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In a series of three papers in 2002-2003, Grisha Perelman
solved the famous Poincaré conjecture:
Poincaré conjecture (1904) Every smooth, compact,
simply connected three-dimensional manifold is
homeomorphic (or diffeomorphic) to a three-dimensional
sphere S3.
(Throughout this talk, manifolds are understood to be
without boundary.)
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The main purpose of this talk is to discuss the proof of this
result.
However, as a warm up, I’ll begin with the simpler (and
more classical) theory of two-dimensional manifolds, i.e.
surfaces.
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Caution: This will be a very ahistorical presentation of
ideas: results will not be appearing in chronological order!
Also, due to time constraints, we will not be surveying the
huge body of work on the Poincaré conjecture, focusing
only on those results relevant to Perelman’s proof. In
particular, we will not discuss the important (and quite
different) results on this conjecture in four and higher
dimensions (by Smale, Freedman, etc.).
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Scalar curvature

Let M be a smooth compact surface (not necessarily
embedded in any ambient space).
If one gives this surface a Riemannian metric g to create a
Riemannian surface (M,g), then one can define the scalar
curvature R(x) ∈ R of the surface at any point x ∈ M. One
definition is that the area of an infinitesimal disk B(x , r) of
radius r centred at x is given by the formula

area(B(x , r)) = πr2 − R(x)πr4/24 + o(r4).
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Model geometries

If R(x) is independent of x , we say that M is constant
curvature. There are three model geometries that have
constant curvature:

The round sphere S2 (with constant curvature +1);
The Euclidean plane R2 (with constant curvature 0); and
The hyperbolic plane H2 (with constant curvature −1).

Terence Tao Perelman’s proof of the Poincaré conjecture



Introduction
Three dimensions

One can create further constant curvature surfaces from a
model geometry by rescaling the metric by a constant, or
by quotienting out the geometry by a discrete group of
isometries.
It is not hard to show that all connected,
constant-curvature surfaces arise in this manner. (The
model geometry is the universal cover of the surface.)
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Uniformisation theorem

A fundamental theorem in the subject is
Uniformisation theorem (Poincaré, Koebe, 1907) Every
compact surface M can be given a constant-curvature
metric g.
As a corollary, every (smooth) connected compact surface
is diffeomorphic (and homeomorphic) to a quotient of one
of the three model geometries. This is a satisfactory
topological classification of these surfaces.
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Another corollary of the uniformisation theorem is
Two-dimensional Poincaré conjecture: Every smooth,
simply connected compact surface is diffeomorphic (and
homeomorphic) to the sphere S2.
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Ricci flow

There are many proofs of the uniformisation theorem, for
instance using complex analytic tools such as the Riemann
mapping theorem. But the proof that is most relevant for
our talk is the proof using Ricci flow.
The scalar curvature R = R(x) of a Riemannian surface
(M,g) can be viewed as the trace of a rank two symmetric
tensor, the Ricci tensor Ric. One can view this tensor as a
directional version of the scalar curvature; for instance, the
area of an infinitesimal sector of radius r and infinitesimal
angle θ at x in the direction v is equal to

1
2
θr2 − 1

24
θr4Ric(x)(v , v) + o(θr4).
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In two dimensions, the Ricci tensor can be determined in
terms of the scalar curvature and the metric g by the
formula

Ric =
1
2

Rg,

but this identity is specific to two dimensions.
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Ricci flow

Now introduce a time parameter t ∈ R. A time-dependent
metric g = gt on a (fixed) manifold M is said to obey the
Ricci flow equation if one has

∂

∂t
g = −2Ric,

thus positively curved regions of the manifold shrink (in a
geometric sense), and negatively curved regions expand.
However, the topological structure of M remain unchanged.
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A key example

The two-dimensional sphere in R3 of radius r > 0 is
isometric to the standard sphere S2 with metric r2

2 g, and
constant scalar curvature 2

r2 .
Up to isometry, Ricci flow for such spheres corresponds to
shrinking the radius r = r(t) by the ODE dr

dt = −1/r , so
r(t) = (r(0)2 − 2t)1/2. Thus the Ricci flow develops a
singularity at time r(0)2/2, when the radius approaches
zero.
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More generally, standard PDE methods give the following
local existence result: given any Riemannian surface
(M,g(0)), a unique Ricci flow t 7→ (M,g(t)) exists for a
time interval t ∈ [0,T∗), with 0 < T∗ ≤ +∞. If T∗ <∞, then
the curvature blows up (diverges to infinity in sup norm) as
t → T∗.
But suppose one renormalises the surface as it blows up,
for instance dilating the metric by a scalar to keep the total
area constant. What happens to the geometry in the limit?
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Intuitively, Ricci flow makes a surface rounder, by shrinking
the high-curvature “corners” of a manifold at a faster rate
than the flatter regions. One way to formalise this intuition
is to see that the scalar curvature R for a Ricci flow on a
surface obeys the nonlinear heat equation

∂tR = ∆R + 2R2

and then to use the maximum principle.
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This suggests that Ricci flow could be used to give a
dynamical proof of the uniformisation theorem, if the final
state of the (renormalised) Ricci flow has constant
curvature.
Indeed, one has the following theorem:
Theorem (Hamilton 1988, Chow 1991, Chen-Lu-Tian
2005) If (M,g) is topologically a sphere, then Ricci flow
becomes singular in finite time, and at the blowup time, the
renormalised manifold becomes constant curvature.
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There is a similar theorem in higher genus.
This theorem easily implies the uniformisation theorem.
(Conversely, the uniformisation theorem was used in the
original arguments of Hamilton and Chow, but this was
removed in Chen-Lu-Tian, thus giving an independent
proof of this theorem.)
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To oversimplify enormously, the proof proceeds in three stages:

Finite time extinction: any sphere undergoing Ricci flow
will blow up in finite time.
Rescaled limit: When one rescales the Ricci flow around
the blowup time (e.g. to keep the curvature bounded) and
takes limits, one obtains a special type of Ricci flow, a
gradient shrinking Ricci soliton (in which the effect of
renormalised Ricci flow is equivalent to a diffeomorphism
of the coordinates).
Classification: One shows that the only gradient shrinking
solitons in two dimensions are the constant curvature
surfaces.
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Model geometries

Now we return to three dimensions. We again have three
constant-curvature model geometries:

The round sphere S3 (with constant curvature +1);
The Euclidean space R3 (with constant curvature 0); and
The hyperbolic space H3 (with constant curvature −1).
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However, one can also now form model geometries from
Cartesian or twisted products of lower-dimensional geometries:

The product S2 × R;
The product H2 × R;
The (universal cover of) SL2(R) (a twisted bundle over H2);
The Heisenberg group (a twisted bundle over R2); and
The three-dimensional solvmanifold (a twisted torus bundle
over S1).

These are the eight Thurston geometries.
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Geometrisation conjecture

One can make more geometries by dilating these model
geometries, and quotienting by isometries. However, in
three dimensions one also needs to be able to glue several
geometries together along spheres S2 or tori T 2.
Thurston’s geometrisation conjecture (1982) states, among
other things, that every smooth oriented compact
three-dimensional manifold can be formed from a finite
number of these operations, i.e. by gluing together finitely
many model geometries or their dilates and quotients.
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Thurston verified this conjecture for a large class of
manifolds known as Haken manifolds.
The geometrisation conjecture implies the
three-dimensional Poincaré conjecture as a corollary,
though this “elliptic” case of the conjecture is not covered
by the “hyperbolic” theory of Haken manifolds.
In the 1980s, Hamilton initiated the program of using Ricci
flow to “geometrise” an arbitrary manifold and thus prove
the full geometrisation conjecture. This program was
essentially completed by Perelman’s three papers, with full
details and alternate proofs subsequently appearing in the
works of Kleiner-Lott,
Bessires-Besson-Boileau-Maillot-Porti, Morgan-Tian, and
Cao-Ge.
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In 1982, Hamilton established short-time existence of the
Ricci flow in all dimensions, and showed that if the flow
could only be continued for a finite time, then the curvature
blew up (in sup norm) at that time.
In the same paper, Hamilton showed that if the Ricci
curvature of a three-dimensional manifold was initially
positive, then one had finite time blowup, and after
rescaling, the limiting manifold had constant curvature (and
must then be a quotient of S3). In particular, this
establishes the Poincaré conjecture for manifolds which
admit a metric of positive Ricci curvature.
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The positivity of curvature was used in an essential way (in
conjunction with a sophisticated version of the maximum
principle).
However, a variant of the argument shows that any limiting
blowup profile of a Ricci flow has to have non-negative
curvature (the Hamilton-Ivey pinching phenomenon).
Intuitively, the point is that negatively curved regions of the
flow expand rather than contract, and so do not participate
in the blowup profile.
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When one does not assume initial positive curvature, the
situation becomes more complicated, for two reasons:

The Ricci flow may not blow up at all. (For instance, on a
manifold H3/Γ of constant negative curvature, the flow
simply expands the manifold without ever blowing up.)
Secondly, even when blowup occurs, the blowup may be
localised to a small portion of the manifold (as is the case
in a neck pinch singularity). Because of this, the rescaled
limiting profile of the flow at the blowup point can be
non-compact (e.g. a cylinder S2 × R, in the case of a neck
pinch) and fail to describe the asymptotic behaviour of the
entire manifold at the blowup time.
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A neckpinch (John Lott, 2006 ICM)

Terence Tao Perelman’s proof of the Poincaré conjecture



Introduction
Three dimensions

The first difficulty (lack of singularity formation in finite time) can
be handled by working with minimal spheres - minimal surfaces
in the manifold diffeomorphic to S2.

The Sacks-Uhlenbeck theory of minimal surfaces
guarantees that such minimal spheres exist once π2(M) is
non-trivial.
Using Riemannian geometry tools such as the
Gauss-Bonnet theorem, one can show that the area of
such a minimal sphere shrinks to zero in finite time under
Ricci flow, thus forcing a singularity to develop at or before
this time.

Terence Tao Perelman’s proof of the Poincaré conjecture



Introduction
Three dimensions

This argument shows that finite time singularity occurs
unless π2(M) is trivial.
More sophisticated versions of this argument (Perelman
2003; Colding-Minicozzi 2003) also forces singularity
unless π3(M) is trivial.
Algebraic topology tools such as the Hurewicz theorem
show that π2(M) and π3(M) cannot be simultaneously
trivial for a compact, simply connected manifold, and so
one has finite time singularity development for the
manifolds of interest in the Poincaré conjecture. (The
situation is more complicated for other manifolds.)
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There is an important strengthening of these results for
Ricci flow with surgery, which asserts that a simply
connected manifold that undergoes Ricci flow with surgery
will disappear entirely (become extinct) after a finite
amount of time, and with only a finite number of surgeries.
This fact allows for a relatively short proof of the Poincaré
conjecture (as compared to the full geometrisation
conjecture, which has to deal with Ricci flows that are
never fully extinct), though the proof is still lengthy for other
reasons.

Terence Tao Perelman’s proof of the Poincaré conjecture



Introduction
Three dimensions

To deal with the second issue (localised singularities), one
needs to do two things:

Classify the possible singularities in a Ricci flow as
completely as possible; and then
Develop a surgery technique to remove the singularities
(changing the topology in a controlled fashion) and
continue the flow until the manifold is entirely extinct.
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Ricci flow with surgery (John Lott, 2006 ICM)
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Singularity classification

The basic strategy in classifying singularities in Ricci flow
is to first “zoom in” (rescale) the singularity in space and
time by greater and greater amounts, and then take limits.
In order to extract a usable limit, it is necessary to obtain
control on the Ricci flow which is scale-invariant, so that
the estimates remain non-trivial in the limit.
It is particularly important to prevent collapsing, in which
the injectivity radius collapses to zero faster than is
predicted by scaling considerations.
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In 2003, Perelman introduced two geometric quantities, the
Perelman entropy and Perelman reduced volume, which
were scale-invariant, which decreased under Ricci flow,
and controlled the geometry enough to prevent collapsing.
Roughly speaking, either of these quantities can be used
to establish the important
Perelman non-collapsing theorem (Informal statement)
If a Ricci flow is rescaled so that its curvature is bounded in
a region of spacetime, then its injectivity radius is bounded
from below in that region also.
Thus, collapsing only occurs in areas of high curvature.
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Perelman entropy

The heat equation is the gradient flow for the Dirichlet
energy, and thus decreases that energy over time. It turns
out to similarly represent Ricci flow (modulo
diffeomorphisms) as a gradient flow in a number of ways,
leading to a number of monotone quantities for Ricci flow.
Perelman cleverly modified these quantities to produce a
scale-invariant monotone quantity, the Perelman entropy,
which is related to the best constant in a geometric
log-Sobolev inequality.
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Perelman reduced volume

The Bishop-Gromov inequality in comparison geometry
asserts, among other things, that if a Riemannian manifold
M has non-negative Ricci curvature, then the volume of
balls B(x , r) grows in r no faster than in the Euclidean case
(i.e. the Bishop-Gromov reduced volume Vol(B(x , r))/rd is
non-increasing in d dimensions). Inspired by an
infinite-dimensional formal limit of the Bishop-Gromov
inequality, Perelman found an analogous reduced volume
in spacetime for Ricci flows, the Perelman reduced volume
that had similar monotonicity properties.
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Limiting solutions

Using the non-collapsing theorem, one can then extract out
a special type of Ricci flow as the limit of any singularity,
namely an ancient κ-solution. These solutions exist for all
negative times, have non-negative and bounded curvature,
and are non-collapsed at every scale.
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To analyse the asymptotic behaviour of these solutions as
t → −∞, Perelman then took a second rescaled limit,
using the monotone quantities again, together with some
Harnack-type inequalities of a type first introduced by
Li-Yau and Hamilton, to generate a non-collapsed gradient
shrinking soliton (which are the stationary points of
Perelman entropy or Perelman reduced volume).
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These solitons can be completely classified using tools
from Riemannian geometry such as the Cheeger-Gromoll
soul theorem and Hamilton’s splitting theorem, and an
induction on dimension. The end result is
Classification theorem. A non-collapsed gradient
shrinking soliton in three-dimensions is either a shrinking
round sphere S3, a shrinking round cylinder S2 × R, or a
quotient thereof.
There are now several proofs of this basic result, as well as
extensions to higher dimensions (Ni-Wallach, Naber,
Petersen-Wylie, etc.).
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Using this classification theorem, one can show, roughly
speaking, that high-curvature regions of three-dimensional
Ricci flows look like spheres, cylinders, quotients thereof,
or combinations of these components such as capped or
doubly capped cylinders. (The canonical neighbourhood
theorem.)
As a consequence, it is possible to perform surgery to
remove these regions. (This is not the case in higher
dimensions, when one starts seeing non-removable
singularities such as S2 × R2.)
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Surgery methods for Ricci flow were pioneered by
Hamilton, but the version of surgery needed for Perelman’s
argument is extremely delicate as one needs to ensure
that all the properties of Ricci flow used in the argument
(e.g. monotonicity formulae, finite time extinction results)
also hold for Ricci flow with surgery.
Nevertheless, this can all be done (with significant effort),
the net result being that Ricci flow with surgery
geometrises any three-dimensional manifold. Running the
surgery in reverse, this establishes the geometrisation
conjecture, and in particular the Poincaré conjecture as a
special (and simpler) case.
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