Percent Composition, Empirical and Molecular Formulas

Applying percentages to Chemistry

A percent is a ratio of the part in the whole compared to 100.

The percent composition of a compound can be found from

- * Mass data
- * Chemical formula

Slide 2 of 40

Percent Composition from Mass Data

% mass of element =
$$\frac{\text{mass of element}}{\text{mass of compound}} \times 100\%$$

Practice:

A 13.60 g sample of compound made of oxygen and magnesium contains 5.40 g of oxygen.

Calculate the percent composition of the compound.

Percent composition from Chemical formula

How could the percentages in the graph be calculated?

Slide 4 of 40

Percentages of elements in a compound are calculated using the molar mass of the atoms in the compounds.

Slide 5 of 40

Percent Composition and > Chemical Formulas

K₂CrO₄

 The percent composition is the mass percent in any sample.

 For example if the % comp of carbon is 50%, then any sample of the substance would be 50% carbon by mass.

Formulas

Empirical formula: the lowest whole number ratio of atoms in a compound. Molecular formula: the true number of atoms of each element in the formula of a compound.

- \square molecular formula = (empirical formula)_n
- \square molecular formula = C_6H_6 = $(CH)_6$
- empirical formula = CH

Formulas (continued)

Formulas for ionic compounds are <u>ALWAYS</u> empirical (lowest whole number ratio).

Examples:

NaCl $Al_2(SO_4)_3$

 $MgCl_2$ K_2CO_3

Formulas (continued)

Formulas for molecular compounds <u>MIGHT</u> be empirical (lowest whole number ratio).

- 1. Base calculation on 100 grams of compound. Determine moles of each element in 100 grams of compound.
- 2. Divide each value of moles by the smallest of the values.
- 3. Multiply each number by an integer to obtain all whole numbers.

Adipic acid contains 49.32% C, 43.84% O, and 6.85% H by mass. What is the empirical formula of adipic acid?

1. Treat % as mass, and convert grams to moles

$$\frac{49.32 \, g \, carbon}{12.01 \, g \, carbon} = 4.107 \, mol \, carbon$$

$$\frac{6.85 \, g \, hydrogen}{1.01 \, g \, hydrogen} = 6.78 \, mol \, hydrogen$$

$$\frac{43.84 \, g \, oxygen}{16.00 \, g \, oxygen} = 2.74 \, mol \, oxygen$$

2. Divide each value of moles by the smallest of the values.

Carbon:
$$\frac{4.107 \, mol \, carbon}{2.74 \, mol} = 1.50$$

Hydrogen:
$$\frac{6.78 \, mol \, hydrogen}{2.74 \, mol} = 2.47$$

Oxygen:
$$\frac{2.74 \, mol \, oxygen}{2.74 \, mol} = 1.50$$

3. Multiply each number by an integer to obtain all whole numbers.

Empirical formula: C3H5O2

Finding the Molecular Formula

The empirical formula for adipic acid is $C_3H_5O_2$. The molecular mass of adipic acid is 146 g/mol. What is the molecular formula of adipic acid?

1. Find the formula mass of $C_3H_5O_2$

3(12.01 g) + 5(1.01) + 2(16.00) = 73.08 g

Finding the Molecular Formula

The empirical formula for adipic acid is $C_3H_5O_2$. The molecular mass of adipic acid is 146 g/mol. What is the molecular formula of adipic acid?

$$3(12.01 g) + 5(1.01) + 2(16.00) = 73.08 g$$

2. Divide the molecular mass by the mass given by the emipirical formula.

$$\frac{146}{73} = 2$$

Finding the Molecular Formula

The empirical formula for adipic acid is $C_3H_5O_2$. The molecular mass of adipic acid is 146 g/mol. What is the molecular formula of adipic acid?

$$\frac{146}{73} = 2 \quad (C_3H_5O_2) \times 2 = C_6H_{10}O_4$$

3. Multiply the empirical formula by this number to get the molecular formula.