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ABSTRACT

PERFORMANCE ANALYSIS AND RESOURCE ALLOCATION FOR
MULTITHREADED MULTICORE PROCESSORS

MIAO JU, Ph.D.

The University of Texas at Arlington, 2011

Supervising Professor: Hao Che

With ever expanding design space and workload space incurtdtiera, a key chal-
lenge to program a multithreaded multicore processor is toogwvaluate the performance
of various possible program-task-to-core mapping chodeesprovide effective resource
allocation during the initial programming phase, when tkhecetable program is yet to
be developed. In this dissertation, we put forward a thieael modeling methodol-
ogy to meet this challenge. The idea is to model thread-lagglities only and over-
look the instruction-level and microarchitectural detaiA model developed at this level
assumes the availability of only a piece of pseudo code thiatans information about
the thread-level activities, rather than an executablgnara that provides instruction-by-
instruction information. Moreover, since the thread-lamwedeling is much coarser than
the instruction-level modeling, the analysis at this ldwehs out to be significantly faster

than that at the instruction level.

The above features make the methodology particularly ablerfar fast perfor-

mance evaluation of a large number of program-task-to-o@pping choices during the

\



initial programming phase. Based on this methodology, is digsertation we further de-
veloped: 1) an analytic modeling technique based on quethiegry which allows large

design space exploration; and 2) a framework that allowgnara tasks to be mapped to
different core resources to achieve maximal throughpubpaance for many-core pro-
cessors. Case studies against cycle-accurate simulatoand#¢rate that the throughput
estimated using our modeling technique is consistentliiiwi®% of cycle-accurate simu-

lation results.

Vi



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . e e e v
ABSTRACT . . . . e v
LISTOFFIGURES . . . . . . . . e e IX
LISTOF TABLES . . . . . . e X
Chapter Page
1. INTRODUCTION . . . . . e e e e e 1
2. METHODOLOGY . . . . . . e e 4
2.1 Introduction . . . . . . . ... 4
22 CMPOrganization . . . . . . . . . . 5
23 WorkLoad . ... .. . .. 6
24 DesignSpace . . . . . ... 8
25 RelatedWork . . . . . . . . 10
3. ANALYTIC MODELING TECHNIQUE . . . .. .. ... ... ... ..... 11
3.1 Basicldea . . . . .. . . . ... 11
3.2 DesignSpace . . . . . . e e e 13
3.3 Performance Measures . . . . . . . .. ... ... e 7.1
34 Testing. . . . . . e e 20
341 TestCase . . .. ... .. . . 20
3.4.2 Simulation and Analytic Model Setup . . . . . . ... ... ... 22
343 Results . . ... . 23

3.5 Bottleneck Identification for Sigle Core Processors . . ...... . . ... 25

3.5.1 Model . . . . . . 25

Vii



352 MainResults . . ... ... ... 27
3.5.3 Thread and Cache Resource Provisioning . . . . ... .. ... 32.
3.6 RelatedWork . . . .. . . . . ... 33
4. A FRAMEWORK FOR FAST PROGRAM-TASK-TO-CORE MAPPING . ... 35

4.1 Introduction . . . . . . . . .. 35
4.2 Program-Task-to-CoreMapping . . . . .. ... .. .. ... ... .. 37
4.3 Testing of General Conditions . . . . . . . . .. .. .. ... .. ... 41
4.4 Workload Intensity Assignment. . . . . . .. ... .. ... .. ... 42
45 RelatedWork . . . . . ... 47
5. CONCLUSION AND FUTUREWORK . . . . . . . ... . . . . .. 49
Appendix
A. CODE PATH . . . . e 50
B. SINGLE CORE MAIN RESULTS . . . . . .. . .. .. .. .. .. ... ... 53
C. PROOF OF COROLLARY A . . . . e e 59
REFERENCES . . . . . . . e 63
BIOGRAPHICAL STATEMENT . . . . . . . . . . e 68

viii



Figure
21
2.2
2.3
3.1
3.2
3.3
3.4
3.5
3.6
4.1
4.2
4.3
4.4
4.5

LIST OF FIGURES

Page
CMP Organization . . . . . . . . . . . e e 5
T (M gy ke, Tk = s MM ks EM ETMp k) = =« e e e e e e e e e e 7
Design Space . . . . . . . . e e 9
Execution Sequence for Coarse-GrainedCore . . . . ... . ..... 11
Queuing Network Models: (a) Two Components (b) Multiple@onents . 12

Pipeline configuration for Generic IP forwarding and &ag Filtering . . . 21
Pipeline configuration for ATM/Ethernet Forwarding . . . . . ... ... 22
Closed Queuing Network Model for Bottleneck Core . . . . . . ...... 23
Single Core Queuing Network Model . . . . . .. ... ... ... .... 26
CMP Model at Thread Level . . . . . .. ... ... ... .. .. ..... 37
Exponential Distribution . . . . . . . . . ... e 41
Pareto Distribution . . . . . . .. ... L 41
Iterative Procedure for Multicore Decoupling . . . . . . . ... ... .. 45
lterative Algorithm . . . . . . . . . . ... 46



Table
3.1
3.2
3.3
3.4

LIST OF TABLES

Page
Component modeling using queuing models with local lzsa&guations . . 14
The AM versus CAS(1XP1200) f@seneric IPv4 forwarding . . . . . . . . 24
The AM versus CAS(I1XP1200) f&kTM/Ethenet IP Forwading . . . . . . 24
The AM versus CAS(1XP1200) fdrayer-2 Filtering . . . . . . ... ... 25



CHAPTER 1
INTRODUCTION

As chip multiprocessors (CMPs) become the mainstream psoceschnology, chal-
lenges arise as to how to partition application tasks andtimap to one of many possible
core/thread configurations (i.e., program-task-to-coappmg) to achieve desired perfor-
mance in terms of e.g., throughput, delay, power, and resamansumptions. There are two
scalability barriers that the existing CMP analysis apphneade.g., simulation and bench-
mark testing) find difficult to overcome. The first barrier e tdifficulty for the existing
approaches to effectively analyze CMP performance as théersof cores and threads of
execution become large. The second barrier is the diffidaltyhe existing approaches to
perform comprehensive comparative studies of differecttitectures as CMPs proliferate.
The first barrier is particularly problematic for commurnioa processors (CPs) . First, to
maximize the throughput performance, a CP generally emphassive core-level pipeline
and parallelism for packet processing. The number of plesgilpeline/parallel configu-
rations grows exponentially as the number of cores inceeaSecond, the workload for a
CP is a complex function of both packet arrival process andurexof code paths at the
thread level and there are virtually unlimited number of kimads to be tested as a result
of this. The existing CP analysis tool cannot help identifyawiypical” workloads should
be tested, which are assumed to be determined by the user tdh rather than part of
the tool design. This makes initial performance analysisrogram-task-to-core mapping
using an existing tool extremely difficult. In addition toege barriers, how to analyze

the performance of various possible design/programmirmgcels during the initial CMP
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design/programming phase is particularly challengingenvthe actual instruction-level

program is not available.

To meet the above challenges, a solution must satisfy th@nfimlg three stringent
requirements. First, it must be fast enough to allow a patytarge number of mapping
choices to be tested within a reasonable amount of time. rise¢le performance data it
provides must be reasonably accurate. Third, it must natnasghe availability of exe-
cutable programs as input for testing. These three regem&pose significant challenges
to the development of such a solution. On one hand, to pra@dsonably accurate per-
formance data, the solution must take into account proogsitails that may contribute
significantly to the system-level performance, such astitesat-level activities, and mem-
ory and 1/O resource contentions at the thread, core, andmysvels. On the other hand,
indiscriminately including various processing detailssirch a solution can quickly slow
down the processing, rendering the solution useless.

In this dissertation, we present a novel CMP analysis metbggido meet the above
requirements (Chapter 2 and [26][27]). In the proposed nutlogy, two unique features
are employed to overcome the scalability barriers. Fingtphethodology is coarse-grained,
which works at the thread level, and overlooks instructerel and microarchitectural de-
tails, except those having significant impact on thread lggdormance. This coarse gran-
ularity is particularly amenable to large design spaceaspion and theoretical analysis.
Second, the approach taken for the design space exploiationr methodology is un-
conventional. Instead of exploring the design space basedumpled points in the space,
the methodology directly study the general performancegnttes of system classes over
the entire design space. Since understanding the genefairmpance properties over the
entire design space results in the understanding of thenpesihce at any point in the de-

sign space, this approach is particularly useful for thégoerance analysis in the initial
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programming phase, when a desirable design choice/poist beuidentified from a large

number of possible choices/points in the design space.

Based on the proposed methodology, a simulation tool, a ggewgtwork modeling
technique and a framework for fast program-task-to-corppimay are developed. The sim-
ulation tool is generic, in the sense that it can be adaptedrious CMP architectures, and
hence is also viable for large design space exploratiorail3edf the simulation tool can be
found in [3][9]. The queuing network modeling techniquepdes closed-form solutions
in a large design space, covering various thread scheddlswplines, memory access
mechanisms, and processor organizations (Chapter 3 and @teover, the framework
for fast program-task-to-core mapping (Chapter 4 and [2@Yide solutions as to how to
effectively identify the most desirable program-taskstive mapping that leads to highest
overall system performance.

This dissertation makes the following major contributioR#st, it proposes a per-
formance analysis methodology for multithreaded mulicprocessors, which is able to
characterize the general performance properties for a vadety of CMP architectures
and a large workload space at coarse granularity. Secorsg@dban this methodology,
it establishes a modeling technique which maps large dassmultithreaded multicore
processors to queuing network models with closed-formtwis in a large design space.
Third, it develops a novel framework and resulting fast atgms to enable program-task-
to-core mapping that maximizes the overall system throughbplization.

The rest of the dissertation is organized as follows. Chaptéescribes the pro-
posed analysis methodology. Chapter 3 presents the queeiwgnk modeling technique.
Chapter 4 proposes the framework for program-task-to-caeping. Finally, Chapter 5

concludes the dissertation.



CHAPTER 2
METHODOLOGY

2.1 Introduction

The main idea of our methodology is to capture only actisitieat have major impact
on the thread level performance. In other words, the instmdevel and microarchitec-
tual details are overlooked, unless they trigger eventsrttzy have significant effects at
the thread level, such as an instruction for memory access#uses the thread to stall or
instructions corresponding to a critical region that causerialization effect at the thread
level. Correspondingly, all the components including CPldshes, memories, and inter-
connection networks are modeled at a highly abstract leveklooking microarchitectual
details, just enough to capture the thread level activittes example, for a CPU running
a coarse-grained thread scheduling discipline and a mewmitinya FIFO queue, they are
modeled simply as queuing servers running a coarse-gréimedd scheduling algorithm
and FIFO discipline, respectively.

The following sections describe, at the thread level, theeting of the CMP orga-
nization, the workload, and the design space, separatéhze $n the CMP family, CPs
are particularly difficult to model, as explained in Chapteinlthe rest of this dissertation
and without loss of generality, we discuss CMP in the contéx@m® All we need to note
is that for a CP, a program task mapped to a thread in a core doomes packet and the
packet arrival process and packet mixture (or code pathumaxtletermining the workload

characteristics, rather than a program or program taskietben that core.



2.2 CMP Organization
We consider a generic CP organization depicted in Fig. 2.1s diganization fo-

cuses on the characterization of multicore and multithfeatures common to most of
the CMP architectures, leaving all other components beingnsarized in highly abstract
forms. More specifically, in this organization, a CP is vievgasherically as composed of
a set of cores and a set of on-chip and/or off-chip suppodorgponents, such as I/O in-
terfaces, memories, level one and level two caches, sgacieéssing units, scratch pads,
embedded general-purpose CPUs, and coprocessors. Thesetsigpcomponents may
appear at three different levels, i.e., the thread, cord,system (including core cluster)
levels, collectively denoted ad E My, M EM, andM E Mg, respectively. Each core may
run more than one thread and the threads are scheduled baaegven thread scheduling

discipline.

CMP
[® _.-".'F.u—. .‘I
'.-..-.._'..r"r.-..-..-"_ \
_u-'.-..-r.
. b I|I||I|:.III _—
L J
[ J
- - — 5 |
T A
ME M4 Tivead
L

Figure 2.1. CMP Organization.
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Cores may be configured in parallel and/or multi-stage pipe(a two-stage con-

figuration is shown in Fig. 2.1) and there is a packet streamireg in from one side and
going out through the other side. Packet processing taskbmpartitioned and mapped to
different cores at different pipeline stages or differemtes at a given stage. A dispatcher
distributes the incoming packets to different core pipditbased on any given policies.
Backlogged packets are temporarily stored in an input huffesmall buffer may also
present between any two consecutive pipeline stages tdlacklogged packets temporar-
ily. Packet loss may occur when any of these buffers overflow.

Clearly, the above organization also applies to non-CP basd@sClVhe only differ-
ence is that in this case there is no packet arrival or defgapttwcesses and tasks mapped
to different cores are generated by one or multiple apptinatmapped to those cores. This
dissertation is concerned with the CP throughput, latermay,less performance only and
the power and memory resource constraints are assumed tetb&ms implies that we do

not have to keep track of memory or program store resourdahbilgies or power budget.

2.3 Work Load

At the core of our methodology is the modeling of the worklodeffined as a map-
ping of program tasks to threads in different cores, knowcoa® paths. For tasks mapped
to a given thread, a piece of pseudo code for those tasks camiften. Then a unique
branch from the root to a given leaf in the pseudo code is difisea code path associated
with that thread. A specific packet processing or instaotiadf program execution is as-
sociated with a specific code path, or a sequence of eventhehthread needs to execute
to fulfill the tasks. For a CP, the program tasks mapped to athmeay be on-and-off,
which is a function of the packet arrival process. Moreowdrat code path a thread may

need to handle in a given time period is dependent on thelanixture of packets of dif-



7
ferent types arriving in that time period, each being aggediwith some distinct program

tasks to be fulfilled, known as a mixture of code paths. Fongta, while an IP packet
may subject to the entire cycle of both layer 2 and layer 3 gssing, resulting in a long
code path, a packet carrying I1S-IS routing information isMarded to the control plane
immediately after it is identified at layer 2, which leads teesty short code path. In this
dissertation, a code path is defined at the thread level hwkicomposed of a sequence of
segments corresponding to different events that havefgigni impact on the thread-level
performance. For each segment, we are only concerned vétbethment length in terms
of the number of core cycles. It can be formally defined a®val

T (My;ma g, bk, Togs - - Man ks Ear, kT, ) COde path k with event, . occurred
at thet,;, -th core clock cycle and with event duratiop,, wherek = 1,--- , K and
1=1,2,---, My ; Kis the total number of code paths in the pseudo code;Mpds the
total number of events in the code path k.

A graphic representation of such a code path is given in ER). 2

M i bk Tk M et B m L T L
Myt Tre! Ma g bapTag P e Bar, o Toe
1 1
Y i
l
i i
- >

Flgure 22Tk<Mk, my g, th, Tk, " s UM, ks th,kTMk,k>-

We note that a code path thus defined is simply a sequencerdbevih event inter-
arrival timest; 1, — tix = 7, fori = 1,2,--- , M, — 1. The eventsn,, €CPU are
represented by the white segments and the corresponging the number of core cycles
the CPU spends on this thread in this segment. All other eantseparated by the CPU

events. For an event,;, € MEMyp, MEMe, or MEMsg, 7, represents the unloaded
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resource access latency. An event can be introduced to @tciouhe serialization effect

caused by, for example, a critical region. Hence, the lenfthe code pathl}, , denoted

as|Ty| , is the total duration of code path k handled by a thread irati®ence of resource

contention, i.e., without waiting times due to contentiathvether threads for CPU, mem-
ory, and any other resource accesses. An event is definecgkdlains expected to have a
significant impact on the thread-level activities. Curngnite have defined the following
four types of events: (1) CPU events; (2) resource accesssevdrich may cause sig-
nificant delay and thread-level interactions (i.e., conssxtching), i.e.,m;, € M EMor,
MFEM¢, or M EMg; and (3) events that cause serialization effects, e.gifiaatregion.
More types of events can be incorporated if they are expdotedntribute significantly to

the thread-level activities.

2.4 Design Space

We want the design space to be as large as possible to encoapasany CMP
architectures and workloads as possible. Fig. 2.3 depicts a8 design space. Itis a five
dimensional space, including resource-access dimenitggd-scheduling-discipline di-
mension, program dimension, number-of-thread-per-coremsion, and number-of-core
dimension. Fig. 2.3 also shows the part (i.e., the small acon¢he left) that has been
(incompletely) explored by the existing work using queunggwork modeling techniques
(see Section 3.6 for more details). Clearly, the existingkvaoly covers a tiny part of the
entire design space. The thread-scheduling-disciplimedsion determines what CPU or
core type is in use. The existing commercial processors neegfiained, coarse-grained,
simultaneous multithreading (SMT), and hybrid coarse-fametgrained thread scheduling

disciplines. Some systems may also allow a thread to be tedjfeom one core to another.
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The resource-access dimension determines the threadsaoeetanisms to CMP

resources other than CPU. It may include memory, cacheconeection network, and
even a critical region. The typical resource access meshaninclude first-come-first-
serve (FCFS), process sharing (parallel access), paedielirces (e.g., memory bank), and
pipelined access. For cache access, a cache hit model maydlbe incorporated, which
may be load dependent. The program dimension includes afliljpe programs. This
dimension is mapped to a workload space, involving all fiesiode path mixtures, for a
given type of processor organization. The number-of-caceraumber-of-thread-per-core
dimensions determine the size of the CMP in terms of the nusnblecores and threads.
The number-of-thread-per-core dimension also needs tadisedynamic multithreading,
where the number of threads used for a program task may cloaegéme, due to on-and-
off packet arrivals or the variation of the level of para#et in a program.

In summary, this chapter described a methodology that gesva coarse-granular,
thread-level view of a CMP in general and a CP in particularemms of its organization
and design space. Based on this methodology, the followinghapters demonstrate how
an analytical modeling technique and a framework for faggmm-task-to-core mapping

can be developed to allow much of the design space in Figoza explored.

Loaddependent_sp-Resource Access

I 4,

Space

Exploitedemory Bay H :! Program(workload)

Dynamic I\/éultithreading‘i
1024 n b ¥
P NumberofiThread-per-Core

iNumberof-Cores

CoarseFine—graigtzed ]
ST

Thread Migratioig .~

ThreadSchedulingDisciplin

e

Figure 2.3. Design Space.
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2.5 Related Work

Traditionally, simulation and benchmark testing are theoh@nt approaches to eval-
uate the processor performance. Unfortunately, theseappes quickly become ineffec-
tive as the number of cores increases. Hence, there havertsgnalternative approaches
in an attempt to address this scalability issue. Statissitaulation (e.g., [31][38][39])
makes the short synthetic trace from a long real prograne @ad save time by simulating
the short statistic trace. Partial simulation (e.g., [38][40]) reduces total simulation time
by selectively measuring a subset of benchmarks. The depigge exploration based on
intelligent predictive algorithms trained by sampled denerks (e.g., [32][33][36][37])
can predict the performance in the entire design space frmmlations of a given bench-
mark from a small set of the design space. However, mosimegigpproaches have focused
on the exploration of microarchitectural design space amckty become ineffective as the
numbers of cores and threads in the system increase. Maydoeg@ace at which the mul-
ticore architectures proliferate makes it difficult for tagisting approaches to keep up,
especially in terms of comparative performance analystftdrent architectures. Our ap-
proach makes it possible to quickly identify the areas oénests in a large design space
at coarse granularity, in which the existing finer grantjarbol can work efficiently to

pinpoint the optimal operation points.



CHAPTER 3
ANALYTIC MODELING TECHNIQUE

This chapter is organized as follows. Sections 3.1-3.®dhtces the analytic mod-
eling technique. The technique is then tested against-@adarate simulation in Section
3.4. Application of this technique to the bottleneck anilysr multithreaded single-core

processors is given in Section 3.5. Finally, the relatedkismreviewed in Section 3.6.

3.1 Basicldea

We start with a simple example to bring out the main ideas hed formalize the
modeling technique. Consider a code path with one memorysaarethe left in Fig. 3.1.
Now assume the CPU is coarse-grained and the memory is FIFED. fWo active threads
loaded with the same code path in Fig. 3.1 have the executignesices as given on the
rightin Fig. 3.1. The yellow segments are the thread watiimgs. Now, consider a closed
gueuing network composed of two FIFO queuing servers, nmaglal coarse-grained CPU
and an FIFO memory, as shown in Fig. 3.2(a). Assume that #ireréwo jobs circulating

in this network, modeling the two actively threads.

[ [ | [ | [ [ |
Code Path [ 1 11 |

1 cru >
]

Figure 3.1. Execution Sequence for Coarse-Grained Core.

11



12

poi1
—>

Po2
—>

N
B Youy Toutes fot g
| PO,N"
CPU Memory CPU _gjl:D_O_

PoN
—

(a) (b

Figure 3.2. Queuing Network Models: (a) Two Components (b)tidle Components.

As one can see, without considering the queuing times oathveaiting times, a
thread making a round-trip, CPU-to-Memory-to-CPU, plus CBW4emory, generates
three segments corresponding to the code path in Fig. 3.1hel&ervice times at the
CPU and the memory exactly match the corresponding segmagthkeof the code path,
this queuing network model exactly emulates the execuegence for that thread. Now,
with two threads, it is not difficult to convince ourselvesathklue to the queuing effect, the
two threads making such a trip will generate the same patiethe execution sequence
as the one on the right in Fig. 3.1. Again, if the service tiragactly match the segment
lengths, the thread circulation exactly recovers the exatcsequence in Fig. 3.1.

So far we have been trying to emulate the actual executiocegsofor the threads,
which is no different from simulating the actual processhatthread level. Now we need
to realize that the queuing models are in essence stoctmstels, which are meant to
capture long-run stochastic/statistic effects of a reslesy (open queuing network models
may need to be used if the workload may be on and off, which hewean always be
transformed into closed queuing network models [5]). Ireotiords, the service time for
a queuing server is in general a random number, followingvargdistribution, denoted
asu;, for queuing servef. As a result, it is the distribution of the segment lengthst, n

the individual segment lengths that should be used to cterae the service time. More-
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over, for a code path that characterizes a workload for agssmr with multiple parallel

resources, the corresponding closed queuing network, @steé in Fig. 3.2(b), also in-
volves a routing probability,; for a thread to go to the i-th resource upon exiting the CPU
server. This parameter should also be evaluated staligtimacounting the frequency of
such occurrences in the long-run code paths handled by tiessds.

From the above examples, we conclude that at the thread lveltypes of CMPs
with M components and any long-run workloads can be genenatideled as a closed
gueuing network with M queuing servers of various servigesyin terms of queue schedul-
ing disciplines and a workload spacg:(}, {p;;}) spanned by various possible combina-
tions of service time distributions and routing probal@it The central task is then to
develop mathematical techniques to analytically solve ¢losed queuing network model.
The solution should be able to account for as many servicestgnd as large a workload

space as possible, aiming at covering a wide range of CMPtacthies.

3.2 Design Space

The queuing network modeling techniques at our disposé fiva size of the design
space to one that must be mathematically tractable. Thigsidle coverage of the design
space in Fig. 2.3 a challenge. In this subsection, we disouissolutions in meeting the
challenge.

Memoryl/interconnect-network and thread-schedulingigise dimensions With-
out resorting to any approximation techniques, the exgstineuing network modeling
techniques will allow both of these dimensions to be largsdplored analytically. Any
instance in either of these two dimensions can be approgignatodeled using a queuing
server model that has local balance equations (i.e., isl&adueuing network solutions of

product form or closed form). More specifically, Table 1 skdvow individual instances
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Table 3.1. Component modeling using queuing models with loglance equations

Queue Model

M/G /ool MIMIm FCFS | M/G/1PS | M/IM/1
Component

SMT W O
Fine-Grained Thread
scheduling
Coarse-Grained Thread scheduling
scheduling
Hybrid-Fine-and-,
Coarse-Grained Thread [
scheduling
Resources dedicated to
individual threads
FCFS shared Memory,
Cache, Interconnection O
Network,or Creitical Region
FCFS Memory with
with Popelined Access

in these two dimensions can be modeled by three queuing sadlbl local balance equa-
tions (according to the BCMP theorem [4]), includinfy G /oc; M /M /mEFCFS (includ-
ing M/M/1); and M/G/1PS (processor sharing). Note that memory banks should be
modeled as separate queuing servers and hence, are robifisies table. Also note that
for all the multithread scheduling disciplines except thékd-Fine-and-Coarse-Grained
one (to be explained below) in Table 3.2, the service tim&iligion of a queuing model
models the time distribution for a thread to be servicedattrresponding queuing server.
With these in mind, the following explains the rationalekibd the mappings in Table 3.2:
e SMT: It allows multiple issues in one clock cycle from indegent threads, creating
multiple virtual CPUs. If the number of threads in use is naggethan the number
of issues in one clock cycle, the CPU can be approximately faddes anV/ /G /oo

gueue, mimicking multiple CPUs handling all the threads imajel, otherwise, it
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can be approximately modeled as an M/M/m queue, i.e., naigmnuirtual CPUs to

handle all the threads and some may have to be queued.

Fine-grained thread scheduling discipline: All the thieadcess the CPU resource
will share the CPU resource at the finest granularity, i.ee,instruction per thread in
around-robin fashion. This discipline can be approxinyatebdeled as an M/G/1 PS
gueue, i.e., all the threads share equal amount of the totdIr€gburce in parallel.
Coarse-Grained thread scheduling discipline: All the tiseaccess the CPU re-
source will be serviced in a round-robin fashion and the exnis switched only
when the thread is stalled, waiting for the return of otheptgce accesses. This can
be approximately modeled as a FCFS queue, e.g., an M/M/1 queue
Hybrid-Fine-and-Coarse-Grained Thread scheduling disep It allows up to a
given number of threads, say m, to be processed in a fineegtdashion and the
rest be queued in a FCFS queue. This can be modeled as an M/M/® ¢i&tie.
In this queuing model, the average service time for eaclathbeing serviced is m
times longer than the service time if only one thread weradyséerviced, mimicking
fine-grained processor sharing effect.

Resources dedicated to individual threads: Such resouarebeccollectively mod-
eled as a singlé//G /oo queue, i.e., there is no contention among different threads
accessing these resources.

FCFS Shared Memory, Cache, Interconnect Network, or CriticgldRe This kind

of resources can be modeled as an M/M/1 queue.

FCFS Memory with Pipelined Access: Memory banks can be aedasgarallel. It
can be modeled as an M/M/m FCFS queue, with up to the numbleasdf-worth of
memory accesses serviced in parallel and the rest queudeGfr & queue.

FCFS Memory with Pipelined Access: Same as above. The pgdipth deter-

mines how many threads can be serviced simultaneous in thi#nMFCFS queue.
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We note that the memory/interconnection-network dimemsitso includes load-

dependent cache hit rate. The cache hit probability (ihe. routing probability to move
back to the CPU) is generally load-dependent in the sensét timaty either positively or
negatively correlated with the number of threads in use duerhporal locality and cache
resource contention. These effects can be accounted farr ifnaonework without approx-
imation, by means of the existing load-dependent routiegrigues (e.g. [1]). We also
note that the thread-scheduling-discipline dimensiotuihes thread migration. The thread
migration allows a thread to be migrated from one core tolaardfor, e.g., load balanc-
ing purpose. This effect can be accounted for without agpration by allowing jobs to
have non-zero probabilities to switch from one class to laerof5] [6]. More capabilities
may be identified and included in these two dimensions asdsrifey are mathematically
tractable.

Program dimension In principle, this dimension can be fully explored through
thorough study of the workload space, characterized bydhgce time distributions and
routing probabilities, i.e., a collection of ¢, }, {pi;})’s. However, for the solvable queuing
server models in Table 3.2, such as M/M/m and M/M/1 queues s#rvice time distri-
bution p; is a given, i.e., exponential distribution. Since the exgural distribution is
characterized by only a single parameter, i.e., the meatcsdimet;, it can only capture
the first order statistics of the code path segments comeksipg to that server, hence pro-
viding a first order approximation of the program dimension or woddspace Although
our future research will explore more sophisticated quguoiodels in an attempt to over-
come this limitation, we expect that the first order appradion could actually provide
good performance data, due to the well-known robustnegsepno[5], which states that
for closed queuing networks, the system performance isigiee to the service time dis-
tributions. To calculate{(:;}, {p;}), we first definep”, the probability that an incoming

packet is associated with code patlifor £ = 1,2, --- , K). In other wordsp* defines a
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code path mixture. We further defing , fF andqf; as the average service time at queu-
ing server i; the frequency to access queuing server i; angrbbability to access queuing

server j upon exiting queuing server i, respectively, fdrraad handling code path k. These
statistic parameters are collectable from the pseudo coden the average service rates

and routing probabilities for a given job class can be wmitis:

K k rk
1P fz .
Mizﬁv =1 M (3.1)
k=1 i Ti
and
K
k=1

Here a job class is defined as threads that follow these satigtiss. In general, all
the threads belong to the same core forms a job class.

Number-of-core and Number-of-thread Dimensiofis we shall see in Section 3.3,
these dimensions can be fully covered for the queuing senaetels described in Table

3.2.

3.3 Performance Measures
For CMPs in the design space covered by the queuing serversrnadgection 3.2,
all the performance measures can be derived from a genefatiotion, which is described

mathematically as follows. First, we define N as the total henof jobs (or threads) for

the entire system and it follows that,

N=> ki, k=) k (3.3)
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wherek;, is the number of jobs in the rth job class at the node i and Maddtal number of

gueuing servers and R is the number of job classes in thensystecording to the BCMP

theorem [4], the state probabilities of the system can btemras:

M
1
S, ,8,) = —— (S;), 3.4
(S S) = Gy LLAS) (3.4)
where the state of the ith nodeSs = (k;1, - - - , k;r) and the population vector containing

the total number of jobs i& = >°V S, G(N) is the so-called normalization constant or

generation function of the system and it is given by:

GINy =Y ]S, (3.5)

Yy Si=N i=1

The f;(.S;) ’s are the relative state probabilities at the node i , whighdefined as

follows:
ki!ﬁi(lki) ' (iw ’ Hle kilr!ef%irv for — /M/m/ — FCFS
fi(S) = kAT e for — /G/1 — PS&LCFSPR  (3.6)

1L wei” for — /G/oo
The relative arrival rate;, of jobs in the rth class at the ith node can be calculated

directly from routing probabilities as follows:

R
eirzzzejs'pjs,irv fOT izl?"'aM) r:]-v"'vR (37)

j=1 s=1

And the functiong;(k;) is given by

k! k; <m;

Bi(ki) = < m,! - m?i_mi k; > m; (3.8)
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wherem; is the number of servers in node i. Based on the generationidundefined

above, relevant performance measures in our model can tiemais follows [5]:

Throughput:

NN, GV L) 1
/\Z-—Z—Zew —G(N) , for i=1, , M, (3.9)

T, =" (3.10)

where the mean number of jobs at the ith queuing séyvsy

R
li = Zlﬂ"
r=1

- (@) _

=D ST DI oy (7S Bt Al R A P I FCRED
= G(N)
= Z;\il S]‘:N&Si:k;

whereG" can be interpreted as the generation function with the aqugeserver i removed
from the network. We note that the generation function G dedrésulting performance
measures are defined in the entire design space (with thefitst approximation of the
program-dimension or workload space). As a result, a dafeature of our analytical
modeling approach is its ability to explore the general@antance properties of the design
space analytically, just like the analysis of the generapprties of functions in a multidi-
mensional space in function analysis. Since understartdmgeneral performance prop-
erties over the entire design space results in the undeiataof the performance at any
point in the design space, this approach is particularlyul$er the performance analysis
in the initial programming phase, when a desirable desigiceffpoint must be identified

from a large number of possible choices/points in the desigice.
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3.4 Testing

In this section, the accuracy for the proposed analytic nmagléechnique is tested
against cycle-accurate simulators (CAS). Since CPs are nibstill to deal with, we test
our solution against a cycle-accurate CP simulator, i.e?, 200 SDK Developer work-
benches [7]. With a set of code samples available in both EOB1the sustainable line
rates obtained from our techniques are compared with those €AS. For all the code
samples, there are only a few number of code paths for eaelaoorwe can afford to per-
form exhaustive search for the bottleneck core and the sjporaling worst-case code path.
The code samples and corresponding analytic model and aionilsetups are described

in Section 3.4.1 and the Section 3.4.2 presents the tedtgesu

3.4.1 TestCase

Since all the cores in IXP1200 run a coarse-grained threbddsding discipline,
our analytic model is configured to run the coarse-graineshtth scheduling algorithm as
well. The program tasks mapped to the cores for IXP1200 saaymplications are briefly
described as follows.

I XP1200 code samples: Three different code samples, Generic IPv4 Forwarding,
Layer-2 Filtering, and ATM/Ethernet IP Forwarding, avaikain IXP1200 Developer work-
bench [7] are tested. The worst-case code paths at thermtkeores for these code sam-
ples are given in Appendix. The complete implementatioaitietan be found in the Intel
IXP1200 building blocks application design guide with thevBloper workbench. In the
following description of code samples, we focus on the fiomst mapped to the bottleneck
core.

Generic IPv4 Forwarding after packet reception as in Packet Count, RFC1812

generic IPv4 forwarding is implemented in this code sample.
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ATM/Ethernet IP ForwardingThis code sample is a mixed code implementation of

ATM /Ethernet IP forwarding. Only Ethernet-to-ATM flow is esidered in the test. The
header checksum check, TTL update, and IP lookup are pegtbimthe receive block
after packet reception as in Packet Count. Then the LLC/SNAPhawdified IP headers
are written back into the SDRAM. When the frame fragment withPE@nd of Packet)
information is received, AALS5 trailer information is wrh into the SDRAM buffer and
the complete PDU is enqueued for CRC generation at the neXtnestage.

Layer-2 filtering This code example implements Ethernet protocol, MAC askire
filtering and layer 2 forwarding in the receive block afteckets are received. Packet
Count, Generic IPv4 Forwarding, and Layer-2 Filtering coamgles are mapped to two
core pipelined stages as shown in Fig. 3.3 and ATM/Etherpev&rding is mapped to
three core pipeline stages as shown in Fig. 3.4. The origm@é samples are modified to
allow only one core at the receive stage handling packetsngpfrom a single port. As
a result, the receive core becomes the bottleneck core teskedt The code samples can

also be changed to allow configuration of the number of thedamm one to four.

I::> RX Stage —'\} TX Stage
—

-
Ly

Figure 3.3. Pipeline configuration for Generic IP forwagland Layer-2 Filtering.

The parameter settings for the simulation are as follows:
IXP1200: ME clock rate = 200/600 MHz
Packet size = 64/64 bytes, DRAM = 24/64MB
SRAM = 1/64 MB (for each channel of two)
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RX Stage |::> CRC — N\ TXStage

Generation

—
—

Figure 3.4. Pipeline configuration for ATM/Ethernet Fordiag.

3.4.2 Simulation and Analytic Model Setup

Our analytic model only needs to deal with a single core,esponding to the bot-
tleneck core for sample applications described above. Tb&ammable line rate for this
bottleneck core is compared with that of CAS simulation imrgd the entire multistage
pipeline. All the worst-case code paths for the correspaptbttleneck cores in table for-
mat are listed in Appendix. The first column lists the taskigrened in each code path
segment; the second column gives the segment length in @frowre clock cycles; the
third column describes the type of resource accesses hetveggnents; and the last col-
umn gives the unloaded resource access latency for eadlrcesaccess. We assume that
in the presence of resource access contentions, the resmaess requests will be serviced
based on a simple FIFO queuing mechanism. This means thzdded resource access
latencies and a set of simple resource access FIFO queutdwaraly IXP1200 specific
features used in our model. The rest are generic or commaurésapertaining to all the
CP architectures. Clearly, the code paths as given in Appeaagtbbe easily derived from
a piece of pseudo code provided by the user.

All the cases studied can be modeled as a single-classestiogé system with a
coarse-grained CPU and a set of parallel resources inclad8igAM, a DRAM, an FBI, a
RFIFO, and a scratchpad, as depicted in Fig. 3.5. In our modetreat all these resources
as local to the core and assume that these resources candssextén parallel. This
is justified by the fact that in IXP1200 simulators, the r@seucontention for accessing

shared resources are not accounted for and the fact that SDEWINBRAM accesses are
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Figure 3.5. Closed Queuing Network Model for Bottleneck Core.

optimized based on multiple memory banks and a separatiogadfand write operations,
respectively.

For analytic modeling, the coarse grained CPU is approximatedeled as an FCFS
M/M/1 queue and all the parallel resources\ds) /oo queue. Also, to study the through-
put performance, we assume that all threads in the core g@tebkisy. As a result, the
system is modeled as a closed queuing network consistingCéfld (M/M/1 queue) and
multiple local resources\/M /oo queues) with fixed number of jobs as in Fig 3.5. The

workload parameterq(i;}, {p;;}) are estimated from the code paths based on 3.1 and 3.2.

3.4.3 Results

In this Section, sustainable line rates are obtained fromly&ic Method (AM), and
those obtained from IXP1200 CAS for the code samples destiibprevios section. In
each table, total latency for a packet, sustainable linegpnd the accuracy of AM against
Intel IXP1200 CAS are given in the same format for each codl pample. For IXP
1200 case studies in Table 3.2 to Table 3.4, the first columesghe number of threads
configured; the second and the third columns list the coents and the sustainable
line rates obtained from AM and CAS, respectively. The lastiom lists the percentage

difference of the sustainable line speeds obtained from &kws CAS.



Table 3.2. The AM versus CAS(IXP1200) fGeneric IPv4 forwarding

Total Latency

Line Speed (Mbps)

% line speed

Number of (cpu cycles) error rate
Threads against CAS
A CAS AM CAS (AM)
1 523 537 186 191 262
2 589 &0 342 341 0.29
3 705 GaEv 436 447 2486
4 846 BTG 484 467 3.64

Table 3.3. The AM versus CAS(IXP1200) fAiT M/Ethenet IP Forwading

Total Latency

Line speed (Mbps)

% line speed

Mumber of (Cou cycles) errar rate
Threads against CAS
Al CAS AM CAS (AM)
1 741 724 138 141 213
2 gdd 812 243 252 3.57
3 GE8 981 311 313 .32
4 1180 1154 347 345 0.29

24
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Table 3.4. The AM versus CAS(IXP1200) fhayer-2 Filtering

Total Latenc A
_ II y Line Speed (Mbps)i| % line spead
Mumber of \CpU cycies) error rate
Threads against CAS
Al CAS Al CAS (AN
1 709 T30 144 140 2.86
2 795 788 258 257 0.39
3 815 978 338 314 754
4 1076 1157 381 354 7.63

For all the cases studied, the results obtained from AM atbinvB% of the CAS

results. Moreover, the results for Am are obtained in sulrséds on a Pentium IV PC.

3.5 Bottleneck Identification for Sigle Core Processors
3.5.1 Model

In this section, we consider a class of queuing network nsogiden in Fig. 3.6.
This class of models characterizes a class of processdrawihgle CPU, a cache, and an
arbitrary number of parallel resources, denotethgs(e.g., a main memory, a coprocessor,
an 1/0O device, or even a critical region). In this model, weuase that the interconnection
network has sufficient bandwidth to transfer data between @flUthe parallel resources
without creating a bottleneck and hence it is not expliattlgdeled. Upon exiting the CPU
server, a thread has probability; to visit parallel resource, where: = 1,2,---  m,.
In the case of memory resource access, the thread will fiestkchi the requested data is

available in the cache. In our model, no details of cachessceechanisms are modeled,
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except a cache hit probabilit},,(S;) that causes the thread to immediately loop back to
the CPU and a cache miss probability— P,,(S;)) that causes the thread to accessithe
resource. Heré; is the size of the cache memory block allocated to the cachtdftbm
memory resource. All the other components are modeled as queuing servers.CHU
gueuing server mimics the thread scheduling disciplirgediin the thread scheduling dis-
cipline dimension in Fig. 2.3 and all other parallel queusggvers mimic the resource
access mechanisms in the resource dimension in Fig. 2.3rbAneaty number of threads,
M,, circulates in the closed queuing network, with routinglatoility p;; to visit server;

upon exiting servei.

quh(smq)
Pon(S»)
Piu(S1)
Po1 - O
1 23
Yvy WG Po > O >
qo (CPU) Mo Lo
|

qmq umq
(Resources)

Figure 3.6. Single Core Queuing Network Model.

Component ModelsWithout resorting to any approximation techniques, thistex
ing queuing network modeling techniques will allow bothaexe and thread scheduling

discipline dimensions in the design space (see Fig. 2.3gtexibloited analytically. Any
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instance in these two dimensions can be modeled using arguegdel that has local bal-

ance equations (i.e., it leads to solutions of product forglased form). More specifically,
Table 3.2 shows how these two dimensions can be modeled pytoeke queuing models
with local balance equations, includind /G /oco; MIM/m FCES (including M/M/1); and

M/G/1 PS (processor sharing).

3.5.2 Main Results

To limit the exposure, for the time being, we assume thatetl®ino cache in the
model in Fig. 3.6, i.e.P;,(S;) = 0. The results with caching will be given at the end of
this section. We focus on the performance meagute), i.e., the probability that there
arem threads at the CPU queuing server. In particular, we aregsiied in its asymptotic
behavior, i.e., whethdim,,, .., P;(0) = 0. It tells us whether or not multithreading can
completely hide the resource access latencies from the CRuUidpd that the thread re-
source is abundant, and hence, whether the multithreadim¢pelp achieve the maximum
throughput performance. This performance measure widl teahe identification of the
general conditions under which the bottleneck resourcedaund to appear, regardless
how many threads are used.

Define f;(k;) to be the steady state probability that there /gréhreads at queuing
serveri, fori = 0,1,--- ,m,, where> "9 k; = M,. Letg; represent queuing serve(see

Fig. 3.6), fori =0, 1, - - - , m,. Following the convolution algorithm [30], we have,

f0(0>q1*2*---*mq (Mt)
90*1*2*---*% (Mt)

Py(0) = (3.12)

where

0% 1525 *mq Mt — Z fO CJ1*2* *mq( ) (313)

m-+n=»M;
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and

Qzewsm,(n) = > [ filks) (3.14)

k1+---+kmq =n i=1

Eqg. (3.12) holds true for any queuing servers listed in T&8teand any model parameters
({pi}, {pi;}) - In other words,P;(0) is a performance measure for a class of processor
models defined in the entire design space in Fig. 2.3.

According to Table 3.2, both/ /G /oo and M /M /m queuing models can be used to
model SMT-based CPU server and th&/G/1 PS queuing model is used to model fine-
grained CPU server in Fig. 3.6. All the resource-relatedessrean be modeled using
M/M/1 and M /M /m queuing models. To simplify the design, in this paper, wepado
M /M /m for SMT and only consider a special caseMf G /1 PS, i.e.,M/M/1 PS for
the fine-grained CPU server. With these simplifications, #reise time distributions for

all the queuing servers are then exponentially distribatetiuniquely determined by their

average service ratesfori = 0,1, --- ,m, andf;(k;) can be generally express as follows:
k;
o
fi(k) = =— (3.15)
®) = 5.k

whereq; is the relative utilization of;;. «; = ”(;—6 fori =1,2,---my,andoy = % and

e; is the relative thread arrival rate @t In this systemey, = > e;. B(zx) is define as

1=1:my

follows:

1 M/M/1 & M/M/1PS

x! M/M /oo
Blz) = (3.16)
x! M/M/m FCFS x<m

m!m@™  M/M/m FCFS x>m
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Substituting Eq.(3.15) into Eq. (3.12), we have,

L5

> hitetton s, i 58
Pi(0) = 1+ kmg =M, 1 Bi(ky) . (3.17)

Mt 1 m a
Dm0 Bl Db 4 thmy=n LLi=1 B{E)

whereq; = ’%

We now have the following general result (see Appendix B fetaded proof):

Theorem :  limyy, .o P7(0) = 0ifand only if =% < 1,Vi =1,2,--- ,m,.

The Theorem simply states that multithreading can comigldtiele the resource access
latencies from the CPU, if only ifnga;/m; < 1 for all the resources. In other words,
resource is identified as a bottleneck ifiga;/m; > 1. To remove a bottleneck resource
i, one needs to increase the relative service rate of the nasdie., /1), reduce the
resource access frequengy, or increase the relative parallelism or deepen the pipelin
for the resource access (im&;/my), to the extend thatya; /m; is reduced to be less than
one. As a result, this Theorem quantitatively charactertbe general conditions under
which bottleneck resources appear.

So far, we have assumed that there is no caching effectF,g5;) = 0, fori =
1,2,---,m,. SincesS; is the cache resource allocated to accommodate the cacked da

from resource, we must haves' > >

i=1:m

, S;, whereS is the total cache size. Now, we
take into account of the caching effect for the model in Fig6, 3e., P, (S;) > 0. To
simplify the discussion, we assume that all the resourcesramory resources, so that
caching can help reduce the resource access latenciesttue atsources.

Assuming there is no correlation among consecutive cadse dur cache model
only amounts to the change pf; to (1 — P,,(S;))po; and consequently;; changes to

(1 — P, (S;))a;. The product-form property of the model is preserved. Heweehave the
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following corollary in parallel to Theorem,

Corollary: limy, .., P;(0) = 0ifand only if7”0(1+’?(5"))‘” <LVi=1,2,---,m,.
To illustrate the power of and the intuition behind the abossults, let us walk

through a special case. Consider the case whgr- 1, i.e., the model in Fig. 3.6 only has

two queuing servers, a CPU server and a resource servafiaagl) = 0. Following the

same procedure that leads to Eq. (3.17), we have,

CIO*1 Mt Z fo ko fl(]ﬁ) (3.18)
ko+k1=
and

> kot ks, Jo(ko) f1(k1)
Sincef;(0) = 1, Eq. (3.19) can be simplified as:

fl(Mt)

P;(0) = 3.20
A SN A TACY (820

By substituting Eq. (3.15) into Eq. (3.20), we have
Pi0) = — ) 53(5‘14 O (3.21)

Zkl =0 Go( Mt k1) ﬁl(lkl)
Definea; = % thena; = aga,. EQ. (3.21) can be reduced to:

M M,

Pi(0) = — A (3.22)

Z/7‘51 =0 Bo(Mi— k1)51(k1)
Substituting3(x) function into Eq. (3.22) and with some rearrangement, we get

M,
’”71”1 a1 !
Py(0) = il Am
I o o % o1 70 Mtz—:mo o1 " Aff o1
0 1 + 0 My 1 + 1
M, % M 2 1 2
molm ! k1=0 kl!/mol molmalmyg ' ki=mi+1 (%) ' e k1=M¢—mo+1 (M~ k1)|m11

(3.23)
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Note the second term in the denominator is a geometric psegme whose sum is given

by:
mi+1 Mi—mo+1
Mi—mg akl (a1m0> _ <a1mo>
1 o mi mi
Z ki 1 — @1mo (3.24)
ky=mi+1 (m) my
mo

Let G = “L™¢ and substituting Eq. (3.24) into Eq. (3.23), we have

1
Pr(0) =
My ki M,
m ml M mO G(m1+1 My) _q—mo+1 allmot M
my Tmo! Z kl'/m TG 1=¢ +k‘1*MtZ—m0+1 (Mt_kl)'mllch t
(3.25)
As M, goes to infinity, we have,
T o 1m —— G>1
JimPy(0) = o 0 () e (3.26)
t 0 G<1

This gives the general conditiad > 1 under which the resource becomes a bottleneck,
whereGG = 4% = % agreeing with the general result in Theorem. This condlit#dls
us that if the average service rate times the level of pdisatigi.e.,m;) at the resource is
slower than the service rate times the level of parallelistme CPU server, the resource
becomes a bottleneck that throttles the overall throughput

Finally, it is interesting to note that when, = m; = 1 (i.e., the CPU is coarse-

grained and resource access mechanism is FCFS), we have,

lim Pr(0)={ ® (3.27)

Mi—oo 0 a; <1
A deterministic version of this result was derived in [10pdater a result identical to the

one in Eq. (3.27) was derived and studied in [23]. Clearly,rdsilts given in Theorem
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are far more general than the results given in [10] and [2Bg proof of of main results is

presented in Appendix B.

3.5.3 Thread and Cache Resource Provisioning

With system configuration and workload unchanged, it isrdlleat cache is needed
in addition to multithreading to remove the bottleneck tase; if e >, according to
Theorem. Now according to Corollary, the minimum amount ahearesource; that is

needed to remove the bottleneck resourmsrist satisfy the following equation:

mo(1 — Pp(si))a;

m;

=1 (3.28)

from Eq. (3.28) we have,

m;

Si=Pyl(1-—-) (3.29)

moa;

wherePi;L1 is the inverse function oP;,. Clearly,S; = 0 if resourcei is not a bottleneck
resource. The condition that > >, ,  .5; gives us a good idea as to how much total
cache resource is needed to maximize the throughput peafaren IfS is a given, this
condition determines whether maximum throughput perforceacan be achieved or not,
with maximal thread and cache resource provisioned.

In summary, we have the following generic algorithm for effee thread and cache
resource provisioning:

o if mat <, foralli =1,2,--- ,m,, the maximum throughput performance can be
achieved by adding sufficient number of threads and cachet iseeded

o else if (without loss of generality)t < =% < ... < Z0R= < 1 < S0 <

- - Mg-1

. < 2 calculateS; for i = k,---,m, from Eq. (3.29). IfS > > S,

b
mgq

output.S; for cache resource provisioning; else outpuand request for additional

(S S, — S) cache memory.
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To make the above discussion generally applicable to ampoedéed caching mod-

els, so far we have not mentioned whaf (S;) should look like. In practiceP;,(.S;) is a
complicated function of not onlg;, but also data request patterns, thread scheduling disci-
pline, cache replacement algorithm, etc. Neverthelessdalyvadopted analytical model

(671), as discussed in [8]. Since how to model the cache hit

is: P(S;) =1— (£ +1)"
probability is not the focus of this dissertation, we shali discuss this issue further in this

dissertation.

3.6 Related Work

In terms of queuing network modeling, since Jackson’s sehwork [11] in 1963
on queuing networks of product form, a wealth of results @nektension of his work has
been obtained for both closed and open queuing networksabidotesults include the ex-
tensions from M/M/1 FCFS (First-Come-First-Served) to LCF&sttCome-First-Served)
preemptive resume, PS (Processor Sharing), and IS (Infheiteer) queuing disciplines,
multiple job classes (or chains) and class migrations,-tiggkendent routing and service
times, and exact solution techniques such as convolutidivean Value Analysis (MVA),
and approximate solution techniques for queuing netwoikis @ without product form.
Sophisticated queuing network modeling tools were alseld@ed, making queuing mod-
eling and analysis much easier. These results are well dexia in standard textbooks,
tutorials, and research papers (e.g., [5], [6], [12], [LBB a result, in the past few decades,
gueuing networks were widely adopted in modeling computstesns and networks (e.g.,
[14], [15], [16], [17], [18]).
However, very few analytical results are available for mecolte processor analysis. In
[19], a mean value analysis of a multithreaded multicoregssor is performed. The per-

formance results reveal that there is a performance valléetavoided as the number of
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threads increases, a phenomenon also found earlier inpmadéssor systems studied based

on queuing network models [20]. Markovian Models are emgtbiy [21] to model a cache
memory subsystem with multithreading. However, to the bésur knowledge, the only
work that attempts to model multithreaded multicore usinguing network model is given
in [22]. But since only one job class (or chain) is used, thedls belonging to different
cores cannot be explicitly identified and separated in théeh@and hence multicore effects
are not fully accounted for. Most relevant to our work is therkvin [17]. In this work,

a multiprocessor system with distributed shared memoryadeted using a closed queu-
ing network model. Each computing subsystem is modeled mpaosed of three M/M/1
servers and a finite number of jobs of a given class. The thepes represent a mul-
tithreaded CPU with coarse-grained thread schedulingplisej a FCFS memory, and a
FCFS entry point to a crossbar network connecting to othempetimg subsystems. The
jobs belonging to the same class or subsystem represemiréals in that subsystem. The
jobs of a given class have given probabilities to access owhremote memory resources.
This closed queuing network model has product-form salutibhe above existing appli-
cation of queuing results to the multithreaded multicord enultiprocessor systems are
preliminary (i.e., within the small cone on the left in Fig.32 The only queuing disci-
pline studied is the FCFS queue, which characterizes theeaaained thread scheduling
discipline at a CPU and FCFS queuing discipline for memory traonnection network.
No framework has ever been proposed that can cover the dgsage in Fig. 2.3 and that

allows system classes to be analyzed over the entire space.



CHAPTER 4
A FRAMEWORK FOR FAST PROGRAM-TASK-TO-CORE MAPPING

Based on the thread-level modeling methodology introduoe@hapter 2, in this
chapter, we develop a framework to effectively mapping progtask-to-core to achieve
overall high throughput/utilization performance for CMH#is framework is based on the
priorous results in [3][26][27] and the operational anays queuing systems in [28]. In
this framework, CMPs are modeled at the thread level, folhgwhe methodology in Chap-
ter 2 and [27]. Then an iterative procedure is proposed touf@e a many-core system into
single core systems, which is solved efficiently using tineusation tool in [3]. This iter-
ative procedure borrows some ideas from the iterative phareein [25]. However, unlike
the procedure in [25], which is subject to the assumptiongemia queuing theory, such as
stationary and Markovian assumptions, the procedure gexpm this paper applies to any
gueuing network systems in any given time interval the systestudied. This is made
possible by employing simulation tool in [25], rather thammrerical analysis of queuing
models, to solve the single core problem and the applicatioperational analysis in [29],
rather than queuing theory, to identify the bottleneck veses. With the framework de-
veloped, we further design algorithms that allow quick pamg-task-to-core mapping to
maximize overall system throughput/utilization for CMPstwiirtually unlimited numbers

of cores and threads.

4.1 Introduction
In our framework, first, we assume that a CMP under consiaeraths N cores shar-

ing a common resource (e.g., a shared memory), and eacha®sie-h local resources, a
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CPU, and a local cache with negligible service time and cadh&dyuencyq,, as de-

picted in Fig. 4.1. The CPU and local resources may be difteirem core to core,
running different thread scheduling algorithms, havinfjedent resource access mecha-
nisms/bandwidths, and different amounts of resourcesorgkave assume that there are a
number of types of program tasks with distinct workload eleteristics in terms of{(u, },
{g:;}), to be mapped to different cores. We further assume thataere than one type of
program tasks is allowed to be mapped to any given core andtesity of the workload
on a given core can be increased by adding more threads hgrtitki same type of program
tasks.

For a given mapping and by increasing the workload intensigach core, there are
two possible outcomes. One outcome is that all the CPU uiiza reach one. In this case,
the overall system throughput/utilization is maximizetieTother outcome is that the CMP
fails to achieve its maximal overall system throughpuliagtion, regardless the workload
intensities. This case implies that for the given mappingte exists at least one bottleneck
resource, which prevents at least one CPU from reaching litsitilization. Whether a
CMP can achieve its maximal throughput/utilization or nqieleds on the types of program
tasks to be mapped, the types of cores in the CMP modeled idHigthe mapping choice,
and the way the workload intensity is assigned to each coreout framework, we are
interested in how to map program-task-to-core and how tigaske workload intensities
to achieve the highest possible throughput/utilizationaoy given types of cores in the
CMP in Fig. 4.1 and given types of program tasks. In our franteywwe propose a
two-step heuristic for program-task-to-core mapping amdkiwad intensity assignment,

as discussed separately in the following two sections.
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Figure 4.1. CMP Model at Thread Level.

4.2 Program-Task-to-Core Mapping

As our design objective is to maximize the throughput/zailion, we want to map
program-task-to-core in such a way that local resourcesotipose potential bottlenecks
that prevent the CPU from being able to maximize the utila@atf its processing power. In
the meantime, we want the local resource utilizations tose@se to the CPU utilization
as possible. This will ensure that as workload intensityaases, both CPU and all the
local resources are more or less fully utilized. Note thahis step, we assume that the
shared resource will not pose a potential bottleneck. Hewédefore formalizing this step,
we first need to know how to estimate the utilizations for th&JGiad local resources for
any given type of program-tasks mapped to the core. In gkngilizations are complex
functions of workload and system parameters. For the siogle case, however, we now
show that the ratios of utilizations can be estimated easilgst we make the following
assumption: the workload parametefg,(}, {¢;,}) are invariant as the workload intensity

increases (i.e., the number of jobs or threads in the systemreases). This assumption
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holds, since we allow no more than one type of program taske tmapped to any given

core.
In Chapter 3.5, we were able to show that for a closed-quewgtwark as in Fig. 4.1

in the absence of other cores sharing the shared resouriod, nds local balance equations

or product-form solutions, the conditions, under whichrnieximal throughput/utilization

can be achieved, are the following (according to Theorenentign 3.5),

qoiMMo o
my g

<1, Vi, for i=1,--- K —1 (4.2)

The parameters in Eq. (4.1) are either known system parasnge,m;, the num-
ber of parallel servers or the pipeline depth at the queuanges i) or workload param-
eters measurable from the code paths loaded in the core({i€}, {g;;}). This makes
it possible to quickly test the performance of any given paogtask-to-core mapping,
with estimation of just several workload parameters. Nibdess, the assumption that the
close-queuing network must have local balance equatiopsastuct-form solutions lim-
its the applicability of this result to a few queuing serveoduals only. Moreover, some
key underlying assumptions made in the queuing theory, asatationary and Markovian
properties may not hold true in practice.

As an important part of our framework, we now show that in fdoé conditions in
Eq. (4.1) hold true in general, free from all the above asgiong, except the invariance
assumption for{; }, {¢;;}). The approach we take follows the operational analysib®f t
gueuing systems developed by Buzen (see [29] and refereimers). The operational
analysis establishes relationships among system vasiéblg., utilization and throughput)
through some basic operationally measurable quantitigs (e length of the observation
period, the number of jobs arrived during the observatioiopeand the job finished during

the observation period). The assumptions made in queuaay\tiihat are either unrealistic



39
(e.g., Markovian) or difficult to verify (e.g., steady stated the existence of a well-defined

underlying distribution for a stochastic process) are ilated. Hence, the results derived
from this approach can generally be applied to solve realdymoblems.

According to [29], for a single-class queuing network (i@l the jobs share the
same workload parameter§}, {q;;})) and given that the service tinte (i.e., ;') and
visiting ratioV; are invariant as the number of jobs increases, the CPU is ttlerexk, if

and only if

—ZO <1, Yifor i=1,--,K (4.2)
or equivalently,

Vi S; . .

L <1 =1, K 4,

V151< ; Vi, for i=1,---, (4.3)

Now, we show that when the job flows are balanced, Eq. (4.3¢mEg@tes to Eq.
(4.1) for the queuing network in Fig. 4.1, in the absence béotores sharing the shared
resource (this guarantees that the core involves only desjoly class). First, we note that

the service ratios satisfy the following balance equatishen the job flows are balanced:

Voo =1

K
V} = qO]_'_ZV;Qlj) fOT j:1a7M (44)

i=1

For the single-job-class core given in Fig. 4.1, we have,

1

Vo= —
di0

V, = @, for i=2,--- M (4.5)
d10

We also have,
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1
m

wherem; represents the width of parallelism (e.g., the maximum remd$ issues per
cycle at a SMT CPU) or depth of pipeline (e.g., the depth foelp@d memory access)
and the service rate at queuing server i. Combining the seisUlgs. (4.3), (4.5) and (4.6),
we arrive at Eq. (4.1).

The parameters in Eq. (4.1) are either known system parasneg,m;) or param-
eters measurable from the code paths loaded in the coreHge. (3.1) and (3.2)).

With the above preparation, now we can formally state ouorétlym in step one as
follows:

1. For eachtype of program-tasks j (foe 1,2, - - - , M,), calculate the ratio@%
for all the local resources in all the cores, wheéfgis the number of types of program-tasks
to be mapped.

2. Select all the cores for which the conditions in Eq. (4.d)dh(for simplicitly,
assume there is at least one core that satisfies the corslitibhen rank these cores with
increasing order in miﬂ%ﬁi‘“’p:lﬂ_l). Do the same for all types of program-tasks.

3. The type of program-tasks, which has the largest ﬁgﬂfgﬁgﬁ‘—ohzlﬂ_l) value
among all types of program-tasks will be assigned to the coneespond to this value;

4. Remove the assigned type of program-tasks and the condisigocore from the
rank list. Go back to step 3 until all the cores are assignggaaof program-tasks.

Steps 1 and 2 ensure that the local resources will not posafpatbottlenecks for
the CPU in any core selected. Steps 3 and 4 guarantee thatphetyprogram-tasks

mapped to a core will be the one that makes best use of therkslrces.



41

4.3 Testing of General Conditions

Before discussing step two in the next section, in this seatie demonstrate, based
on simulation, that the conditions in Eq. (4.1) indeed hal@ tin general.

Consider a rather extreme case, i.e., the service timelistins for both CPU and
memory components are long tailed. More specifically, thet®adistributions are used
to characterize the service times. Pareto distributiomew@aat for a wide range of code
segment sizes, or equivalently, the thread service timéseaCPU, and large variations
of memory access latencies. The aim is to test whether sgdiifisant deviations from
the exponential distributions would (a) shift the appeeaeanf a bottleneck resource away
from the point in the parameter space identified by the géceralitions; and (b) signif-
icantly blur the boundaries between the bottleneck andbuitieneck regions. We use

the simulation results of the original queuing network medes the benchmarks for the

testing.
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Figure 4.2. Exponential Distribution. Figure 4.3. Pareto Distribution.

We consider the processor model with four memory resouréésrun simulation

for both the original queuing network models (whose sertiltes are Exponential) and
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the queuing network models with Pareto service times. Theltein term of CPU idle

probability versus the number of threads are presentedyirdi2 and Fig. 4.3. For each of

these two cases, four scenarios are studied: (a) coarseedi@PU and FCFS memories;
(b) coarse-grained CPU and memories with parallel/pipdlaczesses; (c) SMT and FCFS
memories; and (d) SMT and memories with parallel/pipeliaedesses. The result for the
four scenarios are presented in the four subplots in Figad®Fig. 4.3. In each subplot,

four curves are given. Of which two correspond to the casesewbne bottleneck resource
is identified according to the general conditiofi$¢ > 1), whereas the other two do not
involve bottleneck resource according to the general ¢immdi.

As one can see, for both Fig. 4.2 and Fig. 4.3, there is a cleé@iah between the
two sets of curves for all the subplots. Namely, as the nurab#éweads increases, the two
curves corresponding to the cases without bottleneck resadentified converge to zero,
whereas the other two level out at some nonzero values.

The above results clearly indicate that the general canditderived in Eq. (4.1) is
indeed accurate. Hence, step one given in Section 4.2 isqaky very useful for effective

program-task-to-core mapping for CMPs with many cores.

4.4 Workload Intensity Assignment

Note that whether the shared resource will pose a potertdtebeck for any given
core is determined by the workload intensities of all theesoWhen the workload inten-
sities for all the cores are low, the shared resource shautlgpose a potential bottleneck
for any core, otherwise more shared resource capacity @li@uprovisioned. This is the
reason why we didn’t consider this resource in step one, evtte program-task-to-core
mapping is done, independent of workload intensities,khamthe invariance of the work-

load parameters{f; }, {g;; })’s with respect to the workload intensities.
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As the workload intensities increase, the overall systeroutphput/utilization will

increase, until the shared resource becomes overloades, ivétarts to throttle the CPU
utilizations for some cores. Note that step one guarantesgstie local resources will
not pose potential bottleneck for the CPU in any core as warklmtensities increase.
Hence, the second step of our heuristic is to ensure that dnedoad intensities assigned
to different cores will lead to the overall highest througtiptilization, while not making

the shared resource a bottleneck. In other words, any fuititeease of the workload

intensity for any core will make the shared resource a buttik for at least one core.

AUy
AU !

We first define an important quantity, called utilizationrieiment ratio where
AU, and AU, are the shared resource and CPU utilization gains, respggtper work-
load intensity increase for the core corresponding to the .CRl@ unit for the workload
intensity can be defined as one thread. Now the idea is tdingtdrom some minimally
required workload intensity for each core, incrementadlgiag workload intensities, mul-
tiple units at a time. Each time, the multiple units is addethe core with the smallest
utilization incremental ratio. Ideally, this ratio needse updated every time the workload
intensity is incremented. The rationale of this approadb igive more workload intensi-
ties to cores with less demand of the shared resource, as #owagximize the overall
throughput/utilization gain with minimal shared resouuntéization gain. Step two of our
heuristic will basically follow this approach with some nifichtions to reduce the com-
putational complexity. Before formalizing step two, howewse need to know how to
calculate utilization incremental ratios and what compatel complexity involved.

The key difficulty here is that we are dealing with a CMP withta# cores coupled
together through the shared resource. In our previous vk yve demonstrated that the
cores can be decoupled through an iterative procedure. Todbeematically tractable,

however, CMPs were modeled as closed queuing networks vaigiedtform solutions. In

this dissertation, we propose an iterative procedure toujge the cores, similar to the one
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in [25]. However, to avoid the assumptions made in [28],aadtof performing numerical

analysis in each iteration based on a closed-form solutipedch core, the current solution
performs simulation analysis using the simulation tool2b][in each iteration. We first
introduce the iterative procedure and then discuss the atatipnal complexity involved.

A key intuition underlying the iterative procedure is thia¢ effect on each core due
to resource sharing would become more and more dependentedirghorder statistics
(i.e., mean values) and less sensitive to the higher ordeistits (e.g., variances) or the
actual distributions, as the number of cores sharing theweses increase§eminiscent of
Law of Large Numbers and Central Limit Theorem in statistiod the Mean Field Theory
in physics, although actual formal analysis could be diffjcuwith this observation in
mind, we were able to design an iterative procedure to ddedhp interactions among
cores, so that the performance of individual cores can bei@esl quickly as if they were
stand-alone ones.

Initially, we calculate the core sojourn tin1g(0) (excluding the shared source) and
throughput);(0) for single core system i consisting of a single core and tlaeshre-
source (fori = 1,--- , N.). Then the initial mean sojourn time for all the corgg(0) , is

calculated based on the following iteration formulae:

T(n) = Z %Ti(n) @.7)

Then we enter an iteration loop as shown in Fig. 4.4. At thk iteration, first the
average sojourn time for the shared resouiGgn), is calculated based on a two-server
gueuing network (on the left of Fig. 4.4), including a queuserver for the common
memory and an\/ /M /oo queuing server characterized by the mean service Tihe).
There are a total oM = S m; threads circulating in this network, where, is the

number of active threads in core i. In other words, we appnaxe the aggregate effect of
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all the threads from all the cores on the common memory ussigge M /M /oo queuing
server with the mean service timfi&(n). Then, we test if7,,(N) — T,,(N — 1)| < ¢
holds, for a predefined small valuge If it does, exit the loop and finish, otherwise do the
following. The sojourn timé’;(n) and throughpu#;(n) for core i (fori = 1,--- | N) are
updated based on the closed queuing network on the righgo#iH4. This time, the effects
of other cores on core i is approximated by a singlg\/ /m; server with the mean service
time 7,,,(n) . There arem; threads circulating in this network. Finall§;*(n) will be
updated based on the interaction formulae, before goingetoéxt iteration. The iteration

procedure is summarized in Fig. 4.5.

"li-th Core

OO

w*=1/T*

Step 1 Step 2

Figure 4.4. Iterative Procedure for Multicore Decoupling.

With this iterative procedure, aN.-core system at the workload intensitiesi =
1 : N, is decoupled intaV, single core systems. Single-core system i is composed of the
ith core in the original system with the shared resourceacgd by an\/ /M /m; queuing
server local to the core. With all the workload intensitie®di for other cores, the utiliza-
tion increment ratio for the ith core can then be evaluategibylating the core at both

workload intensitiesn;, andm; + 1. As tested in [25], as long as < M, adding the
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Initialize Geta sojoum time Ti (800 for cach core in the network
consisiing of the core and the shared memory
Calculie the sverage sojonm time, T*) for the
aggrele core

Stepl: Calculade the sverage sojonm time for the memory,
Twinjin Figure 4.4
I | T={n)- Todn-13= ¢ & n>=2
Stop Hersion
Else
Lio o Hiep2.

fﬂepl (il 2 sojourn fime Ti(n) for cach core in Figure 4.4 and
caloulate the T*{n}.
Cio 1o Sepl.

Figure 4.5. Iterative Algorithm.

workload intensity to the system by n will have little impat the value off;,, , which
is estimated at workload intensities;: = 1 : N, through the iterative procedure. This
means that instead of having to reevaluatefor every unit of workload intensity added
to the system, we only need to reevaluate it after adding ts whiworkload intensity to
the system. To further reduce the computational complexistead of incrementing one
unit at a time, we evaluate utilization increment ratioshe unit of n threads. In other
words, we add n threads to a core with the minimal utilizatimerement ratio at a time.
The second step of our heuristic can then be stated as follows

1. Assign minimally required workload intensity; to each core;

2. Estimater;,, using the iterative procedure

3. With a user determined(< M), estimate utilization increment ratio for each
core and increment the workload intensity by n for the coréhwhe smallest utilization
increment ratio; if the utilization of/ /M /m,; queuing server reaches one, exit, otherwise,

go back to step 2.
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This algorithm requires to run up W, single-core simulations in each iteration for

the iteration procedure. The number of iteration is unkno@uar testing in [25] suggests
that the number of iterations required is from a few to a femsteAfter each iterative
procedure is done, up W, single-core simulations need to be performed to finish step 3
This amounts to about a few tens of up/Xp single-core simulations. In practice, a many-
core CMP has limited number of heterogeneous cores, e.g.tHaa ten. So in practice,
we only need to perform up to a few hundred single-core sitima for adding n threads
to the system. With our simulation tool [25], each singleeceystem simulation will take
only a fraction of a second to finish on a Pentium 11l PC. This nsghat adding n threads to
the system will take about a few minutes to finish. If each camerun up to 8 threads and
initially each has 4 threads running, making the total ahwvorkload intensityM = 4000
and there are up to 4000 additional threads to be addedn l-et4(< M). Then we
need up to a few hours to complete step two. To program a CMP Ma@® cores and
8000 threads, spending a few hours on mapping the progrskrdacore and calculating
the workload intensities in the initial programming phapeears to be reasonably short.
Of course, step one of the heuristic requires the developofemparser that can analyze
the pseudo code to generate the workload parameters forceeeland then run step one,

which adds more computational complexities.

4.5 Related Work

There are some existing fast algorithms for data path fanstto CP core topology
mapping (e.g., [41][42][43]). These algorithms, howeveye to overlook many essential
processing details that may have an impact on the overdkmsyperformance. To make
the problem tractable, a common technique used in theseapes is to partition the

data path functions into tasks and each task is then assdaigth one or multiple known
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resource demand metrics, e.g., the core latency and progjeen Then an optimization

problem under the demand constraints is formulated aneddtvfind a feasible/optimal
mapping of those tasks to a pipelined/parallel core topplo8ince the actual resource
demand metrics for each task are, in general, complex fumetof mapping itself, and
are a strong function of the number of threads and threaddsting discipline in use
at each core, these approaches cannot provide mapping$igitraccuracy. Although
the approach in [42] accounts for certain multithreadirfgatf it only works for a single

memory access and under a coarse-grained schedulinglisiscip



CHAPTER 5
CONCLUSION AND FUTURE WORK

This dissertation proposed a novel chip multiprocessor (Cp&formance analysis
methodology. In this methodology, a CMP is modeled gendyiedlithe thread level, over-
looking the instruction-level and microarchitecturalakt The aim is to allow various
possible program-task-to-core mapping choices to bedegtekly in the initial program-
ming phase, when the executable program is yet to be dewklope

On the basis of this methodology, a analytical modeling neple based closed
gueuing network models and a framework for fast progrark-tasore mapping were
developed. While the analytic modeling technique allowsgeeeral performance prop-
erties of a large design space to be characterized, the irarkenakes it possible to al-
low program-task-to-core mapping and workload intenssisignment to achieve maximal
throughput/utilizations for many-core processors. A# #ipproaches were allowing fast
performance testing of CMPs with large numbers of cores arehtts in the initial pro-
gramming phase.

Our future work will be mainly concerned with the implemeida and testing of the

algorithms developed in Chapter 4.
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Table A.1. Code Path fageneric IPv4 forwardinggXP1200)

# instructions in ; Unloaded
Task code segment TyPe of /O latency
(it max) fccess Tk
Get pert ready (CSR read) 7 FEBl read 12
. - A FEl write & IX Bus
Start receiving packet from MAC to RFIFO 5 receive a2
Move packet from D(_ Bus to RFIFO - S'.-.jwtch context for 4 FEBI \uwile{". |XBus 76
completion of packet reception receive
Read Control Register 2 FEl read 12
Get buffer descriptor from SRAM (memory address to
store packet) - Switch context for completion of SRAM 11 o
access
If a buffer is available reaclﬁf?f packet from RFIFO to 17 RFIFO read 15
Complete reading to buffer from RFIFO 14 RFIFO read 20
Verify TTL, Check sum 18 SRAM read 15
|P route lookup 27 0
Get TRIE pointer 7 SEAM read 15
Get TRIE pointer 5 SRAM read 15
Get TRIE pointer 5 SRAM read 15
et TRIE pointer 5 SRAM read 15
Wait for SDRAM access completion - Switch context for 4 o
completion of SDRAM access
Fonwvard to an ATM port 1 SORAM write 45
Forward to an ATM port 15 SRAM write 17
Engueue ATM AALS PDU (calculate # of bytes to pad
write AALS trailer) - Switch context for completion of 34 SDRAM read 47
SDRAM access
Write PDU - Switch context for completion of SDRAM A
access a9 SRAM write 14
Engueue ATM — begin 12 SRAM read 19
Enqueus ATM — comor.;leslé,é\r:-.zuéccl;;fnlext far completion 20 SRAM write 20
Miscellaneous (]
Total 228 485

Table A.2. Code Path fokTM/Ethenet IP ForwadingXP1200)

# instructions in code B Unloaded
Task segment Type of IO latency
(Uit met.) Access T
ULkl ma k) ke
Check CSR for data in the port 4 FEI read 15
\Write control word to CSR and start receiving packets 6 FBIl write &FBI read 84
Read recive control information (to check status of packet
receive operation from port) 1 FBI read 18
Swap context and wait to receive buffer address for packet
“Fy A "
from SRAM
Read from SRAM (3 consecutive memaory locations) 20 SRAM read 23
Read from RFIFO [ RFIFO read 26
Hash source address and destination address 22 RFIFO read 37
SRAM lookup (Source Address (SA), Destination Address (DA) . s
and hash valug) g ScratchPad write 19
Read the forwarding table for DA In SDRAM (4 long words) 14 SRAM read a7
Check fer Bridging and isolate DA from forwarding table entry g SDRAM read 25
Read the forwarding table for DA In SDRAM (4 long words) 20 SRAM read 57
Do Layer 2 packet filtering [Packet_ﬂltgrlng rules obtained from 43 SDRAM read 48
forwarding table in SRAM)
Check for EOP and Packet discard bit information in packat 10 SRAM write 21
receive state
Engueue packet (2 long words) 5 SRAM read 23
If empty queue create a queue for enqueuing packet 14 SRAM write 22
Miscellaneous 5
total 199 462




Table A.3. Code Path fdrayer-2 FilteringIXP1200)

# instructions in code

Task segment L] Tk
(g — g k)

Check receive ready flags 5 FBI read 14

Move packet from X Bus to RFIFO ] FEl write & 1X Bus receive 76

Read receive control information 2 FBI read 19

‘\Wait for buffer allocation in SDRAM, get the 1 SRAM read 17
descriptor from SRAM ) '

Read 3 Quad words Trom.RFIFU into ME for IP 16 RFIFO read 18

validation
T 3 —
Read 2™ 32 hyte to E::DR.ﬁ\Mcln the allocated 15 RFIFO read 22
buffer)

IF lookup 40 SRAM read 17

IP lookup 7 SRAM read 17

IP lcokup 5 SRAM read 17

o next hop infermation frem SDRAM 7 SCRAM read 47

Write packet descriptor to SRAM ( after associat- & o AR o
ing it with a TX port) 8 SRAM write 8
Read gueue descriptor from SRAM (for enqueue . Y
peration) 4 SRAM read 22
Virite the packet descriptor to SRAM(to the TX _—
queues associated with the TX port) 15 SRAM write 20
Miscellaneous 5]
total 157 324
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Here we provide a detailed proof of the theorem given in Chigte
Proof of Theorem: The theorem can be decomposed into two parts:
(1) if 209 < 1,Vi =1,2,- -, mg, thenlimyy, .o Pr(0) = 0.
(2) if there is at least one term {mnoa; /m; }i—1.,, larger thant, thenlim,y, ... P;(0) > 0.
In what follows, we prove these two parts separately.
First, we prove the first part. Without loss of generalit;stase%: = max {;ﬁb—}

and;”- = min {T‘;—} fori € [1,m,]. Dividing both the numerator and denominator of Eq.

(3.17) by(%) Mt, we have,

> I () 5
kitetkmg=Me LLi=1 \ m;am Bi(k:)
PI(O) = n— DMy : - (B.1)
)
ZMt Mmg E qu a;iMmg m;
n=0  Bo(Mi—n) kittkmg=n LLi=l \ m;an, Bi(ki)
Since® < %4 < " forj =2 ... m,— 1, we have,
mi1 mg mmq
am a;m Ay, 1T
( 1 mq) < (ﬂ) < (M) -1 (B.2)
mlamq miamq mmqamq
Hence,

k;

Pi(0) < Zkl-i-n--i-kmq:Mt ITi2h 50
T

= n—Mp
tmg ki ks

ZMt Mmg Z qu G1Mmg my

n=0 " Bo(M;—n) kit tkmg=n Lli=1 \ miam, Bi (ki)

(B.3)
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The queuing servey; can be generally viewed as an M/M/queuej € (0,--- ,m,).

Since forVk;, fi(k;) > mgml~™ and g;(k) < m;!m’ and noticing that there are

(Mterq 1

ALE elements i p 4oyk,, » We have:

i

Zk1+"'+kmq:Mt H?;ql 7:111'

PI(O) < a n—Mp
M, ('mmq> mg a1 Mm, i
Zn:O Bo(My—n) Zk1+---+kmq:n Hi:l M1Gmg m;!
(Mi+mg—1)! qu m,
— Mt!(mq—l)! =1 mz'
o m. A{T n
mq
n=0 Bo(My—n) nl(mg—1)! Mmiam, i=1 1,1
< 1
M,
Mmq My 1 ay Mg ;
(annq > ZTL—O Bo(Mt—n) <m1> HZ:l m’Lm
1
a Mg b 7ma ; My mytT" a1mo n
(moamq> Hz—l m;™ ano Bo(M;—n) —
1
= M m M mMe—n n
iz a TG t (0] aimo
(moamQ> Hz*l mlm ETL:O mo!th n < mi >
1
- —— (B.4)
1 My, \ Mt 1-(2470)
( H =1 ml ) ( 4 ) : é1m0
mo! moam, -7
Denote the last expression in Eq. (B.4)-asP;(0). Since« ™ < “ma™ <] and

q

limys, oo P7(0) = 0. From Eq. (B.4), we havé’;(0) > P;(0). Note thatP;(0) > 0.

Hencelim,y, ... P;(0) = 0.

Now we prove the second part. To facilitate the proof, theedegncy ofP;(0) on
m, is explicitly included inP;(0) as a superscript, i.eP,}m‘J)(O). Futhermore, since there
is at least one term ifmoa;/m;}i—1.m, larger thanl, we assumé’jno—‘ll1 > 1. Form, =1

(i.e., there is only one resource), from Eqg. (3.17), we have

My
a

PI(0) = OLM) (B.5)

kl

S L BT
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According to the assumption in part (Z)3** > 1; from Eq. (3.26) we have,

1
]\}zslgloo P( )(0) mq (‘117”0>7moJrl (ﬂ)ikl > 0 (86)
7:1001 ' Trfblllmo 1 + Zmo ' m}ﬁ!

ml

This means that for the single resource case, the secondfyhe theorem holds true. To
prove the theorem holds true in general, we need to showtthatds true forvm,. Now
it P'™t(0) > P™)(0) for ¥m,, the second part of the theorem will hold true fon,,.

In the following, we show this is indeed the case.

Forvm,, Let
> [ 2
mq a;
m ki 4km, =M, L Li=1 3,(k;)
PI( Q)<O) — - 1+t q t ﬁ (k) 0 (B?)
t m, (ll-
Dm0 BoTH ) Pt terthmg—n Lish 75y
Notice that Eq. (B.7) is the same as Eq. (3.17). #or+ 1, we have,
mgq+1 afi
P(mq+1) (0) _ Zk1+"'+kmq+kmq+1:Mt Hi:l ﬁz(k) (88)
I ZMt Z qu+1 af
n O/BO(Mt ki+- +k?mq+kmq+1 =n i=1 Bz( ’L)
or
ki
mqg
(mq+1) Z’f1+"'+’qu:Mt I EII
PI (0) = M, k;
mq ai
Z” 0 ﬁo(Mt Zkﬁ- Fhmg=n Hi:l Bi(k:) +
kmg+1 k;
mqg+1 m, a;
Ekmq+1 1 ﬁqurlLEkqurl Zk1+"'+kmq:Mt*kmq+1 Hl:ql Bi(ki)
M, apret! %
t mq+ m a;
ZTL 1 ﬁo Mt n kaq+1 1 ﬁmq+1%k'm,q+1) Zk‘1+'"+k‘mq=’nfkmq+1 Hi:ql ﬁz(kz)

(B.9)

Eqg. (B.9) is written in such a form that the first terms in botk ttumerator and the
denominator are the same as the numerator and denomindkay. iiB.8), respectively.
Now, let L and R be the second term in the denominator multiplied by the fesntin
the numerator, and the first term in the denominator muttipbly the second term in the

numerator, respectively, as given below:
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k’mq+1

mq+1 ri
{Z 60 Mt - n Z ﬁmq-&- Z 1 6@ kz

mq+l) k14 +km =n— kmq+1 1=

kTﬂq

L) Hﬁu (B.10)

otk =M i=1

M, et
1 ki e
{nzzo 60(Mt - n) . Z kz } { Z ﬁmq‘*‘ mq‘H)

ki+-- +kmq7nz 1

> H 5 (B.11)

kit tkmg=Mi—kmg+1 i=1

Obviously, P (0) > P™)(0) if and only if R > L. To showR > L, we

construct another quantity as follows:

k7nq+1 L

mq+1
Zﬁo Mt_n Z /qu+ . Z 16@ k’L

mq+1) k1+"'+k7nq:Mt km g+1 1=
a
B.12
2 H@(ka o

To proveR > L, we first show thaf.’ > L and thenk > L'.

First, we note that the first two sums in Eq. (B.10) are the sakefirst two sums
in Eq. (B.12), except in Eq. (B.12), there is an extra term at 0. Clearly, if we could
show that for any givem > 0, the last two sums in Eq. (B.12) is no less than the last two
sums in Eg. (B.10), we hav€ > L. In other words, we want to show’ > F, where,

> Hﬂz

k14 +kmqfn km 41 =1

7,

Z H o kl (B.13)

k—i——i—km =M; i=1

and
k;

D S | E SN Sl | (B.1)
/61 /B’L Z

k?1+“'+k?mq:Mt kmq+1l 1 Z kit thmg=n =1

According toCorrolary A given in Appendix C, botrE and £’ have the sam¢

value, i.e.,Z = M; +n — ky 1. In E, let A be the smaller one of/; andn — k,,, 11
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and inE’, A" be the smaller one of andM; — k,, +,. Note that ifA’ > AthenE’ > F,

since, according t&€orrolary A, £ and E' are monotonously increasing function when
A, A€ [1,|£]]. As aresult, to prové’ > L, we need to show that’ > A.
SinceM; > n > kp, 41 > 1, My >n — Ky 11, A=n — kp 41. In E', since bothm

andM, — k,,, 11 can be smaller thaf |, we have,

WA M, —n n>L§J

k‘mq+1 n < L%J
Again, sinceM; > n > ky, 41 > 1, A" — A > 0 always holds. So we havé’ > F,
and thereforel’ > L.

Finally, we show thaf? > L'. We first rewrite Eq. (B.12) as follows:

M, k'mq+1

Z mq+1
Z 60 Mt - n) . Z H ﬁz k Z qu+ mq+1)

ki+-- +kmq—nz 1
kz

> H e % (B.15)

k1t thmg =M —kmg 41 i=1 i)

Z

We note that at any givem, the part with the last two sums in Eq. (B.11) is no less than the
part with the last two sums in Eqg. (B.15), becauge> n for Vn. Furthermore, the parts
involving the first two sums in Eq. (B.11) and Eq. (B.15) are thms, except that the part
in Eg. (B.11) has an extra termat= 0. Hence, we hav&® > L’. Since we have shown

thatZ/ > L, R > L and therefore”™ ™" (0) > P (0) > PV (0) > 0.
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First, we prove the following theorem.
Theorem A: There areV boxes (V > 2). The capacity of thethbox ¢ = 1,2,--- , N)is
k;, andziji1 k; = M. Sn(y) is the number of different ways to pytidentical balls into
these boxes. TherSy (y) is a monotonously increasing functiongfwheny € [1, | £ ]],
andSy (y) reaches its maximal value when= [ % |.
Proof: We prove it by induction.

Basisstep (V = 2): we define a step functiom(x) as follows:

1 >0
u(z) = (C.1)
0 <0

Ss»(y) can be calculated as follows: first, assume that there is paoily constraints
for both boxes (i.ek; = oo, ko = o). Then there aré’;!*_—lll)! different ways to puy balls
into these two boxes. However, since the size of the boxestigfinity, we can only put
at mostk; balls in box1, so the number of ways by which we can put more thaballs
in the 1st box must be excluded, whichEgl:1 u(ji — k1). Similarly, for the 2nd box,
there are) ¥ _, u(j> — k2) number of different ways needs to be excluded. Therefore, fo

v,y +1<[%], we have,

Sa(y) = (yyi 11,)! =D ulji = ki) = Y ulhs — ko) (C.2)
’ ’ Ji=1 jo=1
| y+1 y+1
S+ 1) = =S at k) = Y i
(y +2)! g
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We further have,

So(y+1) — Sa(y) = yil - @;1)! —u(y +1—Fk) +u(y+1—ky)]

= 1—July+1—"F)+uly+1—ko)] (C.4)

We want to showbs (y+1) — Sa(y) > 0 or equivalentlyju(y+1—Fk;)+u(y+1—kq)] < 1
Foru(y +1 — ky)

If (y+1—FK1) <O0thenu(y+1—Fky) =0, [u(y+1—Fk)+u(y+1—Fke)] = u(y+1—ko) <1,
andSz(y + 1) — Sa(y) > 0

elseif(y+1—4k) >0thenu(y+1—Fk)=1landy+1 >k

u(ly+1—ko) =uly+1— M+ k), becausé, = M — k;.

c(y+1—Fk) >0,

SYFl>kcy+1 < [Y

Sk<y+1< 4]

Syl =MA4k) <0, uly+1—ky) =uly+1—M+k)=0and[u(y+1—k;)+
uly+1—ky)] <1

S (y+ 1) — Sa(y) > 0, i.e., the theorem holds true fof = 2.

Induction hypothesis (N > 2): Sy(y +1) > Sx(y), fory,y +1 < [¥]

Induction step: now considerV + 1 boxes and, balls @y, y+1 < L%j). Here we consider
the firstV boxes as one group and th¥® + 1)th box as the other group. Consider putting
balls into the( NV + 1)th box, and the resty — j) balls into the firstV boxes. The different
ways to put(y — j) balls into the firstN boxes is given bySy(y — 7). We may putj
(j € [0, kn41]) balls into the( N + 1)th box. We have,

Y
Sny1(y ZU knt1—J)Sn(y —J) (C.5)
7=0
Similarly, we have,
y+1
Sni(y+1) =Y ulknyr — 7)Sn(y +1-j) (C.6)

J=0
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Every term in Eq. (C.6), i.ey(kn1 — 7)Sy(y + 1 — j), is no less than the term in Eq.

(C.5), sinceSy(y + 1 — j) > Sn(y — j) (induction hypothesis). Furthermore, Eq. (C.6)
has one more term(kx.1 — (y+1))Sy(y+1—(y+1)), which is non-negtive. Therefore,

Sn+1(y+1) > Snpa(y), fory,y +1 < [ 2]

kl
=1 z

CoroIIaryA For polynomial function” = >, . . _, ][
> krteiton—p L i1 @ ‘,andA + B = 7, Z is a constant. Assumé < B. Then F reaches
its maximal value when! = |£], and F is a monotonously increasing function of A, for
A€l £]]

Proof: We define:

F=o Il [T

ki++kn=A1i=1 ki++kn=B i=1
n

S DR RN | (C.7)

KO+ +k)=2Z i=1
We haveA + B = Z, andk! + k? = kY. C(kY,--- ,k?) (denoted byC for convenience) is
the coefficient for each term in Eq. (C.7). For givérand B, the value off’ is determined
by C. The question of how to calculaté can be mapped to a combinatorial problem
below:

Suppose we have boxes. The capacity of thgh box isk) (3" = Z). It turns out

i=1 z
thatC' is the number of ways to put identical balls into these boxes. This combinatorial
problem is addressed ifiheorem A. SinceA + B = Z, andZ is a constant, we just
have one variable. For convenience, we assumeAhatthe smaller than B. According
to Theorem A, C reaches its maximal value wheh = |£], andC' is a monotonously
function of A, for A € [1,[Z]]. Therefore, F reaches its maximal value wher= |Z |,

2

and F is a monotonously function of A, fer € [1, £ ]].
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