemingly some conceptual overlap
between immunomodulation, cytomodulation, anticancer,
antitumor, etc. Nonetheless, we present a separate part as fol-
lows to give a better overview of peptide bioactivity.

Antiproliferative/antitumor/anticancer effects
Cancer is one of the most important diseases in the world and
millions of people die annually as a consequence of this danger-
ous disorder. It is generally characterized by the presence of
transformed cells in different tissues. In other words, the carci-
nogenic cells start out-of-control multiplication in the site they
belong to without rendering the role they are originally sup-
posed to. The transformed invasive cells can even cross through
their own sites and enter, say, blood vein to cause more severe
problems (Luna-Vital et al., 2015). There are several chemo-
therapeutics and targeted antineoplastic agents commercially
available; however, although they prove to be very efficient
against tumor and cancer, there have also been serious com-
plaints regarding their adverse side-effects. In addition, resis-
tance to chemotherapy-based treatments has also increased
concerns regarding cancer cure since some patients experience
tumor relapse with the new tumor being resistant to already-
adopted treatments (Sun et al., 2014). Taken together, academic
interest has shifted toward finding dietary agents in order to
block or at least alleviate the effects of tumor or even to prevent
outbreak of cancer. Bioactive peptides from different sources
have been found to have antitumor effects (Attoub et al., 2013;
Lin et al., 2013; Sun et al., 2014; Luna-Vital et al., 2015)
(Table 1). Yet, no single mechanism has been detected for the
peptides to cause tumor cell death, but their action mechanism
includes nonspecific perturbation of the cell membrane and

subsequent insertion into the lipid bilayer so as to disrupt cell
membrane (Attoub et al., 2013).

Bioactive peptides from natural resources have also been
found to fight against proliferation of trouble-making cells. Sev-
eral studies have shown that peptides from different sources
such as sea hare (Pettit et al., 1998; Turner et al., 1998; Madden
et al., 2000; Vaishampayan et al., 2000; Woyke et al., 2001), fish
sauce (Thang and Zhao, 2015; Bah et al., 2016), and cod (Xhin-
doli et al., 2016) were able to block proliferation of carcinogenic
cells. However, it seems there is still a long way in order to
make commercial use of these potentially potent anticancer
peptides to treat different kinds of cancer. For example, clinical
intervention trials are needed to fully document the effects.

Antigenotoxic and antimutagenic effects
There might be confusion in defining genotoxicity and mutage-
nicity. In general, genotoxicity is defined as the potential of a
chemical agent to impair genetic information within a cell;
such impairment might cause mutation (mutagenicity) and
cancer. In other words, genotoxics include a broader spectrum
of harmful agents than mutagens; simply put, although all
mutagens can be considered genotoxic agents, not all geno-
toxics are mutagens. Therefore, it is important to find substan-
ces in order to shield DNA from possible damage. Park et al.
(2002) compared antigenotoxic properties of acidic and enzy-
matic hydrolysates produced from silk fibroin. They analyzed
antigenotoxicity of the isolates in mouse embryo 3T3 cells via
Comet assay and concluded that acidic-derived isolates showed
higher antigenotoxic activity than those synthetized by the
commercial enzyme. Furthermore, they claimed that the treat-
ment containing 10 mg/ml acidic isolates would provide 87
percent protection from DNA damage. They proposed two
possible circumstances for antigenotoxicity of the isolates: first,
protective interactions between cells and peptide molecules and
second, the direct role of peptides to inactivate the mutagen
(Park et al., 2002).

Effects on cardiovascular system

Table 2 provides an overview of reported effects of peptides on
the cardiovascular system.

Antithrombotic activities
Blood coagulation is a natural and important process required
to survive. The process is carried out in abnormal vascular con-
ditions or absence of endothelial surface in the case of vascular
injury (Jung and Kim, 2009). However, blood coagulation and
clot formation are considered undesirable circumstances in
some medical conditions and therefore, antithrombotic agents,
especially natural ones, are favored. In this regard, bioactive
peptides have been found to have antithrombotic effect (Jolles
et al., 1986; Raha et al., 1988; Mazoyer et al., 1990; Chabance
et al., 1995; Morimatsu et al., 1996; Shimizu et al., 2009). There
are two types of antithrombotic agents: anticoagulants and
antiplatelets. The former prevent the formation and growth of
clots while the latter inhibit platelet clumping (Li-Chan et al.,
2016).

Exogenous anticoagulants from natural sources can be
adopted to prolong or stop blood clotting (Jo et al., 2008). This
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comes in handy in a few clinical situations and hematological
studies (Koyama et al., 1998). Anticoagulants are predomi-
nantly important in prevention of ischemic events in patients
with cardiovascular diseases (Rajapakse et al., 2005). Bioactive
peptides, especially from marine resources, have been found to
have anticoagulant activities (Koyama et al., 1998; Rajapakse
et al., 2005; Jung et al., 2007; Jo et al., 2008; Jung and Kim,
2007, 2009). Antiplatelet peptides have also been found from
natural resources; these peptides render their effect through
inhibition of ADP-induced platelet aggregation and fibrinogen
binding (Chabance et al., 1998).

Anti-diabetic effect
Diabetes mellitus (DM) is a very prevalent disease worldwide
with higher level of outbreak in low- and middle-income
nations. It is surmised that DM will affect 438 million people
by 2030 (Yu et al., 2012). Therefore, scientific studies have been
directed toward finding effective but cheaper solutions to cope
with the problem. Bioactive peptides have been shown to exert
anti-diabetic effect mainly through two ways: (1) insulin release
(Srinivasan et al., 2013; Oseguera-Toledo et al., 2015); and (2)
activity against a-glucosidase (Yu et al., 2012; Oseguera-Toledo
et al., 2015; Zambrowicz et al., 2015), a-amylase (Yu et al.,
2012; Oseguera-Toledo et al., 2015), and Dipeptidyl peptidase-
4 (DPP-IV) (Oseguera-Toledo et al., 2015; Zambrowicz et al.,
2015).

Srinivasan et al. (2013) found ten peptides from skin secre-
tions of the tetraploid clawed frog Xenopus laevis with stimula-
tory effect on insulin release from the rat BRIN-BD11 clonal b
cell line. They mentioned two peptides (CPF-7 and CPF-SE1;
refer to Table 2 for their amino acid sequences) as the most
potent stimulators of insulin release from the cell line (Sriniva-
san et al., 2013).

Yu et al. (2012) identified eight peptides from albumin with
activity against a-glucosidase and a-amylase. They further
reported that one of the peptides, KLPGF, had the highest effect
against a-glucosidase and a-amylase with IC50 values of 59.5§
5.7 and 120§4.0 mmol¢l¡1, respectively (Yu et al., 2012). More-
over, Zambrowicz et al. (2015) reported high level of anti-dia-
betic effects of bioactive peptides in a by-product of
phospholipid extraction from egg yolk through inhibition of
a-glucosidase and DPP-IV. They claimed that a peptide from
the by-product, with amino acid sequence of
LAPSLPGKPKPD, showed the strongest a-glucosidase inhibi-
tory (1065.5 mmol¢l¡1) and DPP-IV inhibitory (361.5 mmol¢l¡1)
activities (Zambrowicz et al., 2015).

Furthermore, three peptides from soy glycinin, with amino
acid sequences IAVPGEVA, IAVPTGVA, and LPYP, were
found to increase glucose uptake in human hepatic HepG2
cells. This effect was claimed to be via the stimulation of protein
kinase B and adenosine monophosphate-activated protein
kinase pathways stimulated by activation of two glucose trans-
porters, i.e., GLUT1 and GLUT4 (Lammi et al., 2015).

Hypocholesterolemic and hypotriglyceridemic effects
Blood lipid profile was shown to be associated with bioactive
peptides from different resources. In a study on the effect of
fish protein hydrolysates prepared from flesh remnants on
salmon bone frames after filleting, Wergedahl et al. (2004)

found that fish protein hydrolysate (FPH) reduced plasma con-
centration of cholesterol in a hyperlipidemic animal model, i.e.,
the obese Zucker rat. They explained that this effect could not
be through the excretion of fecal bile acids since dietary FPH
did not affect the fecal bile acid; instead, they suggested that
this effect of FPH could be by increasing hepatic activity of 3-
hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase.
They also associated cholesterol regulatory effect of FPH to sig-
nificant reduction of Acyl-CoA cholesterol acyltransferase
(ACAT) activity (Wergedahl et al., 2004). A significant reduc-
tion of the plasma cholesterol concentration, especially the
VLDL and LDL cholesterol concentrations, was also reported
in rats fed a cholesterol-enriched diet by using papain-hydro-
lyzed pork meat (Morimatsu et al., 1996).

On the other hand, Kagawa et al. (1998) stated that reduc-
tion in serum triglycerides is even more important than
decrease in serum cholesterol to prevent cardiovascular disease.
The authors found a bioactive peptide, VVYP, from globin
digest with a capability to rapidly clear dietary hypertriglyceri-
demia by inhibition of fat absorption from digestive tract and
increased activity of hepatic triglyceride lipase (HTGL)
(Kagawa et al., 1998).

Anti-anemic effect
Anemia can be caused by iron deficiency and therefore, chelat-
ing agents with ability of enhancing iron bioavailability can
decrease the level of anemia. Lin et al. (2015) studied anti-ane-
mic activity of protein hydrolysate prepared by enzymatic
hydrolysis of beheaded and eviscerated hairtail in male Wistar
rats and found that the hydrolysate could be regarded as a
potential iron-delivery and anti-anemic source with no major
disturbance in natural microbiome and gastrointestinal mucosa
(Lin et al., 2015).

Furthermore, de la Hoz et al. (2014) revealed that enzymatic
hydrolysis of the extract of sugar-cane yeast (Saccharomyces
cerevisiae) by Viscozyme yielded iron-binding peptides, which
increased iron bioavailability. They analyzed iron bioavailabil-
ity through the iron dialyzability (i.e., the amount of soluble
and stable iron until intestinal digestion) during in vitro diges-
tion. They further isolated the peptides through immobilized
metal affinity chromatography (IMAC) and showed that His,
Lys, and Arg were more prevalent in these anti-anemic peptides
(De la Hoz et al., 2014).

ACE inhibitory and antihypertensive effect
Hypertension is regarded as an important chronic health prob-
lem in epidemic proportions. It is considered a high risk factor
for such complications as arteriosclerosis, stroke, myocardial
infarction and end-stage renal disease (Jung et al., 2006).

One of the most considerable instruments in mammals in
order to keep blood pressure homeostasis and fluid and salt bal-
ance is renin-angiotensin system. Angiotensin I converting
enzyme (ACE) is a key factor in the mentioned system to regu-
late blood pressure. In other words, inhibition of this enzyme is
very applicable method to control hypertension (Lee et al.,
2010). ACE renders its effect by catalyzing formation of angio-
tensin II which is a vasoconstrictor (Nii et al., 2008). Synthetic
inhibitors, such as captopril, enalapril, alacepril and lisinopril,
are commercially available but their use is restricted due to
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their possible adverse effects including cough, taste disturban-
ces, and skin rashes (Lee et al., 2010). Therefore, special atten-
tion has been given to ACE inhibitory effects of nutraceuticals
from bio-resources. Bioactive peptides from natural resources
have been found to have a high level of ACE-inhibitory and
antihypertensive effects (Je et al., 2005a, b, c; Jung et al., 2006;
Nii et al., 2008; Lee et al., 2010; Yamamoto, 2010; Adje et al.,
2011; Norris and FitzGerald, 2013; Singh et al., 2014; Mohanty
et al., 2015; Capriotti et al., 2015; Esteve et al., 2015; El Hatmi
et al., 2016). These peptides are very valuable because they have
variety of functions and they are easily absorbed in the body
and therefore, they can potentially be considered a great alter-
native for the synthetic antihypertensive drugs (Lee et al.,
2010). Although a huge body of research has been dedicated to
antihypertensive effect of bioactive peptides from plant (Motoi
and Kodama, 2003; Chen et al., 2003; Motoi and Kodama,
2003; Nakano et al., 2006; Kodera and Nio, 2006; Kodera and
Nio, 2006; Lee et al., 2006a, b; Zhu et al., 2006; Oseguera-
Toledo et al., 2011; Gonz�alez-Garc�ıa et al., 2014; Oseguera-
Toledo et al., 2015; Capriotti et al., 2015; Esteve et al., 2015;
Coscueta et al., 2016; Da Silva Vaz et al., 2016), terrestrial ani-
mals (Morimatsu et al., 1996; Arihara et al., 2001; Nakashima
et al., 2002; Saiga et al., 2003; Vercruysse et al., 2005; Arihara,
2006; Yu et al., 2006; Sentandreu and Toldra, 2007; Li et al.,
2007; Chang et al., 2007; Wang et al., 2008a; Xu et al., 2009; Shi-
mizu et al., 2009; Kim et al., 2009; Liu et al., 2010; Bernardini
et al., 2012; Escudero et al., 2013), seafood (Jeon et al., 1999;
Byun and Kim, 2001; Morimura et al., 2002; Ohba et al., 2003;
Fahmi et al., 2004; Je et al., 2005; Je et al., 2005; Nagai et al.,
2006; Hai-Lun et al., 2006; Padhi and Verghese, 2008; Wang
et al., 2008b; Tsai et al., 2008; Nii et al., 2008; Lee et al., 2010;
Lee et al., 2010), and dairy (Hernandez-Ledesma et al., 2004;
Chen et al., 2007; Sagardia et al., 2013; Elfahri et al., 2014;
Wada and L€onnerdal, 2014; Mohanty et al., 2015; Coscueta
et al., 2016) products among others, serious efforts have not
been allocated to make commercial use of these potentially
potent antihypertensive peptides in developing countries. This
may be due to various factors such as technological barriers,
economic issues, lack of public awareness about the antihyper-
tensive peptides, to name a few.

Anti-inflammatory effect
When the body is exposed to pathogen attacks or tissue injury
caused by biological, chemical, and/or physical factors, inflam-
mation occurs as a natural defensive mechanism. In this regard,
macrophage-released inflammatory mediators such as nitric
oxide (NO) and proinflammatory cytokines such as tumor
necrosis factor-a (TNF-a), interleukin-6, and ¡1b play pivotal
roles to initiate defense reactions. However, overproduction of
these inflammatory mediators can cause several ailments such
as rheumatoid arthritis, asthma, atherosclerosis, and endotoxin
induced multiple organ injury in humans (Ahn et al., 2012).

Bioactive peptides from different resources have been able to
block inflammation (Nagaune et al., 1989; Huang et al., 2010;
Ahn et al., 2012; Majumder et al., 2013a, b, 2015; Vo and Kim,
2013). This is very important because authors have recently
warned about possible negative effects of synthetic drugs and
therefore, foodstuffs with potential anti-inflammatory effects
are in the first row of attention.

It is noteworthy that NO is regarded as an important signal-
ing molecule in vasodilation, neurotransmission, and host
immune defense (Ahn et al., 2012) and peptides from whey
protein (Ballard et al., 2009), Aa-lactabumin and Ab-lactabu-
min (Sipola et al., 2002), ovalbumin (Matoba et al., 1999), flax-
seed protein (Udenigwe and Aluko, 2012), skeletal muscle
protein (Takahashi et al., 2009), and even human casein (Fujita
et al., 1996) were found to enhance NO production.

Effects on nervous system

An overview of reported effects of peptides on nervous system
is given in Table 3.

Opioid and antinociceptive
Pharmacological management of various types of pain has
gained a strong attention in recent years (Brantl et al., 1985).
Opioids are known as drugs with direct effect to alleviate neu-
ropathic pain and therefore, they can be considered as a poten-
tially potent source of antinoceptive drugs (Nair et al., 2015).
There has been a great concern regarding side effects of popular
opioids such as morphine and codeine as to tolerance, addic-
tion, hyperalgesia, abuse, and toxicity (Brantl et al., 1985).

By virtue of adverse effects of synthetic opioids on health,
science has recently shifted its concentration on finding natural
sources with antinoceptive effect. Interestingly, bioactive pepti-
des from different resources such as wheat (Fukudome and
Yoshikawa, 1993; Takahashi et al., 2000), camel milk (El Hatmi
et al., 2016), and bovine blood (Brantl et al., 1989; Piot et al.,
1992) were found to exert opioid effect. It is of great impor-
tance to know that these peptides are considered as opioid ago-
nist-antagonist. In other words, they can have both agonist and
antagonist effect. This is very imperative because as opioid ago-
nists, they induce an analgesic effect, which is characteristically
found in opioid ligands, whereas as opioid antagonists at the
NK1 receptors, they block the signals induced by the pronoci-
ceptive peptides involved in pain signaling (Zhang et al., 2011).
Furthermore, Huang et al. (2016) mentioned that the dynor-
phin/k opioid (KOP) receptor system leads to adverse emo-
tional conditions. When activated by selective agonists, the
receptor system causes strong emotional consequences in
humans and conditioned place aversion in animals (Huang
et al., 2016). Therefore, opioid peptides from natural sources
are very important due to their dual role as opioid agonist and
antagonist. However, their application is still limited because of
their varying influence on blood-brain barrier permeability,
their sensitivity to metabolism inside the body, and lack of suit-
able delivery systems for them (Brantl et al., 1985).

Relaxing effect
Bioactive peptides from natural resources, especially milk and
its derivatives, have been indicated to have relaxing effect. His-
torically, Miclo et al. (2001) mentioned that cow or human
breast milk have tranquilizing effect because of their benzodiaz-
epine-like molecules. They claimed that a peptide released by
trypsin-mediated hydrolysis of as1-casein showed benzodiaze-
pine-like effect (Miclo et al., 2001). A few years later, Messaoudi
et al. (2005), also, reported that a tryptic hydrolysate from
bovine milk aS1-casein decreased stress level in the treated
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subjects compared to control subjects who only received pla-
cebo (Messaoudi et al., 2005). More recently, Zhao et al.
(2016a, b) stated that peptide fractions isolated from protein
hydrolysate of croceine croaker (Pseudosciaena crocea) swim
bladder exerted anti-fatigue and relaxing effect in mice (Zhao
et al., 2016a, b).

It is noteworthy that relaxing effect of peptides from bovine
milk-derived as1-casein has long been emphasized; however,
future studies are directed toward investigating this effect of
peptides from other dairy and/or even nondairy sources.

Anti-amnesic
Amyloid beta (Ab) is a proteolytic derivative of the large trans-
membrane protein amyloid precursor protein (APP) and it
plays role in outbreak of Alzheimer Disease (AD). Ab genera-
tion occurs in the presence of b-secretase. Therefore, inhibition
of b-secretase can be a potentially effective way to control and
prevent AD. A bioactive peptide, with the amino acid sequence
of LFH, from shrimp waste with inhibitory activity against
b-secretase was recently reported (Li-Chan et al., 2016).

Zou et al. (2015) claimed that bioactive peptides obtained
from porcine cerebral hydrolysate have potential ability to pro-
tect against memory impairment caused by Pb2C presumably
by reducing the Pb2C concentration of the blood and brain
(Zou et al., 2015).

Moreover, Chen et al. (2015) examined the effect of defatted
walnut meal hydrolysate on learning and memory in D-galac-
tose-treated mice. They assumed that two peptides, i.e.,

WSREEQEREE and ADIYTEEAGR, from the hydrolysate are
able to fight against memory and learning impairment in the
mice.

Furthermore, in an in vitro study, Su et al. (2016) revealed
that Anchovy (Coilia mystus) protein hydrolysate has therapeu-
tic potential for memory deficit through inhibition of acetyl-
cholinesterase (AChE). AChE is responsible for catalyzing
hydrolysis of Ach into choline and acetic acid, which leads to
reduction in acetylcholine (Ach) levels. Ach is a small-molecule
neurotransmitter which regulates memory, concentration and
consciousness (Su et al., 2016). Su et al. (2016) further followed
up on their hypothesis in an in vivo trial on mice and stated
that intervention by using the hydrolysate could improve spa-
tial memory of scopolamine-impaired mice (Su et al., 2016).

Effects on gastrointestinal system

Table 4 presents an overview of reported effects of peptides on
gastrointestinal system.

Anti-obesity
Obesity has turned into one of the most serious health prob-
lems in the current century and it is believed to elevate the
probability of heart disease, type-2 diabetes, obstructive sleep
apnea, certain types of cancer, and osteoarthritis, among others
(Micewicz et al., 2015). There has thus been a great deal of
interest in anti-obesity drugs with satiating and appetite sup-
pressant effects; however, the use of these drugs is limited due

Table 3. Effects of bioactive peptides on nervous system.

Effects Origin Amino acid sequence (in single-letter code) Reference

Opioid and
antinociceptive

TP Wheat GYYPT, YPISL Takahashi et al., 2000; Fukudome and
Yoshikawa, 1993

TA Bovine blood YPWT, LVVYPWTQRF, VVYPWTQRF Brantl et al., 1989; Piot et al., 1992
DE Lactabumin YGLF,YLLF Yoshikawa et al., 1986

Bovine milk YPFPGP,YPFPGPI Boutrou et al., 2013
Bovine /3-casein YPFPGPI Brantl et al., 1979
Bovine milk-derived lactoferrin — Hayashida et al., 2003
Kefir microorganisms on bovine

milk
YPFPGPI, YPVEPF, YPSYGLN, YPFPGPIPN,

YPFPGPIPNSLPQ
Dallas et al., 2016

Camel milk YFPIQFVQSR,YPSYGIN El Hatmi et al., 2016
Human milk YVPFP, YPFV,YPFVE, YGLF Kampa et al., 1996; Kostyra et al.,

2004; Brantl, 1985
Bovine milk-derived lactoferrin — Hayashida et al., 2003
Milk-derived — Tsuchiya et al., 2006
Human lactoferrin — Raju et al., 2005

Relaxing peptides DE Bovine Casein YLGYLEQLLR, YLGYLEQ Cakir-Kiefer et al., 2011; Messaoudi
et al., 2005

Bovine as1-casein YLGYLEQLLR Miclo et al., 2001; Hern�andez-
Ledesma et al., 2014

Bovine milk lactoferrin — Takeuchi et al., 2003; Kamemori et al.,
2004

Anti-amnesic AS Tilapia Many peptides have been introduced. Please
refer to the related reference.

Huang et al., 2015a, b

Shrimp waste LFH Li-Chan et al., 2016
Anchovy — Su et al., 2016

TA Porcine cerebral hydrolysate RILDWYKK, RVGSMEKART, RLSFDRVGSMEKA,
RWALNEDQMATEKL, KRFGYETEVMGASFRN,
KLISPFVGRILDWYKK, KSTGQDYAPADDPG
VNSVRE, KKSTGQDYAPADDPGVNSVRE,
RNKDEILELAGCDLLTIAPKL,
KQFTTVVADSSDFDSMKSYQPRD,
KLQQEGINCNMTLLFSFPQAVAAAKAKV

Zou et al., 2015

TP Defatted walnut meal WSREEQEREE, ADIYTEEAGR Chen et al., 2015

AS, TP, TA, and DE stand for aquatic sources, terrestrial plants, terrestrial animals, and dairy & eggs, respectively.
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to their adverse effects such as depression and cardiovascular
risks (Ziauddeen and Fletcher, 2013). Therefore, science has
shifted its focus on bioactive agents without or with minimum
side-effects from natural resources.

One of the most noticed ways the bioactive agents render
their anti-obesity effect is through influence on cholecystokinin
(CCK) release; CCK is one of the major intestinal regulatory
peptides (Beucher et al., 1994) and an important physiologic
endocrine factor in appetite control (Nishi et al., 2003a, b).
Beucher et al. (1994) showed that glycomacropeptide, i.e., gly-
cosylated forms of caseinomacropeptide (CMP), released from
dietary casein during gastric digestion has satiating effect in
rats via stimulation of CCK release by intestinal cells. This find-
ing is supported by the results of Pedersen et al. (2000), who
concluded that dietary amount of CMP can stimulate pancre-
atic secretion through CCK release. Furthermore, Nishi et al.
(2003b) indicated that a fragment of soybean b-conglycinin
with amino acid sequence VRIRLLQRFNKRS is responsible for
its anorexigenic effect by stimulating CCK release. In an in vivo
study, they had previously shown that b-conglycinin peptone
suppresses food intake in rats (Nishi et al., 2003a).

More recently, (Micewicz et al., 2015) revealed that NM4-
C16, a truncated/lipid-conjugated neuromedin U (NmU) ana-
log, has strong appetite suppressing effects in a diet-induced
obese (DIO) mouse model; it is noteworthy that Neuromedin
U (NmU) is an endogenous peptide with various physiological
effects.

Prebiotic effects
Although most prebiotic agents promoting the growth and via-
bility of probiotics like Bifidobacterium and Lactobacillus gen-
era are currently nondigestible oligosaccharides (Yu et al.,
2016), bioactive peptides and proteins from various resources
have been considered for their effects on probiotics. In one of
the earliest attempts to find prebiotic effect in nonfiber prod-
ucts, Ibrahim and Bezkorovainy (1994) reported that a-lactal-
bumin and b-lactoglubin had potent growth promoting
influence on the probiotic Bifidobacterium Iongum. More

recently, a prebiotic peptide from pepsin hydrolysate of bovine
lactoferrin was found to exert bifidogenic effect (Oda et al.,
2013).

Zhang et al. (2011) fractionated five casein hydrolysates pro-
duced by five different proteases and found that the
>3000 kDa fractions were essential for stimulation of Lactoba-
cillus bulgaricus and Streptococcus thermophiles. They further
analyzed the total amino acid profiles of the ultra-filtered frac-
tions and revealed that the hydrophilic amino acid residua
including His, Lys, Glu and Ser are favorable for the prebiotic
effect of the hydrolysates.

Protective effect on the gut mucosa
There is a protective viscoelastic mucous gel layer covering the
luminal surface of the gastrointestinal tract. The layer, which is
also termed as “gut barrier” (Moughan et al., 2013), is consid-
ered a barrier against the noxious luminal environment (Cor-
field et al., 2000). Mucosal tissue damage in parts of
gastrointestinal tract might bring about the so-called inflamma-
tory bowel diseases (IBDs) such as ulcerative colitis and
Crohn’s disease (Sluis et al., 2006). The main component of
mucus layer is polymeric glycoproteins called mucins, which
cover the epithelium of the gastrointestinal tract and epithelia
in mammals (Montagne et al., 2004). Mucins are synthesized
and secreted by specialized cells in intestinal epithelium, called
goblet cells. In healthy mammas, there is a dynamic balance
between mucin release by goblet cells and mucin loss through
physical and proteolytic processes (Mart�ınez-Maqueda et al.,
2013a, b). In addition to internal factors such as hormones and
cytokines, dietary regulation of mucin secretion has also been
mentioned (Morel et al., 2003; Burger-van et al., 2009;
Moughan et al., 2013).

In a study to determine effects of peptides derived from die-
tary proteins on mucus secretion, Claustre et al. (2002) revealed
that two protein hydrolysates obtained by enzymatic hydrolysis
of casein and lactalbumin prompted mucin release in rat jeju-
num. Later, Mart�ınez-Maqueda et al. (2013a, b) found that two

Table 4. Effects of bioactive peptides on gastrointestinal system.

Effects Origin Amino acid sequence (in single-letter code) Reference

Anti-obesity TP Soybean LPYPR, VRIRLLQRFNKRS Takenaka et al., 2000; Nishi
et al., 2003

DE Milk MAIPBTSZPGACVMILYFHKR Beucher et al., 1994; Pedersen
et al., 2000

TA Neuromedin U XXFRPN Micewicz et al., 2015
AS Blue whiting (Micromesistius poutassou)

and brown shrimp (Penaeus aztecus)
— Cudennec et al., 2008

Prebiotic DE Bovine whey protein — Ibrahim and Bezkorovainy,
1994

Bovine lactoferrin APRKNVRWCTISQPEWLECIRA Oda et al., 2013
Casein — Zhang et al., 2011; Prasanna

et al., 2012
Protective effect

on the gut mucosa
DE Casein and lactalbumin — Claustre et al., 2002

Whey protein YLLF Mart�ınez-Maqueda et al.,
2013a, b

Casein AYFYPEL, YFYPEL Mart�ınez-Maqueda et al.,
2013a, b

AS, TP, TA, and DE stand for aquatic sources, terrestrial plants, terrestrial animals, and dairy & eggs, respectively.
Uncommon amino acids are denoted by “X.”
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peptides derived from casein hydrolysate induce mucin pro-
duction in human intestinal cells.

In vitro vs. in vivo effects

Bioactive peptides and protein hydrolysates from different
sources have shown a very large number of beneficial effects.
However, a majority of the studies have launched in vitro
experiments to show the effects. Although there were a few in
vivo studies on the effect of the peptides and hydrolysates using
animal models, it seems that there is still a research gap in ana-
lyzing the effect of these peptides and hydrolysates in humans
when applied as functional foods and/or nutraceuticals. There-
fore, in addition to in vitro and in vivo studies using animal
models, future investigations should be directed toward evalua-
tion of the effects of bioactive peptides-enriched functional
foods and nutraceuticals in humans. Needless to say, such stud-
ies demand interdisciplinary efforts in which nutritionists, food
science experts, animal science experts, physiologists, medical
researchers, biotechnologists, etc., should contribute in unison.

Functional and antioxidant properties

Functional properties

Several functional properties have been reported for protein
hydrolysates. It is known that the specificity of the enzyme,
degree of hydrolysis (DH) and bulk density of the proteins
influence the functional properties of the hydrolysates (Multi-
langi et al., 1996; Chobert et al., 1996; Kristinsson and Rasco,
2000). The specificity of the enzyme influence amino acid resi-
dues and both DH and bulk density of the proteins influence
the length of the peptides. The DH needs to be controlled to
avoid excessive hydrolysis that can impair functionality and
cause unfavorable effects of the produced hydrolysates (Mune,
2015). The functional properties discussed below are universal
and not specific for whether the peptides are from fish, milk or
vegetables, but depends on the origin of the protein.

Solubility
In general, solubility of hydrolysates is expected to increase
with increased DH due to an increment in low molecular
weight peptides and ionic groups during hydrolysis (Mutilangi
et al., 1996, Chobert et al., 1988a, Kristinsson and Rasco, 2000).
Additionally, the balance of hydrophilic and hydrophobic
forces of peptides is also mentioned as an important cause of
solubility enhancement (Kristinsson and Rasco, 2000; Gbogouri
et al., 2004). Several reported studies have also confirmed that
increasing DH increases solubility of protein hydrolysates
(Quaglia and Orban, 1987; Chobert et al., 1988a, b; Mutilangi
et al., 1996; Linar�es et al., 2000; Gbogouri et al., 2004; Klom-
pong et al., 2007; Souissi et al., 2007; Balti et al., 2010; Geirsdot-
tir et al., 2011). The solubility of the hydrolysates is especially
improved at the proteins isoelectric point, pI (Chobert et al.,
1988b).

Emulsifying properties
Emulsifying properties of hydrolysates are directly connected to
their surface properties and are influenced by the extent of

hydrolysis and enzyme treatment (Kristinsson and Rasco,
2000). This is due to the changes in molecule size, charge and
distribution of hydrophilic and hydrophobic parts. Hydroly-
sates are surface active due to their hydrophilic and hydropho-
bic functional groups, and can absorb to an interface and thus
work as an emulsifier. Whether hydrolysates improve the emul-
sifying properties more than the native proteins do is not cer-
tain. Reported results for emulsion capacity and stability do not
show any clear trend due to different DH and enzyme treat-
ment for the obtained hydrolysates. Different emulsifying prop-
erties of the hydrolysates have been reported. Some studies
showed improved emulsion properties (Chobert et al., 1988b;
Turgeon et al., 1991; Balti et al., 2010) whereas others showed
that hydrolysates had decreased emulsifying properties com-
pared to those of the native protein (Lee et al., 1987; Chobert
et al., 1988a; Mutilangi et al., 1996; Klompong et al., 2007;
Souissi et al., 2007; Taheri et al., 2014; Mune, 2015; Zou et al.,
2016). The lack in improved emulsifying properties may be
caused by too high DH of the hydrolysates. In order to retain
or improve the emulsifying properties of hydrolysates over the
native proteins, the extent of hydrolysis has to be carefully con-
trolled. Low DH is recommended, since extensive hydrolysis
results in a drastic loss of emulsifying properties (Kristinsson
and Rasco, 2000; Gbogouri et al., 2004; Taheri et al., 2014;
Garc�ıa-Moreno et al., 2017). High DH leads to smaller peptides,
which are not able to form a stable film surrounding the fat
globules (Lee et al., 1987; Chobert et al., 1988a). This is due to
lack of unfolding and reorientation of smaller peptides com-
pared to larger peptides (Gbogouri et al., 2004).

Foaming properties
As for the emulsifying properties (section 3.2.2), foaming prop-
erties are connected with the surface activity of the hydrolysates
(Kristinsson and Rasco, 2000). Thus, the factors relevant to
foaming are similar to those required for emulsification. Foam
capacity of proteins can be improved by making them more
flexible (hydrolysis) and exposing more hydrophobic residues
for the adsorption at the air-water interface (Multilangi et al.,
1996). Several studies showed decreased foaming stability for
protein hydrolysates compared to that of the untreated proteins
(Linar�es et al., 2000; Klompong et al., 2007; Souissi et al., 2007;
Mune, 2015; Zou et al., 2016). Some studies, on the other hand,
reported increased foaming capacity of hydrolysates compared
to untreated proteins (Kuehler and Stine, 1974; Balti et al.,
2010; Mune 2015). An increment in foam capacity due to lim-
ited hydrolysis is attributed to more air incorporated into solu-
tion of small peptides due to rapid diffusion of peptides to the
air-water interface (Kuehler and Stine, 1974; Mune 2015).
However, small peptides do not have the strength required to
form stable foams. Thus, high DH has a negative influence on
the foaming stability (Kristinsson and Rasco, 2000).

Gelling properties
Gelation is favored by large molecules of proteins since they
form extensive networks by cross-linking in three-dimensions
(Wang and Damodaran, 1990, Jeewanthi et al., 2015). On the
other hand, the structure of the proteins is altered during
hydrolysis since buried hydrophobic groups are exposed and
free to interact. It is proposed that noncovalent interactions,
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mainly electrostatic and hydrophobic, are major interacting
forces since they promote aggregation and subsequent gel set-
tings (Fuke et al., 1985, Otte et al., 1996, Otte et al., 1997, Jee-
wanthi et al., 2015). However, Kuipers et al. (2005) concluded
based on their findings that the aggregation is not a simple bal-
ance between repulsive electrostatic and attractive hydrophobic
interactions, but much more complex. Gelling properties are
observed both with limited hydrolysis (Ju et al., 1995; Otte
et al., 1996; Kuipers et al., 2005) and more extensive hydrolysis,
DH > 15% (Doucet et al., 2001).

Water holding capacity (WHC)
Hydrolysis of proteins affects the ability of the formed hydroly-
sates to adsorb and bind water. A linear relationship between
amounts of certain amino acids and WHC has been observed
for fish protein hydrolysates. Decreasing amount of glycine,
arginine, alanine, hydroxyproline, and sum of hydrophobic
amino acids increased the WHC (�Sli�zyt_e et al., 2005). More-
over, WHC of hydrolysates increased with increasing DH. Dur-
ing enzymatic hydrolysis, the presence of polar groups
(–COOH and –NH2) increases, and it is assumed that this has
a substantial effect on the increased WHC observed for hydro-
lysates (Balti et al., 2010). However, others stated that the DH
did not affect the WHC (Geirsdottir et al., 2011). Additionally,
Choi et al. (2009) observed higher WHC of the insoluble frac-
tion of protein hydrolysates than the soluble fraction.

Fat absorption capacity (FAC)
The mechanism of fat absorption capacity (FAC) is attributed
to the physical entrapment of oil in a protein network. Some
studies have shown no effect of DH on the FAC (Amiza et al.,
2012) or no correlation between DH and FAC (Souissi et al.,
2007). Other studies reported improved FAC of hydrolysates at
low DH and that further increment in DH significantly
decreased FAC (Geirsdottir et al., 2011; Gbogouri et al., 2004;
Balti et al., 2010; Garc�ıa-Moreno et al., 2017). Low DH could
even improve the FAC over the native protein (Balti et al.,
2010, Mune, 2015). These observations could be explained by
hydrolysis, which can liberate some peptides from the native
protein, which would enhance the flexibility of the hydroly-
sates. The extensive hydrolysis would break many peptide
bonds, thus contributing to the decrease of FAC (Souissi et al.,
2007; Balti et al., 2010). As observed for the WHC, the FAC
was higher for the insoluble fraction of protein hydrolysates
than the soluble fraction (Choi et al., 2009). However, the
opposite has also been observed (Yin et al., 2010). The different
observations may be due to different DH of the soluble fraction,
thus, different molecular sizes of the peptides.

Mineral binding
Bioavailability of minerals can be improved in the presence of
hydrolysates due to increased mineral solubility. It is reported
that hydrolysates can exert binding activity towards different
minerals such as calcium (Jung and Kim, 2007, Huang et al.,
2011, Chen et al., 2014), iron (Chaud et al., 2002; Lee and Song,
2009a), copper (Eckert et al., 2014), and zinc (Eckert et al.,
2014). Different molecular sizes of the mineral binding peptides
ranging from 1 to 1.5 kDa have been reported (Jung and Kim,
2007; Lee and Song, 2009b; Chen et al., 2014). However, Huang

et al. (2011) observed highest binding affinity (calcium) with
the lowest molecular weight fraction (<1 kDa).

Antioxidant properties

Oxidation processes have detrimental effects on human health
and food quality. In the body, oxidants cause damage of lipid
membranes, structural proteins and DNA which leads to
degenerative diseases such as cancer, immune system decline,
cardiovascular diseases as well as the aging process (Shahidi,
2015). In food, lipid oxidation, which is catalyzed by heat, light,
enzymes or metals, leads to the formation of off-flavors and
odors which negatively affects food function and nutrition.
Moreover, food quality is further degraded by co-oxidation of
proteins and vitamins (Schaich, 2016). Due to the potential
health hazards of synthetic antioxidants (e.g., butylated hydrox-
yanisole (BHA), butylated hydroxytoluene (BHT), propyl gal-
late (PG), and tertiary butylhydroquinone (TBHQ)), the
employment of natural antioxidants has gained an increasing
interest (Shahidi and Zhong, 2015). Peptides have been
reported to exhibit antioxidant activity due to their properties
to scavenge free radicals, donate electrons and/or chelate metals
(Aluko, 2015). As for other bioactivities, peptides size, amino
acid composition and structure are the factors affecting the
ability of the peptides to inhibit oxidation (Sarmadi and Ismail,
2010). Particularly important is the presence of hydrophobic
amino acids (e.g., A, L, V, G, P, F) which favors peptide interac-
tion with lipids resulting in an enhanced radical scavenging
activity. Similarly, the presence of electron donors (e.g., E, M,
N) and amino acids exhibiting chelating activity (e.g., D, E, H,
W) also increases the antioxidant activity of the peptides
(Aluko, 2015). Comprehensive reviews have been published on
the production of antioxidant peptides from proteins of differ-
ent origin such as: i) aquatic resources (e.g., algae, oysters, mus-
sel, sardine, bonito, tuna, mackerel, yellowfin sole, hok, squid,
salmon, eel, round scad, tilapia, channel catfish, horse mackerel,
monkfish) (Samaranayaka and Li-Chan, 2011; Wu et al., 2015a,
b; Sila and Bougatef, 2016), ii) terrestrial plants (e.g., wheat,
corn, rye, kamut, spelt, rapeseed/flaxseed, rice, soybean, cacao
seeds, hempseed, pea) (Malaguti et al., 2014; Aluko, 2015; Riz-
zello et al., 2016), iii) terrestrial animals (e.g., porcine myofi-
brils, dry-cured ham, buffalo horn, porcine skin) (Mora et al.,
2014), iv) dairy (bovine, ovine, buffalo and human milks, whey
protein) (Power et al., 2013; El-Salam and El-Shibiny, 2013;
Brandelli, et al., 2015), and v) eggs (e.g., egg white ovalbumin,
egg white lysozyme, egg yolk) (Yu et al., 2014; Nimalaratne and
Wu, 2015). Most studies evaluated the antioxidant activity of
the hydrolysates/peptides in vitro using different methods such
as DPPH scavenging activity, reducing power, ABTS scaveng-
ing activity, Fe2C chelating activity, b-carotene bleaching pre-
venting activity, linoleic acid autoxidation inhibition activity
(Chalamaiah et al., 2012). Some studies also investigated the
ability of the hydrolysates/peptides to inhibit lipid oxidation in
real food systems such fish oil in water emulsions (Farvin et al.,
2014; Garc�ıa-Moreno et al., 2016; Ghelichi et al., 2017) or fish
oil microcapsules (Tamm et al., 2015; Morales-Medina et al.,
2016). Finally, only a few works are devoted to studying the
antioxidant activity of peptides in cell-based and in vivo sys-
tems (Chakrabarti et al., 2014).
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Commercial applications of bioactive peptides and
hydrolysates

Many of the bioactive peptides mentioned in this review and
previously reported studies occur naturally in several tradition-
ally consumed foods (e.g., fermented foods) or during biologi-
cal processes inside the human body (e.g., enzymatic
reactions). Nevertheless, bioactive peptides and hydrolysates
have recently been added to numerous products gaining the
name “functional foods” and “nutraceuticals.” Besides, bioac-
tive peptides and hydrolysates are used to produce drugs as
well as cosmetics and health-promoting products (Hartmann
and Meisel, 2007). Table 5 represents examples of commercially
available products in which bioactive peptides and protein
hydrolysates from different sources have been used.

Despite the recent surge in manufacture of commercial
products using bioactive peptides and hydrolysates, industries
seem not to be at the cutting edge of this sector of biotechnol-
ogy. In other words, although there have been virtually
uncountable number of scientific investigations on functional-
ity and bioactivity of peptides and hydrolysates derived from
natural sources, very few of the findings have been operational-
ized in industry. This might be due to several factors including
high operational and set-up costs, sensory concerns, low mar-
ket acceptability on account of uncertainty upon manufac-
turers’ claims and potential side effects, unsatisfactory return
on invested capital, legislative and religious issues in some
countries, and unaffordability of the products for the public.
Likewise, Li-Chan (2015) listed a few challenges in commercial-
ization of nutraceuticals and functional foods containing bioac-
tive peptides as follows: (i) complications in methodology for
quality assurance; (ii) sparse data on bioavailability and meta-
bolic fate; (iii) inadequate clinical evidence of bioefficacy; and
(iv) bitterness of peptides (Li-Chan, 2015). In addition, when
considered to be added as antioxidant agents in food systems,
bioactive peptides and hydrolysates should meet a few
demands; they should be affordable and competitive with syn-
thetic antioxidants, not cause toxicity in human body, be effec-
tive at low concentrations, be able to tolerate processing

operations and be stable in the finished products, and present
favorable organoleptic properties (Sila and Bougatef, 2016).

Challenges and concerns in application of bioactive peptides
and hydrolysates in different industries may also depend on the
source(s) from which the peptides and hydrolysates are obtained.
Harnedy and FitzGerald (2012) named large-scale production,
compatibility with various food matrices, gastrointestinal stability,
bioavailability, and long term stability as the main concerns in
manufacture of functional foods containing bioactive peptides or
protein hydrolysates withmarine origins (Harnedy and FitzGerald,
2012). Additionally, Lafarga and Hayes (2016) stated that peptides
and hydrolysates from casein and whey proteins might cause
allergy in some consumers (Lafarga and Hayes, 2016). Korhonen
(2009) indicated that milk-derived proteins, e.g., casein and whey,
are the most prevalent source of functional foods and nutraceuti-
cals containing bioactive peptides; however, production of com-
mercially available products from these sources have been
restricted by lack of suitable large-scale technologies; he suggested
that nanofiltration and ultrafiltration techniques can be adopted to
overcome technological barriers to make industrial and commer-
cial use of bioactive peptides frommilk proteins (Korhonen, 2009).
Udenigwe and Rajendran (2016) uttered that the most notable hin-
drance in commercialization of functional foods containing plas-
tein is the costs levied by high price of enzymes required for
plastein reaction (Udenigwe and Rajendran, 2016). Grienke et al.
(2014) pointed to the necessity of collaboration between academia
and industry to reach a win-win condition to exploit favorable bio-
active peptides from mussel meat and incorporate them in func-
tional foods; however, they presumed that challenges such as
stability, bitterness, and lack of appropriate food-grade formulation
procedures account for the current gap from lab beakers to factory
batches. They further shed light on the importance of interdisci-
plinary expertise in order to the development of functional foods,
food ingredients, or pharmaceuticals from mussels (Grienke et al.,
2014).

Another bottleneck in application of bioactive peptides and
hydrolysates is the lack of scientific studies on the effects of pep-
tides on humans. Although there have been several in vivo inves-
tigations proving the bioactivity of peptides and hydrolysates in

Table 5. Examples of commercially available products from bioactive peptides and hydrolysates.

Product Source Claimed application Type of fraction Manufacturer

Lactium� Milk Relaxing Peptide (YLGYLEQLL) Ingredia, Arras Cedex, France
MyproteinTM Whey Sport nutrition Whole hydrolysate The Hut, Ltd, UK
Sato Marine Super P Sardine Antihypertensive Peptide (VY) Sato Pharmaceutical Co., Ltd., Tokyo, Japan
Hyvital� Whey or casein Infant nutrition Whole hydrolysate FrieslandCampina, Netherlands
Proyield� Nonanimal protein (soy, cotton

seed, wheat, pea)
Biopharmaceutical cell culture media Whole hydrolysate FrieslandCampina, Netherlands

Stedygro� Protein from casein, soy, malt,
gelatin, and cotton

Microbial culture media Whole hydrolysate FrieslandCampina, Netherlands

Lacprodan� Protein from casein and whey Sport nutrition and beverage Whole hydrolysate Arla Foods Ingredients, Denmark
Ameal S Milk casein ACE inhibition Peptides (IPP and VPP) Calpis, Japan
Vasotensin� Bonito Anti-hypertension Peptide (LKPNM) Metagenics, US
Peptide Nori S Porphyra yezoensis Anti-hypertension Peptide (AKYSY) Riken Vitamin, Japan
Stabilium� 200 Fish Relaxing Whole hydrolysate Yalacta, France
Seishou-sabou Bovine and porcine blood Anti-obesity Peptide (VVYP) Moringa & Co., Ltd., Japan
Marine peptide Sardine ACE inhibition Peptides SenmiEkisu, Japan
BioZate Whey Anti-hypertension Peptides Davisco Foods, US
NOW� Whey Sport nutrition Whole hydrolysate NOWfoods, US
NutripeptinTM Cod Hypotriglyceridemic Whole hydrolysate Nutrimarine Life Science AS, Norway
VERISOL� Collagen Anti-aging Peptides GELITA Inc., US
Remake CholesterolBlock Soy protein Hypocholesterolemic Peptide (CSPHP) Kyowa Hakko, Japan
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animal models, the results of these studies cannot be confidently
generalized to humans due to the disagreement between human
and animal studies. Nongonierma and FitzGerald (2016a)
explained that the discrepancy between human and animal stud-
ies could be caused by two major reasons, i.e., biological differen-
ces between humans and animals and differences in
experimental set-up (Nongonierma and FitzGerald, 2016b).

In addition to their application in functional foods and
nutraceuticals, bioactive peptides and hydrolysates are used
to produce drugs and cosmetics. Bioactive peptides are pri-
oritized as drugs over proteins and antibodies since they
have a higher capability of penetration into tissues by virtue
of their smaller size. Furthermore, peptides with therapeutic
effects are commonly less immunogenic than recombinant
proteins and antibodies (Vlieghe et al., 2010). However,
peptide-based drugs industry encounters operational log-
jams such as physical and chemical instability, short in vivo
half-lives, and low oral bioavailability; interestingly, a por-
tion of these logjams can be broken by encapsulation of the
drugs in order to improve their stability and bioavailability
(Kadam et al., 2015). Furthermore, use of antimicrobial
peptides in drug industry has been limited to topical appli-
cations to cure surface infections, whereas parenteral and
oral applications of these peptides are strongly restricted
due to such factors as toxicity. However, recent develop-
ments like fully synthetic peptides and peptidomimetics
(i.e., synthetic molecules mimicking peptides) have opened
new avenues in order to rid peptide-based drug making
industry of the technological obstacles (Vlieghe et al., 2010;
Narayana and Chen, 2015). On the other hand, natural bio-
active peptides have gained more attention in cosmetics
industry rather than drug making, which is justifiable since
cosmetics are consumed topically and therefore, toxicity of
natural peptides in systemic applications is a minor concern
when it comes to the production of natural-peptide-based
cosmetics. Bioactive peptides have been specifically empha-
sized in skincare and cosmetic dermatology because of their
ability to stimulate collagen and render botox-like anti-
wrinkle effect (Fields et al., 2009).

To sum up, there is still a long way to be paved to make use
of bioactive peptides from natural resources in the so-called
peptide-based products. In recent years, more and more com-
panies have inclined toward manufacture of functional foods
and nutraceuticals from bioactive peptides and hydrolysates
although it seems that these products have not gained wide-
spread publicity, yet. This might in general be caused by two
main factors, i.e., technological hurdles and high price of these
products in the market. Nevertheless, functional foods and
nutraceuticals, reportedly, account for the major portion of
products based upon bioactive peptides and hydrolysates from
natural sources. Moreover, medicinal applications of these pep-
tides have been restricted to topically used products because of
concerns over toxicity of the peptides when applied systemi-
cally. Of course, alternative technologies such as fully synthetic
peptides and peptidomimetics have been proposed to overcome
these problems. However, there has been a recent spark in pro-
duction of anti-aging cosmetics based on bioactive peptides
from natural resources with appropriate level of market
acceptance.

Conclusion

Protein hydrolysates have been produced from variety of sour-
ces with plant and animal origins through chemical, enzymatic,
and microbial procedures. Each of these methods have their
own cons and pros but they all share a common disadvantage
in terms of the bitter taste of final products that limit their
applications. Different methods have been proposed to reduce
bitterness of the peptides. Despite a few optimistic findings, no
single method has been presented to fully remove the bitter
taste of the peptides to be economical in industrial scales. A
recent trend in this regard is the characterization and purifica-
tion of peptides with stronger and more specific effects. The
peptides have shown different effects on immune, cardiovascu-
lar, nervous, and gastrointestinal systems. They have also been
found to exert functional and antioxidant properties in food
systems. In spite of the recent interest in production of peptide-
based foods, nutraceuticals, and pharmaceuticals in commercial
scale, there is still a gap between wide academic findings and
commercialization of bioactive peptides from natural resources.
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Brandelli, A., Daroit, D. J. and Corrêa, A. P. F. (2015). Whey as a source of
peptides with remarkable biological activities. Food Res. Int. 73:149–
161.

Brantl, V. (1985). Novel opioid peptides derived from human B-Casein:
Human b-Casomorphins. Eur. J. Pharmacol. 106:213–214.

Brantl, V., Gramsch, Ch., Lottspeich, F., Henschen, A., Jaeger, K. H. and
Herz, A. (1985). Novel opioid peptides derived from Mitochondrial
Cytochrome b: Cytochrophins. Eur. J. Pharmacol. 111:293–294.

Brantl, V., Gramsch, C., Lottspeich, F., Mertz, R., Jaeger, K. H. and Herz, A.
(1989). Novel opioid peptides defived from hemoglobin: hemorphins.
Eur. J. Pharmacol. 125:309–310.

Brantl, V., Teschemacher, H., Henschen, A. and Lottspeich, F. (1979).
Novel opioid peptides derived from casein (ß-Casomorphins). Hoppe
Seylers Z Physiol. Chem. 360(9):1211–1216.

Burger-van, P. N., Vincent, A., Puiman, P. J., Van der Sluis, M., Bouma, J.,
Boehm, G., Van Goudoever, J. B., Van Seuningen, I. and Renes, I. B.
(2009). The regulation of intestinal mucin MUC2 expression by short-
chain fatty acids: implications for epithelial protection. Biochem. J.
420:211–219.

Butikofer, U., Meyer, J., Sieber, R. and Wechsler, D. (2007). Quantification
of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-
Pro and Ile-Pro-Pro in hard, semi-hard and soft cheeses. Int. Dairy J.
17:968–975.

Byun, H. G. and Kim, S. K. (2001). Purification and characterization of
angiotensin I converting enzyme (ACE) inhibitory peptides from
Alaska pollack (Theragra chalcogramma) skin. Process Biochem.
36:1155–1162.

Cakir-Kiefer, C., Roux, Y. L., Balandras, F., Trabalon, M., Dary, A., Lau-
rent, F., Gaillard, J. L. and Miclo, L. (2011). In vitro digestibility of r-
Casozepine, a benzodiazepine-like peptide from bovine casein, and bio-
logical activity of its main proteolytic fragment. J. Agric. Food Chem.
59:4464–4472.

Capriotti, A. L., Caruso, G., Cavaliere, C., Samperi, R., Ventura, S., Chiozzi,
R. Z. and Lagana, A. (2015). Identification of potential bioactive pepti-
des generated by simulated gastrointestinal digestion of soybean seeds
and soy milk proteins. J. Food Comp. Anal. 44:205–213.

Chabance, B., Jolles, P., Izquierdo, C., Mazoyer, E., Francoual, C., Drouet,
L. and Fiat, A. M. (1995). Characterization of an antithrombotic pep-
tide from K-casein in newborn plasma after milk ingestion. Brit. J. Nut.
73:583–590.

Chabance, B., Marteau, P., Rambaud, J. C., Migliore-samour, D., Boynard,
M., Perrotin, P., Guillet, R., Jolles, P. and Fiat, A. M. (1998). Casein
peptide release and passage to the blood in humans during digestion of
ilk or yogurt. Biochhme. 80:155–165.

Chabeaud, A., Vandanjon, L., Bourseau, P., Jaouen, P. and Gu�erard, F.
(2009). Fractionation by ultrafiltration of a saithe protein hydrolysate
(pollachius virens): Effect of material and molecular weight cut-off on
the membrane performances. J. Food Eng. 91:408–414.

Chakrabarti, S., Poidevin, M. and Lemaitre, B. (2014). The Drosophila
MAPK p38c regulates oxidative stress and lipid homeostasis in the
intestine. PLoS Genet. 10:e1004659.

Chalamaiah, M., Dinesh kumar, B., Hemalatha, R. and Jyothirmayi, T.
(2012). Fish protein hydrolysates: Proximate composition, amino acid
composition, antioxidant activities and applications: A review. Food
Chem. 135:3020–3038.

Chan, Y. S. and Ng, T. B. (2013). Northeast red beans produce a thermo-
stable and pH-Stable defensin-Like peptide with potent antifungal
activity. Cell. Biochem. Biophys. 66:637–648.

Chan, Y. S., Wong, J. H., Fang, E. F., Pan, W. L. and Ng, T. B. (2012). An
antifungal peptide from Phaseolus vulgaris cv. brown kidney bean.
Acta Biochim. Biophys. 44:307–315.

Chang, C. Y., Wu, K. C. and Chiang, S. H. (2007). Antioxidant properties
and protein compositions of porcine haemoglobin hydrolysates. Food
Chem. 100:1537–1543.

22 M. HAJFATHALIAN ET AL.

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
0:

33
 0

9 
Ja

nu
ar

y 
20

18
 



Charlet, M., Chernysh, S., Philippe, H., Hetru, C., Hoffmann, J. A. and
Bulet, P. (1996). Isolation of several cysteine-rich antimicrobial pepti-
des from the blood of a mollusc, mytilus edulis. J. Biol. Chem.
271:21808–21813.

Chaud, M. V., Izumi, C., Nahaal, Z., Shuhama, T., Bianchi, M. D. L. P. and
Freitas, O. D. (2002). Iron derivatives from casein hydrolysates as a
potential source in the treatment of iron deficiency. J. Agr. Food Chem.
50:871–877.

Chen, D., Mu, X., Huang, H., Nie, R., Liu, Z. and Zeng, M. (2014). Isolation
of a calcium-binding peptide from tilapia scale protein hydrolysate and
its calcium bioavailability in rats. J. Funct. Foods. 6:575–584.

Chen, G. W., Tsai, J. S. and Pan, B. S. (2007). Purification of angiotensin I-
converting enzyme inhibitory peptides and antihypertensive effect of
milk produced by protease-facilitated lactic fermentation. Int. Dairy J.
17:641–647.

Chen, H., Zhao, M., Lin, L., Wang, J., Sun-Waterhouse, D., Dong, Y.,
Zhuang, M. and Su, G. (2015). Identification of antioxidative peptides
from defatted walnut meal hydrolysate with potential for improving
learning and memory. Food Res. Int. 78:216–223.

Chen, J. R., Okada, T., Muramoto, K., Suetsuna, K. and Yang, S. C. (2003).
Identification of angiotensin I-converting enzyme inhibitory peptides
derived from the peptic digest of soybean protein. J. Food Biochem.
26:543–554.

Cheung, L. K. Y., Aluko, R. E., Cliff, M. A. and Li-Chan, E. C. Y. (2015).
Effects of exopeptidase treatment on antihypertensive activity and taste
attributes of enzymatic whey protein hydrolysates. J. Funct. Foods.
13:262–275.

Chi, C. F., Wang, B., Wang, Y. M., Zhang, B. and Deng, S. G. (2015b). Iso-
lation and characterization of three antioxidant peptides from protein
hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. J.
Funct. Foods. 12:1–10.

Chobert, J. M., Bertrand-Harb, C. and Nicolas, M. G. (1988b). Solubility
and emulsifying properties of caseins and whey proteins modified
enzymatically by trypsin. J. Agr. Food Chem. 36:883–892.

Chobert, J. M., Briand, L., Gu�eguen, J., Popineau, Y., Larr�e, C. and Haertl�e,
T. (1996). Recent advances in enzymatic modifications of food proteins
for improving their functional properties. Mol. Nutr. Food Res. 40:177–
182.

Chobert, J. M., El-Zahar, K., Sitohy, M., Dalgalarrondo, M., Metro, F.,
Choiset, Y. and Haertle, T. (2005). Angiotensin I-converting-enzyme
(ACE) inhibitory activity of tryptic peptides of ovine b-lactoglobulin
and of milk yoghurts obtained by using different starters. Le Lait –
Dairy Sci. Tech. 85:141–152.

Chobert, J. M., Sitohy, M. Z. and Whitaker, J. R. (1988a). Solubility and
emulsifying properties of caseins modified enzymatically by Staphylo-
coccus aureus V8 protease. J. Agr. Food Chem. 36:220–224.

Choi, Y. J., Hur, S., Choi, B. D., Konno, K. and Park, J. W. (2009). Enzy-
matic hydrolysis of recovered protein from frozen small croaker and
functional properties of its hydrolysates. J. Food Sci. 74:C17–C24.

Claustre, J., Toumi, F., Trompette, A., Jourdan, G., Guignard, H., Chay-
vialle, J. A. and Plaisancie, P. (2002). Effects of peptides derived from
dietary proteins on mucus secretion in rat jejunum. Am. J. Physiol. Gas-
trointest Liver Physiol. 283:521–528.

Clemente, A., Vioque, J., Sanchez-Vioque, R., Pedroche, J. and Millan, F.
(1999). Production of Extensive Chickpea (Cicer arietinum L.) protein
hydrolysates with reduced antigenic activity. J. Agr. Food Chem.
47:3776–3781.

Cole, A. M., Weis, P. and Diamond, G. (1997). Isolation and characteriza-
tion of pleurocidin, an antimicrobial peptide in the skin secretions of
winter flounder. J. Biol. Chem. 272:12008–12013.

Conlon, J. M., Mechkarska, M., Lukic, M. L. and Flatt, P. R. (2014a). Poten-
tial therapeutic applications of multifunctional host-defense peptides
from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-
diabetic agents. Peptides. 57:67–77.

Conlon, J. M., Mechkarska, M., Radosavljevic, G., Attoub, S., King, J. D.,
Lukic, M. L. and McClean, S. (2014b). A family of antimicrobial and
immunomodulatory peptides related to the frenatins from skin secre-
tions of the Orinoco lime frog Sphaenorhynchus lacteus (Hylidae). Pep-
tides. 56:132–40.

Corfield, A. P., Myerscough, N., Longman, R., Sylvester, P., Arul, S. and
Pinatelli, M. (2000). Mucins and mucosal protection in the in the gas-
trointestinal Tract: new prospects for mucins in the pathology of gas-
trointestinal disease. Gut. 47:589–594.

Coscueta, E. R., Amorim, M. M., Voss, G. B., Nerli, B. B., Pico, G. A. and
Pintado, M. E. (2016). Bioactive properties of peptides obtained from
argentinian defatted soy flour protein by Corolase PP hydrolysis. Food
Chem. 198:36–44.

Cudennec, B., Ravallec-Pl�e, R., Courois, E. and Fouchereau-Peron, M.
(2008). Peptides from fish and crustacean by-products hydrolysates
stimulate cholecystokinin release in STC-1 cells. Food Chem. 111:970–
975.

Cuthbertson, B. J., Shepard, E. F., Chapman, R. W. and Gross, P. S. (2002).
Diversity of the penaeidin antimicrobial peptides in two shrimp spe-
cies. Immunogenetics. 54:442–445.

Da Silva Vaz, B., Moreira, J. B., Greque de Morais, M. and Alberto Vieira
Costa, J. (2016). Microalgae as a new source of bioactive compounds in
food supplements. Curr. Opin. Food Sci. 7:73–77.

Dallas, D. C., Citerne, F., Tian, T., Silva, V. L. M., Kalanetra, K. M., Frese, S.
A., Robinson, R. C., Mills, D. A. and Barile, D. (2016). Peptidomic anal-
ysis reveals proteolytic activity of kefir microorganisms on bovine milk
proteins. Food Chem. 197:273–284.

Dallas, D. C., Guerrero, A., Parker, E. A., Robinson, R. C., Gan, J., German,
J. B., Barile, D. and Lebrilla, C. B. (2015). Current peptidomics: Appli-
cations, purification, identification, quantification, and functional anal-
ysis. Proteomics. 15:1026–1038.

Daskaya-Dikmen, C., Yucetepe, A., Karbancioglu-Guler, F., Daskaya, H.
and Ozcelik, B. (2017). Angiotensin-I-converting enzyme (ACE)-inhib-
itory peptides from plants. Nutrients. 9(316):1–19.

Daoud, R., Dubois, V., Bors-Dodita, L., Nedjar-Arroume, N., Krier, F., Chi-
hib, N. E., Mary, P., Kouach, M., Briand, G. and Guillochon, D. (2005).
New antibacterial peptide derived from bovine hemoglobin. Peptides.
26:713–719.

De Gobba, C., Tompa, G. and Otte, J. (2014a). Bioactive peptides from
caseins released by cold active proteolytic enzymes from arsukibacte-
rium ikkense. Food Chem. 165:205–215.

De Gobba, C., Espejo-Carpio, F. J., Skibsted, L. H. and Otte, J. (2014b).
Antioxidant peptides from goat milk protein fractions hydrolysed by
two commercial proteases. Int. Dairy J. 39:28–40.

De la Hoz, L., Ponezi, A. N., Milani, R. F., Nunes da Silva, V. S., De Souza,
A. S. and Bertoldo-Pacheco, M. T. (2014). Iron-binding properties of
sugar cane yeast peptides. Food Chem. 142:166–169.

De Vuyst, L. and Leroy, F. (2007). Bacteriocins from lactic acid bacteria:
production, purification, and food applications. J. Mol. Microbiol. Bio-
technol. 13:194–199.

Destoumieux, D., Munoz, M., Bulet, P. and Bachere, E. (2000). Penaeidins,
a family of antimicrobial peptides from penaeid shrimp (Crustacea,
Decapoda). Cell. Mol. Life Sci. 57:1260–1271.

Destoumieux, D., Bulet, P., Strub, J. M., Dorsselaer, A. V. and Bachere, E.
(1991). Recombinant expression and range of activity of penaeidins,
antimicrobial peptides from penaeid shrimp. Eur. J. Biochem. 266:335–
346.

Destoumieux-Garzon, D., Saulnier, D., Garnier, J., Jouffrey, C., Bulet, P.
and Bachere, E. (2001). Antifungal peptides are generated from the C
terminus of shrimp hemocyanin in response to microbial challenge. J.
Biol. Chem. 276:47070–47077.

Ding, Y., Liu, X., Bu, L., Li, H. and Zhang, S. (2012). Antimicrobial–immu-
nomodulatory activities of zebrafish phosvitin-derived peptide Pt5.
Peptides. 37:309–313.

Doucet, D., Gauthier, S. F. and Foegeding, E. A. (2001). Rheological char-
acterization of a gel formed during extensive enzymatic hydrolysis. J.
Food Sci. 66:711–715.

Doyen, A., Udenigwe, C. C., Mitchell, P. L., Marette, A., Aluko, R. E. and
Bazinet, L. (2014). Anti-diabetic and antihypertensive activities of two
flaxseed protein hydrolysate fractions revealed following their simulta-
neous separation by electrodialysis with ultrafiltration membranes.
Food Chem. 145:66–76.

Eckert, E., Bamdad, F. and Chen, L. (2014). Metal solubility enhancing
peptides derived from barley protein. Food Chem. 159:498–506.

CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION 23

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
0:

33
 0

9 
Ja

nu
ar

y 
20

18
 



Ehlers, P. I., Nurmi, L., Turpeinen, A. M., Korpela, R. and Vapaatalo, H.
(2011). Casein-derived tripeptide Ile–Pro–Pro improves angiotensin-
(1–7)- and bradykinin-induced rat mesenteric artery relaxation. Life
Sci. 88:206–211.

El Hatmi, H., Jrad, Z., Khorchani, T., Jardin, J., Poirson, C., Perrin, C.,
Cakir-Kiefer, C. and Girardet, J. M. (2016). Identification of bioactive
peptides derived from caseins, glycosylation-dependent cell adhesion
molecule-1 (GlyCAM-1), and peptidoglycan recognition protein-1
(PGRP-1) in fermented camel milk. Int. Dairy J. 56:159–168.

El-Salam, M. H. A. and El-Shibiny, S. (2013). Bioactive peptides of buffalo,
camel, goat, sheep, mare, and yak milks and milk products. Food Rev.
Int. 29:1–23.

Elavarasan, K., Shamasundar, B. A., Badii, F. and Howell, N. (2016).
Angiotensin I-converting enzyme (ACE) inhibitory activity and struc-
tural properties of oven- and freeze-dried protein hydrolysate from
fresh water fish (Cirrhinus mrigala). Food Chem. 206:210–216.

Elfahri, K. R., Donkor, O. N. and Vasiljevic, T. (2014). Potential of novel
lactobacillus helveticus strains and their cell wall bound proteases to
release physiologically active peptides from milk proteins. Int. Dairy J.
38:37–46.

Elfahri, K. R., Vasiljevic, T., Yeager, T. and Donkor, O. N. (2016). Anti-
colon cancer and antioxidant activities of bovine skim milk fermented
by selected Lactobacillus helveticus strains. J. Dairy Sci. 99:31–40.

Escudero, E., Mora, L., Fraser, P. D., Aristoy, M. C. and Toldra, F. (2013).
Identification of novel antioxidant peptides generated in Spanish dry-
cured ham. Food Chem. 138:1282–1288.

Escudero, E., Sentandreu, M. A., Arihara, K. and Toldra, F. (2010). Angio-
tensin I-Converting enzyme inhibitory peptides generated from in vitro
gastrointestinal digestion of pork meat. J. Agr. Food Chem. 58:2895–
2901.

Escudero, E., Toldra, F., Sentandreu, M. A., Nishimura, H. and Arihara, K.
(2012). Antihypertensive activity of peptides identified in the in vitro
gastrointestinal digest of pork meat.Meat Sci. 91:382–384.

Espeche Turbay, M. B., de Moreno de LeBlanc, A., Perdig�on, G., Savoy de
Giori, G. and Hebert, E. M. (2012). b-casein hydrolysate generated by
the cell envelope-associated proteinase of Lactobacillus delbrueckii ssp.
lactis CRL 581 protects against trinitrobenzene sulfonic acid-induced
colitis in mice. J. Dairy Sci. 95:1108–1118.

Espejo-Carpio, F. J., De Gobba, C., Guadix, A., Guadix, E. M. and Otte, J.
(2013). Angiotensin I-converting enzyme in hibitory activity of enzymatic
hydrolysates of goat milk protein fractions. Int. Dairy J. 32:175–183.

Espejo-Carpio, F. J., Guadix, A. and Guadix, E. M. (2014a). Spray drying of
goat milk protein hydrolysates with angiotensin converting enzyme
inhibitory activity. Food Bioprocess Tech. 7:2388–2396.

Espejo-Carpio, F. J., P�erez-G�alvez, R., Del Carmen Alm�ecija, M., Guadix,
A. and Guadix, E. M. (2014b). Production of goat milk protein hydroly-
sate enriched in ACE-inhibitory peptides by ultrafiltration. J. Dairy Res.
81:385–393.

Esteve, C., Marina, M. L. and Garcia, M. C. (2015). Novel strategy for the
revalorization of olive (Olea europaea) residues based on the extraction
of bioactive peptides. Food Chem. 167:272–280.

Estrada-Salas, P. A., Montero-Moran, G. M., Mart�ınez-Cuevas, P. P., Gon-
zalez, C. and Barba de la Rosa, A. P. (2014). Characterization of antidi-
abetic and antihypertensive properties of canary seed (Phalaris
canariensis L.) peptides. J. Agr. Food Chem. 62:427–433.

Ewart, H. S., Dennis, D., Potvin, M., Tiller, C. and Fang, L. H. (2009).
Development of a salmon protein hydrolysate that lowers blood pres-
sure. Eur. Food Res. Technol. 229:561–569.

Fahmi, A., Morimura, S., Guo, H. C., Shigematsu, T., Kida, K. and Uemura,
Y. (2004). Production of angiotensin I converting enzyme inhibitory
peptides from sea bream scales. Process Biochem. 39:1195–1200.

Fan, X., Subramaniam, R., Weiss, M. F. and Monnier, V. M. (2003). Meth-
ylglyoxal–bovine serum albumin stimulates tumor necrosis factor alpha
secretion in RAW 264.7 cells through activation of mitogen-activating
protein kinase, nuclear factor jB and intracellular reactive oxygen spe-
cies formation. Arch. Biochem. Biophys. 409:274–286.

Farvin, S. K. H., Andersen, L. L., Nielsen, H. H., Jacobsen, C., Jakobsen, G.,
Johansson, I. and Jessen, F. (2014). Antioxidant activity of cod (Gadus
morhua) protein hydrolysates: In vitro assays and evaluation in 5% fish
oil-in-water emulsion. Food Chem. 149:326–334.

Favaro-Trindade, C. S., Santana, A. S., Monterrey-Quintero, E. S., Trin-
dade, M. A. and Netto, F. M. (2010). The use of spray drying technol-
ogy to reduce bitter taste of casein hydrolysate. Food Hydrocoll.
24:336–340.

Feng, X. L., Liu, Q. T., Cao, R. B., Zhou, B., Zhang, Y. P., Liu, K., Liu, X. D.,
Wei, J. C., Li, X. F. and Chen, P. Y. (2012). Characterization and immu-
nomodulatory function comparison of various bursal-derived peptides
isolated from the humoral central immune organ. Peptides. 33:258–
264.

Fernandez-Musoles, R., Castello-Ruiz, M., Arce, C., Manzanares, P., Ivorra,
M. D. and Salom, J. B. (2014). Antihypertensive mechanism of lactofer-
rin-derived peptides: angiotensin receptor blocking effect. J. Agr. Food
Chem. 62:173–181.

Fields, K., Falla, T. J., Rodan, K. and Bush, L. (2009). Bioactive peptides:
signaling the future. J. Cosmet Dermatol. 8:8–13.

Fitzgerald, C., Mora-Soler, L., Gallagher, E., O’Connor, P., Prieto, J., Soler-
Vila, A. and Hayes, M. (2012). Isolation and characterization of bioac-
tive pro-peptides with in vitro renin inhibitory activities from the mac-
roalga palmaria palmata. J. Agr. Food Chem. 60:7421–7427.

FitzGerald, R. J. and O’Cuinn, G. (2006). Enzymatic debittering of food
protein hydrolysates. Biotechnol. Adv. 24:234–237.

Fogaca, A. C., Da Silva, P. I., Miranda, M. T. M., Bianchi, A. G., Miranda,
A., Ribolla, P. E. M. and Daffre, S. (1999). Antimicrobial activity of a
bovine hemoglobin fragment in the tick boophilus microplus. J. Biol.
Chem. 274:25330–25334.

Froidevaux, R., Krier, F., Nedjar-Arroume, N., Vercaigne-Marko, D.,
Kosciarz, E., Ruckebusch, C., Dhulster, P. and Guillochon, D. (2001).
Antibacterial activity of a pepsin-derived bovine hemoglobin fragment.
FEBS Lett. 491:159–163.

Fujita, H., Suganuma, H., Usui, H., Kurahashi, K., Nakagiri, R., Sasaki, R.
and Yoshikawa, M. (1996). Vasorela.xation by casomokinin L, a deriva-
tive of O-casobmorphin and casoxin D, is mediated by NK1 receptor.
Peptides. 17:635–639.

Fujita, H. and Yoshikawa, M. (1999). LKPNM: a prodrug-type ACE-
inhibitory peptide derived from fish protein. Immunopharm.
44:123–127.

Fujita, H., Yokoyama, K. and Yoshikawa, M. (2000). Classification and
antihypertensive activity of angiotensin I-converting enzyme inhibitory
peptides derived from food proteins. J. Food Sci. 65:546–569.

Fuke, Y., Sekiguchi, M. and Matsuoka, H. (1985). Nature of stem brome-
lain treatments on the aggregation and gelation of soybean proteins. J.
Food Sci. 50:1283–1288.

Fukudome, S. and Yoshikawa, M. (1993). A novel opioid peptide derived
from wheat gluten. FEBS Lett. 316:17–19.

Garc�ıa-Moreno, P. J., P�erez-G�alvez, R., Guadix, E. M. and Guadix, A.
(2010). Recent patents on the upgrading of fish by-products. Recent
Pat. Chem. Eng. 3:149–162.

Garc�ıa-Moreno, P. J., Batista, I., Pires, C., Bandarra, N. M., Espejo-Carpio,
F. J., Guadix, A. and Guadix, E. M. (2014). Antioxidant activity of pro-
tein hydrolysates obtained from discarded mediterranean fish species.
Food Res. Int. 65:469–476.

Garc�ıa-Moreno, P. J., Espejo-Carpio, F. J., Guadix, A. and Guadix, E. M.
(2015). Production and identification of angiotensin I-converting
enzyme (ACE) inhibitory peptides from mediterranean fish discards. J.
Funct. Foods. 18:95–105.

Garc�ıa-Moreno, P. J., Guadix, A., Guadix, E. M. and Jacobsen, C. (2016).
Physical and oxidative stability of fish oil-in-water emulsions stabilized
with fish protein hydrolysates. Food Chem. 203:124–135.

Garc�ıa-Moreno, P. J., P�erez-G�alvez, R., Espejo-Carpio, F. J., Ruiz-Quesada,
C., P�erez-Morilla, A. I., Mart�ınez-Agust�ın, O., Guadix, A. and Guadix,
E. M. (2016). Functional, bioactive and antigenicity properties of blue
whiting protein hydrolysates: Effect of enzymatic treatment and degree
of hydrolysis. J .Sci. Food Agric. 97:299–308.

Gbogouri, G. A., Linder, M., Fanni, J. and Parmentier, M. (2004). Influence
of hydrolysis degree on the functional properties of salmon byproducts
hydrolysates. J. Food Sci. 69:615–622.

Geirsdottir, M., Sigurgisladottir, S., Hamaguchi, P. Y., Thorkelsson, G.,
Johannsson, R., Kristinsson, H. G. and Kristjansson, M. M. (2011).
Enzymatic hydrolysis of Blue whiting (Micromesistius poutassou); func-
tional and bioactive properties. J. Food Sci. 76:C14–C20.

24 M. HAJFATHALIAN ET AL.

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
0:

33
 0

9 
Ja

nu
ar

y 
20

18
 



Ghelichi, S., Moltke Sørensen, A. D., Garc�ıa-Moreno, P. J., Hajfathalian, M.
and Jacobsen, C. (2017). Physical and oxidative stability of fish oil-in-
water emulsions fortified with enzymatic hydrolysates from common
carp (Cyprinus carpio) roe. Food Chem. 237:1048–1057.

Girgih, A. T., He, R., Malomo, S., Offengenden, M., Wu, J. and Aluko, R. E.
(2014). Structural and functional characterization of hemp seed (Can-
nabis sativa L.) protein-derived antioxidant and antihypertensive pepti-
des. J. Funct. Foods. 6:384–394.

Goldberg, J., Shrikant, P. and Mescher, M. F. (2003). In vivo augmentation
of tumor-specific CTL responses by class I/Peptide antigen complexes
on microspheres (Large Multivalent Immunogen). J. Immunol.
170:228–235.

Gong, M., Mohan, A., Gibson, A. and Udenigwe, C. C. (2015).
Mechanisms of plastein formation, and prospective food and
nutraceutical applications of the peptide aggregates. Biotechnol.
Rep. 5:63–69.

Gonz�alez-Garc�ıa, E., Marina, M. L. and Garcia, M. C. (2014). Plum (Pru-
nus Domestica L.) by-product as a new and cheap source of bioactive
peptides: Extraction method and peptides characterization. J. Funct.
Foods. 11:428–437.

Grienke, U., Silke, J. and Tasdemir, D. (2014). Bioactive compounds from
marine mussels and their effects on human health. Food Chem.
142:48–60.

Gu, Y. and Wu, J. (2013). LC-MS/MS coupled with QSAR modeling in
characterising of angiotensin I-converting enzyme inhibitory peptides
from soybean proteins. Food Chem. 141:2682–2690.

Guerard, F. (2006). Enzymatic methods for marine by-products recovery.
In: Maximising the Value of Marine by-Products, pp. 107–143. Shahidi,
F. Ed., Woodhead Publishing Limited, Cambridge.

Guzel-Seydim, Z. B., Kok-Tas, T., Greene, A. K. and Seydim, A. C.
(2011). Review: functional properties of kefir. Crit. Rev. Food Sci.
51:261–268.

Hai-Lun, H., Xiu-Lan, C., Cai-Yun, S., Yu-Zhong, Z. and Bai-Cheng, Z.
(2006). Analysis of novel angiotensin-I-converting enzyme inhibitory
peptides from protease-hydrolyzed marine shrimp Acetes chinensis. J.
Peptide Sci. 12:726–733.

Halldorsdottir, S. M., Kristinsson, H. G., Sveinsdottir, H., Thorkelsson, G.
and Hamaguchi, P. Y. (2013). The effect of natural antioxidants on hae-
moglobin-mediated lipid oxidation during enzymatic hydrolysis of cod
protein. Food Chem. 141:914–919.

Harnedy, P. A. and FitzGerald, R. J. (2012). Bioactive peptides from marine
processing waste and shellfish: A review. J. Funct. Foods. 4:6–24.

Hartmann, R. and Meisel, H. (2007). Food-derived peptides with biological
activity from research to food applications. Curr. Opin. Biotech.
18:163–169.

Hayashida, K., Takeuchi, T., Shimizu, H., Ando, K. and Harada, E. (2003).
Novel function of bovine milk-derived lactoferrin on antinociception
mediated by m-opioid receptor in the rat spinal cord. Brain Res.
965:239–245.

Hayes, M., Ross, R. P., Fitzgerald, G. F., Hill, C. and Stanton, C. (2006).
Casein-derived antimicrobial peptides generated by lactobacillus aci-
dophilus DPC6026. Appl. Environ. Microbial. 72:2260–2264.

He, R., Girgih, A. T., Rozoy, E., Bazinet, L., Ju, X. and Aluko, R. E. (2016).
Selective separation and concentration of antihypertensive peptides
from rapeseed protein hydrolysate by electrodialysis with ultrafiltration
membranes. Food Chem. 197:1008–1014.

Hernandez-Ledesma, B., Amigo, L., Ramos, M. and Recio, I. (2004). Appli-
cation of high-performance liquid chromatography–tandem mass
spectrometry to the identification of biologically active peptides pro-
duced Abstract by milk fermentation and simulated gastrointestinal
digestion. J. Chromatogr A. 1049:107–114.

Hern�andez-Ledesma, B., Garc�ıa-Nebot, M. J., Fern�andez-Tom�e, S., Amigo,
L. and Recio, I. (2014). Dairy protein hydrolysates: Peptides for health
benefits. Int. Dairy J. 38:82–100.

Hernandez-Ledesma, B., Quiros, A., Amigo, L. and Recio, I. (2007). Identi-
fication of bioactive peptides after digestion of human milk and infant
formula with pepsin and pancreatin. Int. Dairy J. 17:42–49.

Hwang, C., Chen, Y., Luo, C. and Chiang, W. (2016). Antioxidant and
antibacterial activities of peptide fractions from flaxseed protein

hydrolysed by protease from bacillus altitudinis HK02. Int. J. Food Sci.
Technol. 51:681–689.

Horiguchi, N., Horiguchi, H. and Suzuki, Y. (2005). Effect of wheat gluten
hydrolysate on the immune system in healthy human subjects. Biosci.
Biotechnol. Biochem. 69:2445–2449.

Hou, H., Li, B., Zhao, X., Zhang, Z. and Li, P. (2011). Optimization of
enzymatic hydrolysis of Alaska pollock frame for preparing protein
hydrolysates with low-bitterness. Food Sci. Technol. 44:421–428.

Hsu, K. C. (2010). Purification of antioxidative peptides prepared from
enzymatic hydrolysates of tuna dark muscle by-product. Food Chem.
122:42–48.

Hsu, K. C., Li-Chan, E. C. Y. and Jao, C. L. (2011). Antiproliferative activity
of peptides prepared from enzymatic hydrolysates of tuna dark muscle
on human breast cancer cell line MCF-7. Food Chem. 126:617–622.

Hu, J., Xu, M., Hang, B., Wang, L., Wang, Q., Chen, J., Song, T., Fu, D.,
Wang, Z., Wang, S. and Liu, X. (2011). Isolation and characterization
of an antimicrobial peptide from bovine hemoglobin a-subunit. World
J. Microbiol. Biotechnol. 27:767–771.

Huang, B. B., Lin, H. C. and Chang, Y. W. (2015a). Analysis of proteins
and potential bioactive peptides from tilapia (Oreochromis spp) proc-
essing co-products using proteomic techniques coupled with BIOPEP
database. J. Funct. Foods. 19:629–640.

Huang, C. Y., Wu, C. H., Yang, J. I. and Li, Y. H. (2015b). Evaluation of
iron-binding activity of collagen peptides prepared from the scales of
four cultivated fishes in Taiwan. J. Food Drug Anal. 23:671–678.

Huang, G., Ren, L. and Jiang, J. (2011). Purification of a histidine-contain-
ing peptide with calcium binding activity from shrimp processing
byproducts hydrolysate. Eur. Food Res. Technol. 232:281–287.

Huang, P., Tunis, J., Parry, C., Tallarida, R. and Liu-Chen, L. Y. (2016).
Synergistic antidepressant-like effects between a kappa opioid antago-
nist (LY2444296) and a delta opioid agonist (ADL5859) in the mouse
forced swim test. Eur. J. Pharmacol. 781:53–59.

Huang, W., Chakrabarti, S., Majumder, K., Jiang, Y., Davidge, S. T. and
Wu, J. (2010). Egg-derived peptide IRW inhibits TNF-r-induced
inflammatory response and oxidative stress in endothelial cells. J. Agr.
Food Chem. 58:10840–10846.

Hunter, H. N., Demcoe, A. R., Jenssen, H., Gutteberg, T. I. and Vogel, H. J.
(2005). Human lactoferricin is partially folded in aqueous solution and
is better stabilized in a membrane mimetic solvent. Antimicrob Agents
Chemother. 49:3387–3395.

Ibrahim, S. A. and Bezkorovainy, A. (1994). Growth-promoting factors for
Bifidobacterium longum. J. Food Sci. 59:189–191.

Ishibashi, N., Kouge, K., Shinoda, I., Kanehisa, H. and Okai, H. (1988).
Biochemistry of food proteins. Agr. Biol. Chem. 52:819–827.

Jahangiri, R., Soltani, S. and Barzegar, A. (2014). A review of QSAR studies
to predict activity of ACE peptide inhibitors. Pharm. Sci. 20(3):122–129.

Jain, S. and Kumar Anal, A. (2017). Production and characterization of
functional properties of protein hydrolysates from egg shell membranes
by lactic acid bacteria fermentation. J. Food Sci. Technol. 54:1062–1072.

Jang, A., Jo, C., Kang, K. S. and Lee, M. (2008). Antimicrobial and human
cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme
(ACE) inhibitory peptides. Food Chem. 107:327–336.

Jang, A. and Lee, M. (2005). Purification and identification of angiotensin
converting enzyme inhibitory peptides from beef hydrolysates. Meat
Sci. 69:653–661.

Jauhiainen, T., Ronnback, M., Vapaatalo, H., Wuolle, K., Kautiainen, H.,
Groop, P. H. and Korpela, R. (2010). Long-term intervention with lac-
tobacillus helveticus fermented milk reduces augmentation index in
hypertensive subjects. Eur. J. Clin. Nutr. 64:424–431.

Je, J. Y., Park, J. Y., Jung, W. K., Park, P. J. and Kim, S. K. (2005a). Isolation
of angiotensin I converting enzyme (ACE) inhibitor from fermented
oyster sauce, Crassostrea gigas. Food Chem. 90:809–814.

Je, J. Y., Park, P. J., Byun, H. G., Jung, W. K. and Kim, S. K. (2005b). Angio-
tensin I converting enzyme (ACE) inhibitory peptide derived from the
sauce of fermented blue mussel, Mytilus edulis. Bioresource Technol.
96:1624–1629.

Je, J. Y., Park, P. J. and Kim, S. K. (2005c). Antioxidant activity of a peptide
isolated from Alaska pollack (Theragra chalcogramma) frame protein
hydrolysate. Food Res. Int. 38:45–50.

CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION 25

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
0:

33
 0

9 
Ja

nu
ar

y 
20

18
 



Je, J. Y., Lee, K. H., Lee, M. H. and Ahn, C. B. (2009). Antioxidant and anti-
hypertensive protein hydrolysates produced from tuna liver by enzy-
matic hydrolysis. Food Res. Int. 42:1266–1272.

Jeewanthi, R. K. C., Lee, N. K. and Paik, H. D. (2015). Improved functional
characteristics of whey protein hydrolysates in food industry. Korean J.
Food Sci. An. 35:350–359.

Jemil, I., Jridi, M., Nasri, R., Ktari, N., Ben Slama-Ben Salem, R.,
Mehiri, M., Hajji, M. and Nasri, M. (2014). Functional, antioxidant
and antibacterial properties of protein hydrolysates prepared from
fish meat fermented by Bacillus subtilis A26. Process Biochem.
49:963–972.

Jemil, I., Mora, L., Nasri, R., Abdelhedi, O., Aristoy, M. C., Hajji, M., Nasri,
M. and Toldra, F. (2016). A peptidomic approach for the identification
of antioxidant and ACE-inhibitory peptides in sardinelle protein
hydrolysates fermented by Bacillus subtilis A26 and Bacillus amyloli-
quefaciens An6. Food Res. Int. 89:347–358.

Jeon, Y. J., Byun, H. G. and Kim, S. K. (1999). Improvement of functional
properties of cod frame protein hydrolysates using ultrafiltration mem-
branes. Process Biochem. 35:471–478.

Jiang, Z., Tian, B., Brodcrob, A. and Huo, G. (2010). Production, analysis
and in vivo evaluation of novel angiotensin-I-converting enzyme inhib-
itory peptides from bovine casein. Food Chem. 123:779–786.

Jo, H. Y., Jung, W. K. and Kim, S. K. (2008). Purification and characteriza-
tion of a novel anticoagulant peptide from marine echiuroid worm,
Urechis unicinctus. Process Biochem. 43:179–184.

Jolles, P., Levy-Toledano, S., Fiat, A. M., Soria, C., Gillessen, D., Thomaidis,
A., Dunn, F. W. and Caen, J. P. (1986). Analogy between fibrinogen
and casein Effect of an undecapeptide isolated from rc-casein on plate-
let function. Eur. J. Biochem. 158:379–382.

Ju, Z. Y., Otte, J., Madsen, J. S. and Qvist, K. B. (1995). Effects of limited
proteolysis on gelation and gel properties of whey protein isolate. J.
Dairy Sci. 78:2119–2128.

Juillerat-Jeanneret, L., Robert, M. C. and Juillerat, M. A. (2011). Peptides
from Lactobacillus hydrolysates of bovine milk caseins inhibit prolyl-
peptidases of human colon cells. J. Agr. Food Chem. 59:370–377.

Jung, W. K., Jo, H. Y., Qian, Z. J., Jeong, Y. J., Park, S. G., Choi, I. W. and
Kim, S. K. (2007). A novel anticoagulant protein with high affinity to
blood coagulation factor Va from Tegillarca granosa. J. Biochem. Mol.
Biol. 40:832–838.

Jung, W. K. and Kim, S. K. (2007). Calcium-binding peptide derived from
pepsinolytic hydrolysates of hoki (Johnius belengerii) frame. Eur. Food
Res. Technol. 224:763–767.

Jung, W. K. and Kim, S. K. (2009). Isolation and characterisation of an
anticoagulant oligopeptide from blue mussel, Mytilus edulis. Food
Chem. 117:687–692.

Jung, W. K., Mendis, E., Je, J. Y., Park, P. J., Son, B. W., Kim, H. C., Choi, Y.
K. and Kim, S. K. (2006). Angiotensin I-converting enzyme inhibitory
peptide from yellowfin sole (Limanda aspera) frame protein and its
antihypertensive effect in spontaneously hypertensive rats. Food Chem.
94:26–32.

Kadam, S. U., Tiwari, B. K., Alvarez, C. and O’Donnell, C. P. (2015). Ultra-
sound applications for the extraction, identification and delivery of
food proteins and bioactive peptides. Trends Food Sci. Tech. 46:60–67.

Kagawa, K., Matsutaka, H., Fukuhama, C., Fujino, H. and Okuda, H.
(1998). Suppressive effect of globin digest on postprandial hyperlipid-
emia in male volunteers. J. Nutr. 128(1):56–60.

Kamal, M. and Motohiro, T. (1986). Effect of pH and metal ions on the
fungicidal action of salmine sulfate. B Jpn. Soc. Sci. Fish. 52:1843–1846.

Kamemori, N., Takeuchi, T., Hayashida, K. and Harada, E. (2004). Sup-
pressive effects of milk-derived lactoferrin on psychological stress in
adult rats. Brain Res. 1029:34–40.

Kampa, M., Bakogeorgou, E., Hatzoglou, A., Damianaki, A., Martin, P. M.
and Castanas, E. (1997). Opioid alkaloids and casomorphin peptides
decrease the proliferation of prostatic cancer cell lines) LNCaP, PC3
and DU145) through a partial interaction with opioid receptors. Eur. J.
Pharm. 335:255–265.

Kampa, M., Loukas, S., Hatzoglou, A., Martin, P. and Martin, P. M. (1996).
Identification of a novel opioid peptide (Tyr-Val-Pro-Phe-Pro) derived
from human aS1 casein (aS1-casomorphin, and aS1-casomorphin
amide). Biochem J. 319:903–908.

Kannan, A., Hettiarachchy, N. S., Marshall, M., Raghavan, S. and Kristins-
son, H. (2011). Shrimp shell peptide hydrolysates inhibit human cancer
cell proliferation. J. Sci. Food Agr. 91:1920–1924.

Katano, S., Oki, T., Matsuo, Y., Yoshihira, K., Nara, Y., Miki, T., Matsui, T.
and Matsumoto, K. (2003). Antihypertensive effect of alkaline protease
hydrolysate of the pearl oyster Pinctada fucatamartensii and separation
and identification of angiotensin-I converting enzyme inhibitory pepti-
des. Nippon Suisan Gakk. 69:975–980.

Katayama, K., Anggraeni, H. E., Mori, T., Ahhmed, A. M., Kawahara, S.,
Sugiyama, M., Nakayama, T., Maruyama, M. and Muguruma, M.
(2008). Porcine skeletal muscle troponin is a good source of peptides
with angiotensin-I converting enzyme inhibitory activity and antihy-
pertensive effects in spontaneously hypertensive rats. J. Agr. Food
Chem. 56:355–360.

Katayama, K., Mori, J. T., Kawahara, S., Miake, K., Kodama, Y., Sugiyama,
M., Kawamura, Y., Nakayama, T., Maruyama, M. and Muguruma, M.
(2007). Angiotensin-I converting enzyme inhibitory peptide derived
from porcine skeletal muscle myosin and its antihypertensive activity
in spontaneously hypertensive rats. J. Food Sci. 72:S702–S706.

Katayama, K., Tomatsu, M., Fuchu, H., Sugiyama, M., Kawahara, S.,
Yamauchi, K., Kawamura, Y. and Muguruma, M. (2003). Purification
and characterization of an angiotensin I-converting enzyme inhibitory
peptide derived from porcine troponin C. Anim Sci. J. 74:53–58.

Kawabata, S. I., Nagayama, R., Hirata, M., Shigenaga, T., Agarwala, K. L.,
Saito, T., Cho, J., Nakajima, H., Takagi, T. and Iwanaga, S. (1996).
Tachycitin, a small granular component in horseshoe crab hemocytes,
is an antimicrobial protein with chitin-binding activity. J. Biochem.
120:1253–1260.

Kawamura, Y., Takane, T., Satake, M. and Sugimoto, T. (1992). Physiologi-
cally active peptide motif in proteins: Peptide inhibitors of ACE from
the hydrolysates of antarctic krill muscle protein. Japan Agr. Res.
Quart. 26:210–213.

Kawasaki, T., Seki, E., Osajima, K., Yoshida, M., Asada, K., Matsui, T. and
Osajima, Y. (2000). Antihypertensive effect of Valyl-Tyrosine, a short
chain peptide derived from sardine muscle hydrolysate, on mild hyper-
tensive subjects. J. Hum. Hypertens. 14:519–523.

Kim, E. K., Lee, S. J., Jeon, B. T., Moon, S. H., Kim, B., Park, T. K., Han, J. S.
and Park, P. J. (2009). Purification and characterisation of antioxidative
peptides from enzymatic hydrolysates of venison protein. Food Chem.
114:1365–1370.

Kim, S. E., Kim, H. H., Kim, J. Y., Kang, Y. I., Woo, H. J. and Lee, H. J.
(2000). Anticancer activity of hydrophobic peptides from soy proteins.
BioFactors. 12:151–155.

Kim, S. Y., Je, J. Y. and Kim, S. K. (2007). Purification and characterization
of antioxidant peptide from hoki (Johnius belengerii) frame protein by
gastrointestinal digestion. J. Nutr. Biochem. 18:31–38.

Kleekayai, T., Harnedy, P. A., O’Keeffe, M. B., Poyarkov, A. A., Cunha-
Neves, A., Suntornsuk, W. and FitzGerald, R. J. (2015). Extraction of
antioxidant and ACE inhibitory peptides from Thai traditional fer-
mented shrimp pastes. Food Chem. 176:441–447.

Klompong, V., Benjakul, S., Kantachote, D. and Shahidi, F. (2007). Antiox-
idative activity and functional properties of protein hydrolysate of yel-
low stripe trevally (Selaroides leptolepis) as influenced by the degree of
hydrolysis and enzyme type. Food Chem. 102:1317–1327.

Kodera, T. and Nio, N. (2006). Identification of an angiotensin I-convert-
ing enzyme inhibitory peptides from protein hydrolysates by a soybean
protease and the antihypertensive effects of hydrolysates in spontane-
ously hypertensive model rats. J. Food Sci. 71:C164–C173.

Kohmura, M., Nio, N. and Ariyoshi, Y. (1990). Inhibition of angiotensin-
converting enzyme by synthetic peptide fragments of HumanK-Casein.
Agr. Biol. Chem. 54:835–836.

Korhonen, H. (2009). Milk-derived bioactive peptides: From science to
applications. J. Funct. Foods. 1:177–187.

Kostyra, E., Sienkiewicz-Szlapka, E., Jarmolowska, B., Krawczuk, S. and
Kostyra, H. (2004). Opioid peptides derived from milk proteins. J.
Food Nutr. Sci. 13:25–35.

Koyama, T., Noguchi, K., Aniya, Y. and Sakanashi, M. (1998). Analysis for
sites of anticoagulant action of plancinin, a new anticoagulant peptide
isolated from the starfish Acanthaster planci, in the blood coagulation
cascade. Gen. Pharmac. 31:277–282.

26 M. HAJFATHALIAN ET AL.

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
0:

33
 0

9 
Ja

nu
ar

y 
20

18
 



Kristinsson, H. G. and Rasco, B. A. (2000). Fish protein hydrolysates: Pro-
duction, biochemical, and functional properties. Crit. Rev. Food Sci.
40:43–81.

Kristinsson, H. G. (2006). Aquatic food protein hydrolysates. In: Maximis-
ing the Value of Marine by-Products, pp. 229–248. Shahidi, F., Ed.,
Woodhead Publishing Limited, Cambridge.

Kuehler, C. A. and Stine, C. M. (1974). Effect of enzymatic hydrolysis on
some functional properties of whey proteins. J. Food Sci. 39:379–382.

Kuipers, B. J. H., van Koningsveld, G. A., Alting, A. C., Driehuis, F., Grup-
pen, H. and Voragen, A. G. J. (2005). Enzymatic hydrolysis as a means
of expanding the cold gelation conditions of soy proteins. J. Agr. Food
Chem. 53:1031–1038.

Kumar Rai, A., Sanjukta, S., Chourasia, R., Bhat, I., Bhardwaj, P. K. and
Sahoo, D. (2017). Production of bioactive hydrolysate using protease,
b-glucosidase and a-amylase of Bacillus spp. isolated from kinema. Bio-
resour Technol. 235:358–365.

Lacroix, I. M. E. and Li-Chan, E. C. Y. (2012). Evaluation of the potential of
dietary proteins as precursors of dipeptidyl peptidase (DPP)-IV inhibi-
tors by an in silico approach. J. Funct. Foods. 4(2):403–422.

Lafarga, T. and Hayes, M. (2016). Bioactive protein hydrolysates in the
functional food ingredient industry: overcoming current challenges.
Food Rev. Int. 33:217–246.

Lafarga, T., Aluko, R. E., Rai, D. K., O’Connor, P. and Hayes, M. (2016).
Identification of bioactive peptides from a papain hydrolysate of bovine
serum albumin and assessment of an antihypertensive effect in sponta-
neously hypertensive rats. Food Res. Int. 81:91–99.

Lam, S. K. and Ng, T. B. (2001). First simultaneous isolation of a ribosome
inactivating protein and an antifungal protein from a mushroom (Lyo-
phyllum shimeji) together with evidence for synergism of their antifun-
gal effects. Arch. Biochem. Biophys. 393:271–280.

Lam, S. K. and Ng, T. B. (2013). Purification and characterization of an
antifungal peptide with potent antifungal activity but devoid of anti-
proliferative and HIV reverse transcriptase activities from legumi sec-
chi beans. Appl. Biochem. Biotechnol. 169:2165–2174.

Lammi, C., Zanoni, C. and Arnoldi, A. (2015). Three peptides from soy
glycinin modulate glucose metabolism in human hepatic hepG2 Cells.
Int. J. Mol. Sci. 16:27362–27370.

Langevin, M. E., Roblet, C., Moresoli, C., Ramassamy, C. and Bazinet, L.
(2012). Comparative application of pressure- and electrically-driven
membrane processes for isolation of bioactive peptides from soy pro-
tein hydrolysate. J. Membrane Sci. 403–404:15–24.

Lassoued, I., Mora, L., Barkia, A., Aristoy, M. C., Nasri, M. and Toldr�a, F.
(2015a). Bioactive peptides identified in thornback ray skin’s gelatin
hydrolysates by proteases from Bacillus subtilis and Bacillus amyloli-
quefaciens. J. Proteomics. 128:8–17.

Lassoued, I., Mora, L., Nasri, R., Jridi, M., Toldr�a, F., Aristoy, M. and Nasri,
M. (2015b). Characterization and comparative assessment of antioxi-
dant and ACE inhibitory activities of thornback ray gelatin hydroly-
sates. J. Funct. Foods. 13:225–238.

Lauth, X., Shike, H., Burns, J. C., Westerman, M. E., Ostland, V. E., Carlberg,
J. M., Van Olst, J. C., Nizet, V., Taylor, S. W. and Shimizu, C. (2002). Dis-
covery and characterization of two isoforms ofmoronecidin, a novel anti-
microbial peptide fromhybrid striped bass. J. Biol. Chem. 277:5030–5039.

Le Maux, S., Nongonierma, A. B. and Fitzgerald, R. J. (2015). Improved
short peptide identification using HILIC-MS/MS: Retention time pre-
diction model based on the impact of amino acid position in the pep-
tide sequence. Food Chem. 173:847–854.

Le Maux, S., Nongonierma, A. B., Barre, C. and Fitzgerald, R. J. (2016).
Enzymatic generation of whey protein hydrolysates under pH-con-
trolled and non pH-controlled conditions: Impact on physicochemical
and bioactive properties. Food Chem. 199:246–251.

Lee, J. E., Bae, I. Y., Lee, H. G. and Yang, C. B. (2006a). Tyr-Pro-Lys, an
angiotensin I-converting enzyme inhibitory peptide derived from broc-
coli (Brassica oleracea Italica). Food Chem. 99:143–148.

Lee, N. Y., Cheng, J. T., Enomoto, T. and Nakano, Y. (2006b). One peptide
derived from hen ovotransferrin as pro-drug to inhibit angiotensin
converting enzyme. J. Food Drug Anal. 14:31–35.

Lee, S. H. and Song, K. B. (2009a). Purification of an iron-binding nona-
peptide from hydrolysates of porcine blood plasma protein. Process
Biochem. 44:378–381.

Lee, S. H. and Song, K. B. (2009b). Isolation of a calcium-binding peptide
from enzymatic hydrolysates of porcine blood plasma protein. J.
Korean Soc. Appl. Biol. Chem. 52:290–294.

Lee, S. H., Qian, Z. J. and Kim, S. K. (2010). A novel angiotensin I convert-
ing enzyme inhibitory peptide from tuna frame protein hydrolysate
and its antihypertensive effect in spontaneously hypertensive rats. Food
Chem. 118:96–102.

Lee, S. W., Shimizu, M., Kaminogawa, S. and Yamauchi, K. (1987). Emulsi-
fying properties of peptides obtained from hydrolysates of b-casein.
Agric. Biol. Chem. 51:161–166.

Lee, S. Y., Lee, B. L. and Soderhall, K. (2002). Processing of an antibacterial
peptide from hemocyanin of the freshwater crayfish Pacifastacus
leniusculus. J. Biol. Chem. 278:7927–7933.

Lee, T. G. and Maruyama, S. (1998). Isolation of HIV-1 protease-inhibiting
peptides from thermolysin hydrolysate of oyster proteins. Biochem.
Bioph. Res. Co. 253:604–608.

Lee, Y. G., Kim, J. Y., Lee, K. W., Kim, K. H. and Lee, H. J. (2003). Peptides
from anchovy sauce induce apoptosis in a human lymphoma cell
(U937) through the increase of caspase-3 and ¡8 activities. Ann. N.Y.
Acad. Sci. 1010:399–404.

Lee, Y. G., Lee, K. W., Kim, J. Y., Kim, K. H. and Lee, H. J. (2004). Induc-
tion of apoptosis in a human lymphoma cell line by hydrophobic pep-
tide fraction separated from anchovy sauce. BioFactors. 21:63–67.

Leung, E. H. W., Wang, J. H. and Ng, T. B. (2008). Concurrent purification
of two defense proteins from French bean seeds: a defensin-like anti-
fungal peptide and a hemagglutinin. J. Pept. Sci. 14:349–353.

Li, B., Chen, F., Wang, X., Ji, B. and Wu, Y. (2007). Isolation and identifica-
tion of antioxidative peptides from porcine collagen hydrolysate by
consecutive chromatography and electrospray ionization-mass spec-
trometry. Food Chem. 102:1135–1143.

Li-Chan, E. C. Y. (2015). Bioactive peptides and protein hydrolysates:
research trends and challenges for application as nutraceuticals and
functional food ingredients. Curr. Opin. Food Sci. 1:28–37.

Li-Chan, E. C. Y., Cheung, I. W. Y. and Byun, H. G. (2016). Shrimp (Pan-
dalopsis dispar) waste hydrolysate as a source of novel b–secretase
inhibitors. Fish Aquat Sci. 19:1–7.

Lin, F., Chen, L., Liang, R., Zhang, Z., Wang, J., Cai, M. and Li, Y. (2011).
Pilot-scale production of low molecular weight peptides from corn wet
milling byproducts and the antihypertensive effects in vivo and in vitro.
Food Chem. 124:801–807.

Lin, H. M., Deng, S. G., Huang, S. B., Li, Y. J. and Song, R. (2015). The
effect of ferrous-chelating hairtail peptides on iron deficiency and intes-
tinal flora in rats. J. Sci. Food Agric. 96:2839–2844.

Lin, J. W., Jia, J., Shen, Y. H., Zhong, M., Chen, L. J., Li, H. G., Ma, H., Guo, Z.
F., Qi, M. F., Liu, L. X. and Li, T. L. (2013). Functional expression of FIP-
fve, a fungal immunomodulatory protein from the edible mushroom
Flammulina velutipes in Pichia pastorisGS115. J. Biotechnol. 168:527–533.

Lin, K., Zhang, L., Han, X. and Cheng, D. (2017). Novel angiotensin I-con-
verting enzyme inhibitory peptides from protease hydrolysates of qula
casein: Quantitative structure-activity relationship modeling and
molecular docking study. J. Funct. Foods. 32:266–277.

Lin, P., Wong, J. H. and Ng, T. B. (2010). A defensin with highly potent
antipathogenic activities from the seeds of purple pole bean. Biosci.
Rep. 30:101–109.

Linar�es, E., Larr�e, C., Lemeste, M. and Popineau, Y. (2000). Emulsifying
and foaming properties of gluten hydrolysates with an increasing
degree of hydrolysis: role of soluble and insoluble fractions. Cereal.
Chem. 77:414–420.

Linde, G. A., Junior, A. L., Faria, E. V., Colauto, N. B., Moraes, F. F. and
Zanin, G. M. (2009). Taste modification of amino acids and protein
hydrolysate by a-cyclodextrin. Food Res. Int. 42:814–818.

Liu, B. Y., Zhu, K. X., Peng, W., Guo, X. N. and Zhou, H. M. (2016). Effect
of sequential hydrolysis with endo- and exo-peptidase on bitterness
properties of wheat gluten hydrolysates. RSC Adv. 6:27659–27668.

Liu, J., Wang, S., Qi, J., Wang, X. and Song, Y. (1998). The immunostimu-
latory effect of bio-active peptide from pollen on murine and human
lymphocytes.Mech. Ageing Dev. 104:125–132.

Liu, R., Wang, M., Duan, J., Guo, J. and Tang, Y. (2010). Purification and
identification of three novel antioxidant peptides from Cornu bubali
(water buffalo horn). Peptides. 31:786–793.

CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION 27

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
0:

33
 0

9 
Ja

nu
ar

y 
20

18
 



Liu, R., Zheng, W., Li, J., Wang, L., Wu, H., Wang, X. and Shi, L. (2015).
Rapid identification of bioactive peptides with antioxidant activity
from the enzymatic hydrolysate of Mactra veneriformis by UHPLC-Q-
TOF mass spectrometry. Food Chem. 167:484–489.

Liu, X., Jiang, D. and Peterson, D. G. (2014). Identification of bitter pepti-
des in whey protein hydrolysate. J. Agric. Food Chem. 62:5719–5725.

Liu, Z., Dong, S., Xu, J., Zeng, M., Song, H. and Zhao, Y. (2008). Produc-
tion of cysteine-rich antimicrobial peptide by digestion of oyster (Cras-
sostrea gigas) with alcalase and bromelin. Food Control. 19:231–235.

Lo, H. Y., Li, C. C., Ho, T. Y. and Hsiang, C. Y. (2016). Identification of the
bioactive and consensus peptide motif from Momordica charantia
insulin receptor-binding protein. Food Chem. 204:298–305.

L�opez-Cervantes, J., S�anchez-Machado, D. I. and Rosas-Rodr�ıguez, J. A.
(2006). Analysis of free amino acid in fermented shrimp waste by high-
performance liquid chromatography. J. Chromatogr. A. 1105:106–110.

Luna-Vital, D. A., Mojica, L., Gonz�alez de Mej�ıa, E., Mendoza, S. and
Loarca-Pi~na, G. (2015). Biological potential of protein hydrolysates and
peptides from common bean (Phaseolus vulgaris L.): A review. Food
Res. Int. 76:39–50.

Ma, J. J., Mao, X. Y., Wang, Q., Yang, S., Zhang, D., Chen, S. W. and Li, Y.
H. (2013). Effect of spray drying and freeze drying on the immuno-
modulatory activity, bitter taste and hygroscopicity of hydrolysate
derived from whey protein concentrate. LWT - Food Sci. Technol. 56
(2):296–302.

Maeno, M., Yamamoto, N. and Takano, T. (1996). Identifiication of an
antihypertensive peptide from casein hydrolysate produced by a pro-
teinase from Lactobacillus helveticus CP790. J. Dairy Sci. 79:1316–1321.

Madden, T., Tran, H. T., Beck, D., Huie, R., Newman, R. A., Pusztai, L.,
Wright, J. J. and Abbruzzese, J. L. (2000). Novel marine-derived anti-
cancer agents: A phase I clinical, pharmacological, and pharmacody-
namic study of dolastatin 10 (NSC 376128) in patients with advanced
solid tumors. Clin. Canc. Res. 6:1293–1301.

Majumder, K., Chakrabarti, S., Davidge, S. T. and Wu, J. (2013a). Structure
and activity study of egg protein ovotransferrin derived peptides (IRW
and IQW) on endothelial inflammatory response and oxidative stress.
J. Agr. Food Chem. 61:2120–2129.

Majumder, K., Chakrabarti, S., Morton, J. S., Panahi, S., Kaufman, S.,
Davidge, S. T. and Wu, J. (2013b). Egg-Derived Tri-Peptide IRW exerts
antihypertensive effects in spontaneously hypertensive rats. PLoS One.
8(11):e82829.

Majumder, K., Chakrabarti, S., Morton, J. S., Panahi, S., Kaufman, S.,
Davidge, S. T. and Wu, J. (2015). Egg-derived ACE-inhibitory peptides
IQW and LKP reduce blood pressure in spontaneously hypertensive
rats. J. Funct Foods. 13:50–60.

Malaguti,M., Dinelli, G., Leoncini, E., Bregola, V., Bosi, S., Cicero, A. F. G. and
Hrelia, S. (2014). Bioactive peptides in cereals and legumes: Agronomical,
biochemical and clinical aspects. Int. J. Mol. Sci. 15:21120–21135.

Malvisi, M., Stuknyte, M., Magro, G., Minozzi, G., Giardini, A., Noni, I. D.
and Piccinini, R. (2015). Antibacterial activity and immunomodulatory
effects on a bovine mammary epithelial cell line exerted by nisin A-pro-
ducing Lactococcus lactis strains. J. Dairy Sci. 99:2288–2296.

Meisel, H. (2005). Biochemical properties of peptides encrypted in bovine
milk proteins. Curr. Med. Chem. 12:1905–1919.

Mercier, A., Gauthier, S. F. and Fliss, I. (2004). Immunomodulating effects
of whey proteins and their enzymatic digests. Int. Dairy J. 14:175–183.

Miguel, M. and Aleixandre, A. (2006). Antihypertensive peptides derived
from egg proteins. J. Nutr. 136(6):1457–1460.

Morimura, S., Nagata, H., Uemura, Y., Fahmi, A., Shigematsu, T. and Kida,
K. (2002). Development of an effective process for utilization of colla-
gen from livestock and fish waste. Process Biochem. 37:1403–1412.

Marques, M. R., Fontanari, G. G., Pimenta, D. C., Soares-Freitas, R. M. and
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