
Performance Evaluation of Concurrent Collections
on High-Performance Multicore Computing Systems

Aparna Chandramowlishwaran†, Kathleen Knobe?, Richard Vuduc†

†College of Computing, Georgia Institute of Technology, Atlanta, GA
?Software Solutions Group, Intel Corporation, Hudson, MA

Abstract

This paper is the first extensive performance study
of a recently proposed parallel programming model,
called Concurrent Collections (CnC). In CnC, the
programmer expresses her computation in terms of
application-specific operations, partially-ordered by se-
mantic scheduling constraints. The CnC model is
well-suited to expressing asynchronous-parallel algo-
rithms, so we evaluate CnC using two dense lin-
ear algebra algorithms in this style for execution on
state-of-the-art multicore systems: (i) a recently pro-
posed asynchronous-parallel Cholesky factorization al-
gorithm, (ii) a novel and non-trivial “higher-level”
partly-asynchronous generalized eigensolver for dense
symmetric matrices.

Given a well-tuned sequential BLAS, our imple-
mentations match or exceed competing multithreaded
vendor-tuned codes by up to 2.6×. Our evaluation com-
pares with alternative models, including ScaLAPACK
with a shared memory MPI, OpenMP, Cilk++, and
PLASMA 2.0, on Intel Harpertown, Nehalem, and AMD
Barcelona systems. Looking forward, we identify new
opportunities to improve the CnC language and run-
time scheduling and execution.

1 Introduction and Scope
We study the use of a novel general-purpose paral-

lel programming model, called Concurrent Collections
(CnC) [4,12,13]. In CnC, the programmer expresses her
computation in terms of high-level application-specific
components, partially-ordered only by minimal seman-
tic scheduling (data- and control-flow) constraints (Sec-
tion 2). This model encourages the programmer to focus
on expressing the computation at a high-level without
unnecessary serialization and gives the run-time system
flexibility in scheduling operations.

Although there are several papers about various as-
pects of the CnC model, to date there have been no
performance demonstrations or evaluations to assess its
viability, particularly for high-performance computing
(HPC) applications. This paper is the first such perfor-
mance study. In particular, we ask whether CnC deliv-
ers competitive performance on computations with well-
defined performance targets and challenging algorith-
mic characteristics. For our evaluation, we select dense
linear algebra computations written for multicore sys-
tems in an asynchronous-parallel style, by which we
mean bulk-synchronous parallel behavior is replaced by
more fine-grained task-level parallelism and localized
synchronization [5,7,15]. This approach (a) is naturally
suited to cores with relatively smaller cache or local-
store memories, and (b) reduces the degree of synchro-
nization, whose cost may reasonably be expected to in-
crease with increasing core counts. There are numerous
successful demonstrations of this approach for dense lin-
ear algebra on current multicore systems [5,7,14], mean-
ing there are clear and rigorous performance targets.

Contributions and findings. Our central contribu-
tion is the first extensive study of the performance poten-
tial for HPC applications using the CnC model, based on
Intel’s v0.3 Linux CnC implementation for shared mem-
ory multicore systems [11]. We discuss which aspects of
the CnC language and run-time could be improved. Our
study is essential to establishing what the potential is for
achieving high performance using CnC.

We express and analyze a prior asynchronous-parallel
variant of dense Cholesky factorization when written us-
ing CnC. When coupled with a well-tuned BLAS, CnC
can closely match or exceed the performance and scal-
ability of the vendor-tuned Intel Math Kernel Library
(MKL). Our CnC-based code also compares favorably to
PLASMA 2.0, a state-of-the-art domain-specific library-
based approach (Section 3). Both MKL and PLASMA
use an asynchronous-parallel approach, and so consti-

1

tute the current state-of-the-art.
For additional comparison, we provide results in al-

ternative programming models, including the “off-the-
shelf” solution of ScaLAPACK with a shared mem-
ory implementation of MPI (MPICH2+nemesis); Open-
MP; and Cilk++. The principal difference between CnC
and these models is CnC’s natural support for asyn-
chronous execution.1 Our findings quantify the gap be-
tween asynchronous-parallel and bulk-synchronous ex-
ecution (Section 4).

Finally, we develop a complete CnC implementa-
tion of a novel and partly asynchronous-parallel gen-
eralized eigensolver for dense symmetric matrices, of
which Cholesky is a small component (Section 3). This
non-trivial computation is, as far as we know, the first
of its kind. As such, we show that it is feasible to ex-
press a complex algorithm within CnC. Our implemen-
tation outperforms the Intel MKL equivalent by 1.1–
2.6× (Section 4).

Scope. Importantly, this study is about the perfor-
mance potential of CnC. Such studies are essential for
any new parallel programming model to show value for
HPC. Our positive findings show there is potential in
CnC as far as performance is concerned.

As an evaluation of CnC for HPC, our use of dense
linear algebra limits the findings’ generalizability to one
class of computations. Still, this class has challenging
properties (e.g., our eigensolver), and so we believe that
the basic CnC approach could still be an appropriate
starting point for similarly asynchronous-parallel algo-
rithms in other areas.

Equally important to questions of performance are
those of productivity. We argue, qualitatively, that CnC
is suitable for these computations. However, we stress
that a true assessment is a human-factors question, re-
quiring a separate and carefully controlled experiment,
and as such is beyond the scope of the present study.

2 Overview of CnC
This section provides a cursory overview of the basic

CnC concepts relevant to our implementation and exper-
imental results. Portions of this material are taken from
existing detailed summaries [4, 11, 12].

The CnC model separates the specification of the
computation from the expression of its parallelism.
This design can simplify the tasks of a domain ex-
pert, who is responsible for expressing the compu-
tation, from the tasks of a parallelization and tun-
ing expert (possibly the same person, a different per-
son, or some software/compiler), who identifies the

1We do not use the most advanced features of OpenMP 3.0 and
Cilk++, nor do we compare directly to the FLAME/SuperMatrix and
library-based SMPSs approaches [7, 15]. Nevertheless, for Cholesky,
we would expect at best comparable performance to PLASMA.

⊗ Z

<i,j>

Outer Product

x

y

<i>

<j>

<i,j>

Figure 1. CnC graphical representation of
the outer product operation, Z ← x · yT .

parallelism and performs scheduling/distribution and
manages communication/synchronization. CnC com-
bines ideas from earlier language work on tuple-spaces,
streaming, and data flow models [6, 9, 16] (see Sec-
tion 5).

Computation specification. We summarize the ba-
sic CnC model by an example. Consider the dense outer
product computation, Z ← x · yT , where x and y are
two column vectors and Z is a matrix of appropriate di-
mension. Algorithmically, we compute Zi,j ← xi · yj

for all pairs, (xi, yj).
The domain expert specifies the computation in a

form that can be represented by a graph, as shown in
Figure 1 for the outer product. This graph has 3 kinds
of nodes: computational steps, data items, and control
tags. Directed edges show producer-consumer relation-
ships among these nodes.

A step is the basic unit of execution, which for the
outer product is pairwise element multiplication.2 The
blue oval in Figure 1 is a step collection, which stat-
ically represents the set of dynamic instances of these
multiplications.

Data is represented using item collections. Here, x, y,
and Z are the three item collections, shown by boxes in
Figure 1. Each item collection comprises item instances,
which in this case are the elements of the x, y, and Z
objects. These items serve as the basic unit of storage,
communication, and synchronization.

Steps may consume items (item → step) or produce
them (step → item), shown by directed edges in Fig-
ure 1.

Each instance of a step or item has a unique
application-specific identifier, or tag, which is a tuple
of tag components. For the outer product, it is natural to
use element indices as tags. In Figure 1, we denote the

2We consider this very fine granularity for example only, as in prac-
tice one might wish to choose a larger grain, such as a block.

2

tag for x by < i >, y by < j >, and Z by < i, j >.
Tag collections (also called tag spaces) specify ex-

actly which instances of a step will execute. A step
collection is associated with exactly one tag collec-
tion/space; a step instance executes only if a matching
tag instance exists. For the outer product, we show the
tag space by a triangle and denote it by < i, j >. For in-
stance, only if the tag collection has < 3, 10 > does the
corresponding pairwise multiply forZ3,10 ← x3 ·y10 ex-
ecute. We say that a tag collection prescribes a step col-
lection, and show that visually with a dashed undirected
edge connecting the tag collection to the step collection.
Multiple step collections may be prescribed by the same
tag collection. Importantly, tags indicate whether a step
will execute, but nothing about when it executes. This
distinction shows in part how CnC separates scheduling
decisions from the computation’s specification.

Though not shown here, a step may produce tags. In
this way, a step may control what other steps execute.
This facility is part of what makes CnC a more flexible
and general model than, say, a pure streaming language.

Lastly, Figure 1 contains “squiggly” lines that are
missing either a source or a sink. These lines mean that
the item or tag comes from or goes to the environment,
which is the external code that invokes this computation.
For the outer product, the environment provides the data
items and control tags. (There are other designs; for in-
stance, we could have added an additional step that con-
sumes data containing, say, the dimensions of the x and
y vectors, and then produces the control tags that pre-
scribe the pairwise multiply step.)

Textual notation. There is a formal textual represen-
tation of this graph. We illustrate this representation in
Section 3, when we describe the CnC implementations
of our target dense linear algebra computations. In the
current implementation, a translator converts this speci-
fication into C++ code, generating subroutine stubs cor-
responding to the steps. The programmer must imple-
ment these stubs (presumably as purely sequential code).

When the run-time calls the sequential step code, it
provides the tag and data item instances. The step code
calls an API to get the input tags and, if it produces tags,
put them back “into” the graph. We refer the interested
reader to the CnC documentation [11].

Semantics and execution. If a step executes and pro-
duces an item or a tag, that item or tag becomes avail-
able. If a tag collection prescribes a step collection and
a particular tag becomes available, then the step is pre-
scribed. If all items for a particular step are available, the
step becomes inputs-available. If a step is both inputs-
available and prescribed, then it is enabled and may exe-
cute. The program terminates when no step is executing
and no unexecuted step is enabled. This termination is
valid if all prescribed steps have been executed.

The CnC model permits many run-time system de-
signs, including those for distributed memory systems
using MPI as well as shared memory versions [4]. We
use Intel CnC 0.3, which is based on the Intel Thread
Building Blocks (TBB) [11]. The TBB run-time system
is based on a Cilk-style work stealing scheduler, with
work queues implemented to use last-in first-out (LIFO)
order.

In the Intel CnC, there are four types of events: start,
complete, idle, and requeue. Start signals the beginning
of execution of a step, while complete signals its suc-
cessful completion. An idle event is the time spent be-
tween the end of one step and start of the next, when the
thread is waiting to be scheduled or waiting for data to
become available.

The requeue event is specific to the Intel CnC. The
run-time may start executing a step as soon as the pre-
scribing tag is available. Thus, if some of the step’s in-
puts are not yet available, the step may be requeued and
tried again later. We revisit requeuing in Section 4.

3 Dense Linear Algebra in CnC

Algorithm 1: Tiled Cholesky factorization algorithm
of Buttari, et al. [5].

Input: Input matrix: B, Matrix size: nxn where
n = p∗ b for some b which denotes the tile
size

Output: Lower triangular matrix: L

1 for k = 1 to p do
2 ConventionalCholesky(Bkk, Lkk);
3 for j = k + 1 to p do
4 TriangularSolve(Lkk, Bjk, Ljk);
5 for i = k + 1 to j do
6 SymmetricRank-

kUpdate(Ljk, Lik, Bij);

In this section, we discuss the CnC implementations
of the asynchronous-parallel variant of dense Cholesky
factorization and a novel asynchronous-parallel dense
generalized eigensolver.

3.1 Asynchronous-Parallel Cholesky

A Cholesky factorization of a symmetric positive def-
inite matrix B is the product L · LT , where L is a
(lower) triangular matrix. We specifically consider Al-
gorithm 1, which is the tiled Cholesky algorithm of But-
tari, et al. [5]. This algorithm is based on decompos-
ing B into blocks (or tiles), and computes L in an asyn-
chronous parallel manner suitable for multicore hierar-
chical memory platforms.

Figure 2 illustrates how asynchronous-parallelism

3

B1,1 

B2,1 

B3,1 

B4,1 

B2,2 

B3,2 

B4,2 

B3,3 

B4,3  B4,4 

(a) Initial factorization of the
(1, 1) tile.

B1,1 

B2,1 

B3,1 

B4,1 

B2,2 

B3,2 

B4,2 

B3,3 

B4,3  B4,4 

(b) Triangular solve using the
(1, 1) tile.

B1,1 

B2,1 

B3,1 

B4,1 

B2,2 

B3,2 

B4,2 

B3,3 

B4,3  B4,4 

(c) Symmetric rank-k update
using the (2 : 4, 1) tiles.

Figure 2. An illustration of asynchronous Cholesky factorization.

arises in Algorithm 1. We first factor B11 = L11 · LT
11

(line 2 of Algorithm 1 for k = 1), using a conventional
sequential Cholesky algorithm. Then, lines 3–4, which
operate on blocksB21, B31, and B41 can execute in par-
allel. Moreover, lines 5–6 suggest that once we com-
plete operating on theB21 block, we can do a symmetric
rank-k update of block B22 in one thread while another
thread is still, say, performing the triangular solve on
block B31. Hence, there is a lot of task- and data-level
parallelism in Cholesky.

3.2 Cholesky in CnC

This asynchronous-parallel behavior maps naturally
to the CnC constructs seen in Section 2. Lines 2, 4, and
6 in Algorithm 1 map to steps in CnC. The index itera-
tion variables of Algorithm 1 constitute a natural choice
for tags which helps distinguish between different data
items (tiles in this case).

Figure 3 shows the graphical computation specifica-
tion of tiled Cholesky in CnC. For simplicity, we omit
the data items from this graph. Below the graph, we
show the textual representation of the graph that the pro-
grammer might write. CnC translates the textual repre-
sentation into C++ code containing stubs for the pro-
grammer to fill in code, as illustrated in Figure 4. That
is, at this point, all the programmer does is input the ap-
propriate tags and data items along with the serial logic
of the step.

For the serial step implementation, we call tuned se-
quential vendor BLAS routines. This allows us to cou-
ple CnC with an optimized serial library to obtain an
efficient parallel implementation with minimal coding
effort. Figure 4 shows the actual step code with the
call to dtrsm which performs triangular solve. The API
calls (Get/Put) before and after the BLAS function call
reads in the input tile(s) identified by the tag, performs
the computation and outputs tile(s) with the correspond-
ing tag identifier. The input/output and computation per-
formed might vary across different steps, but the basic

principle is the same.
Note that the choice of tags is important, as it deter-

mines the amount of parallelism exposed. Tag choice is
largely natural for dense linear algebra but a poor choice
of tags could impede performance.

Once, the data is available and the step inputting the
data is prescribed by a valid tag identifer, the CnC run-
time schedules that particular step instance for execu-
tion. Given the freedom to schedule steps, CnC sched-
ules them in a way to expose asynchronous-parallel ex-
ecution.

As with related approaches, this CnC-based imple-
mentation contains a tuning parameter, the block size,
which we have assumed the domain expert introduces
and selects. This parameter is critical to performance
in that it implicitly controls the degree of available
asynchronous-parallelism.

3.3 Generalized Symmetric Eigensolver

Though illustrative, the Cholesky example is fairly
compact. To better understand and assess CnC, we also
developed a tiled and partly asynchronous-parallel sym-
metric generalized eigensolver, which is considerably
larger than Cholesky. This is one of the first efforts
on designing and implementing an asynchronous eigen-
solver and most importantly a model like CnC allows us
to express the asynchronous-parallel behavior naturally
with relatively modest effort.

Algorithm. To compute the eigenvalues, λ we solve
the linear algebra equation Az = λBz. Here, A is
symmetric and B is symmetric positive definite ma-
trix. Although this implementation is based on the LA-
PACK routine dsygvx, we note that unlike the orig-
inal algorithm our implementation in CnC is in fact
asynchronous-parallel.

The basic algorithm implemented by dsygvx has four
components. First, we compute the Cholesky factoriza-
tion B → LLT . Next, we reduce the real symmetric-
definite generalized eigenproblem to so-called standard

4

Cholesky

<k> <k,j> <k,j,i>

ConvChol Trisolve Update

// Item: Matrix L, tagged by <k, j, i>
// Suppose ’BlockedMatrix<T>’ is a C++ class
// that encapsulates the matrix data,
// dimension ’n’ and block size ’b’.
[BlockedMatrix<double>* L: int, int, int];

// Tag declarations
<C_tag : int>; // <k>
<TS_tag: int, int>; // <k, j>
<U_tag : int, int, int>; // <k, j, i>

// Step Prescriptions
<C_tag> :: (ConvChol);
<TS_tag> :: (Trisolve);
<U_tag> :: (Update);

// Input from the environment
env -> [L], <C_tag>;

// Step executions
[L] -> (ConvChol);
(ConvChol) -> [L], <TS_tag>;

[L] -> (Trisolve);
(Trisolve) -> [L], <U_tag>;

[L] -> (Update);
(Update) -> [L];

// Output to environment
[L] -> env;

Figure 3. Top: CnC graphical notation of Cholesky factorization. The red oval is the con-
ventional Cholesky step; the green oval is the triangular solve step; and the grey oval is the
symmetric rank-k update. Bottom: Textual notation of Cholesky factorization. Includes one
statement for each relation in the graph.

form, (L−1 ∗ A ∗ L−T)z = λz. Methods exist for
computing the eigenvalues directly from the generalized
form. The third component is reduction of the symmet-
ric matrix to symmetric tridiagonal form, using an or-
thogonal similarity transformation, T = Q′ ∗ A ∗ Q.
This step can be decomposed into a number of kernels,
including matrix-vector multiplication, symmetric ma-
trix vector multipliction, and dot product, among oth-
ers. Finally, we extract the eigenvalues from the tridiag-
onal matrix using a modified QR algorithm. This step is
not compute intensive and may be computed by a single
thread.

Asynchronous-parallelism. Figure 5 is a directed
acyclic graph (DAG) of the first two steps of the eigen-
solver for a matrix partitioned into a 3×3 grid of blocks.
Nodes represent computation and edges represent de-
pendencies among them. Each block is labeled by the
appropriate submatrix block coordinates. Note that all
nodes at any level of the DAG (highlighted by a grey
oval) have no dependencies among themselves. Al-
though initially the computation is sequential until root
node finishes execution, there is abundant parallelism
thereafter. As is evident from the figure, different tasks,
denoted by different colors, can execute concurrently.

In the eigensolver, we not only execute steps in
Cholesky asynchronously, but also interleave them with
steps of the reduction to standard form (e.g., right trian-

gular solve, symmetric matrix multiplication). The CnC
code easily expresses this concurrency, and the run-time
exploits that concurrency naturally through its schedul-
ing as discussed in Section 4.

Although it is possible to extract parallelism using
CnC from the third component of the eigensolver (re-
duction to tridiagonal form), the inherent dependencies
inhibit asynchronous-parallel execution. We would need
a different algorithmic approach altogether.

Parallelization. Once the dependencies between the
steps are laid out, it is possible to extract parallelism
more efficiently. To that end, we parallelize all sub-
kernels within the first three phases. Unfortunately, one
of the most compute-intensive kernel is the symmet-
ric matrix-vector multiply (dsymv), which was not effi-
ciently implemented in the BLAS. Hence, for this kernel
alone, we manually parallelize the computation in CnC.
This trade-off is worth while as we observe a dramatic
increase in performance for a slight increase in program-
mer effort.

4 Results and Discussion
In this section, we first evaluate our CnC-based

Cholesky and symmetric generalized eigensolver imple-
mentations on the three state-of-the-art multicore plat-
forms shown in Table 1. We then compare their perfor-
mance to six other implementations (double-precision)

5

Vendor AMD Intel Intel
Proc. Model Opteron 8350 Xeon E5405 Xeon X5560
Proc. Name Barcelona Harpertown Nehalem

Clock(GHz) 2 2 2.8
Sockets 4 2 2
Cores(Threads)/Socket 4(4) 4(4) 4(8)
L1 Data Cache 64 KB/core 32 KB/core 32 KB/core
L2 Data Cache 512 KB/core 6 MB/2cores 256 KB/core
Shared L3 Cache 2 MB/socket – 8 MB/socket
DRAM Capacity 32 GB 4 GB 12 GB
DRAM Bandwidth (GB/s) 21.3 21.3 51.2
DP Peak Performance (GFlop/s) 128 64 89.6

Table 1. Evaluation platforms for our experiments.

StepReturnValue_t Trisolve(
cholesky_graph_t& graph,
const Tag_t& TS_Tag) {

char uplo = ’l’, side = ’r’;
char transa = ’t’, diag = ’n’;
double alpha = 1;

const int k = (TS_Tag[0]);
const int j = (TS_Tag[1]);

// For each input item in this step
// retrieve the item using the proper tag

// User code to create item tag here
BlockedMatrix<double>* A_block =

graph.L.Get(Tag_t(j, k, k));
BlockedMatrix<double>* Li_block =

graph.L.Get(Tag_t(k, k, k+1));

// Get block size
int b = A_block->getBlockSize ();

// Step implementation logic goes here
dtrsm(&side, &uplo, &transa, &diag, &b, &b,

&alpha, Li_block, &b, A_block, &b);

// For each output item for this step
// put the new item using the proper tag

// User code to create item tag here
graph.L.Put(Tag_t(j, k, k+1), A_block);

return CNC_Success;
}

Figure 4. CnC code for the triangular solve
step of the Cholesky algorithm. The black
and gray text in this code snippet denote
the stubs that are generated automatically
using the inputs and outputs defined in
the graph. The code fragments filled in by
the user are indicated in bold (blue color
text). Note: We call tuned BLAS for the se-
quential step implementation (dtrsm in this
example).

B1,1 

A1,1  A2,1  A3,1  B3,1 B2,1 

B3,3 A2,1  A3,1  B3,2 B2,2 

B2,2 

B3,2 

B3,3 

B3,3 

A3,3 A3,2 A2,2 A2,1  A3,1 

Unblocked Cholesky factorization

Triangular solve (Cholesky)

Symmetric rank-k update

Unblocked reduction to standard form

Right triangular solve

Symmetric matrix multiplication 1

Symmetric rank-2k update

Symmetric matrix multiplication 2

Figure 5. DAG representation of the eigen-
solver.

and execution-time bounds based on critical path length.
For the non-CnC implementations, we make a “best ef-
fort” to do some tuning, and always use sequential MKL
when possible. Finally, we examine CnC’s scheduling
compared to bulk-synchronous strategies.

We compare the following implementations.
Baseline – Sequential MKL: The Intel Math Ker-

nel Library (MKL) implementation of Cholesky factor-
ization, dpotrf, run in sequential mode with the input
matrix in column-major storage. This baseline is highly
tuned by Intel. We also measure multithreaded MKL
(see below). [In the plots, we use sequential MKL im-
plementation as the baseline and show this by hollow
circles.]

Blocked iterative OpenMP + sequential MKL: We
implemented the tiled Cholesky Algorithm 1, where we

6

(1) distribute the loop in line 3 to get two ‘j’ loop nests,
i.e., one for triangular solve and one for symmetric rank-
k update; and then (2) use OpenMP to parallelize the ‘j’
loops. We then use the highly-tuned sequential MKL
for each block operation. We tune the block size by ex-
haustive search for each input size, and report the best
performance. [plus signs]

Cilk++ 1.0.3 block recursive + sequential MKL:
We implemented a blocked recursive Cilk++ implemen-
tation. In particular, the entire algorithm including the
triangular solve and rank-k update steps are performed
recursively [2], so as to be able to easily use the Cilk++

thread spawn keyword. The recursive form of each step
partitions the matrix into roughly half in each dimen-
sion. We stop recursion at a tunable block size, deter-
mined by exhaustive search for each input matrix dimen-
sion. We report the best performance. We use sequential
MKL for the leaf kernels. [crosses]

Multithreaded MKL: We use the multithreaded
MKL implementation of Cholesky factorization,
dpotrf. We report performance on the the number
of cores that delivers the highest performance, up to
the maximum available cores. The input matrix is in
column-major storage. [hollow diamonds]

ScaLAPACK + shared memory MPI: We use
ScaLAPACK 1.8.0 with an MPI “tuned” for shared
memory. In particular, we use MPICH2 1.0.8 compiled
with the Nemesis device. We tune the processor grid,
trying all valid configurations for a given number of MPI
tasks, trying all numbers of tasks, and report the best
performance. [up-pointing triangles]

PLASMA + sequential MKL: We use the Cholesky
implementation that is part of freely available PLASMA
2.0.0 package. There is a block size parameter, which
we tune for each problem size. Since PLASMA cur-
rently does not solve eigenvalue problems, we compare
only against our Cholesky. [downward pointing trian-
gles]

CnC + sequential MKL: The CnC implementation
of Cholesky using sequential MKL for the steps. The
data is stored in blocked data layout [2, 5, 7, 10]. The
block size used in the layout is determined by an ex-
haustive search over all possible values for a given input
matrix size. The block size that achieves the highest per-
formance is chosen. [filled squares]

DGEMM Peak: The peak performance (GFlop/s) of
double-precision dense matrix multiplication measured
using all the cores on the system. Rather than bench-
marking all sizes, we show a representative GFlop/s
number for n = 10, 000, which gave the best DGEMM
performance on all three platforms among all values of
n that we considered for Cholesky and the eigensolver.
[dashed lines]

Theoretical Peak: The theoretical machine-specific

upper-bound on double-precision GFlop/s achievable.
[solid lines]

Compilers: For our CnC Cholesky factorization,
eigensolver, OpenMP and ScaLAPACK implementa-
tions, we use the Intel v11.0 and v10.1 compilers on
the Intel and AMD platforms respectively. We use
MKL v10.0.3.020 on Barcelona, v10.2 on Nehalem, and
v10.1.0.019 on Harpertown. For our Cilk++ implemen-
tation, we use the gcc 4.2 compiler that ships with it.

4.1 Cholesky factorization

Figure 6 presents the performance scalability by ar-
chitecture as a function of matrix size for double preci-
sion Cholesky factorization. The baseline performance
results correspond to sequential MKL values. On all ma-
chines, we use the number of cores that delivers highest
performance for each matrix. We use the theoretical flop
count of n3/3 when reporting performance.

On Nehalem, our asynchronous-parallel CnC
Cholesky compares favorably to PLASMA and MKL.
The sequential MKL baseline runs at over 10 GFlop/s.
By contrast, OpenMP with sequential MKL is 2.8×
faster than the baseline; and recursive Cilk++ with se-
quential MKL and ScaLAPACK using shared memory
MPI provides only an additional 10% over that. We
observe that our fully asynchronous-parallel CnC im-
plementation using sequential MKL delivers very good
scalability (speedup of nearly 7.3× in comparison to the
baseline), upto 8 threads. Beyond this, HyperThreading
yields no added benefit on all three competiting imple-
mentations (MKL, PLASMA and CnC). Nevertheless,
CnC Cholesky on Nehalem achieves more than 85% of
the theoretical peak performance for the largest matrix
size (n = 10, 000) where DGEMM is at 92%.

We make similar observations on Harpertown whose
Core architecture is similar to Nehalam. Unlike Ne-
halem, there is no simultanous multithreading (SMT)
on Harpertown. Once again, our CnC implementation
achieves near perfect scaling, a speedup of 7.5× on 8
cores, competing well with MKL and PLASMA imple-
mentations. Moreover, we achieve more than 80% of the
theoretical peak performance.

The data on Barcelona also follow similar trends ex-
cept, interestingly, Cholesky factorization achieves only
half the theoretical peak performance. Nevetheless, our
CnC implementation delivers performance on par with
the state-of-the-art PLASMA and exceeds multithreaded
MKL for large problem sizes. Barcelona performance
also shows good scalability, nearly 11× on 16 cores.
(Note: We did check AMD’s BLAS, which was slower
than MKL.)

In summary, these results show the potential of CnC
to exploit the available parallelism, achieving competi-

7

P
er

fo
rm

an
ce

 (G
Fl

op
/s

)

1000 2000 3000 4000 5000 6000 7000 8000 900010000
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Matrix Size

20

40

60

80

100

P
er

ce
nt

ag
e

of
 T

he
or

et
ic

al
 P

ea
k

DGEMM peakDGEMM peakDGEMM peakDGEMM peakDGEMM peakDGEMM peakDGEMM peakDGEMM peakDGEMM peakDGEMM peak

Theoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/s Baseline
ScaLAPACK+MPICH2/nemesis
OpenMP+MKL(seq)
Cilk++ rec+MKL(seq)
Multithreaded MKL
PLASMA+MKL(seq)
CnC+MKL(seq)

(a) 16-core (4x4) AMD Barcelona

P
er

fo
rm

an
ce

 (G
Fl

op
/s

)

1000 2000 3000 4000 5000 6000 7000 8000 900010000
0

10

20

30

40

50

60

70

80

90

100

Matrix Size

20

40

60

80

100

P
er

ce
nt

ag
e

of
 T

he
or

et
ic

al
 P

ea
kDGEMM peakDGEMM peakDGEMM peakDGEMM peakDGEMM peakDGEMM peakDGEMM peakDGEMM peakDGEMM peakDGEMM peak

Theoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/s

(b) 8-core (2x4) Intel Nehalem

P
er

fo
rm

an
ce

 (G
Fl

op
/s

)

1000 2000 3000 4000 5000 6000 7000 8000 900010000
0

10

20

30

40

50

60

70

80

Matrix Size

20

40

60

80

100

P
er

ce
nt

ag
e

of
 T

he
or

et
ic

al
 P

ea
k

DGEMM peakDGEMM peakDGEMM peakDGEMM peakDGEMM peakDGEMM peakDGEMM peakDGEMM peakDGEMM peakDGEMM peak

Theoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/sTheoretical peak GFlop/s

(c) 8-core (2x4) Intel Harpertown

Figure 6. Performance summary of double
precision Cholesky factorization: Perfor-
mance in GFlop/s (left y-axis) and percent-
age of theoretical peak (right y-axis) as a
function of matrix size, comparing seven
implementations discussed.

P
er

fo
rm

an
ce

 (G
Fl

op
/s

)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7

8

Matrix Size

Baseline
Multithreaded MKL
CnC+MKL(seq)

(a) 16-core (4x4) AMD Barcelona

P
er

fo
rm

an
ce

 (G
Fl

op
/s

)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Matrix Size

(b) 8-core (2x4) Intel Nehalem

P
er

fo
rm

an
ce

 (G
Fl

op
/s

)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

Matrix Size

(c) 8-core (2x4) Intel Harpertown

Figure 7. Performance summary of dou-
ble precision Eigensolver: Performance
(GFlop/s) for the three implementations
discussed. The flop count used is mea-
sured using PAPI performance counters.

8

tive performance with reasonable programming effort.3

4.2 Eigensolver performance

Figure 7 compares the double precision eigensolver
performance on our three machines. For all platforms,
we compare: (i) the baseline sequential MKL imple-
mentation; (ii) the multithreaded MKL implementation;
and (iii) our CnC code. Though all three codes can
compute both eigenvalues and eigenvectors, we compute
just the eigenvalues since it is generally recognized that
dgsyvx is best suited to that case.

We observe that CnC delivers significantly higher
performance than multithreaded MKL on all three sys-
tems, with speedups of 1.9×, 2.6×, and 1.5× in the best
case for Nehalem, Barcelona, and Harpertown, respec-
tively.

Three factors contribute to this improvement. First,
the critical path of the asynchronous-parallel CnC im-
plementation is smaller than multithreaded MKL due to
a reduced number of synchronizations. Secondly, the
symmetric matrix-vector multiply kernel is not paral-
lelized in MKL, as we confirmed by testing. Finally,
on Barcelona and Nehalem, NUMA effects likely play
an additional role as well, causing the MKL eigensolver
implementation to not scale beyond 1 socket. Hence we
compare against the 4-thread and 8-thread runs only on
Barcelona and Nehalem respectively, which was the best
result we could obtain when searching over all numbers
of threads up to 16 (to match the 16 cores on Barcelona
and 8 cores hyperthreaded on Nehalem).

Unlike MKL, in our CnC implementation we man-
ually parallelized the symmetric matrix-vector multiply
routine, thereby enabling the computation to scale up to
the maximum number of cores/threads.

Interestingly, we do not see scalability issues on
Harpertown. The MKL eigensolver scales up to 8
threads even though the symmetric matrix-vector multi-
ply is sequential. Our partly asynchronous-parallel CnC
implementation is up to 1.5× faster than multithreaded
MKL. Even though the eigensolver implementation is
non-trivial and much more complex than Cholesky fac-
torization, our CnC implementation achieved a high
level of performance, showing that at least the ba-
sic model and run-time system have good potential.
We refer interested readers to [8] which contains addi-
tional details on comparison of CnC against other asyn-
chronous approaches, detailed scalability results, which
we omit in this paper due to space constraints.

3Although we do not use the most recent version of MKL on
Barcelona and Harpertown, we believe the comparisons made are fair
in that we use the same MKL for all implementations on a given plat-
form.

4.3 Scheduling

The current run-time system is characterized by a
static grain size, dynamic schedule, and dynamic dis-
tribution. It is built on top of the TBB [1]. TBB con-
trols the scheduling and execution of steps in a CnC pro-
gram. TBB implements a Cilk-like work-stealing sched-
uler that supports fine-grained task parallelism [3].

Tag generation. In CnC, we have the option either to
pre-generate tags or generate them on-the-fly. Figure 8
depicts an execution timeline for the Cholesky factor-
ization of a matrix of size 1000, for two approaches to
tag generation. Figure 8(a) shows the approach in which
we pre-generate all tags. Owing to the run-time’s LIFO
queuing (Section 2), the last tag generated will be sched-
uled first. That is, for Cholesky, first-in-first-out (FIFO)
is preferable. We typically want the first tag value in
tag space < k > to be scheduled first since all other
steps are stalled until this step finishes execution. One
solution is to generate tags with data on-the fly shown in
Figure 8(b).

We layout the execution profile of each thread along
the y-axis (one “row” per thread); and on the x-axis
show execution time, normalized in both charts to the
time taken by longest executing thread. The differ-
ent color-coded regions represent the different step in-
stances.

We make a number of observations. First, the dy-
namic tag approach takes only 75% of the time taken by
the pre-generated tags approach. When pre-generating
tags, 30.6% of the overall execution time is spent on re-
queue events for the matrix size 1000 (sum of green re-
gions). The computation is also not load balanced, with
thread 8 completing much earlier than the other threads.
When we explicitly generate tags only when data be-
comes available, we observe a marked decrease in the
number of requeue events, thereby yielding the 25% im-
provement in time. Moreover, the computation is better
load balanced.

By reducing requeue events, we increase the num-
ber of Get and Put operations, but the overhead due to
these operations is much less than the requeue delays, as
shown by the decrease in the overall running time.

However, we also observed for larger n, requeue de-
lays were actually not that significant. In particular, re-
call from Figure 8 that the time spent on the factorization
of the first block B11 is about 20% of the entire execu-
tion time. Hence, all other threads waiting for the in-
put from the first step are requeued. When n = 6000,
less than 1% of the time was spent on factoring the first
block, and so the time spent on requeue events was only
0.56% of the overall execution time. Thus, the on-the-
fly approach does not pay-off in all instances and, in fact,
becomes a “tunable” parameter.

9

1

2

3

4

5

6

7

8

Unblocked Cholesky
Triangular Solve
Symmetric Rank-k update
Idle
Requeue

Normalized Execution Time

Th
re

ad
 #

0.0 0.2 0.4 0.6 0.8 1.0

(a) Tags pre-generated; requeue time = 30.6%.

1

2

3

4

5

6

7

8

Normalized Execution Time

Th
re

ad
 #

0.0 0.2 0.4 0.6 0.8 1.0

Unblocked Cholesky
Triangular Solve
Symmetric Rank-k update
Idle
Requeue
Lower-bound on Execution Time

(b) Tags generated when data becomes available.

Figure 8. Scheduling for Cholesky factorization (matrix size = 1000)

1

2

3

4

5

6

7

8

Normalized Execution Time

Th
re

ad
 #

0.0 0.2 0.4 0.6 0.8 1.0

Unblocked Cholesky
Triangular Solve
Symmetric Rank-k update
Idle
Lower-bound on Execution Time

Figure 9. Scheduling timeline for Cholesky
factorization using Cilk++.

Comparison to bulk-synchronous approaches. It
is well-established that asynchronous scheduling can
eliminate the idle times present in bulk-synchronous ap-
proaches. For example, Figure 9 shows the scheduling
of Cholesky factorization in our Cilk++-based recursive

implementation. There is a synchronization stage at the
end of every task. Thus, the idle time increases because
fast threads are waiting for the slower ones to complete
execution. This behavior is a consequence of our choice
of a recursive implementation, which is encouraged by
the Cilk++ model, as well as the model’s nested DAG
parallelism.

In the CnC implementation, there is no synchroniza-
tion of tasks and the execution driven by tags imposes
only one condition on preserving the data dependency
between the steps. This eliminates idle time, as is ev-
ident when comparing Figures 8(b) and 9. Also, these
figures show a vertical dotted line which is the estimated
lower-bound on execution time. Given a weighted DAG
(node weights measured as the time spent in the corre-
sponding step, and the edge weights to be 0), the lower
bound is computed by finding the longest path from the
start to end (sequential steps along the critical path). We
observe that CnC performs extremely well, within 10%
of its lower bound; by contrast, the bulk-synchronous
code performs well-below its potential.

Figure 10 shows scheduling of the eigensolver on
Harpertown. The scheduling figure only shows the
asynchronous-parallel portion of the eigensolver, which
has the Cholesky and reduction to standard form com-
ponents. Figure 10(a) shows how the scheduling unfolds
when all the tags have been generated before the start of
computation. In this part of the computation, more than
80% of the execution time is spent on requeue events.

10

This behavior is due to the LIFO scheduling, where tags
are scheduled last-in-first-out. Since the number of tag
spaces and tags in each tag space are much larger com-
pared to Cholesky factorization, the amount of requeue
is significantly higher at start. However, the number of
requeue events for the entire computation is only 33.3%
of the execution time. Figure 10(b) shows an 85% re-
duction in overall execution time of the zoomed portion
by generating tags only when input becomes available.

In short, we can achieve high performance in CnC,
but there is still scope for additional improvements and
tuning in the run-time system with respect to scheduling
of steps, locality, and data movement.

5 Related Work
Existing work on asynchronous-parallel algorithms

for dense linear algebra covers Cholesky, LU, and QR
factorization, as well as so-called “two-sided” transfor-
mations, Hessenberg, tridiagonal and bidiagonal reduc-
tion [5, 7, 14]. The implementations are based on some
combination of schedulers and APIs based on domain-
specific abstraction (e.g., SuperMatrix [7]), or hand-
coded or pragma-directed schemes (e.g., SMPSs [14,
15]). The present study contributes experience working
in a novel model and a novel asynchronous-parallel im-
plementation of a different algorithm (the eigensolver).

The CnC programming model itself has rich influ-
ences from the long history of concurrent programming
models, including tuple-spaces, streaming languages,
and dataflow languages [6, 9, 16]. CnC’s key distinc-
tion is its treatment of both control and dataflow, thereby
making CnC more general than pure streaming or classi-
cal data flow approaches. Also, item collections in CnC
allows for more general indexing than dataflow arrays.
While both CnC and tuple space languages like Linda
specify computation using tags, they differ in a number
of aspects. In CnC there is a clear separation between
tags and values, while there is no distinction between
the two in Linda. Moreover items are accessed by value
and not by location, and adhere to dynamic single as-
signment form, as noted by Budimlic, et al. [4].

6 Conclusions and Future Work
This study constitutes the first performance evalua-

tion of the CnC model, with compelling results on a
challenging pair of computations from parallel dense
linear algebra. CnC complements existing approaches
for expressing and scheduling asynchronous-parallel
computations, by providing novel abstractions that en-
able a variety of control flow and dataflow constructs to
be expressed in a way that enables effective paralleliza-
tion. For our target computations, we can both (a) match
or exceed a highly-tuned vendor library for Cholesky
and (b) extend these results to significant speedups (1.1–

2.6×) on a complicated eigensolver. Indeed, the CnC
model enabled our novel asynchronous-parallel eigen-
solver implementation.

Our experience reveals ways in which to improve
CnC further. First, additional work queue scheduling
policies (besides LIFO) are needed. Secondly, we can
avoid run-time inefficiencies by exploiting additional
dependence information available in the specification
itself (textual notation). In our case, when the same
tag collection prescribes multiple dependent step col-
lections, we can reduce requeuing by not scheduling
those collections. Thirdly, there are a number of ways
in which tag management could be tuned, perhaps au-
tomatically. Finally, there are ways to enhance the tex-
tual notation and API; we are currently looking at adding
new abstractions as well as new syntax for easily com-
posing CnC components.

Acknowledgments

This work was supported in part by the National Sci-
ence Foundation (NSF) under award number 0833136,
and grants from the Defense Advanced Research
Projects Agency (DARPA) and Intel Corporation. Any
opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect those of NSF, DARPA, or Intel.
We also wish to thank Geoff Lowney and Frank Schlim-
bach of Intel Corporation for helping us collect runtime
traces for the scheduling timelines.

References
[1] Intel R© Threading Building Blocks, 2009. www.

threadingbuildingblocks.org.
[2] Bjarne S. Andersen, Fred Gustavson, Alexander Karaivanov,

Minka Marinova, Jerzy Waśniewski, and Plamen Yalamov.
LAWRA: Linear algebra with recursive algorithms. In Appl. Par.
Comput., volume LNCS 1947, pages 38–51. Springer, 2001.

[3] Robert D. Blumofe, Christopher F. Jörg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An
efficient multithreaded runtime system. In Proc. PPoPP, pages
207–216, 1995.

[4] Zoran Budimlić, Aparna Chandramowlishwaran, Kathleen
Knobe, Geoff Lowney, Vivek Sarkar, and Leo Treggiari. Multi-
core implementations of the Concurrent Collections program-
ming model. In Proc. Wkshp. Compilers for Par. Comput. (CPC),
2009.

[5] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Don-
garra. A class of parallel tiled linear algebra algorithms for mul-
ticore architectures. Technical Report UT-CS-07-600, Univ. of
Tenn. Knoxville, Sep. 2007.

[6] Nicholas Carriero and David Gelernter. Linda in context.
Comm. ACM, 32(4):444–458, 1989.

[7] Ernie Chan, Enrique S. Quintana-Ortı́, Gregorio Quintana-Ortı́,
and Robert van de Geijn. SuperMatrix out-of-order scheduling
of matrix operations for SMP and multi-core architectures. In
Proc. SPAA, pages 116–125, 2007.

[8] Aparna Chandramowlishwaran, Kathleen Knobe, and Richard
Vuduc. Performance evaluation of Concurrent Collections on
high-performance multicore computing systems. Technical Re-

11

1

2

3

4

5

6

7

8

Unblocked Cholesky
Triangular Solve (Cholesky)
Symmetric Rank-k update
Reduction to general form
Symmetric matrix multiplication
Symmetric Rank-2k update
Triangular Solve
Idle
Requeue

Normalized Execution Time

Th
re

ad
 #

0.0 0.2 0.4 0.6 0.8 1.0

(a) Pre-generated tags result in 33.3% of time spent on
requeue events.

1

2

3

4

5

6

7

8

Unblocked Cholesky
Triangular Solve (Cholesky)
Symmetric Rank-k update
Reduction to general form
Symmetric matrix multiplication
Symmetric Rank-2k update
Triangular Solve
Idle
Requeue

Normalized Execution Time

Th
re

ad
 #

0.00 0.05 0.10 0.15

(b) Tags generated on-the-fly.

Figure 10. Scheduling for Eigensolver (matrix size = 1000)

port GT-CSE-10-01, Georgia Institute of Technology, Atlanta,
GA, USA, February 2010.

[9] Jack B. Dennis. First version of a data flow procedure language.
In Programming Symp.: Proc., volume LNCS 19, pages 362–
376. Springer, 1974.

[10] Fred G. Gustavson. New generalized data structures for matri-
ces lead to a variety of high performance dense linear algebra
algorithms. In Appl. Par. Comput., volume LNCS 3732, pages
11–20, 2006.

[11] Intel R© Concurrent Collections for C/C++: User’s Guide, v0.3,
2009.

[12] Kathleen Knobe. Ease of use with Concurrent Collections
(CnC). In Proc. USENIX HotPar, 2009.

[13] Kathleen Knobe and Carl D. Offner. TStreams: A model of par-
allel computation. Technical Report HPL-2004-78R1, HP Labs,
2004.

[14] Hatem Ltaeif, Jakub Kurzak, and Jack Dongarra. Scheduling
two-sided transformations using algorithms-by-tiles on multi-
core architectures. Technical Report UT-CS-09-637, Univ. of
Tenn. Knoxville, 2009.

[15] Josep M. Perez, Rosa M. Badia, and Jesus Labarta. A
dependency-aware task-based programming environment for
multicore architectures. In Proc. IEEE CLUSTER, pages 142–
151, 2008.

[16] William Thies, Michal Karczmarek, and Saman Amarasinghe.
StreamIt: A language for streaming applications. In Proc. Int’l.
Conf. Compiler Construction (CC), volume LNCS 2304, pages
49–84. Springer, 2002.

12

