
PERFORMANCE COMPARISON OF SEARCH FEATURE WITH

DJANGO QUERYSETS AND ELASTICSEARCH IN A WEB

APPLICATION

Composed as one of the requirements to complete Strata I Study Program in

Informatics Study Program the Faculty of Communication and Information

By:

ZAHID MUJADDID

L 200 134 010

INFORMATICS STUDY PROGRAM

THE FACULTY OF COMMUNICATION AND INFORMATION

UNIVERSITAS MUHAMMDIYAH SURAKARTA

2020

i

PAGE OF APPROVEMENT

PERFORMANCE COMPARISON OF SEARCH FEATURE WITH DJANGO

QUERYSETS AND ELASTICSEARCH IN A WEB APPLICATION

SCIENTIFIC PUBLICATION

By:

ZAHID MUJADDID

L 200 134 010

Checked and approved for examination by:

Supervisor

Husni Thamrin, S.T., M.T., Ph.D.

NIK.706

ii

PAGE OF VERIFICATION

PERFORMANCE COMPARISON OF SEARCH FEATURE WITH DJANGO

QUERYSETS AND ELASTICSEARCH IN A WEB APPLICATION

By:

ZAHID MUJADDID

L 200 134 010

Successfully defended in the presence of Board of Examiners

Faculty of Communication and Information

Muhammadiyah Surakarta University

On Wednesday, 20 May 2020

and acknowledged to be qualified

Board of Examiners:

Husni Thamrin, S.T., M.T., Ph.D. (…………………)

(Chief Board of Examiner)

Dr., Ir. Bana Handaga, M.T. (…………………)

(Member I Board of Examiner)

Azizah Fatmawati, S.T., M.Cs. (…………………)

(Member II Board of Examiner)

Dean

Faculty of Communication and Information

Nurgiyatna, S.T., M.Sc., Ph.D.

NIK. 881

iii

STATEMENT OF VOW

UNIVERSITAS MUHAMMADIYAH SURAKARTA

FAKULTAS KOMUNIKASI DAN INFORMATIKA

PROGRAM STUDI INFORMATIKA

Jl. A Yani Tromol Pos 1 Pabelan Kartasura Telp. (0271)717417, 719483 Fax (0271) 714448

Surakarta 57102 Indonesia. Web: http://informatika.ums.ac.id. Email: informatika@ums.ac.id

iv

SURAT KETERANGAN LULUS PLAGIASI

Assalamu’alaikum Wr. Wb

Biro Skripsi Program Studi Informatika menerangkan bahwa :

Nama : Zahid Mujaddid

NIM : L200134010

Judul : PERFORMANCE COMPARISON OF SEARCH FEATURE

WITH DJANGO QUERYSETS AND ELASTICSEARCH IN A

WEB APPLICATION

Program Studi : Informatika

Status : Lulus

Adalah benar-benar sudah lulus pengecekan plagiasi dari Naskah Publikasi Skripsi, dengan

menggunakan aplikasi Turnitin.

Demikian surat keterangan ini dibuat agar dipergunakan sebagaimana mestinya.

Wassalamu’alaikum Wr. Wb

Surakarta, 25 Juni 2020

Biro Skripsi Informatika

Ihsan Cahyo Utomo, S.Kom., M.Kom.

http://informatika.ums.ac.id/
mailto:informatika@ums.ac.id

UNIVERSITAS MUHAMMADIYAH SURAKARTA

FAKULTAS KOMUNIKASI DAN INFORMATIKA

PROGRAM STUDI INFORMATIKA

Jl. A Yani Tromol Pos 1 Pabelan Kartasura Telp. (0271)717417, 719483 Fax (0271) 714448

Surakarta 57102 Indonesia. Web: http://informatika.ums.ac.id. Email: informatika@ums.ac.id

v

http://informatika.ums.ac.id/
mailto:informatika@ums.ac.id

1

PERFORMANCE COMPARISON OF SEARCH FEATURE WITH DJANGO

QUERYSETS AND ELASTICSEARCH IN A WEB APPLICATION

Abstract

Search engine is an important tool for user to search relevant information quickly and easily.

It is especially an essential feature for the application that manage massive influx of data and

information in their server. The implementation of search engine is wide and various ranged

from famous web crawler such as Google, shopping sites such as Amazon to social media such

as Facebook. The purpose of this research is to implement search engine technology to web

application Arsip dan Dokumen UMS that handle every archive in University of

Muhammadiyah Surakarta and developed with Django web framework. This research focused

on the performance comparison of search engine between third-party search engine using

Elasticsearch and search engine built with Django Querysets which have become the default

implementation in this application. Each search engine must perform 12 search queries against

sample of text contained in archive database field. This were repeated ten times for each query

to obtain the best possible performance measurement in seconds. The archive database field

populated with 1001 text samples extracted randomly from various Indonesian Wikipedia page.

This research can prove how useful the implementation of Elasticsearch as search engine and

its drawbacks.

Index Terms: Django, Elasticsearch, performance comparison, search engine, web application

Abstrak

Mesin pencari adalah alat penting bagi pengguna untuk mencari informasi yang relevan dengan

cepat dan mudah. Ini adalah fitur yang sangat penting terutama untuk aplikasi yang mengelola

arus data dan informasi yang besar di server mereka. Implementasi mesin pencari sangat luas

dan beragam mulai dari perayap web terkenal seperti Google, situs belanja seperti Amazon

hingga media sosial seperti Facebook. Tujuan dari penelitian ini adalah untuk

mengimplementasikan teknologi mesin pencari ke aplikasi web Arsip dan Dokumen UMS

yang menangani setiap arsip di Universitas Muhammadiyah Surakarta dan dikembangkan

dengan web framework Django. Penelitian ini berfokus pada perbandingan kinerja mesin

pencari antara mesin pencari pihak ketiga menggunakan Elasticsearch dan mesin pencari yang

dibangun dengan Django Querysets yang telah menjadi implementasi standar dalam aplikasi

ini. Setiap mesin pencari harus melakukan 12 permintaan pencarian terhadap sampel teks yang

terkandung dalam field database arsip. Hal ini diulang sepuluh kali untuk setiap permintaan

untuk mendapatkan pengukuran kinerja terbaik dalam hitungan detik. Field database arsip

berisi 1001 sampel teks yang diekstraksi secara acak dari berbagai halaman Wikipedia bahasa

Indonesia. Penelitian ini dapat membuktikan betapa bermanfaatnya implementasi Elasticsearch

sebagai mesin pencari dan kelemahannya.

Index Terms: Django, Elasticsearch, perbandingan kinerja, mesin pencari, web aplikasi

2

1. INTRODUCTION

Following the creation of website in 1990 and its availability for everyone with the

announcement from CERN (Cailliau, 1995), search engine use began to resurge in

popularity. Beginning with the creation of first commercialized search engine Yahoo!

Search in 1994 (Oppitz & Tomsu, 2017), the use of search engine gained a traction among

the growing community of web users as a tool with the ability to get relevant information

quickly and easily. The use of search engine not only limited to web crawler such as Google

and Bing, but even in many websites that maintain a large userbase and database such as

shopping sites Amazon and Alibaba and social media such as Facebook and Twitter.

Search engine is an information retrieval program and presentation in response to

user queries and has become important feature for web application where information

changes dynamically. There are many properties for a search engine to get an attribute of a

good engine. They include the ability to retrieve as many relevant documents as available

in the dataset (Thamrin, Triyono, & Fadlilah, 2015). The crucial aspect of search engines

is their quality and scalability without compromising the performance itself. That is not

easy to achieve especially when information and user of search engine must handle

increased, this in turn can cause the number of search queries also increased (Brin & Page,

1998).

The objective of this research was to compare performance of two different

implementation of search feature in web-based Arsip dan Dokumen UMS application

developed specifically using Django with a purpose as central archives management in

University of Muhammadiyah Surakarta. The first implementation of search feature

utilized Django built-in Querysets field lookup which essentially works the same way as

SQL WHERE clause by specified keyword arguments. The second implementation

utilized third-party search backend Elasticsearch, an open source search engine based on

the Lucene library developed in Java with capability of near real-time information retrieval

(Bendechache et al., 2019). Although there are many documentations and tutorials of how

to implement Elasticsearch in Django, we have not yet found published studies that

compare their performance.

For this research, the sample of data used for comparison was a collection of

contents extracted from various sources of Indonesian Wikipedia which used to populate

3

fields in Arsip dan Dokumen UMS application database. A series of search query against

database were performed to gather search result count and the time taken for each query.

2. METHOD

2.1. Development Tools

This research required to setup development environment and tools to be installed

consist of hardware and software as outlined in Table 1.

Table 1. Development environment and tools

Hardware Software

• Laptop Acer Aspire A515-41G-13JX,

AMD Quad-Core Processor up to 3.60

GHz,

AMD Radeon
TM

 RX 540 with 2 GB

VRAM,

8GB DDR4 Memory, 1000 GB HDD

• Windows 10 Enterprise LTSC 64-

bit

• Docker Desktop

• Cmder Console Emulator

• VS Code Editor

• Sublime Text 3

• Chromium Edge Browser

2.2. Application Development

Arsip dan Dokumen UMS is an application created with Django, a python web

framework with the purpose as central management archives in University of

Muhammadiyah Surakarta. The features also included uploading the file when creating

a new archive and downloading it when user searching for an archive.

2.2.1. Requirements Analysis

The application must meet the following requirements:

1) User authentication (login and logout).

2) Create, Read, Update and Delete (CRUD) an archive.

3) Search from database.

4) Download uploaded file online.

2.2.2. Design and Coding

The design of the application follows the principle depicted by use case diagram

in Figure 1.

4

Figure 1. Use case diagram Arsip dan Dokumen UMS

The development done using Docker Desktop, an application for the

building and sharing of containerized applications and microservices (Docker,

Inc., n.d.). For this application, development setup divided into three services,

first the web service that host Alpine Linux installed with Python 3.8.2 and

Django 2.2 as the main service to host the web application code and occupied

port 8000. The second was the database service installed with Alpine-based

PostgreSQL as the application database and occupied default port 5432. The

third service is Elasticsearch using centos-based Linux hosted within port 9200.

The three services spun up three containers that communicate to each other

within one network and together form one virtual development environment.

2.2.3. Testing

This research adopted unit testing and black box testing. The unit testing

performed to test the code inside the application itself by writing the test code

to determine if the archive CRUD operation works as intended.

5

The black box testing were performed after the unit test to confirm if the

application really working as intended and to discover unexpected bugs or error

if any which done directly from web User Interface (UI).

2.2.4. Deployment

The application pushed to Gitlab a Git-repository manager for version control.

The deployment of application leveraged Gitlab CI/CD, a built-in tool for

automating the deployment. The current application also utilized Heroku, a

container-based cloud Platform as a Service (PaaS) where the application

deployed and maintained (Salesforce.com, Inc., n.d.). The deployment in

Heroku is quite straightforward and easy to manage. Heroku also provides a

generous free tier which are extremely useful to test the application within the

deployment environment.

2.3. Material

The search engine requires to search text against the archive database field. Django

web framework includes object-relational mapping layer (ORM) that can be used to

interact with application data from various relational databases such as SQLite,

PostgreSQL and MySQL. The database generated by creating an archive model first.

Model is a Django representation of a table in database. Each model maps to a single

database table. Table 2 depict archive model attributes created in this application where

each attribute represents each field in the database.

Table 2. Archive model database representation in Django

Field Name Models Type Attribute

id (primary key) AutoField auto_created=True

pengunggah (foreign key) ForeignKey on_delete=models.SET_NULL

Nama CharField max_length=200

Deskripsi TextField null=True

tanggal_unggah DateField auto_now_add=True

Jenis IntegerField default=0

Sifat IntegerField default=0

publik_mulai DateField null=True

publik_berakhir DateField null=True

file_media FileField max_length=200

6

2.3.1. Sample Acquisition

To search text within the field database, it needs to be populated first. This

research use archive database but the search feature implemented in this

application does not really care whether the text contained within the database

is truly an archive or just some random generated text. The search needs only to

do well matching search query from the user. This also allows separating of

concern should the application wish to implement a feature where content

within the database must be an archive by detecting certain pattern which an

archive should have.

For this research, the archive database populated with random text extracted

from Wikipedia of Indonesia using the technique called web scrapping with the

help from third-party python package wikipedia (pypi.org/project/wikipedia/).

As the name implies, the package used to extract content from a Wikipedia page

which in this research used to extract both page title and summary of a

Wikipedia topic to populate both field nama and field deskripsi respectively in

archive database. The current research collected a thousand and one (1001)

Wikipedia topics as samples to be searched.

2.3.2. Search Engine

The application used two different search implementations which can switched

as needed for conducting a performance comparison analysis. The first search

implemented with Django Querysets is simply an implementation of object-

relational mapping layer (ORM) used to interact with application data from

database. The search with Querysets basically performs a field lookup which

translates from Django ORM as SQL WHERE clause and return a new set of

queries based on specified arguments.

The second search implemented with Elasticsearch require an additional

package, django-elasticsearch-dsl that allows Elasticsearch running in port

9200 to index Django database model. Elasticsearch uses the indexing concept.

It is a document oriented tool. Once the document is added, it can be searched

within a next second (Kalyani & Mehta, 2017). The application requires at least

once for Elasticsearch to run search indexing against the application database.

Every time user performs CRUD operation to the archive model, Elasticsearch

7

automatically update its index to reflect the change within the application

database.

The search also applies additional filtering determined by the value of

field sifat as depicted in Table 2 and whether or not a user is authenticated. The

field sifat is an IntegerField type which store integer number ranged from 0 -

3 where each represents a key of value trait an archive can have. Table 3 outlined

each of key-value pair in field sifat.

Table 3. Field sifat key-value pain in Archive database

Key Value

0 Publik

1 Publik (temp)

2 Internal

3 Pribadi

The archive with value Publik and Publik (temp) will always visible in

search results whether a user is authenticated or not. The difference is that

Publik remain publicly available as long as the archive still exist in database,

while Publik (temp) has a time limit which it can remain available. The value

Internal means the archives are only available in the search result for

authenticated user only. The archive with a trait Pribadi is simply a private

archive that only the owner of the archive has access to it.

2.4. Comparison Analysis

To obtain the comparison performance, the first step is to determine the keywords for

search query. The focus of this research is purely on the performance side and because

of that certain keywords must be discarded if the search did not return any result. The

other consideration is for search query to return the same result count for both Django

Querysets and Elasticsearch which is used to determine the performance both search

engine in a balanced situation. To test an extreme case, the author chose two search

queries where the search must return result with wide disparity count. The total target

is 12 search queries where 10 queries with similar or small difference and 2 others for

extreme case with wide disparity search results

The next step is to measure the search performance time using python module

timeit that provides a way to time small bits of code (Python Software Foundation,

8

2020). This achieved by specifying a variable start timer before the beginning of search

algorithm, and variable end timer after the end of search algorithm each for Django

Querysets search and Elasticsearch. The performance result was calculated by

subtracting the end timer with the start timer to obtain search time in seconds and then

displayed on the search page.

The search was conducted by manually typing search keywords in input box of

the search page. This conducted for ten times for each search keywords to obtain the

best time possible that can be measured.

3. RESULT AND DISCUSSION

3.1. Application Result

The application web-based Arsip dan Dokumen UMS are capable of archival, retrieval

and search of file documents. Figure 2 shows the homepage of web application for a

guest user.

Figure 2. Homepage

There are two important section within the homepage. The top-half section is

an introduction section and the bottom-half are about section. The user can login from

Login navigation shown at the top-right of the header that will redirect user to login

page. The login page consists of one simple login form as depicted in Figure 3.

9

Figure 3. Login form

From the homepage user can also enter a search query within input box that

will redirect user to search page depicted in Figure 4.

Figure 4. Search page

At the top-right of header after a user login, the previous login navigation was

gone and replaced with user icon and username display and when clicked will display

a drop-down menu depicted in Figure 5.

10

Figure 5. User menu dropdown

There are two navigation bars, My Profile that will redirect to user profile page

and Library that will redirect to list of archives uploaded by users as depicted in Figure

6.

Figure 6. Library page

The library page is also the place which contain links to perform CRUD

operation for archive such as new button at the top-right of table that will redirect user

to archive create page as depicted in Figure 7.

11

Figure 7. Archive create page

The user can also view the detail of each archive in the list by simply clicking

the name of each archive which will redirect user to the page as depicted in Figure 8.

Figure 8. Archive detail page

3.2. Test Result

3.2.1. Unit Test

Table 4 depict each of the unit test performed within the application.

Table 4. Unit test performed

Test Status

Test home page displayed OK

Test archive model works OK

12

Test Status

Test add an archive works OK

Test update an archive works OK

Test remove an archive works OK

Test get the list of all archives OK

3.2.2. Black Box Test

Table 5 depict each of black box testing performed in this application.

Table 5. Black box testing performed

Test Status

User can login OK

User can logout OK

User can create an archive OK

User can update an archive OK

User can delete an archive OK

User can search the archive OK

3.3. Comparison Result

The first stage of comparison is search queries which return the same result count as

outlined in Table 6.

Table 6. Performance comparison of both search engine with the same result count

Search Query Django Querysets Elasticsearch Result

film 0.06 0.09 46

latin 0.06 0.1 16

pengetahuan 0.06 0.07 4

penggunaan 0.06 0.1 13

permainan 0.05 0.07 4

Overall Django Querysets search faster by small margin compared to

Elasticsearch for the same search result count with difference by 0.3 seconds in average.

Search with Django Querysets also shows rather consistent performance across

different search result which best attributed itself for being a built-in function of

13

Django ORM implementation. The next stage is comparison of search queries with

different result count as outlined in Table 7 and Table 8.

Table 7. Performance comparison of both search engine with small difference result

count

Search

Query

Django Querysets Elasticsearch

Result Time/sec Result Time/sec

Ekonomi 9 0.05 8 0.07

Ibu Kota 23 0.04 16 0.07

Industri 11 0.07 8 0.08

Kabupaten 65 0.05 64 0.13

pusat 23 0.06 17 0.1

Table 8. Performance comparison for both search engine with massive difference

result count

Search

Query

Django Querysets Elasticsearch

Result Time/sec Result Time/sec

Dewa 41 0.06 7 0.09

Ad 797 0.09 3 0.08

In this instance search with Django Querysets still outperform Elasticsearch

even when the result count is higher than its counterpart. The only instance

Elasticsearch outperform Django Querysets is when there is a massive difference of

result count as depicted in search query “Ad”. The performance test in this research

only conducted in one query at a time and thus didn’t account for performance of

multiple queries at once which requires for this research to be expanded in future

studies.

Elasticsearch also shown to always return results with fewer count than search

with Django Querysets because of its advanced nature which built upon Lucene library

where the relevancy of search result are calculated using practical scoring functions

(Bhandarkar & B. N., 2020). This best depicted by search query in Table 8 where

Elasticsearch manage to find the meaning of “Dewa” which means God and return

seven such relevant result.

Search with Django Querysets is simply an implementation of complex

database field lookup using QuerySet, a database-abstraction API. This is very easy to

14

setup because QuerySet is built-in API provided by Django and is a standard when

working with database in Django way.

Search with Elasticsearch on the other hand, require more complicated setup

and additional search backend configuration within Django. Elasticsearch also needs

to run from a different port first for the application to be able to connect and use it. The

algorithm to create search with Elasticsearch also prone to error without proper reading

of documentation.

4. CONCLUSIONS

Quantitative analysis of search requires proper knowledge of the available search engines

and their applicability to specific types of application because the choice to build search

feature depends entirely on the complexity of data that will be handled by the application

itself.

For comparison between two search implementation, Django Querysets generally

is faster and easier to work with because its built-in nature as Django object-relational

mapping (ORM) implementation and has become standard when interacting with database

in Django way. Search with Elasticsearch is slower only by small margin and return fewer

result, but more relevant because it utilized Lucene library for score calculation of search

result. Elasticsearch is also a lot harder to implement since it requires the help of external

package, additional configuration and even more coding to utilize its rich features.

Further studies are still necessary especially in regards search performance and

precision where multiple search queries at once involved to fully understand Elasticsearch

full capability and its advantage in performance.

REFERENCES

Bendechache, M., Svorobej, S., Endo, P. T., Mario, M. N., Ares, M. E., Byrne, J., & Lynn, T.

(2019). Modelling and Simulation of ElasticSearch using CloudSim. Proceedings - 2019

IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time

Applications, DS-RT 2019. https://doi.org/10.1109/DS-RT47707.2019.8958653.

Bhandarkar, S., & B. N., N. (2020). A Full-Text-Based Search Algorithm vs Elasticsearch.

Studies in Indian Place Names, UGC Care Journal, 40(74), 2168–2171.

Brin, S., & Page, L. (1998). The Anatomy of a Large-Scale Hypertextual Web Search Engine.

Computer Networks and ISDN Systems, 107-117.

15

Cailliau, R. (1995). History: W3C. Retrieved from A Little History of the World Wide Web:

https://www.w3.org/History.html.

Docker, Inc. (n.d.). Docker Desktop: The fastest way to containerize applications on your

desktop. Retrieved from Docker: https://www.docker.com/products/docker-desktop.

Kalyani, D., & Mehta, D. (2017). Paper on Searching and Indexing Using Elasticsearch.

International Journal of Engineering and Computer Science, 21824-21829.

doi:10.18535/ijecs/v6i6.44.

Oppitz, M., & Tomsu, P. (2017). Inventing the Cloud Century: How Cloudiness Keeps

Changing Our Life, Economy and Technology. Springer. doi:10.1007/978-3-319-61161-

7.

Python Software Foundation. (2020, April 20). timeit — Measure execution time of small code

snippets. Retrieved from Python 3.8.2 documentation:

https://docs.python.org/3/library/timeit.html.

Salesforce.com, Inc. (n.d.). What is Heroku? Retrieved from Heroku:

https://www.heroku.com/about.

Thamrin, H., Triyono, A., & Fadlilah, U. (2015). Penggunaan Kamus Sinonim dan Hiponim

sebagai Sumber Ekspansi Kueri dalam Sistem Temu Kembali Informasi Berbahasa

Indonesia. University Research Colloquium (URECOL), 43-49. Retrieved from

http://hdl.handle.net/11617/5109.

	PAGE OF APPROVEMENT
	PAGE OF VERIFICATION
	STATEMENT OF VOW
	SURAT KETERANGAN LULUS PLAGIASI
	Abstract
	1. INTRODUCTION
	2. METHOD
	2.1. Development Tools
	2.2. Application Development
	2.2.1. Requirements Analysis
	2.2.2. Design and Coding
	2.2.3. Testing
	2.2.4. Deployment

	2.3. Material
	2.3.1. Sample Acquisition
	2.3.2. Search Engine

	2.4. Comparison Analysis

	3. RESULT AND DISCUSSION
	3.1. Application Result
	3.2. Test Result
	3.2.1. Unit Test
	3.2.2. Black Box Test

	3.3. Comparison Result

	4. CONCLUSIONS
	REFERENCES

