

Performance Analysis: Benchmarking a NoSQL Database on Bare-Metal and
Virtualized Public Cloud

Aerospike NoSQL Database on Internap Bare Metal, Amazon EC2 and Rackspace Cloud

Cloud Spectator – Comparative Performance Report
July 2014

Report Commissioned by Internap 2014

1

Copyright 2014 Cloud Spectator. All rights reserved.

Table of Contents

 Abstract and Introduction 2

 Background 3

 Methodology 4

 Summary of Findings 5

 Result Details 6

 Price Performance Values 12

 Conclusion 14

 Appendix 16
 Appendix A: Database and Client Configuration 16

 Appendix B: Testing Configuration 18

 Appendix C: YCSB Customization 20

 Appendix D: Provider Value 24

2

Copyright 2014 Cloud Spectator. All rights reserved.

Abstract

NoSQL databases are now commonly used to provide a scalable system to store, retrieve and analyze large
amounts of data. Most NoSQL databases are designed to automatically partition data and workloads across multiple
servers to enable easier, more cost-effective expansion of data stores than the single server/scale up approach of
traditional relational databases. Public cloud infrastructure should provide an effective host platform for NoSQL
databases given its horizontal scalability, on-demand capacity, configuration flexibility and metered billing; however,
the performance of virtualized public cloud services can suffer relative to bare-metal offerings in I/O intensive use
cases. Benchmark tests comparing latency and throughput of operating a high-performance in-memory (flash-
optimized), key value store NoSQL database on popular virtualized public cloud services and an automated bare-
metal platform show performance advantages of bare-metal over virtualized public cloud, further quantifying
conclusions drawn in prior studies. Normalized comparisons that relate price to performance also suggest bare metal
with SSDs is a more efficient choice for data-intensive applications.

Introduction

Effectively managing huge amounts of data has become indispensable for companies delivering applications over the
Internet. The Internet’s broad network access can quickly expand the potential audience for applications into the
millions and their associated attributes into the trillions. Massive user pools, time sensitivity and an increasing
volume of data that don’t fit into typical organizational schemas – cookie information, social media blurbs, security
camera images, weather reports and the like – have necessitated more flexible tools and methods for handling and
analyzing data.

Fortunately, a number of technologies developed within the past decade including parallel processing systems,
distributed databases and file structures as well as programmatically available virtual and bare metal infrastructure,
have enabled companies to address these challenges. NoSQL (“Not Only SQL”) databases in particular have
expanded the organization’s ability to capture, understand and act on information gathered under these demanding
circumstances.

The distributed, horizontally scalable nature of NoSQL databases seemingly makes them a good fit for public cloud
services. Past studies however, have documented a performance disparity for virtualized Infrastructure-as-a-Service
(IaaS) compared with traditional bare-metal hosts for I/O-intensive workloads. In recent years, a few providers have
deployed bare-metal cloud platforms that offer many of the automation and scalability features of virtualized IaaS.
This paper tests this performance differential premise by benchmarking operating speed, throughput and costs of
operating a high-performance in-memory, key value store NoSQL database on popular virtualized public cloud
services and an automated bare-metal cloud platform.

3

Copyright 2014 Cloud Spectator. All rights reserved.

Background

NoSQL refers to a class of database technologies that developed in response to the inability of traditional relational
databases to effectively handle a rapid increase in the amount and variety of data organizations store and analyze.
Relational databases maintain rigid schemas with many connected tables, each with rows and columns that assign a
set of attributes to each collected record. Tables and their attributes are associated with each other by assigning
related keys. When data is read from or written to relational databases, numerous tables must be accessed and
executed before being passed along to the application or stored – resulting in many dependencies, serial processes
and potentially long processing times. Expanding infrastructure to support rapidly growing relational databases is
typically achieved by scaling vertically (i.e., adding processing power, RAM and storage to the machines that support
the database).

NoSQL databases by contrast, are often object or key/value stores that group attributes and data into columns. This
approach provides much less structure but is typically faster at performing reads and writes, especially when
handling large amounts of data. In addition, NoSQL databases support horizontal scaling through automatic
partitioning or “sharding” of the database across an arbitrary number of machines. While sharding is possible with
relational databases, NoSQL databases make this horizontal scaling process quicker and easier given the absence
of dependencies and automation that balances data load and query across servers.

Previous reports on the performance of NoSQL databases in particular infrastructure environments include a note
titled “A Vendor-independent Comparison of NoSQL Databases: Cassandra, HBase, MongoDB, Riak”1 by Altoros
Systems, which provided a useful look into how to properly perform benchmark testing on NoSQL databases. The
Altoros report focused on comparing different NoSQL databases while running on identical hardware on Amazon
Web Service’s public cloud compute service EC2. A more recent report titled Ultra-High Performance NoSQL
Benchmarking2 by Thumbtack Technology examined similar benchmarking using bare-metal hardware for NoSQL
database clusters.

A number of papers have also examined the overhead associated with virtualized environments relative to bare
metal. These studies point to virtualized network contention due to user concurrency as well as hypervisor burdening
caused by guest/host context switches that virtual machines must undergo to securely obtain access to critical
hardware functions.3

Our study builds on this work by quantifying performance differences when operating an in-memory NoSQL database
in both virtualized public cloud and automated bare-metal cloud environments.

1 http://www.altoros.com/vendor_independent_comparison_of_nosql_databases.html
2 http://www.aerospike.com/wp-content/uploads/2013/01/Ultra-High-Performance-NoSQL-Benchmarking.pdf
3 Some examples of this research include:

http://www.dcs.warwick.ac.uk/~sdh/pmbs11/PMBS11/Workshop_Schedule_files/rn-0900.pdf
http://gac.udc.es/~juan/papers/fgcs2013.pdf
http://researcher.ibm.com/researcher/files/il-ABELG/eli_asplos12.pdf

http://www.altoros.com/vendor_independent_comparison_of_nosql_databases.html
http://www.aerospike.com/wp-content/uploads/2013/01/Ultra-High-Performance-NoSQL-Benchmarking.pdf
http://www.aerospike.com/wp-content/uploads/2013/01/Ultra-High-Performance-NoSQL-Benchmarking.pdf
http://www.altoros.com/vendor_independent_comparison_of_nosql_databases.html
http://www.aerospike.com/wp-content/uploads/2013/01/Ultra-High-Performance-NoSQL-Benchmarking.pdf
http://www.dcs.warwick.ac.uk/~sdh/pmbs11/PMBS11/Workshop_Schedule_files/rn-0900.pdf
http://gac.udc.es/~juan/papers/fgcs2013.pdf
http://researcher.ibm.com/researcher/files/il-ABELG/eli_asplos12.pdf

4

Copyright 2014 Cloud Spectator. All rights reserved.

Methodology

NoSQL Database Selection

We employed Aerospike’s in-memory key value store to simulate a range of low-latency, data-intensive use cases.
Because of its design, Aerospike is often used as a reliable cache and a user store to address real-time data
collection, distribution and analysis requirements common with certain Internet-centric businesses (e.g., advertising
technologies, e-commerce, online trading and bidding, online gaming). Aerospike can run in pure RAM, but is the first
to be uniquely optimized for use with solid-state hard drives (SSDs). For predictable low latency, Aerospike indexes
are always stored in RAM, but individual tables or namespaces in Aerospike can be stored in either RAM or directly
on SSDs and data on SSDs is accessed in parallel via a proprietary flash optimized file system. Aerospike clusters
replicate data synchronously and unlike popular NoSQL databases, Aerospike supports immediate consistency and
ACID properties. For this report, we used Aerospike with SSDs and 2x replication.

Benchmark Tool Selection

The Yahoo! Cloud Serving Benchmark (YCSB) was used to generate the testing datasets and evaluate performance
of the databases. The YCSB, developed by Yahoo! Labs, is considered a standard benchmark for testing NoSQL
tools. However, the version of YSCB used in this study has been updated since the initial release in 2010. Cloud
Spectator originally used Thumbtack’s version of the benchmark, with the Aerospike plugin, but we found additional
updates were needed to support the latest version of Aerospike (Aerospike 3). Changes to the YCSB Aerospike 3
plugin can be found in Appendix C.

Host Selection

The underlying hardware for the database clusters and client machines for simulating users were hosted on three
different providers. Internap bare metal was selected as the baseline for the hosted Aerospike database given
Aerospike’s high performance on bare metal demonstrated by the Thumbtack benchmark conducted in 2013.
Amazon EC2’s dedicated, I2 Storage Optimized instances and Rackspace’s Performance Cloud Servers were
chosen as virtualized public cloud comparables due to their popularity for Aerospike users and high level of
performance among cloud providers.

Internap
Internap, which commissioned this study, provided the bare-metal servers with SSDs for the comparison with the
virtual machine instances. Bare-metal servers were used in both the database cluster and client machines. The
size of the database cluster servers was determined by running various configurations on Internap to determine
the corresponding performance thresholds. The lowest performing bare metal server was used to attempt to
match up against a similarly sized and/or priced cloud server. While Internap has bare-metal cloud
configurations that are billable by the hour, the servers used in this study were billed by the month. Internap does
not currently offer the selected server size at an hourly billing rate as it was chosen to parallel the size/price of
the cloud instance comps rather than for its hourly availability.

Amazon Web Services
Amazon is an obvious choice to compare against when benchmarking cloud providers. Due to its dominant
position in the market and wide variety of instance types, there are several suitable hardware resources to
compare against for this study.

 The instance type, the I2 class, is storage-optimized and recommended for use in NoSQL databases.
The I2 also comes with enhanced networking performance for higher transfer speed and lower latency.

 Cloud Spectator chose Dedicated Instances for Amazon EC2 to ensure isolation of hardware for
highest possible performance.

5

Copyright 2014 Cloud Spectator. All rights reserved.

Rackspace
The Rackspace Performance 2 Cloud Servers were chosen due to Cloud Spectator’s previous performance
testing that has shown high disk performance on their servers.

 Of the Rackspace servers tested, the 120GB Performance 2 servers had the highest throughput in the
performance of the load phase and workload a; thus, the 120GB instance size was selected.

See Appendix A for Database and Client Configurations and Appendix B for Testing Process details.

Summary of Findings

The result of the study is that a four node cluster of bare-metal servers with SSDs indeed offer higher performance
than virtualized cloud servers. Bare metal outperformed both Amazon and Rackspace virtual public clouds across all
three different workloads in both throughput and latency. Amazon outperformed Rackspace across all three
workloads in throughput speed, but Rackspace had lower latency in two of the tests.

In the Inserting Data Workload (100% Inserts)

 Internap outperformed Amazon by 51% in throughput speed
 Internap outperformed Rackspace by 5x in throughput speed
 Amazon outperformed Rackspace by 3.3x in throughput speed

 Internap has 77% less latency than Rackspace
 Internap has 56% less latency than Amazon
 Amazon has 49% less latency than Rackspace

In the Balanced workload (50% Read, 50% Update)

 Internap outperformed Amazon by 50% in throughput speed
 Internap outperformed Rackspace by 2.7x in throughput speed
 Amazon outperformed Rackspace by 78% in throughput speed

 Internap has 59% less latency than Amazon
 Internap has 32% less latency than Rackspace
 Rackspace has 39% less latency than Amazon

In the Read Heavy workload (95% Read, 5% Update)

 Internap outperformed Amazon by 61% in throughput speed
 Internap outperformed Rackspace by 2.5x in throughput speed
 Amazon outperformed Rackspace by 52% in throughput speed

 Internap has 51% less latency than Rackspace
 Internap has 48% less latency than Amazon
 Amazon has 7% less latency than Rackspace

6

Copyright 2014 Cloud Spectator. All rights reserved.

Result Details

Load Phase: Load (100% Inserts)

Load Phase is not really a workload, but rather the process of loading data into the database cluster for use in the
next two workloads. This analysis tests the write speed to SSD by inserting individual records into the database as
fast as it can. An example of this workload in production might be an institution loading customer or membership
information from several departmental databases into an operational data store.

*Throughput scores are the aggregate transactions per second (TPS) from all four database hosts

Internap outperforms Amazon and Rackspace in throughput. Internap’s bare metal has a throughput of 237,428
transactions per second (TPS). Amazon follows with 156,938 TPS; Rackspace trails with 47,982 TPS.

 Internap outperformed Amazon by 51%
 Internap outperformed Rackspace by 5x
 Amazon outperformed Rackspace by 3.3x

0 50,000 100,000 150,000 200,000 250,000

Rackspace

Amazon

Internap

Transactions per Second

Load Phase: Load (100% inserts) - Throughput*

7

Copyright 2014 Cloud Spectator. All rights reserved.

*Lower value is better

The Internap hosts had the least latency when compared with Rackspace and Amazon. Internap’s bare metal has an
average latency of 1.95ms. Amazon follows with an average latency of 4.46ms; Rackspace trails with an average
latency of 8.66ms.

 Internap has 77% less latency than Rackspace
 Internap has 56% less latency than Amazon
 Rackspace has 94% more latency than Amazon

0 2 4 6 8 10

Amazon

Rackspace

Internap

Milliseconds

Load Phase: Load (100% Insert) - Latency*

8

Copyright 2014 Cloud Spectator. All rights reserved.

Workload A: Balanced (50% Read, 50% Update)

YCSB’s Workload A is a balance of both reads and updates. Records were selected using a random Zipfian
distribution. An application that tracks the activity of users at e-commerce sites and then personalizes digital
advertisements based on their activity is a good example of a real-world workload that mirrors this testing scenario.

*Throughput scores are the aggregate transactions per second (TPS) from all four database hosts

Internap performs approximately 50% better than Amazon and 2.7x the level of Rackspace. Internap’s bare metal
has a throughput of 265,890 TPS. Amazon follows with 177,498 TPS; Rackspace trails with 99,847 TPS.

 Internap outperformed Amazon by 50%
 Internap outperformed Rackspace by 2.7x
 Amazon outperformed Rackspace by 78%

0 50,000 100,000 150,000 200,000 250,000 300,000

Rackspace

Amazon

Internap

Transactions per Second

Workload A: Balanced (50% read 50% update) - Throughput*

9

Copyright 2014 Cloud Spectator. All rights reserved.

*Lower value is better

Internap has the least amount of latency relative to Rackspace and Amazon. Internap’s bare metal has an average
latency of 0.62ms. Rackspace follows with an average latency of 0.91ms; Amazon trails with an average latency of
1.49ms.

 Internap has 59% less latency than Amazon
 Internap has 32% less latency than Rackspace
 Rackspace has 39% less latency than Amazon

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Amazon

Rackspace

Internap

Milliseconds

Workload A: Balanced (50% Read/50% Update) - Latency

10

Copyright 2014 Cloud Spectator. All rights reserved.

Workload B: Read Heavy (95% Read, 5% Update)

YCSB’s Workload B is a read-intensive test with minimal updates. Records were selected using a random Zipfian
distribution. An example of a read-intensive workload is a content distribution scheme that uses content tagging for
search engines.

*Throughput scores are the aggregate transactions per second (TPS) from all four database hosts

Internap bare metal generated 61% more TPS compared with Amazon and 2.4x more than Rackspace. Internap’s
bare metal has a throughput of 451,561 TPS. Amazon follows with 279,661 TPS; Rackspace trails with 184,188 TPS.

 Internap outperformed Amazon by 61%
 Internap outperformed Rackspace by 2.5x
 Amazon outperformed Rackspace by 52%

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000

Rackspace

Amazon

Internap

Transactions per Second

Workload 3: Read Heavy (95% read 5% update) - Throughput*

11

Copyright 2014 Cloud Spectator. All rights reserved.

*Lower value is better

Internap has the lowest latency compared to Rackspace and Amazon. Internap’s bare metal has an average latency
of 0.50ms. Amazon follows with an average latency of 0.96ms; Rackspace trails with an average latency of 1.03ms.

 Internap has 51% less latency than Amazon
 Internap has 48% less latency than Rackspace
 Amazon has 7% less latency than Rackspace

0 0.2 0.4 0.6 0.8 1 1.2

Amazon

Rackspace

Internap

Milliseconds

Workload 3: Read Heavy (95% Read/5% Update) - Latency*

12

Copyright 2014 Cloud Spectator. All rights reserved.

Price/Performance Values

The overall performance of Internap’s bare-metal platform with SSDs has shown both higher throughput and lower
latency than the two similarly-equipped virtual cloud providers. It is also prudent to evaluate the overall value that the
different offerings present, given both price and performance metrics. When running a server environment with the
capacity to scale far outwards, the price/performance value is an important number to track, as hosting costs can
quickly grow as well.

Server Pricing

Provider Server/Instance Hourly Cost

(Individual)

Monthly Cost

(Individual)

Hourly Cost

(DB Cluster)

Monthly Cost

(DB Cluster)

Internap E3-1230 $1.68* $874 $6.72 $3,496

Amazon I2.8xlarge (dedicated) $6.82 $4,992 $27.28 $19,969

Rackspace 120GB Performance 2 $5.44 $3,971 $21.76 $15,885

*Illustrative

The CloudSpecs Score Calculation

The CloudSpecs Score is an indexed, comparable score ranging from 0-100 indicative of value based on a
combination of cost and performance. The value is scaled; e.g., a Cloud Service Provider (CSP) with a score of 100
gives 4x the value of a CSP with a score of 25.

The calculation of the CloudSpecs score (Throughput):

1. provider_value = [Provider Performance Score] / [Provider Cost]
2. best_provider_value = max(provider_values)
3. CSP’s CloudSpecs Score = 100 * provider_value / best_provider_value

The calculation of the CloudSpecs score (Latency):

1. provider_value = [Provider Performance Score] * [Provider Cost]
2. best_provider_value = min(provider_values)
3. CSP’s CloudSpecs Score = 100 * best_provider_value / provider_value

For example, the CloudSpecs Score calculation for the throughput of Load Phase is shown below:

Offering Score Divided by Price Divided by Highest

Score
Multiply by 100 Throughput

CloudSpecs Score

Internap 237428TPS / $3,496 = 67.91 67.91 / 67.91 = 1 1 x 100 = 100 100

Amazon 156938TPS / $19,969 = 7.86 7.86/ 67.91 = 0.12 0.12 x 100 = 12 12

Rackspace 47982TPS / $15,885 = 3.02 3.02 / 67.91 = 0.04 0.04 x 100 = 4 4

13

Copyright 2014 Cloud Spectator. All rights reserved.

CloudSpecs Score

 Load Phase Workload A Workload B

 Throughput Latency Throughput Latency Throughput Latency

Internap 100 100 100 100 100 100

Amazon 12 8 12 7 11 9

Rackspace 4 5 8 15 9 11
*Based on Monthly Pricing

100 100 100 100 100 100

12
8

12
7

11 9
4 5 8

15
9 11

Throughput Latency Throughput Latency Throughput Latency

Workload 1 Workload 2 Workload 3

CloudSpecs Score*

Internap

Amazon

Rackspace

14

Copyright 2014 Cloud Spectator. All rights reserved.

Conclusion

Study Results

Internap’s bare-metal server delivers dedicated processing resources of a physical server, providing superior and
more consistent performance than corresponding virtual cloud servers. Typical use cases for bare-metal servers with
SSDs include data intensive applications for analytics platforms involving digital marketing, personalization and/or
advertising. In these scenarios, NoSQL databases store and process user profiles, cookies, clickstreams and
segmented behavioral data in real time.

The study confirmed the prediction that bare metal would outperform cloud servers on the YCSB test. Despite the
virtualized cloud servers offering 2x the number of cores, 2-4x the amount of RAM, and also utilizing SSDs, the bare-
metal servers with SSDs still outperformed the virtual cloud servers by large margins. Bare metal significantly
outperforms on writes to disk, as seen on the load and balanced workloads. Performance differentials were not as
pronounced with the read-intensive workload.

Compared with the large differential between Internap and Amazon for throughput speeds, Amazon instance
throughput performed close to Rackspace’s cloud servers. Latency is also relatively similar between the Amazon and
Rackspace servers. Perhaps this is an indicator that at the larger instance sizes, there is a certain cap that
performance reaches, whether due to throttling or physical constraints of the hardware.

Implications for Organizations Running NoSQL Workloads

For a high-performance, transaction-intensive NoSQL database such as Aerospike that parallelizes processing
across cores and SSDs, dedicated hardware and strong internal network connections deliver a marked difference

in performance relative to virtualized public cloud environments. NoSQL database clusters demand higher network
throughput for interconnected nodes, and individual nodes benefit from the allocation of dedicated hardware over
shared environments. Associated use cases like real-time, contextual personalization and promotion for example,
might benefit from the direct access to physical hardware and unimpeded server-to-server networking that automated
bare-metal platforms provide. Organizations that have maintained long-term hosted or owned environments to
ensure adequate host performance might also look at bare-metal cloud as a way to maintain quality while improving
asset utilization and agility.

Areas for Additional Research

The testing in this study was conducted on SSD, which makes it dependent on IOPS in storage. Aerospike offers an
in-memory option as well, which should provide higher performance with the lack of dependency on disk
performance. Future experiments can incorporate in-memory performance to study the effects of disk/memory on the
overall performance of Aerospike across providers.

This experiment was conducted according to guidelines from Aerospike’s documentation, which also recommends
the use of Amazon Linux. Upon further testing, though, Amazon EC2’s HVM images seem to provide a higher
performance output than the Amazon Linux images can sustain. Further experimentation with HVM images on the
EC2 platform may offer a further improved performance on top of Amazon EC2’s dedicated environment.

Future testing should also assess automated bare metal cloud services across providers. Such a study would provide
an indication on the degree of performance differences when hosting on vendors’ bare metal cloud management and
hardware platforms. With more cloud providers offering bare metal servers, being able to offer a product that can
differentiate on performance would be key.

15

Copyright 2014 Cloud Spectator. All rights reserved.

Another interesting area for future study would be testing NoSQL on a larger number of cloud providers. Cloud
servers are an appealing hosting option for NoSQL databases as they can scale horizontally with ease to
accommodate changing data sets. With SSD storage and high RAM offerings becoming commonplace among cloud
vendors; the providers are lowering barriers to hosting NoSQL environments in the cloud.

About Cloud Spectator

Cloud Spectator is the premier, international cloud analyst group focused on infrastructure pricing and server
performance. Since 2011, Cloud Spectator has monitored the cloud Infrastructure industry on a global scale and
continues to produce research reports for businesses to make informed purchase decisions by leveraging its
CloudSpecs utility, an application that automates live server performance tests 3 times a day, 365 days a year with
use of open source benchmark tests. Currently, the CloudSpecs system actively tracks 20 of the top IaaS providers
around the world.

Cloud Spectator
800 Boylston Street, 16th Floor
Boston, MA 02199
Website: www.cloudspectator.com
Phone: (USA) 1-617-300-0711

16

Copyright 2014 Cloud Spectator. All rights reserved.

Appendix

Appendix A: Database and Client Configuration

Aerospike Node - Single instance of an Aerospike database process.

DB Host - Actual host (bare metal or virtualized) where the Aerospike node resides – four DB hosts were
utilized, one for each Aerospike node.

YCSB Client – Hosts that are making queries to the Aerospike database – these simulate calls and puts to the
database usually by an application server or web server. Eight YSCB client servers were used in this analysis.

The intra-cluster communication between the Aerospike nodes is used as a heartbeat mechanism to determine
the size of the cluster and maintain its integrity. The communication between the Aerospike nodes and client
hosts indicate standard queries for reads/writes/updates to the database cluster.

17

Copyright 2014 Cloud Spectator. All rights reserved.

The selection of database nodes were originally based on matching by cores, but the results of testing required
Amazon EC2 and Rackspace servers to be scaled up to get within a closer range of performance to the Internap
Bare Metal machine. Thus, Amazon EC2 and Rackspace servers were scaled to 32 vCPUs.

Client machines were selected based on load. Internap provided 12-core bare metal machines to us in testing. Local
VMs were used on Amazon EC2 and Rackspace Cloud. No client machines exceeded 50% utilization throughout the
experiment.

Database Setup
(4 Nodes)

Internap
OS: Ubuntu 12.04
JDK: n/a
Database: Aerospike 3.2.9

CPU: 4 CPU
RAM: 32GB
HDD: 2x240GB SSD & 1x480GB SSD

Amazon
OS: Amazon Linux
JDK: n/a
Database: Aerospike 3.2.9

CPU: 32vCPU
RAM: 244GB
HDD: 8x800GB SSD

Rackspace
OS: Ubuntu 12.04
JDK: n/a
Database: Aerospike 3.2.9

CPU: 32vCPU
RAM: 120GB
HDD: 4x300GB SSD

Client Setup
(8 Client Machines)

Internap
OS: Ubuntu 12.04
JDK: Openjdk-6
Benchmark: YCSB modified (See Appendix C for
changes)

CPU: 12 CPU
RAM: 64GB
HDD: 1x480GB SSD

Amazon
OS: Amazon Linux
JDK: Openjdk-6
Benchmark: YCSB modified (See Appendix C for
changes)

CPU: 16vCPU
RAM: 30GB
HDD: 2x160GB SSD

Rackspace
OS: Ubuntu 12.04
JDK: Openjdk-6
Benchmark: YCSB modified (See Appendix C for
changes)

CPU: 8vCPU
RAM: 30GB
HDD: 300GB SSD

18

Copyright 2014 Cloud Spectator. All rights reserved.

Appendix B: Testing Configuration

Testing Process

1. Provision the machines, install the operating system (OS) and configure the environment
a. Ubuntu 12.04 used for Internap and Rackspace; Ubuntu 14.04 on Amazon
b. Para-virtualization Hardware Virtualized Machines (PV-HVM) used on Amazon and Rackspace

i. Amazon Linux HVM AMI used on Amazon

2. Setup the database cluster machines, install and configure the database
a. Wipe data drives to create a fresh cluster

i. Overprovision Internap SSDs using hdparm
b. Install the Aerospike server software
c. Configure the cluster using Aerospike config and adjust parameters
d. Adjust TCP parameters for faster reuse of TCP ports

3. Setup the client machines, install YCSB

a. Setup the network configuration

4. Appropriate the data set size
a. Select data set properties and usage

5. Run the benchmark

a. Select the workloads to run
b. Run warm-up session to achieve steady state for accurate results

i. Thumbtack modified YCSB has warm-up option

6. Aggregate the results
a. Retrieve merged report from “master” client

7. Tear down servers, rebuild machines and environment for next run

*Notes on Testing – See Appendix B

Database Configuration

 21% of disk left unpartitioned to overprovision disks (recommended by Aerospike)

 4 nodes will be configured to function as a single cluster with distributed tasks

 Database set to 2x replication

 Dataset size will begin at 45% of the total remaining space on disk

Client and Workload Configuration

 Data Properties
Record Description: 10-string fields at 10 bytes per field

 2 bytes additional for name
Record Size: 120 bytes
Key Size: 23 bytes
* Data set should at least double the amount of RAM to keep performance in the storage

19

Copyright 2014 Cloud Spectator. All rights reserved.

Number of Records: 900 million on 60GB RAM servers & 1.5 billion on 120GB RAM servers
Number of Threads to Load the Data Set: 32 Threads per Client Machine

Load Phase: Load
Load Phase loads the data set for the follow-up workloads involving read and
updates. The YCSB installed on the clients generate the data sets which are
subsequently loaded onto the cluster.

 100% Inserts

 Workload A: Balanced

 50% Read
 50% Update

Workload B: Read-Heavy

 95% Read
 5% Update

20

Copyright 2014 Cloud Spectator. All rights reserved.

The workloads were selected with a zipfian distribution to simulate Internet-like NoSQL usage. Before each workload
is tested, a warm-up session equal to the amount of time for testing is run to prime any cache and establish steady
state results as expected in a live production environment.

Appendix C: YCSB Customization

Cloud Spectator forked from latest commit 073c59348d from github (https://github.com/thumbtack-technology/ycsb)

For official changes to the YCSB client that are supported by Aerospike, visit their github repository
(https://github.com/aerospike/ycsb)

Cloud Spectator contributions are committed to github (https://github.com/cloudspectator/YCSB_Aerospike3)

package com.yahoo.ycsb.db;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;
import java.util.Properties;
import java.util.Set;
import java.util.Vector;

import com.aerospike.client.AerospikeException;
import com.aerospike.client.Bin;
import com.aerospike.client.Key;
import com.aerospike.client.Record;
import com.aerospike.client.ResultCode;
import com.aerospike.client.policy.Policy;
import com.aerospike.client.policy.WritePolicy;
import com.yahoo.ycsb.ByteArrayByteIterator;
import com.yahoo.ycsb.ByteIterator;
import com.yahoo.ycsb.DBException;

public class AerospikeClient extends com.yahoo.ycsb.DB{

 public static final int OK = 0;
 public static final int NULL_RESULT = -20;
 /**
 * Mapping of ResultCodes to documented Client Return Error codes
 * @see http://www.aerospike.com/quick-install/documentation/troubleshooting-guide/#clientcodes
 */
 private static final Map<Integer, Integer> RESULT_CODE_MAPPER;
 static {
 RESULT_CODE_MAPPER = new HashMap<Integer, Integer>();

 RESULT_CODE_MAPPER.put(ResultCode.SERVER_ERROR, 1);
 RESULT_CODE_MAPPER.put(ResultCode.KEY_NOT_FOUND_ERROR, 2);
 RESULT_CODE_MAPPER.put(ResultCode.GENERATION_ERROR, 3);
 RESULT_CODE_MAPPER.put(ResultCode.PARAMETER_ERROR, 4);
 RESULT_CODE_MAPPER.put(ResultCode.KEY_EXISTS_ERROR, 5);
 RESULT_CODE_MAPPER.put(ResultCode.BIN_EXISTS_ERROR, 6);
 RESULT_CODE_MAPPER.put(ResultCode.CLUSTER_KEY_MISMATCH, 7);
 RESULT_CODE_MAPPER.put(ResultCode.SERVER_MEM_ERROR, 8);
 RESULT_CODE_MAPPER.put(ResultCode.TIMEOUT, 9);

https://github.com/thumbtack-technology/ycsb
https://github.com/aerospike/ycsb
https://github.com/cloudspectator/YCSB_Aerospike3

21

Copyright 2014 Cloud Spectator. All rights reserved.

 RESULT_CODE_MAPPER.put(ResultCode.NO_XDS, 10);
 RESULT_CODE_MAPPER.put(ResultCode.SERVER_NOT_AVAILABLE, 11);
 RESULT_CODE_MAPPER.put(ResultCode.BIN_TYPE_ERROR, 12);
 RESULT_CODE_MAPPER.put(ResultCode.RECORD_TOO_BIG, 13);
 RESULT_CODE_MAPPER.put(ResultCode.KEY_BUSY, 14);

 RESULT_CODE_MAPPER.put(ResultCode.OK, OK);
 //RESULT_CODE_MAPPER.put(ResultCode.CLIENT_ERROR, -4);
 RESULT_CODE_MAPPER.put(ResultCode.SERIALIZE_ERROR, -10);

 //RESULT_CODE_MAPPER.put(ResultCode.NOT_SET, -1);
 }

 private com.aerospike.client.AerospikeClient cl;

 public static String NAMESPACE = "test";

 public static String SET = "YCSB";

 public void init() throws DBException {
 Properties props = getProperties();
 int port;

 //retrieve port
 String portString = props.getProperty("port");
 if (portString != null) {
 port = Integer.parseInt(portString);
 }
 else {
 port = 3000;
 }

 //retrieve host
 String host = props.getProperty("host");
 if(host == null) {
 host = "aecluster";
 }

 //retrieve namespace
 String ns = props.getProperty("ns");
 if(ns != null) {
 NAMESPACE = ns;
 }

 //retrieve set
 String st = props.getProperty("set");
 if(st != null) {
 SET = st;
 }

 try {
 cl = new com.aerospike.client.AerospikeClient(host, port);
 } catch (AerospikeException e) {
 e.printStackTrace();
 throw new DBException("Can't create an AerospikeClient", e);
 }

22

Copyright 2014 Cloud Spectator. All rights reserved.

 try {
 //Sleep so that the partition hashmap is created by the client
 Thread.sleep(2000);
 } catch (InterruptedException ex) {
 }

 if (!cl.isConnected()) {
 throw new DBException(String.format("Failed to add %s:%d to cluster.",
 host, port));
 }

 }

 public void cleanup() throws DBException {
 cl.close();
 }

 @Override
 public int read(String table, String key, Set<String> fields,
 HashMap<String, ByteIterator> result) {
 try {
 Policy _policy = new Policy();
 //_policy.timeout = 50; // 50 millisecond timeout.
 Key _key = new Key(NAMESPACE, SET, key);

 if (fields != null) {
 for (String bin : fields) {
 Record res = cl.get(_policy, _key, bin);
 if (res != null) {
 result.put(bin, new
ByteArrayByteIterator(res.getValue(bin).toString().getBytes()));
 } else {
 return NULL_RESULT;
 }
 }
 } else {
 Record record = cl.get(_policy, _key);
 if (record != null) {
 for (Map.Entry<String,Object> entry : record.bins.entrySet()) {
 result.put(entry.getKey(), new
ByteArrayByteIterator(entry.getValue().toString().getBytes()));
 }
 }
 }
 } catch(AerospikeException aex) {
 aex.printStackTrace();
 return RESULT_CODE_MAPPER.get(aex.getResultCode());
 }
 return OK;
 }

 @Override
 public int scan(String table, String startkey, int recordcount,
 Set<String> fields, Vector<HashMap<String, ByteIterator>> result) {
 // TODO Auto-generated method stub
 return -1;

23

Copyright 2014 Cloud Spectator. All rights reserved.

 }

 @Override
 public int update(String table, String key,
 HashMap<String, ByteIterator> values) {
 return insert(table, key, values);
 }

 @Override
 public int insert(String table, String key,
 HashMap<String, ByteIterator> values) {
 try {
 WritePolicy _policy = new WritePolicy();
 //policy.timeout = 50; // 50 millisecond timeout.
 Key _key = new Key(NAMESPACE, SET, key);
 ArrayList<Bin> bins = new ArrayList<Bin>();

 for (Map.Entry<String, ByteIterator> entry : values.entrySet()){
 bins.add(new Bin(entry.getKey(), entry.getValue().toString()));
 }

 cl.put(_policy, _key, bins.toArray(new Bin[bins.size()]));

 return OK;

 } catch(AerospikeException aex) {
 aex.printStackTrace();
 return RESULT_CODE_MAPPER.get(aex.getResultCode());
 }
 }

 @Override
 public int delete(String table, String key) {
 try {
 WritePolicy _policy = new WritePolicy();
 //policy.timeout = 50; // 50 millisecond timeout.
 Key _key = new Key(NAMESPACE, SET, key);
 cl.delete(_policy, _key);
 return OK;

 } catch(AerospikeException aex) {
 aex.printStackTrace();
 return RESULT_CODE_MAPPER.get(aex.getResultCode());
 }
 }

}

24

Copyright 2014 Cloud Spectator. All rights reserved.

Appendix D: Provider Value Results

Throughput Calculation: Provider Throughput Score / Provider Price

Latency Calculation: Provider Latency Score x Provider Price

 Load Phase Workload A Workload B

 Throughput Latency Throughput Latency Throughput Latency

Internap 67.91 6832.88 76.06 2151.34 129.16 1753.14

Amazon 7.96 89010.86 8.89 29833.25 14 19079.37

Rackspace 3.02 137509.51 6.29 14380.53 11.6 16396.13

