
PERFORMANCE ANALYSIS AND RESOURCE ALLOCATION FOR

MULTITHREADED MULTICORE PROCESSORS

by

MIAO JU

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2011

Copyright c© by MIAO JU 2011

All Rights Reserved

To my parents

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervising professor, Dr. Hao

Che, for his patience, encouragement and advice during my research. His strong under-

standing of the subject and constant motivation made this work possible. I would like to

thank him for giving me the opportunity to work in his research group. I would also like to

thank Dr. Bob Weems, Dr. Jeff Lei and Dr. Yonghe Liu for being onmy committee.

I take this opportunity to thank all my friends at UTA, especially Hun Jung in our lab

for his valuable discussions and support. I also would like to thank both Mr. Xing Zhao

and Yang Liu from Columbia University for their helpful suggestions.

Finally, I would like to thank my parents for their constant encouragement and sup-

port without which this work would have not been possible.

July 15, 2011

iv

ABSTRACT

PERFORMANCE ANALYSIS AND RESOURCE ALLOCATION FOR

MULTITHREADED MULTICORE PROCESSORS

MIAO JU, Ph.D.

The University of Texas at Arlington, 2011

Supervising Professor: Hao Che

With ever expanding design space and workload space in multicore era, a key chal-

lenge to program a multithreaded multicore processor is howto evaluate the performance

of various possible program-task-to-core mapping choicesand provide effective resource

allocation during the initial programming phase, when the executable program is yet to

be developed. In this dissertation, we put forward a thread-level modeling methodol-

ogy to meet this challenge. The idea is to model thread-levelactivities only and over-

look the instruction-level and microarchitectural details. A model developed at this level

assumes the availability of only a piece of pseudo code that contains information about

the thread-level activities, rather than an executable program that provides instruction-by-

instruction information. Moreover, since the thread-level modeling is much coarser than

the instruction-level modeling, the analysis at this levelturns out to be significantly faster

than that at the instruction level.

The above features make the methodology particularly amenable for fast perfor-

mance evaluation of a large number of program-task-to-coremapping choices during the

v

initial programming phase. Based on this methodology, in this dissertation we further de-

veloped: 1) an analytic modeling technique based on queuingtheory which allows large

design space exploration; and 2) a framework that allows program tasks to be mapped to

different core resources to achieve maximal throughput performance for many-core pro-

cessors. Case studies against cycle-accurate simulation demonstrate that the throughput

estimated using our modeling technique is consistently within 8% of cycle-accurate simu-

lation results.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF FIGURES . ix

LIST OF TABLES . x

Chapter Page

1. INTRODUCTION . 1

2. METHODOLOGY . 4

2.1 Introduction . 4

2.2 CMP Organization . 5

2.3 Work Load . 6

2.4 Design Space . 8

2.5 Related Work . 10

3. ANALYTIC MODELING TECHNIQUE . 11

3.1 Basic Idea . 11

3.2 Design Space . 13

3.3 Performance Measures . 17

3.4 Testing . 20

3.4.1 Test Case . 20

3.4.2 Simulation and Analytic Model Setup 22

3.4.3 Results . 23

3.5 Bottleneck Identification for Sigle Core Processors 25

3.5.1 Model . 25

vii

3.5.2 Main Results . 27

3.5.3 Thread and Cache Resource Provisioning32

3.6 Related Work . 33

4. A FRAMEWORK FOR FAST PROGRAM-TASK-TO-CORE MAPPING 35

4.1 Introduction . 35

4.2 Program-Task-to-Core Mapping .. 37

4.3 Testing of General Conditions .. 41

4.4 Workload Intensity Assignment 42

4.5 Related Work . 47

5. CONCLUSION AND FUTURE WORK . 49

Appendix

A. CODE PATH . 50

B. SINGLE CORE MAIN RESULTS . 53

C. PROOF OF COROLLARY A . 59

REFERENCES . 63

BIOGRAPHICAL STATEMENT . 68

viii

LIST OF FIGURES

Figure Page

2.1 CMP Organization . 5

2.2 Tk(Mk; m1,k, t1,k, τ1,k, · · · ,mMk,k, tMk,kτMk,k) 7

2.3 Design Space . 9

3.1 Execution Sequence for Coarse-Grained Core 11

3.2 Queuing Network Models: (a) Two Components (b) Multiple Components . 12

3.3 Pipeline configuration for Generic IP forwarding and Layer-2 Filtering . . . 21

3.4 Pipeline configuration for ATM/Ethernet Forwarding 22

3.5 Closed Queuing Network Model for Bottleneck Core 23

3.6 Single Core Queuing Network Model .. 26

4.1 CMP Model at Thread Level . 37

4.2 Exponential Distribution 41

4.3 Pareto Distribution .. 41

4.4 Iterative Procedure for Multicore Decoupling 45

4.5 Iterative Algorithm .46

ix

LIST OF TABLES

Table Page

3.1 Component modeling using queuing models with local balance equations . . 14

3.2 The AM versus CAS(IXP1200) forGeneric IPv4 forwarding 24

3.3 The AM versus CAS(IXP1200) forATM/Ethenet IP Forwading. 24

3.4 The AM versus CAS(IXP1200) forLayer-2 Filtering 25

x

CHAPTER 1

INTRODUCTION

As chip multiprocessors (CMPs) become the mainstream processor technology, chal-

lenges arise as to how to partition application tasks and mapthem to one of many possible

core/thread configurations (i.e., program-task-to-core mapping) to achieve desired perfor-

mance in terms of e.g., throughput, delay, power, and resource consumptions. There are two

scalability barriers that the existing CMP analysis approaches (e.g., simulation and bench-

mark testing) find difficult to overcome. The first barrier is the difficulty for the existing

approaches to effectively analyze CMP performance as the numbers of cores and threads of

execution become large. The second barrier is the difficultyfor the existing approaches to

perform comprehensive comparative studies of different architectures as CMPs proliferate.

The first barrier is particularly problematic for communication processors (CPs) . First, to

maximize the throughput performance, a CP generally employsmassive core-level pipeline

and parallelism for packet processing. The number of possible pipeline/parallel configu-

rations grows exponentially as the number of cores increases. Second, the workload for a

CP is a complex function of both packet arrival process and mixture of code paths at the

thread level and there are virtually unlimited number of workloads to be tested as a result

of this. The existing CP analysis tool cannot help identify what ”typical” workloads should

be tested, which are assumed to be determined by the user of the tool, rather than part of

the tool design. This makes initial performance analysis ofprogram-task-to-core mapping

using an existing tool extremely difficult. In addition to these barriers, how to analyze

the performance of various possible design/programming choices during the initial CMP

1

2

design/programming phase is particularly challenging, when the actual instruction-level

program is not available.

To meet the above challenges, a solution must satisfy the following three stringent

requirements. First, it must be fast enough to allow a potentially large number of mapping

choices to be tested within a reasonable amount of time. Second, the performance data it

provides must be reasonably accurate. Third, it must not assume the availability of exe-

cutable programs as input for testing. These three requirements pose significant challenges

to the development of such a solution. On one hand, to providereasonably accurate per-

formance data, the solution must take into account processing details that may contribute

significantly to the system-level performance, such as the thread-level activities, and mem-

ory and I/O resource contentions at the thread, core, and system levels. On the other hand,

indiscriminately including various processing details insuch a solution can quickly slow

down the processing, rendering the solution useless.

In this dissertation, we present a novel CMP analysis methodology to meet the above

requirements (Chapter 2 and [26][27]). In the proposed methodology, two unique features

are employed to overcome the scalability barriers. First, the methodology is coarse-grained,

which works at the thread level, and overlooks instruction-level and microarchitectural de-

tails, except those having significant impact on thread level performance. This coarse gran-

ularity is particularly amenable to large design space exploration and theoretical analysis.

Second, the approach taken for the design space explorationin our methodology is un-

conventional. Instead of exploring the design space based on sampled points in the space,

the methodology directly study the general performance properties of system classes over

the entire design space. Since understanding the general performance properties over the

entire design space results in the understanding of the performance at any point in the de-

sign space, this approach is particularly useful for the performance analysis in the initial

3

programming phase, when a desirable design choice/point must be identified from a large

number of possible choices/points in the design space.

Based on the proposed methodology, a simulation tool, a queuing network modeling

technique and a framework for fast program-task-to-core mapping are developed. The sim-

ulation tool is generic, in the sense that it can be adapted tovarious CMP architectures, and

hence is also viable for large design space exploration. Details of the simulation tool can be

found in [3][9]. The queuing network modeling technique provides closed-form solutions

in a large design space, covering various thread schedulingdisciplines, memory access

mechanisms, and processor organizations (Chapter 3 and [27]). Moreover, the framework

for fast program-task-to-core mapping (Chapter 4 and [27]) provide solutions as to how to

effectively identify the most desirable program-task-to-core mapping that leads to highest

overall system performance.

This dissertation makes the following major contributions. First, it proposes a per-

formance analysis methodology for multithreaded multicore processors, which is able to

characterize the general performance properties for a widevariety of CMP architectures

and a large workload space at coarse granularity. Second, based on this methodology,

it establishes a modeling technique which maps large classes of multithreaded multicore

processors to queuing network models with closed-form solutions in a large design space.

Third, it develops a novel framework and resulting fast algorithms to enable program-task-

to-core mapping that maximizes the overall system throughput/utilization.

The rest of the dissertation is organized as follows. Chapter2 describes the pro-

posed analysis methodology. Chapter 3 presents the queuing network modeling technique.

Chapter 4 proposes the framework for program-task-to-core mapping. Finally, Chapter 5

concludes the dissertation.

CHAPTER 2

METHODOLOGY

2.1 Introduction

The main idea of our methodology is to capture only activities that have major impact

on the thread level performance. In other words, the instruction level and microarchitec-

tual details are overlooked, unless they trigger events that may have significant effects at

the thread level, such as an instruction for memory access that causes the thread to stall or

instructions corresponding to a critical region that causes serialization effect at the thread

level. Correspondingly, all the components including CPUs, caches, memories, and inter-

connection networks are modeled at a highly abstract level,overlooking microarchitectual

details, just enough to capture the thread level activities. For example, for a CPU running

a coarse-grained thread scheduling discipline and a memorywith a FIFO queue, they are

modeled simply as queuing servers running a coarse-grainedthread scheduling algorithm

and FIFO discipline, respectively.

The following sections describe, at the thread level, the modeling of the CMP orga-

nization, the workload, and the design space, separately. Since in the CMP family, CPs

are particularly difficult to model, as explained in Chapter 1, in the rest of this dissertation

and without loss of generality, we discuss CMP in the context of CP. All we need to note

is that for a CP, a program task mapped to a thread in a core comesfrom a packet and the

packet arrival process and packet mixture (or code path mixture) determining the workload

characteristics, rather than a program or program tasks loaded in that core.

4

5

2.2 CMP Organization

We consider a generic CP organization depicted in Fig. 2.1. This organization fo-

cuses on the characterization of multicore and multithreadfeatures common to most of

the CMP architectures, leaving all other components being summarized in highly abstract

forms. More specifically, in this organization, a CP is viewedgenerically as composed of

a set of cores and a set of on-chip and/or off-chip supportingcomponents, such as I/O in-

terfaces, memories, level one and level two caches, specialprocessing units, scratch pads,

embedded general-purpose CPUs, and coprocessors. These supporting components may

appear at three different levels, i.e., the thread, core, and system (including core cluster)

levels, collectively denoted asMEMT , MEMC , andMEMS, respectively. Each core may

run more than one thread and the threads are scheduled based on a given thread scheduling

discipline.

Figure 2.1. CMP Organization.

6

Cores may be configured in parallel and/or multi-stage pipeline (a two-stage con-

figuration is shown in Fig. 2.1) and there is a packet stream coming in from one side and

going out through the other side. Packet processing tasks may be partitioned and mapped to

different cores at different pipeline stages or different cores at a given stage. A dispatcher

distributes the incoming packets to different core pipelines based on any given policies.

Backlogged packets are temporarily stored in an input buffer. A small buffer may also

present between any two consecutive pipeline stages to holdbacklogged packets temporar-

ily. Packet loss may occur when any of these buffers overflow.

Clearly, the above organization also applies to non-CP based CMPs. The only differ-

ence is that in this case there is no packet arrival or departure processes and tasks mapped

to different cores are generated by one or multiple applications mapped to those cores. This

dissertation is concerned with the CP throughput, latency, and loss performance only and

the power and memory resource constraints are assumed to be met. This implies that we do

not have to keep track of memory or program store resource availabilities or power budget.

2.3 Work Load

At the core of our methodology is the modeling of the workload, defined as a map-

ping of program tasks to threads in different cores, known ascode paths. For tasks mapped

to a given thread, a piece of pseudo code for those tasks can bewritten. Then a unique

branch from the root to a given leaf in the pseudo code is defined as a code path associated

with that thread. A specific packet processing or instantiation of program execution is as-

sociated with a specific code path, or a sequence of events that the thread needs to execute

to fulfill the tasks. For a CP, the program tasks mapped to a thread may be on-and-off,

which is a function of the packet arrival process. Moreover,what code path a thread may

need to handle in a given time period is dependent on the actual mixture of packets of dif-

7

ferent types arriving in that time period, each being associated with some distinct program

tasks to be fulfilled, known as a mixture of code paths. For example, while an IP packet

may subject to the entire cycle of both layer 2 and layer 3 processing, resulting in a long

code path, a packet carrying IS-IS routing information is forwarded to the control plane

immediately after it is identified at layer 2, which leads to avery short code path. In this

dissertation, a code path is defined at the thread level, which is composed of a sequence of

segments corresponding to different events that have significant impact on the thread-level

performance. For each segment, we are only concerned with the segment length in terms

of the number of core cycles. It can be formally defined as follows:

Tk(Mk; m1,k, t1,k, τ1,k, · · · ,mMk,k, tMk,kτMk,k): Code path k with eventmi,k occurred

at the ti,k -th core clock cycle and with event durationτi,k, wherek = 1, · · · , K and

i = 1, 2, · · · ,Mk ; K is the total number of code paths in the pseudo code; andMk is the

total number of events in the code path k.

A graphic representation of such a code path is given in Fig. 2.2.

Figure 2.2.Tk(Mk; m1,k, t1,k, τ1,k, · · · ,mMk,k, tMk,kτMk,k).

We note that a code path thus defined is simply a sequence of events with event inter-

arrival timesti+1,k − ti,k = τi,k for i = 1, 2, · · · ,Mk − 1. The eventsmi,k ∈CPU are

represented by the white segments and the correspondingτi,k is the number of core cycles

the CPU spends on this thread in this segment. All other eventsare separated by the CPU

events. For an eventmi,k ∈ MEMT , MEMC , or MEMS, τi,k represents the unloaded

8

resource access latency. An event can be introduced to account for the serialization effect

caused by, for example, a critical region. Hence, the lengthof the code pathTk , denoted

as|Tk| , is the total duration of code path k handled by a thread in theabsence of resource

contention, i.e., without waiting times due to contention with other threads for CPU, mem-

ory, and any other resource accesses. An event is defined as one that is expected to have a

significant impact on the thread-level activities. Currently, we have defined the following

four types of events: (1) CPU events; (2) resource access events which may cause sig-

nificant delay and thread-level interactions (i.e., context switching), i.e.,mi,k ∈ MEMT ,

MEMC , or MEMS; and (3) events that cause serialization effects, e.g., a critical region.

More types of events can be incorporated if they are expectedto contribute significantly to

the thread-level activities.

2.4 Design Space

We want the design space to be as large as possible to encompass as many CMP

architectures and workloads as possible. Fig. 2.3 depicts such a design space. It is a five

dimensional space, including resource-access dimension,thread-scheduling-discipline di-

mension, program dimension, number-of-thread-per-core dimension, and number-of-core

dimension. Fig. 2.3 also shows the part (i.e., the small coneon the left) that has been

(incompletely) explored by the existing work using queuingnetwork modeling techniques

(see Section 3.6 for more details). Clearly, the existing work only covers a tiny part of the

entire design space. The thread-scheduling-discipline dimension determines what CPU or

core type is in use. The existing commercial processors use fine-grained, coarse-grained,

simultaneous multithreading (SMT), and hybrid coarse-and-fine-grained thread scheduling

disciplines. Some systems may also allow a thread to be migrated from one core to another.

9

The resource-access dimension determines the thread access mechanisms to CMP

resources other than CPU. It may include memory, cache, interconnection network, and

even a critical region. The typical resource access mechanisms include first-come-first-

serve (FCFS), process sharing (parallel access), parallel resources (e.g., memory bank), and

pipelined access. For cache access, a cache hit model may have to be incorporated, which

may be load dependent. The program dimension includes all possible programs. This

dimension is mapped to a workload space, involving all possible code path mixtures, for a

given type of processor organization. The number-of-core and number-of-thread-per-core

dimensions determine the size of the CMP in terms of the numbers of cores and threads.

The number-of-thread-per-core dimension also needs to deal with dynamic multithreading,

where the number of threads used for a program task may changeover time, due to on-and-

off packet arrivals or the variation of the level of parallelism in a program.

In summary, this chapter described a methodology that provides a coarse-granular,

thread-level view of a CMP in general and a CP in particular, in terms of its organization

and design space. Based on this methodology, the following two chapters demonstrate how

an analytical modeling technique and a framework for fast program-task-to-core mapping

can be developed to allow much of the design space in Fig. 2.3 to be explored.

Program(workload)

Number-of-Threads-per-Core

Memory Bank

Number-of-Cores

Thread-Scheduling-Disciplin

e

Resource Access

Coarse-grained

Fine-grained

SMT

Hybrid

Coarse-Fine-grained

FCFS
PS

Pipelined

16 32

32

1024

102416 32 128

Space

Exploited

Dynamic Multithreading

Thread Migration

Load-dependent

Cache hit rate

128

32

Figure 2.3. Design Space.

10

2.5 Related Work

Traditionally, simulation and benchmark testing are the dominant approaches to eval-

uate the processor performance. Unfortunately, these approaches quickly become ineffec-

tive as the number of cores increases. Hence, there have beenmany alternative approaches

in an attempt to address this scalability issue. Statistical simulation (e.g., [31][38][39])

makes the short synthetic trace from a long real program trace and save time by simulating

the short statistic trace. Partial simulation (e.g., [34][35][40]) reduces total simulation time

by selectively measuring a subset of benchmarks. The designspace exploration based on

intelligent predictive algorithms trained by sampled benchmarks (e.g., [32][33][36][37])

can predict the performance in the entire design space from simulations of a given bench-

mark from a small set of the design space. However, most existing approaches have focused

on the exploration of microarchitectural design space and quickly become ineffective as the

numbers of cores and threads in the system increase. Moreover, the pace at which the mul-

ticore architectures proliferate makes it difficult for theexisting approaches to keep up,

especially in terms of comparative performance analysis ofdifferent architectures. Our ap-

proach makes it possible to quickly identify the areas of interests in a large design space

at coarse granularity, in which the existing finer granularity tool can work efficiently to

pinpoint the optimal operation points.

CHAPTER 3

ANALYTIC MODELING TECHNIQUE

This chapter is organized as follows. Sections 3.1-3.3 introduces the analytic mod-

eling technique. The technique is then tested against cycle-accurate simulation in Section

3.4. Application of this technique to the bottleneck analysis for multithreaded single-core

processors is given in Section 3.5. Finally, the related work is reviewed in Section 3.6.

3.1 Basic Idea

We start with a simple example to bring out the main ideas and then formalize the

modeling technique. Consider a code path with one memory access on the left in Fig. 3.1.

Now assume the CPU is coarse-grained and the memory is FIFO. Then two active threads

loaded with the same code path in Fig. 3.1 have the execution sequences as given on the

right in Fig. 3.1. The yellow segments are the thread waitingtimes. Now, consider a closed

queuing network composed of two FIFO queuing servers, modeling a coarse-grained CPU

and an FIFO memory, as shown in Fig. 3.2(a). Assume that thereare two jobs circulating

in this network, modeling the two actively threads.

Time

Code Path

CPU

Figure 3.1. Execution Sequence for Coarse-Grained Core.

11

12

CPU

p01

(a)

Memory

(b)

CPU
p0,N-1

p0,N

p02

Figure 3.2. Queuing Network Models: (a) Two Components (b) Multiple Components.

As one can see, without considering the queuing times or thread waiting times, a

thread making a round-trip, CPU-to-Memory-to-CPU, plus CPU-to-Memory, generates

three segments corresponding to the code path in Fig. 3.1. Ifthe service times at the

CPU and the memory exactly match the corresponding segment lengths of the code path,

this queuing network model exactly emulates the execution sequence for that thread. Now,

with two threads, it is not difficult to convince ourselves that due to the queuing effect, the

two threads making such a trip will generate the same patternof the execution sequence

as the one on the right in Fig. 3.1. Again, if the service timesexactly match the segment

lengths, the thread circulation exactly recovers the execution sequence in Fig. 3.1.

So far we have been trying to emulate the actual execution process for the threads,

which is no different from simulating the actual process at the thread level. Now we need

to realize that the queuing models are in essence stochasticmodels, which are meant to

capture long-run stochastic/statistic effects of a real system (open queuing network models

may need to be used if the workload may be on and off, which however, can always be

transformed into closed queuing network models [5]). In other words, the service time for

a queuing server is in general a random number, following a given distribution, denoted

asµi, for queuing serveri. As a result, it is the distribution of the segment lengths, not

the individual segment lengths that should be used to characterize the service time. More-

13

over, for a code path that characterizes a workload for a processor with multiple parallel

resources, the corresponding closed queuing network, as depicted in Fig. 3.2(b), also in-

volves a routing probabilityp0i for a thread to go to the i-th resource upon exiting the CPU

server. This parameter should also be evaluated statistically by counting the frequency of

such occurrences in the long-run code paths handled by thesethreads.

From the above examples, we conclude that at the thread level, any types of CMPs

with M components and any long-run workloads can be generally modeled as a closed

queuing network with M queuing servers of various service types in terms of queue schedul-

ing disciplines and a workload space ({µi}, {pij}) spanned by various possible combina-

tions of service time distributions and routing probabilities. The central task is then to

develop mathematical techniques to analytically solve this closed queuing network model.

The solution should be able to account for as many service types and as large a workload

space as possible, aiming at covering a wide range of CMP architectures.

3.2 Design Space

The queuing network modeling techniques at our disposal limit the size of the design

space to one that must be mathematically tractable. This makes the coverage of the design

space in Fig. 2.3 a challenge. In this subsection, we discussour solutions in meeting the

challenge.

Memory/interconnect-network and thread-scheduling-discipline dimensions: With-

out resorting to any approximation techniques, the existing queuing network modeling

techniques will allow both of these dimensions to be largelyexplored analytically. Any

instance in either of these two dimensions can be approximately modeled using a queuing

server model that has local balance equations (i.e., it leads to queuing network solutions of

product form or closed form). More specifically, Table 1 shows how individual instances

14

Table 3.1. Component modeling using queuing models with local balance equations

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

hh

Component
Queue Model

M/G/∞ M/M/m FCFS M/G/1 PS M/M/1

SMT ✓ ✓

Fine-Grained Thread
scheduling

✓

Coarse-Grained Thread scheduling
scheduling

✓

Hybrid-Fine-and-,
Coarse-Grained Thread ✓

scheduling
Resources dedicated to

individual threads
✓

FCFS shared Memory,
Cache, Interconnection ✓

Network,or Creitical Region
FCFS Memory with

with Popelined Access
✓

in these two dimensions can be modeled by three queuing models with local balance equa-

tions (according to the BCMP theorem [4]), includingM/G/∞; M/M/mFCFS (includ-

ing M/M/1); andM/G/1PS (processor sharing). Note that memory banks should be

modeled as separate queuing servers and hence, are not listed in this table. Also note that

for all the multithread scheduling disciplines except the Hybrid-Fine-and-Coarse-Grained

one (to be explained below) in Table 3.2, the service time distribution of a queuing model

models the time distribution for a thread to be serviced at the corresponding queuing server.

With these in mind, the following explains the rationales behind the mappings in Table 3.2:

• SMT: It allows multiple issues in one clock cycle from independent threads, creating

multiple virtual CPUs. If the number of threads in use is no greater than the number

of issues in one clock cycle, the CPU can be approximately modeled as anM/G/∞

queue, mimicking multiple CPUs handling all the threads in parallel, otherwise, it

15

can be approximately modeled as an M/M/m queue, i.e., not enough virtual CPUs to

handle all the threads and some may have to be queued.

• Fine-grained thread scheduling discipline: All the threads access the CPU resource

will share the CPU resource at the finest granularity, i.e., one instruction per thread in

a round-robin fashion. This discipline can be approximately modeled as an M/G/1 PS

queue, i.e., all the threads share equal amount of the total CPU resource in parallel.

• Coarse-Grained thread scheduling discipline: All the threads access the CPU re-

source will be serviced in a round-robin fashion and the context is switched only

when the thread is stalled, waiting for the return of other resource accesses. This can

be approximately modeled as a FCFS queue, e.g., an M/M/1 queue.

• Hybrid-Fine-and-Coarse-Grained Thread scheduling discipline: It allows up to a

given number of threads, say m, to be processed in a fine-grained fashion and the

rest be queued in a FCFS queue. This can be modeled as an M/M/m FCFS queue.

In this queuing model, the average service time for each thread being serviced is m

times longer than the service time if only one thread were being serviced, mimicking

fine-grained processor sharing effect.

• Resources dedicated to individual threads: Such resources can be collectively mod-

eled as a singleM/G/∞ queue, i.e., there is no contention among different threads

accessing these resources.

• FCFS Shared Memory, Cache, Interconnect Network, or Critical Region: This kind

of resources can be modeled as an M/M/1 queue.

• FCFS Memory with Pipelined Access: Memory banks can be accessed in parallel. It

can be modeled as an M/M/m FCFS queue, with up to the number-of-bank worth of

memory accesses serviced in parallel and the rest queued in aFCFS queue.

• FCFS Memory with Pipelined Access: Same as above. The pipeline depth deter-

mines how many threads can be serviced simultaneous in the M/M/m FCFS queue.

16

We note that the memory/interconnection-network dimension also includes load-

dependent cache hit rate. The cache hit probability (i.e., the routing probability to move

back to the CPU) is generally load-dependent in the sense thatit may either positively or

negatively correlated with the number of threads in use due to temporal locality and cache

resource contention. These effects can be accounted for in our framework without approx-

imation, by means of the existing load-dependent routing techniques (e.g. [1]). We also

note that the thread-scheduling-discipline dimension includes thread migration. The thread

migration allows a thread to be migrated from one core to another for, e.g., load balanc-

ing purpose. This effect can be accounted for without approximation by allowing jobs to

have non-zero probabilities to switch from one class to another [5] [6]. More capabilities

may be identified and included in these two dimensions as longas they are mathematically

tractable.

Program dimension: In principle, this dimension can be fully explored througha

thorough study of the workload space, characterized by the service time distributions and

routing probabilities, i.e., a collection of ({µi}, {pij})’s. However, for the solvable queuing

server models in Table 3.2, such as M/M/m and M/M/1 queues, the service time distri-

bution µi is a given, i.e., exponential distribution. Since the exponential distribution is

characterized by only a single parameter, i.e., the mean service timeti, it can only capture

the first order statistics of the code path segments corresponding to that server, hence pro-

viding a first order approximation of the program dimension or workload space. Although

our future research will explore more sophisticated queuing models in an attempt to over-

come this limitation, we expect that the first order approximation could actually provide

good performance data, due to the well-known robustness property [5], which states that

for closed queuing networks, the system performance is insensitive to the service time dis-

tributions. To calculate ({µi}, {pij}), we first definepk, the probability that an incoming

packet is associated with code pathk (for k = 1, 2, · · · , K). In other words,pk defines a

17

code path mixture. We further defineτ k
i , fk

i andqk
ij as the average service time at queu-

ing server i; the frequency to access queuing server i; and the probability to access queuing

server j upon exiting queuing server i, respectively, for a thread handling code path k. These

statistic parameters are collectable from the pseudo code.Then the average service rates

and routing probabilities for a given job class can be written as:

µi =

∑K
k=1 pkfk

i
∑K

k=1 pkfk
i τ k

i

, i = 1, · · · ,M (3.1)

and

Pij =
K

∑

k=1

pkqk
ij, i = 1, · · · ,M (3.2)

Here a job class is defined as threads that follow these same statistics. In general, all

the threads belong to the same core forms a job class.

Number-of-core and Number-of-thread Dimensions: As we shall see in Section 3.3,

these dimensions can be fully covered for the queuing servermodels described in Table

3.2.

3.3 Performance Measures

For CMPs in the design space covered by the queuing server models in Section 3.2,

all the performance measures can be derived from a generation function, which is described

mathematically as follows. First, we define N as the total number of jobs (or threads) for

the entire system and it follows that,

N =
M

∑

i=1

ki, ki =
R

∑

r=1

kir, (3.3)

18

wherekir is the number of jobs in the rth job class at the node i and M is the total number of

queuing servers and R is the number of job classes in the system. According to the BCMP

theorem [4], the state probabilities of the system can be written as:

π(S1, · · · , Sn) =
1

G(N)

M
∏

i=1

fi(Si), (3.4)

where the state of the ith node isSi = (ki1, · · · , kiR) and the population vector containing

the total number of jobs isN =
∑M

i=1 Si, G(N) is the so-called normalization constant or

generation function of the system and it is given by:

G(N) =
∑

∑n
i=1 Si=N

M
∏

i=1

fi(Si), (3.5)

Thefi(Si) ’s are the relative state probabilities at the node i , which are defined as

follows:

fi(Si) =























ki!
1

βi(ki)
· (1

µi
)ki ·

∏R
r=1

1
kir!

ekir
ir , for − /M/m/ − FCFS

ki!
∏R

r=1
1

kir!
ekir

ir , for − /G/1 − PS&LCFSPR

∏R
r=1

1
kir!

ekir
ir , for − /G/∞

(3.6)

The relative arrival rateeir of jobs in the rth class at the ith node can be calculated

directly from routing probabilities as follows:

eir =
M

∑

j=1

R
∑

s=1

ejs · pjs,ir, for i = 1, · · · ,M, r = 1, · · · , R (3.7)

And the functionβi(ki) is given by

βi(ki) =























ki! ki ≤ mi

mi! · m
ki−mi

i ki ≥ mi

1 mi = 1

(3.8)

19

wheremi is the number of servers in node i. Based on the generation function defined

above, relevant performance measures in our model can be written as follows [5]:

Throughput:

λi =
R

∑

r=1

=
R

∑

r=1

eir ·
G(N − 1r)

G(N)
, for i = 1, · · · ,M, (3.9)

Mean Response Time: By the little’s law,

Ti =
li
λi

(3.10)

where the mean number of jobs at the ith queuing serverli is,

li =
R

∑

r=1

lir

=
R

∑

r=1

∑

∑M
j=1 Sj=N&Si=k

kir · fi(K) ·
G(i)(N − k)

G(N)
, for i = 1, · · · ,M(3.11)

whereG(i) can be interpreted as the generation function with the queuing server i removed

from the network. We note that the generation function G and the resulting performance

measures are defined in the entire design space (with the firstorder approximation of the

program-dimension or workload space). As a result, a salient feature of our analytical

modeling approach is its ability to explore the general performance properties of the design

space analytically, just like the analysis of the general properties of functions in a multidi-

mensional space in function analysis. Since understandingthe general performance prop-

erties over the entire design space results in the understanding of the performance at any

point in the design space, this approach is particularly useful for the performance analysis

in the initial programming phase, when a desirable design choice/point must be identified

from a large number of possible choices/points in the designspace.

20

3.4 Testing

In this section, the accuracy for the proposed analytic modeling technique is tested

against cycle-accurate simulators (CAS). Since CPs are most difficult to deal with, we test

our solution against a cycle-accurate CP simulator, i.e., IXP 1200 SDK Developer work-

benches [7]. With a set of code samples available in both IXP1200, the sustainable line

rates obtained from our techniques are compared with those from CAS. For all the code

samples, there are only a few number of code paths for each core and we can afford to per-

form exhaustive search for the bottleneck core and the corresponding worst-case code path.

The code samples and corresponding analytic model and simulation setups are described

in Section 3.4.1 and the Section 3.4.2 presents the test results.

3.4.1 Test Case

Since all the cores in IXP1200 run a coarse-grained thread scheduling discipline,

our analytic model is configured to run the coarse-grained thread scheduling algorithm as

well. The program tasks mapped to the cores for IXP1200 sample applications are briefly

described as follows.

IXP1200 code samples: Three different code samples, Generic IPv4 Forwarding,

Layer-2 Filtering, and ATM/Ethernet IP Forwarding, available in IXP1200 Developer work-

bench [7] are tested. The worst-case code paths at the bottleneck cores for these code sam-

ples are given in Appendix. The complete implementation details can be found in the Intel

IXP1200 building blocks application design guide with the Developer workbench. In the

following description of code samples, we focus on the functions mapped to the bottleneck

core.

Generic IPv4 Forwarding: after packet reception as in Packet Count, RFC1812

generic IPv4 forwarding is implemented in this code sample.

21

ATM/Ethernet IP Forwarding: This code sample is a mixed code implementation of

ATM /Ethernet IP forwarding. Only Ethernet-to-ATM flow is considered in the test. The

header checksum check, TTL update, and IP lookup are performed in the receive block

after packet reception as in Packet Count. Then the LLC/SNAP and modified IP headers

are written back into the SDRAM. When the frame fragment with EOP (End of Packet)

information is received, AAL5 trailer information is written into the SDRAM buffer and

the complete PDU is enqueued for CRC generation at the next pipeline stage.

Layer-2 filtering: This code example implements Ethernet protocol, MAC address

filtering and layer 2 forwarding in the receive block after packets are received. Packet

Count, Generic IPv4 Forwarding, and Layer-2 Filtering code samples are mapped to two

core pipelined stages as shown in Fig. 3.3 and ATM/Ethernet Forwarding is mapped to

three core pipeline stages as shown in Fig. 3.4. The originalcode samples are modified to

allow only one core at the receive stage handling packets coming from a single port. As

a result, the receive core becomes the bottleneck core to be tested. The code samples can

also be changed to allow configuration of the number of threads from one to four.

RX Stage TX Stage

Figure 3.3. Pipeline configuration for Generic IP forwarding and Layer-2 Filtering.

The parameter settings for the simulation are as follows:

IXP1200: ME clock rate = 200/600 MHz

Packet size = 64/64 bytes, DRAM = 24/64MB

SRAM = 1/64 MB (for each channel of two)

22

CRC

Generation

RX Stage TX Stage

Figure 3.4. Pipeline configuration for ATM/Ethernet Forwarding.

3.4.2 Simulation and Analytic Model Setup

Our analytic model only needs to deal with a single core, corresponding to the bot-

tleneck core for sample applications described above. The sustainable line rate for this

bottleneck core is compared with that of CAS simulation involving the entire multistage

pipeline. All the worst-case code paths for the corresponding bottleneck cores in table for-

mat are listed in Appendix. The first column lists the task performed in each code path

segment; the second column gives the segment length in termsof core clock cycles; the

third column describes the type of resource accesses between segments; and the last col-

umn gives the unloaded resource access latency for each resource access. We assume that

in the presence of resource access contentions, the resource access requests will be serviced

based on a simple FIFO queuing mechanism. This means that unloaded resource access

latencies and a set of simple resource access FIFO queues arethe only IXP1200 specific

features used in our model. The rest are generic or common features pertaining to all the

CP architectures. Clearly, the code paths as given in Appendixcan be easily derived from

a piece of pseudo code provided by the user.

All the cases studied can be modeled as a single-class, single core system with a

coarse-grained CPU and a set of parallel resources includinga SRAM, a DRAM, an FBI, a

RFIFO, and a scratchpad, as depicted in Fig. 3.5. In our model,we treat all these resources

as local to the core and assume that these resources can be accessed in parallel. This

is justified by the fact that in IXP1200 simulators, the resource contention for accessing

shared resources are not accounted for and the fact that SDRAMand SRAM accesses are

23

p
00

p
01

p
0nMemory n, μn

CPU,μ0

Memory 1, μ1

Figure 3.5. Closed Queuing Network Model for Bottleneck Core.

optimized based on multiple memory banks and a separation ofread and write operations,

respectively.

For analytic modeling, the coarse grained CPU is approximately modeled as an FCFS

M/M/1 queue and all the parallel resources asM/M/∞ queue. Also, to study the through-

put performance, we assume that all threads in the core are kept busy. As a result, the

system is modeled as a closed queuing network consisting of aCPU (M/M/1 queue) and

multiple local resources (M/M/∞ queues) with fixed number of jobs as in Fig 3.5. The

workload parameters ({µi}, {pij}) are estimated from the code paths based on 3.1 and 3.2.

3.4.3 Results

In this Section, sustainable line rates are obtained from Analytic Method (AM), and

those obtained from IXP1200 CAS for the code samples described in previos section. In

each table, total latency for a packet, sustainable line speed, and the accuracy of AM against

Intel IXP1200 CAS are given in the same format for each code path sample. For IXP

1200 case studies in Table 3.2 to Table 3.4, the first column gives the number of threads

configured; the second and the third columns list the core latencies and the sustainable

line rates obtained from AM and CAS, respectively. The last column lists the percentage

difference of the sustainable line speeds obtained from AM versus CAS.

24

Table 3.2. The AM versus CAS(IXP1200) forGeneric IPv4 forwarding

Table 3.3. The AM versus CAS(IXP1200) forATM/Ethenet IP Forwading

25

Table 3.4. The AM versus CAS(IXP1200) forLayer-2 Filtering

For all the cases studied, the results obtained from AM are within 8% of the CAS

results. Moreover, the results for Am are obtained in subseconds on a Pentium IV PC.

3.5 Bottleneck Identification for Sigle Core Processors

3.5.1 Model

In this section, we consider a class of queuing network models given in Fig. 3.6.

This class of models characterizes a class of processors with a single CPU, a cache, and an

arbitrary number of parallel resources, denoted asmq, (e.g., a main memory, a coprocessor,

an I/O device, or even a critical region). In this model, we assume that the interconnection

network has sufficient bandwidth to transfer data between CPUand the parallel resources

without creating a bottleneck and hence it is not explicitlymodeled. Upon exiting the CPU

server, a thread has probabilityp0i to visit parallel resourcei, wherei = 1, 2, · · · ,mq.

In the case of memory resource access, the thread will first check if the requested data is

available in the cache. In our model, no details of cache access mechanisms are modeled,

26

except a cache hit probabilityPih(Si) that causes the thread to immediately loop back to

the CPU and a cache miss probability(1− Pih(Si)) that causes the thread to access theith

resource. HereSi is the size of the cache memory block allocated to the cached data from

memory resourcei. All the other components are modeled as queuing servers. The CPU

queuing server mimics the thread scheduling disciplines listed in the thread scheduling dis-

cipline dimension in Fig. 2.3 and all other parallel queuingservers mimic the resource

access mechanisms in the resource dimension in Fig. 2.3. An arbitrary number of threads,

Mt, circulates in the closed queuing network, with routing probability pij to visit serverj

upon exiting serveri.

Figure 3.6. Single Core Queuing Network Model.

Component Models: Without resorting to any approximation techniques, the exist-

ing queuing network modeling techniques will allow both resource and thread scheduling

discipline dimensions in the design space (see Fig. 2.3) to be exploited analytically. Any

27

instance in these two dimensions can be modeled using a queuing model that has local bal-

ance equations (i.e., it leads to solutions of product form or closed form). More specifically,

Table 3.2 shows how these two dimensions can be modeled by only three queuing models

with local balance equations, includingM/G/∞; M/M/m FCFS (including M/M/1); and

M/G/1 PS (processor sharing).

3.5.2 Main Results

To limit the exposure, for the time being, we assume that there is no cache in the

model in Fig. 3.6, i.e.,Pih(Si) = 0. The results with caching will be given at the end of

this section. We focus on the performance measurePI(m), i.e., the probability that there

arem threads at the CPU queuing server. In particular, we are interested in its asymptotic

behavior, i.e., whetherlimMt→∞ PI(0) = 0. It tells us whether or not multithreading can

completely hide the resource access latencies from the CPU, provided that the thread re-

source is abundant, and hence, whether the multithreading can help achieve the maximum

throughput performance. This performance measure will lead to the identification of the

general conditions under which the bottleneck resources are bound to appear, regardless

how many threads are used.

Definefi(ki) to be the steady state probability that there areki threads at queuing

serveri, for i = 0, 1, · · · ,mq, where
∑mq

i=0 ki = Mt. Let qi represent queuing serveri (see

Fig. 3.6), fori = 0, 1, · · · ,mq. Following the convolution algorithm [30], we have,

PI(0) =
f0(0)q1∗2∗···∗mq

(Mt)

q0∗1∗2∗···∗mq
(Mt)

(3.12)

where

q0∗1∗2∗···∗mq
(Mt) =

∑

m+n=Mt

f0(m)q1∗2∗···∗mq
(n) (3.13)

28

and

q1∗2∗···∗mq
(n) =

∑

k1+···+kmq =n

mq
∏

i=1

fi(ki) (3.14)

Eq. (3.12) holds true for any queuing servers listed in Table3.2 and any model parameters

({µi}, {pij}) . In other words,PI(0) is a performance measure for a class of processor

models defined in the entire design space in Fig. 2.3.

According to Table 3.2, bothM/G/∞ andM/M/m queuing models can be used to

model SMT-based CPU server and theM/G/1 PS queuing model is used to model fine-

grained CPU server in Fig. 3.6. All the resource-related servers can be modeled using

M/M/1 andM/M/m queuing models. To simplify the design, in this paper, we adopt

M/M/m for SMT and only consider a special case ofM/G/1 PS, i.e.,M/M/1 PS for

the fine-grained CPU server. With these simplifications, the service time distributions for

all the queuing servers are then exponentially distributedand uniquely determined by their

average service ratesµi for i = 0, 1, · · · ,mq andfi(ki) can be generally express as follows:

fi(ki) =
αki

i

βi(ki)
(3.15)

whereαi is the relative utilization ofqi. αi = p0iei

µi
for i = 1, 2, · · ·mq andα0 = e0

µ0
and

ei is the relative thread arrival rate atqi. In this system,e0 =
∑

i=1:mq
ei. β(x) is define as

follows:

β(x) =



































1 M/M/1 & M/M/1 PS

x! M/M/∞

x! M/M/m FCFS x ≤ m

m!m(x−m) M/M/m FCFS x > m

(3.16)

29

Substituting Eq.(3.15) into Eq. (3.12), we have,

PI(0) =

∑

k1+···+kmq =Mt

∏mq

i=1
a

ki
i

βi(ki)

∑Mt

n=0
1

β0(Mt−n)

∑

k1+···+kmq =n

∏mq

i=1
a

ki
i

βi(ki)

(3.17)

whereai = p0iµ0

µi
.

We now have the following general result (see Appendix B for detailed proof):

Theorem : limMt→∞ PI(0) = 0 if and only if m0ai

mi
≤ 1, ∀i = 1, 2, · · · ,mq.

The Theorem simply states that multithreading can completely hide the resource access

latencies from the CPU, if only ifm0ai/mi < 1 for all the resources. In other words,

resourcei is identified as a bottleneck ifm0ai/mi > 1. To remove a bottleneck resource

i, one needs to increase the relative service rate of the resource (i.e.,µi/µ0), reduce the

resource access frequencyp0i, or increase the relative parallelism or deepen the pipeline

for the resource access (i.e.,mi/m0), to the extend thatm0ai/mi is reduced to be less than

one. As a result, this Theorem quantitatively characterizes the general conditions under

which bottleneck resources appear.

So far, we have assumed that there is no caching effect, i.e.,Pih(Si) = 0, for i =

1, 2, · · · ,mq. SinceSi is the cache resource allocated to accommodate the cached data

from resourcei, we must haveS ≥
∑

i=1:mq
Si, whereS is the total cache size. Now, we

take into account of the caching effect for the model in Fig. 3.6, i.e.,Pih(Si) ≥ 0. To

simplify the discussion, we assume that all the resources are memory resources, so that

caching can help reduce the resource access latencies for all the resources.

Assuming there is no correlation among consecutive cache hits, our cache model

only amounts to the change ofp0i to (1 − Pih(Si))p0i and consequently,ai changes to

(1− Pih(Si))ai. The product-form property of the model is preserved. Hence, we have the

30

following corollary in parallel to Theorem,

Corollary : limMt→∞ PI(0) = 0 if and only if m0(1−Pih(Si))ai

mi
≤ 1, ∀i = 1, 2, · · · ,mq.

To illustrate the power of and the intuition behind the aboveresults, let us walk

through a special case. Consider the case whenmq = 1, i.e., the model in Fig. 3.6 only has

two queuing servers, a CPU server and a resource server andP1h(S1) = 0. Following the

same procedure that leads to Eq. (3.17), we have,

q0∗1(Mt) =
∑

k0+k1=Mt

f0(k0)f1(k1) (3.18)

and

PI(0) =
f0(0)f1(Mt)

∑

k0+k1=Mt
f0(k0)f1(k1)

(3.19)

Sincefi(0) = 1, Eq. (3.19) can be simplified as:

PI(0) =
f1(Mt)

∑

k0+k1=Mt
f0(k0)f1(k1)

(3.20)

By substituting Eq. (3.15) into Eq. (3.20), we have

PI(0) =
αMt

1 /β1(Mt)
∑Mt

k1=0
α

Mt−k1
0

β0(Mt−k1)

α
k1
1

β1(k1)

(3.21)

Defineai = µ0

µi
, thenαi = α0ai. Eq. (3.21) can be reduced to:

PI(0) =
aMt

1 /β1(Mt)
∑Mt

k1=0
a

k1
1

β0(Mt−k1)β1(k1)

(3.22)

Substitutingβ(x) function into Eq. (3.22) and with some rearrangement, we get,

PI(0) =

m
m1
1

m1!

(

a1

m1

)Mt

m
m0
0

m0!m
Mt
0

m1
∑

k1=0

a
k1
1

k1!/m
k1
0

+
m

m0
0 m

m1
1

m0!m1!m
Mt
0

Mt−m0
∑

k1=m1+1

a
k1
1

(

m1
m0

)k1
+

m
m1
1

m1!

Mt
∑

k1=Mt−m0+1

a
k1
1

(Mt−k1)!m
k1
1

(3.23)

31

Note the second term in the denominator is a geometric progression whose sum is given

by:

Mt−m0
∑

k1=m1+1

ak1
1

(

m1

m0

)k1
=

(

a1m0

m1

)m1+1

−
(

a1m0

m1

)Mt−m0+1

1 − a1m0

m1

(3.24)

Let G = a1m0

m1
and substituting Eq. (3.24) into Eq. (3.23), we have

PI(0) =
1

m
m0
0 m1!

m
m1
1 m0!

m1
∑

k1=0

a
k1
1

k1!/m
k1
0

G−Mt +
m

m0
0

m0!
G(m1+1−Mt)−G−m0+1

1−G
+

Mt
∑

k1=Mt−m0+1

a
k1
1 m

Mt
0

(Mt−k1)!m
k1
1

G−Mt

(3.25)

As Mt goes to infinity, we have,

lim
Mt→∞

PI(0) =















1
m

m0
0

m0!
G−m0+1

G−1
+

∑m0−1

k′=0

(

a1
m1

)

−k′

/k′!
G > 1

0 G < 1

(3.26)

This gives the general conditionG > 1 under which the resource becomes a bottleneck,

whereG = a1m0

m1
= µ0m0

µ1m1
, agreeing with the general result in Theorem. This condition tells

us that if the average service rate times the level of parallelism (i.e.,m1) at the resource is

slower than the service rate times the level of parallelism at the CPU server, the resource

becomes a bottleneck that throttles the overall throughput.

Finally, it is interesting to note that whenm0 = m1 = 1 (i.e., the CPU is coarse-

grained and resource access mechanism is FCFS), we have,

lim
Mt→∞

PI(0) =











a1−1
a1

a1 > 1

0 a1 < 1
(3.27)

A deterministic version of this result was derived in [10] and later a result identical to the

one in Eq. (3.27) was derived and studied in [23]. Clearly, theresults given in Theorem

32

are far more general than the results given in [10] and [23]. The proof of of main results is

presented in Appendix B.

3.5.3 Thread and Cache Resource Provisioning

With system configuration and workload unchanged, it is clear that cache is needed

in addition to multithreading to remove the bottleneck resourcei if m0ai

mi
> 1, according to

Theorem. Now according to Corollary, the minimum amount of cache resourceSi that is

needed to remove the bottleneck resourcei must satisfy the following equation:

m0(1 − Pih(si))ai

mi

= 1 (3.28)

from Eq. (3.28) we have,

Si = P−1
ih (1 −

mi

m0ai

) (3.29)

whereP−1
ih is the inverse function ofPih. Clearly,Si = 0 if resourcei is not a bottleneck

resource. The condition thatS ≥
∑

i=1:mq
Si gives us a good idea as to how much total

cache resource is needed to maximize the throughput performance. IfS is a given, this

condition determines whether maximum throughput performance can be achieved or not,

with maximal thread and cache resource provisioned.

In summary, we have the following generic algorithm for effective thread and cache

resource provisioning:

• if m0ai

mi
< 1, for all i = 1, 2, · · · ,mq, the maximum throughput performance can be

achieved by adding sufficient number of threads and cache is not needed

• else if (without loss of generality)m0a1

m1
≤ m0a2

m2
≤ · · · ≤ m0ak−1

mk−1
≤ 1 < m0ak

mk
≤

· · · ≤
m0amq

mmq
, calculateSi for i = k, · · · ,mq from Eq. (3.29). IfS ≥

∑mq

i=k Si,

outputSi for cache resource provisioning; else outputSi and request for additional

(
∑mq

i=k Si − S) cache memory.

33

To make the above discussion generally applicable to any elaborated caching mod-

els, so far we have not mentioned whatPih(Si) should look like. In practice,Pih(Si) is a

complicated function of not onlySi, but also data request patterns, thread scheduling disci-

pline, cache replacement algorithm, etc. Nevertheless, a widely adopted analytical model

is: Pih(Si) = 1 −
(

Si

δ
+ 1

)

−(ε−1)
, as discussed in [8]. Since how to model the cache hit

probability is not the focus of this dissertation, we shall not discuss this issue further in this

dissertation.

3.6 Related Work

In terms of queuing network modeling, since Jackson’s seminal work [11] in 1963

on queuing networks of product form, a wealth of results on the extension of his work has

been obtained for both closed and open queuing networks. Notable results include the ex-

tensions from M/M/1 FCFS (First-Come-First-Served) to LCFS (Last-Come-First-Served)

preemptive resume, PS (Processor Sharing), and IS (InfiniteServer) queuing disciplines,

multiple job classes (or chains) and class migrations, load-dependent routing and service

times, and exact solution techniques such as convolution and Mean Value Analysis (MVA),

and approximate solution techniques for queuing networks with or without product form.

Sophisticated queuing network modeling tools were also developed, making queuing mod-

eling and analysis much easier. These results are well documented in standard textbooks,

tutorials, and research papers (e.g., [5], [6], [12], [13]). As a result, in the past few decades,

queuing networks were widely adopted in modeling computer systems and networks (e.g.,

[14], [15], [16], [17], [18]).

However, very few analytical results are available for multicore processor analysis. In

[19], a mean value analysis of a multithreaded multicore processor is performed. The per-

formance results reveal that there is a performance valley to be avoided as the number of

34

threads increases, a phenomenon also found earlier in multiprocessor systems studied based

on queuing network models [20]. Markovian Models are employed in [21] to model a cache

memory subsystem with multithreading. However, to the bestof our knowledge, the only

work that attempts to model multithreaded multicore using queuing network model is given

in [22]. But since only one job class (or chain) is used, the threads belonging to different

cores cannot be explicitly identified and separated in the model and hence multicore effects

are not fully accounted for. Most relevant to our work is the work in [17]. In this work,

a multiprocessor system with distributed shared memory is modeled using a closed queu-

ing network model. Each computing subsystem is modeled as composed of three M/M/1

servers and a finite number of jobs of a given class. The three servers represent a mul-

tithreaded CPU with coarse-grained thread scheduling discipline, a FCFS memory, and a

FCFS entry point to a crossbar network connecting to other computing subsystems. The

jobs belonging to the same class or subsystem represent the threads in that subsystem. The

jobs of a given class have given probabilities to access local and remote memory resources.

This closed queuing network model has product-form solution. The above existing appli-

cation of queuing results to the multithreaded multicore and multiprocessor systems are

preliminary (i.e., within the small cone on the left in Fig. 2.3). The only queuing disci-

pline studied is the FCFS queue, which characterizes the coarse-grained thread scheduling

discipline at a CPU and FCFS queuing discipline for memory or interconnection network.

No framework has ever been proposed that can cover the designspace in Fig. 2.3 and that

allows system classes to be analyzed over the entire space.

CHAPTER 4

A FRAMEWORK FOR FAST PROGRAM-TASK-TO-CORE MAPPING

Based on the thread-level modeling methodology introduced in Chapter 2, in this

chapter, we develop a framework to effectively mapping program-task-to-core to achieve

overall high throughput/utilization performance for CMPs.This framework is based on the

priorous results in [3][26][27] and the operational analysis of queuing systems in [28]. In

this framework, CMPs are modeled at the thread level, following the methodology in Chap-

ter 2 and [27]. Then an iterative procedure is proposed to decouple a many-core system into

single core systems, which is solved efficiently using the simulation tool in [3]. This iter-

ative procedure borrows some ideas from the iterative procedure in [25]. However, unlike

the procedure in [25], which is subject to the assumptions made in queuing theory, such as

stationary and Markovian assumptions, the procedure proposed in this paper applies to any

queuing network systems in any given time interval the system is studied. This is made

possible by employing simulation tool in [25], rather than numerical analysis of queuing

models, to solve the single core problem and the applicationof operational analysis in [29],

rather than queuing theory, to identify the bottleneck resources. With the framework de-

veloped, we further design algorithms that allow quick program-task-to-core mapping to

maximize overall system throughput/utilization for CMPs with virtually unlimited numbers

of cores and threads.

4.1 Introduction

In our framework, first, we assume that a CMP under consideration has N cores shar-

ing a common resource (e.g., a shared memory), and each core has K-1 local resources, a

35

36

CPU, and a local cache with negligible service time and cache hit frequencyq00 as de-

picted in Fig. 4.1. The CPU and local resources may be different from core to core,

running different thread scheduling algorithms, having different resource access mecha-

nisms/bandwidths, and different amounts of resources. Second, we assume that there are a

number of types of program tasks with distinct workload characteristics in terms of ({µi},

{qij}), to be mapped to different cores. We further assume that no more than one type of

program tasks is allowed to be mapped to any given core and theintensity of the workload

on a given core can be increased by adding more threads handling the same type of program

tasks.

For a given mapping and by increasing the workload intensityin each core, there are

two possible outcomes. One outcome is that all the CPU utilizations reach one. In this case,

the overall system throughput/utilization is maximized. The other outcome is that the CMP

fails to achieve its maximal overall system throughput/utilization, regardless the workload

intensities. This case implies that for the given mapping, there exists at least one bottleneck

resource, which prevents at least one CPU from reaching its full utilization. Whether a

CMP can achieve its maximal throughput/utilization or not depends on the types of program

tasks to be mapped, the types of cores in the CMP modeled in Fig.4.1, the mapping choice,

and the way the workload intensity is assigned to each core. In our framework, we are

interested in how to map program-task-to-core and how to assign the workload intensities

to achieve the highest possible throughput/utilization for any given types of cores in the

CMP in Fig. 4.1 and given types of program tasks. In our framework, we propose a

two-step heuristic for program-task-to-core mapping and workload intensity assignment,

as discussed separately in the following two sections.

37

q0 K
Shared

Resource

CPU

q0,2

q0,1

q0 K-2

q00

Local

Resources

From

other

Cores
q0 K-1

Figure 4.1. CMP Model at Thread Level.

4.2 Program-Task-to-Core Mapping

As our design objective is to maximize the throughput/utilization, we want to map

program-task-to-core in such a way that local resources do not pose potential bottlenecks

that prevent the CPU from being able to maximize the utilization of its processing power. In

the meantime, we want the local resource utilizations to be as close to the CPU utilization

as possible. This will ensure that as workload intensity increases, both CPU and all the

local resources are more or less fully utilized. Note that inthis step, we assume that the

shared resource will not pose a potential bottleneck. However, before formalizing this step,

we first need to know how to estimate the utilizations for the CPU and local resources for

any given type of program-tasks mapped to the core. In general, utilizations are complex

functions of workload and system parameters. For the single-core case, however, we now

show that the ratios of utilizations can be estimated easily. First we make the following

assumption: the workload parameters ({µi}, {qij}) are invariant as the workload intensity

increases (i.e., the number of jobs or threads in the system increases). This assumption

38

holds, since we allow no more than one type of program tasks tobe mapped to any given

core.

In Chapter 3.5, we were able to show that for a closed-queuing network as in Fig. 4.1

in the absence of other cores sharing the shared resource, which has local balance equations

or product-form solutions, the conditions, under which themaximal throughput/utilization

can be achieved, are the following (according to Theorem in Section 3.5),

q0im0µ0

miµi

< 1, ∀i, for i = 1, · · · , K − 1 (4.1)

The parameters in Eq. (4.1) are either known system parameters (i.e.,mi, the num-

ber of parallel servers or the pipeline depth at the queuing server i) or workload param-

eters measurable from the code paths loaded in the core, i.e., ({µi}, {qij}). This makes

it possible to quickly test the performance of any given program-task-to-core mapping,

with estimation of just several workload parameters. Nevertheless, the assumption that the

close-queuing network must have local balance equations orproduct-form solutions lim-

its the applicability of this result to a few queuing server models only. Moreover, some

key underlying assumptions made in the queuing theory, suchas stationary and Markovian

properties may not hold true in practice.

As an important part of our framework, we now show that in fact, the conditions in

Eq. (4.1) hold true in general, free from all the above assumptions, except the invariance

assumption for ({µi}, {qij}). The approach we take follows the operational analysis of the

queuing systems developed by Buzen (see [29] and references therein). The operational

analysis establishes relationships among system variables (e.g., utilization and throughput)

through some basic operationally measurable quantities (e.g., the length of the observation

period, the number of jobs arrived during the observation period, and the job finished during

the observation period). The assumptions made in queuing theory that are either unrealistic

39

(e.g., Markovian) or difficult to verify (e.g., steady stateand the existence of a well-defined

underlying distribution for a stochastic process) are eliminated. Hence, the results derived

from this approach can generally be applied to solve real-world problems.

According to [29], for a single-class queuing network (i.e., all the jobs share the

same workload parameters ({µi}, {qij})) and given that the service timeSi (i.e.,µ−1
i) and

visiting ratioVi are invariant as the number of jobs increases, the CPU is the bottleneck, if

and only if

U0

Ui

< 1, ∀i, for i = 1, · · · , K (4.2)

or equivalently,

ViSi

V1S1

< 1, ∀i, for i = 1, · · · , K (4.3)

Now, we show that when the job flows are balanced, Eq. (4.3) degenerates to Eq.

(4.1) for the queuing network in Fig. 4.1, in the absence of other cores sharing the shared

resource (this guarantees that the core involves only a single job class). First, we note that

the service ratios satisfy the following balance equationswhen the job flows are balanced:

V0 = 1

Vj = q0j +
K

∑

i=1

Viqij, for j = 1, · · · ,M (4.4)

For the single-job-class core given in Fig. 4.1, we have,

V1 =
1

q10

Vi =
q1i

q10

, for i = 2, · · · ,M (4.5)

We also have,

40

Si =
1

mi

µi, (4.6)

wheremi represents the width of parallelism (e.g., the maximum number of issues per

cycle at a SMT CPU) or depth of pipeline (e.g., the depth for pipelined memory access)

and the service rate at queuing server i. Combining the results in Eqs. (4.3), (4.5) and (4.6),

we arrive at Eq. (4.1).

The parameters in Eq. (4.1) are either known system parameters (i.e.,mi) or param-

eters measurable from the code paths loaded in the core (i.e., Eqs. (3.1) and (3.2)).

With the above preparation, now we can formally state our algorithm in step one as

follows:

1. For each type of program-tasks j (forj = 1, 2, · · · ,Mt), calculate the ratiosq0im0µ0

miµi

for all the local resources in all the cores, whereMt is the number of types of program-tasks

to be mapped.

2. Select all the cores for which the conditions in Eq. (4.1) hold (for simplicitly,

assume there is at least one core that satisfies the conditions). Then rank these cores with

increasing order in min(q0im0µ0

miµi
|i=1:K−1). Do the same for all types of program-tasks.

3. The type of program-tasks, which has the largest min(q0im0µ0

miµi
|i=1:K−1) value

among all types of program-tasks will be assigned to the corecorrespond to this value;

4. Remove the assigned type of program-tasks and the corresponding core from the

rank list. Go back to step 3 until all the cores are assigned a type of program-tasks.

Steps 1 and 2 ensure that the local resources will not pose potential bottlenecks for

the CPU in any core selected. Steps 3 and 4 guarantee that the type of program-tasks

mapped to a core will be the one that makes best use of the localresources.

41

4.3 Testing of General Conditions

Before discussing step two in the next section, in this section we demonstrate, based

on simulation, that the conditions in Eq. (4.1) indeed hold true in general.

Consider a rather extreme case, i.e., the service time distributions for both CPU and

memory components are long tailed. More specifically, the Pareto distributions are used

to characterize the service times. Pareto distributions account for a wide range of code

segment sizes, or equivalently, the thread service times atthe CPU, and large variations

of memory access latencies. The aim is to test whether such significant deviations from

the exponential distributions would (a) shift the appearance of a bottleneck resource away

from the point in the parameter space identified by the general conditions; and (b) signif-

icantly blur the boundaries between the bottleneck and non-bottleneck regions. We use

the simulation results of the original queuing network models as the benchmarks for the

testing.

0 50 100 150 200
0

0.2

0.4

0.6

0.8
Coarse−grained CPU, FCFS Memories

No. of Threads

C
P

U
 Id

le
 p

ro
ba

bi
lit

y m0a1/m1 = 1.1
m0a1/m1 = 1.2
m0a1/m1 = 0.93
m0a1/m1 = 0.62

0 50 100 150 200
0

0.2

0.4

0.6

0.8
Coarse−grained CPU, Memory Parallelism = 3

No. of Threads

C
P

U
 Id

le
 p

ro
ba

bi
lit

y m0a1/m1 = 1.1
m0a1/m1 = 1.4
m0a1/m1 = 0.93
m0a1/m1 = 0.58

0 50 100 150 200
0

0.1

0.2

0.3

0.4
SMT = 2, FCFS Memories

No. of Threads

C
P

U
 Id

le
 p

ro
ba

bi
lit

y m0a1/m1 = 1.1
m0a1/m1 = 1.2
m0a1/m1 = 0.93
m0a1/m1 = 0.7

0 50 100 150 200
0

0.2

0.4

0.6

0.8
SMT = 2, Memory Parallelism =3

No. of Threads

C
P

U
 Id

le
 p

ro
ba

bi
lit

y m0a1/m1 = 1.1
m0a1/m1 = 1.4
m0a1/m1 = 0.93
m0a1/m1 = 0.58

Figure 4.2. Exponential Distribution.

0 50 100 150 200
0

0.2

0.4

0.6

0.8
Coarse−grained CPU, FCFS Memories

No. of Threads

C
P

U
 Id

le
 p

ro
ba

bi
lit

y

0 50 100 150 200
0

0.2

0.4

0.6

0.8
Coarse−grained CPU, Memory Parallelism = 3

No. of Threads

C
P

U
 Id

le
 p

ro
ba

bi
lit

y

0 50 100 150 200
0

0.1

0.2

0.3

0.4
SMT = 2, FCFS Memories

No. of Threads

C
P

U
 Id

le
 p

ro
ba

bi
lit

y

0 50 100 150 200
0

0.2

0.4

0.6

0.8
SMT = 2, Memory Parallelism =3

No. of Threads

C
P

U
 Id

le
 p

ro
ba

bi
lit

y

m0a1/m1 = 1.1
m0a1/m1 = 1.4
m0a1/m1 = 0.93
m0a1/m1 = 0.53

m0a1/m1 = 1.1
m0a1/m1 = 1.3
m0a1/m1 = 0.93
m0a1/m1 = 0.76

m0a1/m1 = 1.1
m0a1/m1 = 1.2
m0a1/m1 = 0.93
m0a1/m1 = 0.53

m0a1/m1 = 1.1
m0a1/m1 = 1.3
m0a1/m1 = 0.93
m0a1/m1 = 0.58

Figure 4.3. Pareto Distribution.

We consider the processor model with four memory resources.We run simulation

for both the original queuing network models (whose servicetimes are Exponential) and

42

the queuing network models with Pareto service times. The results in term of CPU idle

probability versus the number of threads are presented in Fig. 4.2 and Fig. 4.3. For each of

these two cases, four scenarios are studied: (a) coarse-grained CPU and FCFS memories;

(b) coarse-grained CPU and memories with parallel/pipelined accesses; (c) SMT and FCFS

memories; and (d) SMT and memories with parallel/pipelinedaccesses. The result for the

four scenarios are presented in the four subplots in Fig. 4.2and Fig. 4.3. In each subplot,

four curves are given. Of which two correspond to the cases where one bottleneck resource

is identified according to the general conditions (m0a1

m1
> 1), whereas the other two do not

involve bottleneck resource according to the general conditions.

As one can see, for both Fig. 4.2 and Fig. 4.3, there is a clean division between the

two sets of curves for all the subplots. Namely, as the numberof threads increases, the two

curves corresponding to the cases without bottleneck resource identified converge to zero,

whereas the other two level out at some nonzero values.

The above results clearly indicate that the general conditions derived in Eq. (4.1) is

indeed accurate. Hence, step one given in Section 4.2 is practically very useful for effective

program-task-to-core mapping for CMPs with many cores.

4.4 Workload Intensity Assignment

Note that whether the shared resource will pose a potential bottleneck for any given

core is determined by the workload intensities of all the cores. When the workload inten-

sities for all the cores are low, the shared resource should not pose a potential bottleneck

for any core, otherwise more shared resource capacity should be provisioned. This is the

reason why we didn’t consider this resource in step one, where the program-task-to-core

mapping is done, independent of workload intensities, thanks to the invariance of the work-

load parameters ({µi}, {qij})’s with respect to the workload intensities.

43

As the workload intensities increase, the overall system throughput/utilization will

increase, until the shared resource becomes overloaded, when it starts to throttle the CPU

utilizations for some cores. Note that step one guarantees that the local resources will

not pose potential bottleneck for the CPU in any core as workload intensities increase.

Hence, the second step of our heuristic is to ensure that the workload intensities assigned

to different cores will lead to the overall highest throughput/utilization, while not making

the shared resource a bottleneck. In other words, any further increase of the workload

intensity for any core will make the shared resource a bottleneck for at least one core.

We first define an important quantity, called utilization increment ratio,∆Uk

∆U0
, where

∆Uk and∆U0 are the shared resource and CPU utilization gains, respectively, per work-

load intensity increase for the core corresponding to the CPU. The unit for the workload

intensity can be defined as one thread. Now the idea is to, starting from some minimally

required workload intensity for each core, incrementally adding workload intensities, mul-

tiple units at a time. Each time, the multiple units is added to the core with the smallest

utilization incremental ratio. Ideally, this ratio needs to be updated every time the workload

intensity is incremented. The rationale of this approach isto give more workload intensi-

ties to cores with less demand of the shared resource, as a wayto maximize the overall

throughput/utilization gain with minimal shared resourceutilization gain. Step two of our

heuristic will basically follow this approach with some modifications to reduce the com-

putational complexity. Before formalizing step two, however, we need to know how to

calculate utilization incremental ratios and what computational complexity involved.

The key difficulty here is that we are dealing with a CMP with allthe cores coupled

together through the shared resource. In our previous work [25], we demonstrated that the

cores can be decoupled through an iterative procedure. To bemathematically tractable,

however, CMPs were modeled as closed queuing networks with closed-form solutions. In

this dissertation, we propose an iterative procedure to decouple the cores, similar to the one

44

in [25]. However, to avoid the assumptions made in [28], instead of performing numerical

analysis in each iteration based on a closed-form solution for each core, the current solution

performs simulation analysis using the simulation tool in [25] in each iteration. We first

introduce the iterative procedure and then discuss the computational complexity involved.

A key intuition underlying the iterative procedure is thatthe effect on each core due

to resource sharing would become more and more dependent on the first order statistics

(i.e., mean values) and less sensitive to the higher order statistics (e.g., variances) or the

actual distributions, as the number of cores sharing the resources increases(reminiscent of

Law of Large Numbers and Central Limit Theorem in statistics and the Mean Field Theory

in physics, although actual formal analysis could be difficult). With this observation in

mind, we were able to design an iterative procedure to decouple the interactions among

cores, so that the performance of individual cores can be evaluated quickly as if they were

stand-alone ones.

Initially, we calculate the core sojourn timeTi(0) (excluding the shared source) and

throughputλi(0) for single core system i consisting of a single core and the shared re-

source (fori = 1, · · · , Nc). Then the initial mean sojourn time for all the cores,T ?(0) , is

calculated based on the following iteration formulae:

T ?(n) =
Nc
∑

i=1

λi(n)
∑Nc

j=1 λj(n)
Ti(n) (4.7)

Then we enter an iteration loop as shown in Fig. 4.4. At the n-th iteration, first the

average sojourn time for the shared resource,Tm(n), is calculated based on a two-server

queuing network (on the left of Fig. 4.4), including a queuing server for the common

memory and anM/M/∞ queuing server characterized by the mean service timeT ?(n).

There are a total ofM =
∑Nc

i=1 mi threads circulating in this network, wheremi is the

number of active threads in core i. In other words, we approximate the aggregate effect of

45

all the threads from all the cores on the common memory using asingleM/M/∞ queuing

server with the mean service timeT ?(n). Then, we test if|Tm(N) − Tm(N − 1)| < ε

holds, for a predefined small valueε. If it does, exit the loop and finish, otherwise do the

following. The sojourn timeTi(n) and throughputλi(n) for core i (for i = 1, · · · , N) are

updated based on the closed queuing network on the right of Fig. 4.4. This time, the effects

of other cores on core i is approximated by a singleM/M/mi server with the mean service

time Tm(n) . There aremi threads circulating in this network. Finally,T ?(n) will be

updated based on the interaction formulae, before going to the next iteration. The iteration

procedure is summarized in Fig. 4.5.

Tm

Step 1

μ* = 1/T*

Step 2

i-th Core

μm = 1/Tm

Ti

μm

Figure 4.4. Iterative Procedure for Multicore Decoupling.

With this iterative procedure, anNc-core system at the workload intensitiesmii =

1 : Nc is decoupled intoNc single core systems. Single-core system i is composed of the

ith core in the original system with the shared resource replaced by anM/M/mi queuing

server local to the core. With all the workload intensities fixed for other cores, the utiliza-

tion increment ratio for the ith core can then be evaluated bysimulating the core at both

workload intensitiesmi andmi + 1. As tested in [25], as long asn ¿ M , adding the

46

Figure 4.5. Iterative Algorithm.

workload intensity to the system by n will have little impacton the value ofTm , which

is estimated at workload intensitiesmii = 1 : Nc through the iterative procedure. This

means that instead of having to reevaluateTm for every unit of workload intensity added

to the system, we only need to reevaluate it after adding n units of workload intensity to

the system. To further reduce the computational complexity, instead of incrementing one

unit at a time, we evaluate utilization increment ratios in the unit of n threads. In other

words, we add n threads to a core with the minimal utilizationincrement ratio at a time.

The second step of our heuristic can then be stated as follows:

1. Assign minimally required workload intensitymi to each core;

2. EstimateTm using the iterative procedure

3. With a user determinedn(¿ M), estimate utilization increment ratio for each

core and increment the workload intensity by n for the core with the smallest utilization

increment ratio; if the utilization ofM/M/mi queuing server reaches one, exit, otherwise,

go back to step 2.

47

This algorithm requires to run up toNc single-core simulations in each iteration for

the iteration procedure. The number of iteration is unknown. Our testing in [25] suggests

that the number of iterations required is from a few to a few tens. After each iterative

procedure is done, up toNc single-core simulations need to be performed to finish step 3.

This amounts to about a few tens of up toNc single-core simulations. In practice, a many-

core CMP has limited number of heterogeneous cores, e.g., less than ten. So in practice,

we only need to perform up to a few hundred single-core simulations for adding n threads

to the system. With our simulation tool [25], each single-core system simulation will take

only a fraction of a second to finish on a Pentium III PC. This means that adding n threads to

the system will take about a few minutes to finish. If each corecan run up to 8 threads and

initially each has 4 threads running, making the total initial workload intensityM = 4000

and there are up to 4000 additional threads to be added. Letn = 4(¿ M). Then we

need up to a few hours to complete step two. To program a CMP with1000 cores and

8000 threads, spending a few hours on mapping the program-task-to-core and calculating

the workload intensities in the initial programming phase appears to be reasonably short.

Of course, step one of the heuristic requires the development of a parser that can analyze

the pseudo code to generate the workload parameters for eachcore and then run step one,

which adds more computational complexities.

4.5 Related Work

There are some existing fast algorithms for data path functions to CP core topology

mapping (e.g., [41][42][43]). These algorithms, however,have to overlook many essential

processing details that may have an impact on the overall system performance. To make

the problem tractable, a common technique used in these approaches is to partition the

data path functions into tasks and each task is then associated with one or multiple known

48

resource demand metrics, e.g., the core latency and programsize. Then an optimization

problem under the demand constraints is formulated and solved to find a feasible/optimal

mapping of those tasks to a pipelined/parallel core topology. Since the actual resource

demand metrics for each task are, in general, complex functions of mapping itself, and

are a strong function of the number of threads and thread scheduling discipline in use

at each core, these approaches cannot provide mappings withhigh accuracy. Although

the approach in [42] accounts for certain multithreading effect, it only works for a single

memory access and under a coarse-grained scheduling discipline.

CHAPTER 5

CONCLUSION AND FUTURE WORK

This dissertation proposed a novel chip multiprocessor (CMP) performance analysis

methodology. In this methodology, a CMP is modeled generically at the thread level, over-

looking the instruction-level and microarchitectural details. The aim is to allow various

possible program-task-to-core mapping choices to be tested quickly in the initial program-

ming phase, when the executable program is yet to be developed.

On the basis of this methodology, a analytical modeling technique based closed

queuing network models and a framework for fast program-task-to-core mapping were

developed. While the analytic modeling technique allows thegeneral performance prop-

erties of a large design space to be characterized, the framework makes it possible to al-

low program-task-to-core mapping and workload intensity assignment to achieve maximal

throughput/utilizations for many-core processors. All the approaches were allowing fast

performance testing of CMPs with large numbers of cores and threads in the initial pro-

gramming phase.

Our future work will be mainly concerned with the implementation and testing of the

algorithms developed in Chapter 4.

49

APPENDIX A

CODE PATH

50

51

Table A.1. Code Path forGeneric IPv4 forwarding(IXP1200)

Table A.2. Code Path forATM/Ethenet IP Forwading(IXP1200)

52

Table A.3. Code Path forLayer-2 Filtering(IXP1200)

APPENDIX B

SINGLE CORE MAIN RESULTS

53

54

Here we provide a detailed proof of the theorem given in Chapter 3.

Proof of Theorem: The theorem can be decomposed into two parts:

(1) if m0ai

mi
≤ 1, ∀i = 1, 2, · · · ,mq, thenlimMt→∞ PI(0) = 0.

(2) if there is at least one term in{m0ai/mi}i=1:mq
larger than1, thenlimMt→∞ PI(0) > 0.

In what follows, we prove these two parts separately.

First, we prove the first part. Without loss of generality, assume
amq

mmq
= max

{

ai

mi

}

and a1

m1
= min

{

ai

mi

}

, for i ∈ [1,mq]. Dividing both the numerator and denominator of Eq.

(3.17) by
(

amq

mmq

)Mt

, we have,

PI(0) =

∑

k1+···+kmq =Mt

∏mq

i=1

(

aimmq

miamq

)ki m
ki
i

βi(ki)

∑Mt

n=0

(

amq

mmq

)n−Mt

β0(Mt−n)

∑

k1+···+kmq =n

∏mq

i=1

(

aimmq

miamq

)ki m
ki
i

βi(ki)

(B.1)

Since a1

m1
≤ ai

mi
≤

amq

mmq
, for i = 2, · · · ,mq − 1, we have,

(

a1mmq

m1amq

)

≤

(

aimmq

miamq

)

≤

(

amq
mmq

mmq
amq

)

= 1 (B.2)

Hence,

PI(0) ≤

∑

k1+···+kmq =Mt

∏mq

i=1
m

ki
i

βi(ki)

∑Mt

n=0

(

amq

mmq

)n−MT

β0(Mt−n)

∑

k1+···+kmq =n

∏mq

i=1

(

a1mmq

m1amq

)ki m
ki
i

βi(ki)

(B.3)

55

The queuing serverqi can be generally viewed as an M/M/mi queue,i ∈ (0, · · · ,mq).

Since for∀ki, βi(ki) ≥ mi!m
ki−mi

i and βi(k) < mi!m
ki

i and noticing that there are

(Mt+mq−1)!

Mt!(mq−1)!
elements in

∑

k1+···+kmq
, we have:

PI(0) <

∑

k1+···+kmq =Mt

∏mq

i=1
m

mi
i

mi!

∑Mt

n=0

(

amq

mmq

)n−MT

β0(Mt−n)

∑

k1+···+kmq =n

∏mq

i=1

(

a1mmq

m1amq

)ki
1

mi!

=

(Mt+mq−1)!

Mt!(mq−1)!

∏mq

i=1
m

mi
i

mi!

∑Mt

n=0





(

mmq

amq

)MT −n

β0(Mt−n)
· (n+mq−1)!

n!(mq−1)!
·
(

a1mmq

m1amq

)n

·
∏mq

i=1
1

mi!





<
1

(

Mmq

amq

)Mt

·
∑Mt

n=0
1

β0(Mt−n)

(

a1

m1

)n

·
∏mq

i=1 mi
mi

=
1

(

Mmq

m0amq

)Mt
∏mq

i=1 mi
mi

∑Mt

n=0
m

Mt−n

0

β0(Mt−n)

(

a1m0

m1

)n

≤
1

(

Mmq

m0amq

)Mt
∏mq

i=1 mi
mi

∑Mt

n=0
m

Mt−n

0

m0!m
Mt−n

0

(

a1m0

m1

)n

=
1

(

1
m0!

∏mq

i=1 mi
mi

)(

Mmq

m0amq

)Mt

·
1−

(

a1m0
m1

)Mt+1

1−
a1m0

m1

(B.4)

Denote the last expression in Eq. (B.4) as= P ′

I(0). Since a1m0

m1
≤

amq m0

mmq
≤ 1, and

limMt→∞ P ′

I(0) = 0. From Eq. (B.4), we haveP ′

I(0) > PI(0). Note thatPI(0) ≥ 0.

HencelimMt→∞ PI(0) = 0.

Now we prove the second part. To facilitate the proof, the dependency ofPI(0) on

mq is explicitly included inPI(0) as a superscript, i.e.,P (mq)
I (0). Futhermore, since there

is at least one term in{m0ai/mi}i=1:mq
larger than1, we assumem0a1

m1
> 1. For mq = 1

(i.e., there is only one resource), from Eq. (3.17), we have

P
(1)
I (0) =

a
Mt
1

β1(Mt)

∑Mt

k1=0
a

k1
1

β0(Mt−k1)β1(k1)

(B.5)

56

According to the assumption in part (2),m0a1

m1
> 1; from Eq. (3.26) we have,

lim
Mt→∞

P
(1)
I (0) =

1

m
m0
0

m0!
·

(

a1m0
m1

)

−m0+1

a1m0
m1

−1
+

∑m0−1
k1=0

(

a1
m1

)

−k1

k1!

> 0 (B.6)

This means that for the single resource case, the second partof the theorem holds true. To

prove the theorem holds true in general, we need to show that it holds true for∀mq. Now

if P
(mq+1)
I (0) ≥ P

(mq)
I (0) for ∀mq, the second part of the theorem will hold true for∀mq.

In the following, we show this is indeed the case.

For∀mq, Let

P
(mq)
I (0) =

∑

k1+···+kmq =Mt

∏mq

i=1
a

ki
i

βi(ki)

∑Mt

n=0
1

β0(Mt−n)

∑

k1+···+kmq =n

∏mq

i=1
a

ki
i

βi(ki)

(B.7)

Notice that Eq. (B.7) is the same as Eq. (3.17). Formq + 1, we have,

P
(mq+1)
I (0) =

∑

k1+···+kmq +kmq+1=Mt

∏mq+1
i=1

a
ki
i

βi(ki)

∑Mt

n=0
1

β0(Mt−n)

∑

k1+···+kmq +kmq+1=n

∏mq+1
i=1

a
ki
i

βi(ki)

(B.8)

or

P
(mq+1)
I (0) =

∑

k1+···+kmq =Mt

∏mq

i=1
a

ki
i

βi(ki)
+

∑Mt

n=0
1

β0(Mt−n)

∑

k1+···+kmq =n

∏mq

i=1
a

ki
i

βi(ki)
+

∑Mt

kmq+1=1

a
kmq+1
mq+1

βmq+1(kmq+1)

∑

k1+···+kmq =Mt−kmq+1

∏mq

i=1
a

ki
i

βi(ki)

∑Mt

n=1
1

β0(Mt−n)

∑n
kmq+1=1

a
kmq+1
mq+1

βmq+1(kmq+1)

∑

k1+···+kmq =n−kmq+1

∏mq

i=1
a

ki
i

βi(ki)

(B.9)

Eq. (B.9) is written in such a form that the first terms in both the numerator and the

denominator are the same as the numerator and denominator inEq. (B.8), respectively.

Now, let L andR be the second term in the denominator multiplied by the first term in

the numerator, and the first term in the denominator multiplied by the second term in the

numerator, respectively, as given below:

57

L = {

Mt
∑

n=1

1

β0(Mt − n)
·

n
∑

kmq+1=1

a
kmq+1

mq+1

βmq+1(kmq+1)
·

∑

k1+···+kmq =n−kmq+1

mq
∏

i=1

aki

i

βi(ki)
}

·{
∑

k1+···+kmq =Mt

mq
∏

i=1

aki

i

βi(ki)
} (B.10)

R = {

Mt
∑

n=0

1

β0(Mt − n)
·

∑

k1+···+kmq =n

mq
∏

i=1

aki

i

βi(ki)
} · {

Mt
∑

kmq+1=1

a
kmq+1

mq+1

βmq+1(kmq+1)

·
∑

k1+···+kmq =Mt−kmq+1

mq
∏

i=1

aki

i

βi(ki)
} (B.11)

Obviously,P (mq+1)
I (0) ≥ P

(mq)
I (0) if and only if R ≥ L. To showR ≥ L, we

construct another quantityL′ as follows:

L′ =
Mt
∑

n=1

1

β0(Mt − n)
·

n
∑

kmq+1=1

a
kmq+1

mq+1

βmq+1(kmq+1)
·

∑

k1+···+kmq =Mt−kmq+1

mq
∏

i=1

aki

i

βi(ki)

·
∑

k1+···+kmq =n

mq
∏

i=1

aki

i

βi(ki)
(B.12)

To proveR ≥ L, we first show thatL′ ≥ L and thenR ≥ L′.

First, we note that the first two sums in Eq. (B.10) are the same as the first two sums

in Eq. (B.12), except in Eq. (B.12), there is an extra term atn = 0. Clearly, if we could

show that for any givenn > 0, the last two sums in Eq. (B.12) is no less than the last two

sums in Eq. (B.10), we haveL′ ≥ L. In other words, we want to showE ′ ≥ E, where,

E =
∑

k1+···+kmq =n−kmq+1

mq
∏

i=1

aki

i

βi(ki)
·

∑

k1+···+kmq =Mt

mq
∏

i=1

aki

i

βi(ki)
(B.13)

and

E ′ =
∑

k1+···+kmq =Mt−kmq+1

mq
∏

i=1

aki

i

βi(ki)
·

∑

k1+···+kmq =n

mq
∏

i=1

aki

i

βi(ki)
(B.14)

According toCorrolary A given in Appendix C, bothE andE ′ have the sameZ

value, i.e.,Z = Mt + n − kmq+1. In E, let A be the smaller one ofMt andn − kmq+1

58

and inE ′, A′ be the smaller one ofn andMt − kmq+1. Note that ifA′ ≥ A thenE ′ ≥ E,

since, according toCorrolary A, E andE ′ are monotonously increasing function when

A′, A ∈ [1, bZ
2
c]. As a result, to proveL′ ≥ L, we need to show thatA′ ≥ A.

SinceMt ≥ n ≥ kmq+1 ≥ 1, Mt > n − kmq+1, A = n − kmq+1. In E ′, since bothn

andMt − kmq+1 can be smaller thanbZ
2
c, we have,

A′ − A =











Mt − n n > bZ
2
c

kmq+1 n ≤ bZ
2
c

Again, sinceMt ≥ n ≥ kmq+1 ≥ 1, A′ − A ≥ 0 always holds. So we haveE ′ ≥ E,

and therefore,L′ ≥ L.

Finally, we show thatR ≥ L′. We first rewrite Eq. (B.12) as follows:

L′ =
Mt
∑

n=1

1

β0(Mt − n)
·

∑

k1+···+kmq =n

mq
∏

i=1

aki

i

βi(ki)
·

n
∑

kmq+1=1

a
kmq+1

mq+1

βmq+1(kmq+1)

·
∑

k1+···+kmq =Mt−kmq+1

mq
∏

i=1

aki

i

βi(ki)
(B.15)

We note that at any givenn, the part with the last two sums in Eq. (B.11) is no less than the

part with the last two sums in Eq. (B.15), becauseMt ≥ n for ∀n. Furthermore, the parts

involving the first two sums in Eq. (B.11) and Eq. (B.15) are the same, except that the part

in Eq. (B.11) has an extra term atn = 0. Hence, we haveR ≥ L′. Since we have shown

thatL′ ≥ L, R ≥ L and thereforeP (mq+1)
I (0) ≥ P

(mq)
I (0) ≥ P

(1)
I (0) > 0.

APPENDIX C

PROOF OF COROLLARY A

59

60

First, we prove the following theorem.

Theorem A: There areN boxes (N ≥ 2). The capacity of theith box (i = 1, 2, · · · , N) is

ki, and
∑N

i=1 ki = M . SN(y) is the number of different ways to puty identical balls into

theseN boxes. ThenSN(y) is a monotonously increasing function ofy, wheny ∈ [1, bM
2
c],

andSN(y) reaches its maximal value wheny = bM
2
c.

Proof: We prove it by induction.

Basis step (N = 2): we define a step functionu(x) as follows:

u(x) =











1 x > 0

0 x ≤ 0
(C.1)

S2(y) can be calculated as follows: first, assume that there is no capacity constraints

for both boxes (i.e.k1 = ∞, k2 = ∞). Then there are(y+1)!
y!·1!

different ways to puty balls

into these two boxes. However, since the size of the boxes is not infinity, we can only put

at mostk1 balls in box1, so the number of ways by which we can put more thank1 balls

in the 1st box must be excluded, which is
∑y

j1=1 u(j1 − k1). Similarly, for the 2nd box,

there are
∑y

j2=1 u(j2 − k2) number of different ways needs to be excluded. Therefore, for

y, y + 1 ≤ bM
2
c, we have,

S2(y) =
(y + 1)!

y! · 1!
−

y
∑

j1=1

u(j1 − k1) −

y
∑

j2=1

u(j2 − k2) (C.2)

S2(y + 1) =
(y + 2)!

(y + 1)! · 1!
−

y+1
∑

j1=1

u(j1 − k1) −

y+1
∑

j2=1

u(j2 − k2)

=
(y + 2)!

(y + 1)!
−

y
∑

j1=1

u(j1 − k1) −

y
∑

j2=1

u(j2 − k2) − u(y + 1 − k1)

−u(y + 1 − k2) (C.3)

61

We further have,

S2(y + 1) − S2(y) =
1

y + 1
·
(y + 1)!

y!
− [u(y + 1 − k1) + u(y + 1 − k2)]

= 1 − [u(y + 1 − k1) + u(y + 1 − k2)] (C.4)

We want to showS2(y+1)−S2(y) ≥ 0 or equivalently,[u(y+1−k1)+u(y+1−k2)] ≤ 1.

Foru(y + 1 − k1)

If (y+1−k1) ≤ 0 thenu(y+1−k1) = 0, [u(y+1−k1)+u(y+1−k2)] = u(y+1−k2) ≤ 1,

andS2(y + 1) − S2(y) ≥ 0.

else if(y + 1 − k1) > 0 thenu(y + 1 − k1) = 1 andy + 1 > k1

u(y + 1 − k2) = u(y + 1 − M + k1), becausek2 = M − k1.

∵ (y + 1 − k1) > 0,

∴ y + 1 > k1. ∵ y + 1 ≤ bM
2
c,

∴ k1 < y + 1 ≤ bM
2
c

∴ (y + 1−M + k1) < 0, ∴ u(y + 1− k2) = u(y + 1−M + k1) = 0 and[u(y + 1− k1) +

u(y + 1 − k2)] ≤ 1.

∴ S2(y + 1) − S2(y) ≥ 0, i.e., the theorem holds true forN = 2.

Induction hypothesis (N ≥ 2): SN(y + 1) ≥ SN(y), for y, y + 1 ≤ bM
2
c

Induction step: now considerN +1 boxes andy balls (y, y+1 ≤ bM
2
c). Here we consider

the firstN boxes as one group and the(N +1)th box as the other group. Consider puttingj

balls into the(N + 1)th box, and the rest(y − j) balls into the firstN boxes. The different

ways to put(y − j) balls into the firstN boxes is given bySN(y − j). We may putj

(j ∈ [0, kN+1]) balls into the(N + 1)th box. We have,

SN+1(y) =

y
∑

j=0

u(kN+1 − j)SN(y − j) (C.5)

Similarly, we have,

SN+1(y + 1) =

y+1
∑

j=0

u(kN+1 − j)SN(y + 1 − j) (C.6)

62

Every term in Eq. (C.6), i.e.,u(kN+1 − j)SN(y + 1 − j), is no less than the term in Eq.

(C.5), sinceSN(y + 1 − j) ≥ SN(y − j) (induction hypothesis). Furthermore, Eq. (C.6)

has one more termu(kN+1− (y+1))SN(y+1− (y+1)), which is non-negtive. Therefore,

SN+1(y + 1) ≥ SN+1(y), for y, y + 1 ≤ bM
2
c

Corollary A: For polynomial functionF =
∑

k1+···+kn=A

∏n
i=1 a

k1
i

i

∑

k1+···+kn=B

∏n
i=1 a

k2
i

i , andA + B = Z, Z is a constant. AssumeA ≤ B. Then F reaches

its maximal value whenA = bZ
2
c, and F is a monotonously increasing function of A, for

A ∈ [1, bZ
2
c]

Proof: We define:

F =
∑

k1+···+kn=A

n
∏

i=1

a
k1

i

i

∑

k1+···+kn=B

n
∏

i=1

a
k2

i

i

=
∑

k0
1+···+k0

n=Z

C(k0
1, · · · , k0

n) ·
n

∏

i=1

a
k0

i

i (C.7)

We haveA + B = Z, andk1
i + k2

i = k0
i . C(k0

1, · · · , k0
n) (denoted byC for convenience) is

the coefficient for each term in Eq. (C.7). For givenA andB, the value ofF is determined

by C. The question of how to calculateC can be mapped to a combinatorial problem

below:

Suppose we haven boxes. The capacity of theith box isk0
i (

∑n
i=1 k0

i = Z). It turns out

thatC is the number of ways to putA identical balls into these boxes. This combinatorial

problem is addressed inTheorem A. SinceA + B = Z, andZ is a constant, we just

have one variable. For convenience, we assume thatA is the smaller than B. According

to Theorem A, C reaches its maximal value whenA = bZ
2
c, andC is a monotonously

function ofA, for A ∈ [1, bZ
2
c]. Therefore, F reaches its maximal value whenA = bZ

2
c,

and F is a monotonously function of A, forA ∈ [1, bZ
2
c].

REFERENCES

[1] D. Towsley, “ Queuing Network models with state-dependent routing”, Journal of

ACM, Vol. 27, No. 2, pp. 323-337, Apr. 1980.

[2] H. Che, C. Kumar, and B. Menasinahal, “ A Fast Latency Bound Estimation Algorithm

for a Multithreaded Network Processor”,the 18th IASTED International Conference on

Parallel and Distributed Computing and Systems (PDCS), Nov. 2006.

[3] H. Jung, M. Ju, H. Che, and Z. Wang, “ A Fast Performance Analysis Tool for Mul-

ticore, Multithreaded Communication Processors”, in Proc.of the 11th IEEE High As-

surance Systems Engineering Symposium (HASE), Dec. 2008.

[4] F. Baskett, K.M. Chandy, R.R. Muntz and F. Palacios, “ Open, Closed, and Mixed

Networks of Queues with Different Classes of Customers ”,Journal of the ACM22,

No. 2, 248-260, Apr. 1975.

[5] G. Bolch, S. Greiner, H. de Meer and K. S. Trivedi, “ Queueing Networks and Markov

Chains ”,John Wiley, 2nd edition, 2006.

[6] “ Teletraffic Engineering ”, ITU-D Study Group 2, 2002.

[7] Intel, IXP1200 developer workbench, provided by IXA SDK2.x

[8] C. K. Chow. Determination of Cache’s Capacity and its Matching Storage Hierarchy,

IEEE Transactions on Computers, c-25, 157 - 164, 1976. 811 - 825, 1992.

[9] H. Jung, Ph.d Dissertation.

[10] H. Che, C. Kumar, and B. Menasinahal, “ Fundamental NetworkProcessor Perfor-

mance Bounds”,the 4th IEEE International Symposium on Network Computing and

Applications (IEEE NCA05).

63

64

[11] J. R. Jackson, “ Jobshop-like Queuing Systems”,Management Science, Vol. 10, pp.

131-142, 1963.

[12] A. Thomasian and P. F. Bay, “ Integrated Performance Models for Distributed Pro-

cessing in Computer Communication Networks”,IEEE Transactions on Software En-

gineering, Vol. SE-11, No.10, pp. 1203-1216, Oct. 1985.

[13] I. F. Akyildiz and A. Sieber, “ Approximate Analysis of Load Dependent General

Queuing Networks”,IEEE Transactions on Software Engineering, Vol. 14, No. 11, pp.

1537-1545, Nov. 1988.

[14] P. P. Chen, “ Queuing Network Model of Interactive Computing Systems”, in Proc. of

the IEEE, Vol. 63, No. 6, June 1975.

[15] D. Ghosal and L. Bhuyan, “ Performance Evaluation of a Dataflow Architecture”’,

IEEE Transactions on Computers, Vol. 39, No. 5, pp. 615- 627, May 1990.

[16] N. Lopez-Benitez and K. S. Trivedi, “ Multiprocessor Performability Analysis”,IEEE

Transactions on Reliability, Vol. 42, No. 4, pp. 579-587, Dec. 1993.

[17] S. S. Nemawarkar, R. Govindarajan, G. R. Gao, and V. K. Agarwal, “ Analysis of

Multithreaded Multiprocessors with Distributed Shared Memory”, in Proc. ofthe Fifth

IEEE Symposium on Parallel and Distributed Processing, Dec. 1993.

[18] B. Smilauer, “ General Model for Memory Interference in Multiprocessors and Mean

Value Analysis”,IEEE Transactions on Computer, Vol. 34, No. 8, pp. 744-751, Aug.

1985.

[19] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. C. Weiser, “ Many-

Core vs. Many-Tthread Machines: Stay Away From the Valley”,IEEE Computer Ar-

chitecture Letter, vol. 8, no. 1, pp. 25-28, Jan. 2009.

[20] A. Agarwal, “ Performance Tradeoffs in Multithreaded Processors”,IEEE Transac-

tions on Parallel and Distributed Systems, Vol. 3, No. 5, pp. 525-539, Sept. 1992.

65

[21] X. E. Chen and T. M. Aamodt,“ A First-Order Fine-Grained Multithreaded Through-

put Model”, in Proc. ofthe 15th IEEE International Symposium on High-Performance

Computer Architecture (HPCA), Feb. 2009.

[22] V. Bhaskar, “ A Closed Queuing Network Model with MultipleServers for Multi-

threaded Architecture”,Journal of Computer Communications, Vol. 31, pp. 3078-89,

2008.

[23] Y. N. Lin, Y. D. Lin, Y. C. Lai, “Thread Allocation in Chip Multiprocessor Based

Multithreaded Network Processors”, inProc. of the 22nd International Conference on

Advanced Information Networking and Applications (AINA 2008), pp.718-725, Mar.

2008.

[24] S. Subramaniam, M. Prvulovic, and G. H. Loh, “PEEP: Exploiting Predictability of

Memory Dependences in SMT Processors”, inProc. of the 14th IEEE International

Symposium on High-Performance Computer Architecture (HPCA), Feb. 2008.

[25] H. Jung, M. Ju, H. Che, “A Theoretical Framework for Design Space Exploration of

Manycore Processors”,In the Proceeding ofMASCOTS 2011, July, 2011.

[26] M. Ju, H. Jung, H. Che, “A Performance Analysis Methodology for Multi-core, Mul-

tithreaded Processors”, submitted toIEEE Transactions on Computers.

[27] M. Ju, H. Jung, H. Che, “Fast Performance Analysis of Many-core Processors”, to

appear as an invited chapter in the book on “Scalable Computing and Communications:

Theory and Practice” editted by S. Khan, L. Wang, and A. Zomaya, John Wiley & Sons,

2011.

[28] J. Anselmi, P. Cremonesi, “A unified framework for the bottleneck analysis of multi-

class queuing networks”,Performance Evaluation,Vol. 77, No. 4, pp. 218-234, April,

2010.

66

[29] P. Denning, J. Buzen, “The Operational Analysis of Queueing Network Mod-

els”,Journal of ACM Computing Surveys (CSUR), Vol. 10, No. 3, pp. 225-261 Septem-

ber, 1978.

[30] G. Bolch, S. Greiner, H. Meer, K. S. Trivedi,Queuing Networks and Markov Chains,

2nd Edition, A John Wiley & SONS, Inc., 2006.

[31] D. Genbrugge and L. Eeckhout, “Chip Multiprocessor Design Space Exploration

through Statistical Simulation”,IEEE Transactions on Computers, Vol. 58, No. 12,

pp. 1668-1681, Dec. 2009

[32] E. Ipek , S. A. McKee , K. Singh , R. Caruana , B. R. de Supinski, and M. Schulz,

“Efficient architectural design space exploration via predictive modeling”,ACM Trans-

actions on Architecture and Code Optimization, Vol.4 No.4, pp.1-34, Jan. 2008

[33] S. Khan, P. Xekalakis, J. Cavazos, and M. Cintra, “Using Predictive Modeling for

Cross-Program Design Space Exploration in Multicore Systems”, in Proc. of the

16th International Conference on Parallel Architecture andCompilation Techniques

(PACT), Sept. 2007

[34] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. “Automatically Characterizing

Large Scale Program Behavior.” in Proc. ofIntl. Symp. On Architectural Support for

Programming Languages and Operating Systems, pp. 45-57, December 2002.

[35] R. Wunderlich, T. F. Wenish, B. Falsafi, and J. C. Hoe. “SMARTS: Accelerating Mi-

croarchitectural Simulation via Rigorous Statistical Sampling”, in Proc. of Intl. Symp.

on Computer Architecture, pp. 84-95, June 2003.

[36] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. “A Predictive Model for Su-

perscalar Processor Performance”, in Proc. ofIntl. Symp. on Microarchitecture, pp.

161-170, Dec. 2006.

[37] B. C. Lee and D. M. Brooks. “Accurate and Efficient RegressionModeling for Mi-

croarchitectural Performance and Power Prediction”, in Proc. of Intl. Conf. on Archi-

67

tectural Support for Programming Languages and Operating Systems, pp 185-194,

Oct. 2006.

[38] C. Hughes and T. Li, “Accelerating Multi-Core Processor Design Space Evaluation

Using Automatic Multi-Threaded Workload Synthesis”, in Proc. of IEEE Int’l Symp.

Workload Characterization (IISWC), pp. 163-172, Sept. 2008.

[39] S. Nussbaum and J.E. Smith, “Statistical Simulation ofSymmetric Multiprocessor

Systems”, in Proc. of35th Ann. Simulation Symp., pp. 89-97, Apr. 2002.

[40] T. Wenisch, R. Wunderlich, B. Falsafi, and J. Hoe, “TurboSMARTS: Accurate mi-

croarchitecture simulation sampling in minutes.”,SIGMETRICS Performance Evalua-

tion Review,33, 1, pp.408-409 2005

[41] J. Yao, Y. Luo, L. Bhuyan, and R. Iyer, “ Optimal Network Processor Topologies for

Efficient Packet Processing”, in Proc. ofIEEE GLOBECOM, Nov. 2005.

[42] N. Weng and T. Wolf, “ Pipelining vs Multiprocessors - Choosing the Right Network

Processor System Topology”, in Proc ofAdvanced Networking and Communications

Hardware Workshop (ANCHOR 2004) in conjunction with ISCA 2004, June 2004.

[43] L. Yang, T. Gohad, P. Ghosh, D. Sinha, A. Sen, and A. Richa,“ Resource Mapping

and Scheduling for Heterogeneous Network Processor Systems”, in Proc. ofSympo-

sium on Architecture for Networking and Communications Systems, 2005.

BIOGRAPHICAL STATEMENT

Miao Ju was born in China, in 1983. He received his B.S. degree from BeHang

University, Beijing, China, in 2005, his M.S. degrees from TheUniversity of Texas at

Arlington in 2007 in Computer Science and Engineering. His current research interest is

in the area of parallel architecture and processing in computer system. He is a member of

IEEE society.

68

