
Performance implications from sizing a VM on multi-core systems: A Data analytic

application’s view

Seung-Hwan Lim∗, James Horey∗, Yanjun Yao†, Edmon Begoli∗ and Qing Cao†

∗Oak Ridge National Laboratory

Oak Ridge, TN 37831

Email: {lims1,horeyjl,begolie}@ornl.gov
†University of Tennessee, Knoxville

Knoxville, TN 37916

Email: {yyao9, cao}@utk.edu

Abstract—In this paper, we present a quantitative perfor-
mance analysis of data analytics applications running on multi-
core virtual machines. Such environments form the core of
cloud computing. In addition, data analytics applications, such
as Cassandra and Hadoop, are becoming increasingly popular
on cloud computing platforms. This convergence necessitates a
better understanding of the performance and cost implications
of such hybrid systems. For example, the very first step in
hosting applications in virtualized environments, requires the
user to configure the number of virtual processors and the size
of memory. To understand performance implications of this
step, we benchmarked three Yahoo Cloud Serving Benchmark
(YCSB) workloads in a virtualized multi-core environment.
Our measurements indicate that the performance of Cassandra
for YCSB workloads does not heavily depend on the processing
capacity of a system, while the size of the data set is critical to
performance relative to allocated memory. We also identified
a strong relationship between the running time of workloads
and various hardware events (last level cache loads, misses,
and CPU migrations). From this analysis, we provide several
suggestions to improve the performance of data analytics
applications running on cloud computing environments.

I. INTRODUCTION

Data-intensive discoveries with Big Data [1] refers to

analyzing the massive amount of stored data set to translate

data into knowledge across a variety of social, scientific, and

business applications [2]–[4], in which we use data analytics

applications upon a variety of rapidly growing data. These

data analytics applications are often distributed, operating

in large cluster environments. Ultimately, the success of

these applications is determined by whether massive amount

of data can be processed in a timely manner [3]. To

simplify storage and programming, tools like Hadoop [5],

BigTable [6], and Cassandra [7] have emerged that expose

simple programming interfaces without sacrificing capabil-

ity. Often, these data analytics platforms are deployed in

cloud or virtualized environments [8] in order to reduce

the cost associated with the maintenance and operation of

the infrastructure [9]. Such a cost reduction is achieved by

allowing users to construct their computing infrastructure by

themselves without dedicated infrastructure experts. Thus, in

the Big Data era, non-expert users are likely to be exposed

to the problems of obtaining reasonable performance of

massively parallel applications in virtualized environments,

presumably with minimal help from experts.

A. Backgrounds and related work

The first task when instantiating a Big Data platform in a

cloud environment is to decide the type of instance [9], [10].

This includes, but is not limited to, selecting the number

of virtualized CPUs (VCPUs) and the size of memory

(often referred to as sizing a VM [11]). Sizing a VM has

significant impact on the behavior of the application due to

pressure on the system resources and the inherent sensitivity

of the application on such pressure [12], [13]. Since data

analytics applications are memory and I/O intensive, they

are particularly sensitive to memory pressure.

Indeed, understanding the behavior of data analytics ap-

plications in virtualized environments requires expert knowl-

edge across multiple layers. These layers include the hard-

ware (often multi-core), the operating system, hypervisors,

middleware (i.e., Java VM), and the application. Due to

this complexity, choosing the optimal VM configuration can

be a daunting challenge for non-expert users [10]. This is

especially true in public cloud settings where poor choices

may immediately lead to unnecessary monetary cost. To

begin dealing with this problem, we attempt to understand

the performance implication of determining the size of a VM

for a data analytics application, specifically, Cassandra [7]

(an open-source implementation of Google’s BigTable [6]).

There exists a related body of work, complementary

to our own, that attempts to compensate the misconfig-

uration of virtual machines. Virtualized resource manage-

ment schemes [14] dynamically adjusts allocated VM re-

sources within the known boundaries. Performance isola-

tion schemes [15] minimize the interference among mul-

tiple VMs provided that the resource requirements are

known ahead of time. Finally, virtual machine assignment

schemes [16], [17] arrange VMs onto a set of physical

hosts to balance load. A practical limitation in resizing VMs

(the number of VCPUs and size of memory), is that it

often requires the reboot of VMs [18], [19]. In addition,

the resources configured during VM sizing may ultimately

offset the potential of resource management schemes. This

makes it critically important to select good resource values

since this affects the efficacy of performance isolation and

VM assignment schemes. Hence, this study presents possible

performance implications with various combinations of VM

sizing for data analytics workloads.

B. Contributions

In this study, we collected experimental data from a min-

imal virtualized setting running Cassandra [7]. Our system

consisted of a single VM, based upon KVM [19], running on

a quad-core physical machine. VM parameters were adjusted

methodically to determine the effect on overall performance.

This minimal setting is intended to exclude the performance

variability from network systems. We employ three pre-

defined YCSB [20] benchmark workloads for Cassandra, a

popular open-source key-value storage system.

While varying the number of virtual processors, we con-

sidered two different scenarios: when the size of data set is

larger than the size of reserved memory; and when the size of

data set is equal to the size of reserved memory. As we might

expect, the experimental data suggests that, for data analytics

applications, the number of VCPUs does not significantly

affect performance (either positively or negatively). It is

primarily because most of pressure on system resources is

either on the memory system and secondary storage systems

rather than processing units. For example, 99% of update

operations complete in less than 1ms indicating update

operations mostly hit the memory system.

In order to identify significant performance factors, we

performed linear regression on the running time of work-

loads and hardware events (LLC loads and misses) instead

of resource utilization for workload analysis as with [11],

[21]. We identified that variation of running time is related to

the number of LLC loads and LLC misses for two different

size of data sets, given the size of virtual machine. All

considered cases in this study showed R2 values above 0.93.

To understand the driving factor for the variance of last level

cache accesses, we considered process scheduling. Process

scheduling can create undesirable performance impact on

memory-intensive workloads when the process scheduler

assigns a process to different physical cores from prior

time slices in order to balance CPU load [22], [23]. In our

regression analysis, we found a linear relationship between

the running time and CPU migrations with R2 = 0.94
for 8GB data set and 0.86 for 2GB of data set. This

statistical finding implies that current scheduling mechanism

of virtual processors for KVM may contribute to extending

the execution time of memory intensive workloads, which

might be shared with other virtualization technologies like

Xen [24] and VMware [25].

!"#"$%&$

%'()*+$ %'()*,$ %'()*-$ %'()*.$

'"//"012"$

'()*+$ '()*,$ '()*-$ '()*.$

3'45$

67089$

!"#$%&'(&)*+&,!-&./%)0/1+&02+&

3.//+4&4'5/&'/&"#$67898&0/4&:;&

<"=>&.%&3.//+4&

4'5/&'/&"#$6?;&

:%&$

Figure 1: An overview of the experimental platform

The remainder of this paper is as follows. Methodology

is presented in §II, along with a brief introduction of the

systems used. Experimental results are presented in §III,

along with discussion. Finally, we offer a short conclusion

in §IV.

II. PLATFORM AND METHODOLOGY

Platform: An overview of the experimental platform

is illustrated in Figure 1. We deployed a single KVM

instance on the host system. Cassandra [7], a distributed

key-value storage, ran on this instance. Details on the

system software/hardware configurations are summarized in

Table I. We employed three pre-defined YCSB workloads for

workloads (Table II). The YCSB client ran on the host OS

and was pinned down on a single core (CPU-3) . The YCSB

client and KVM instance were dedicated to different sets of

CPUs in order to minimize the interference on processing

cores and private cache. Since the YCSB client applies

Table I: System configuration

Parameter value comments

Virtualization KVM
Host OS Linux 3.0.0-20 Ubuntu SMP
Guest OS Linux 2.6.35-32 Ubuntu SMP
Processor Intel Xeon W3520 2.67GHz
of cores 4 single thread per core
L1 cache 256 KB write through
L2 cache 1024 KB write back
Last Level cache 8192 KB shared
System Memory size 6GB 4GB for host OS
VM memory size 2GB
Memory Max bandwidth 25.6GB/s
Hard Disk Hitachi HDS721025CLA682 250GB, 7200RPM
VM disk type file
VM disk driver qemu type: raw
Java VM (JVM) Open JDK 1.6.0 20
JVM heap size 1GB Cassandra default
Record size in YCSB 1 KB default
of clients in YCSB 1 default
request scheduler no scheduler Cassandra default
of concurrent read threads 32 Cassandra default
of concurrent write threads 32 Cassandra default

Table II: Summary of YCSB workloads

workload operations record selection application example

A - Heavy update 50% read, 50% update Zipfian Session store recording recent
actions in a user session

B - Read heavy 95% read, 5% update Zipfian Photo tagging
C - Read only 100% read Zipfian User profile cache, where pro-

files are constructed elsewhere
like Hadoop

constant pressure on system resources, the authors believe

that the conclusions drawn from the experimental results

will not significantly differ from the situation where the

KVM instance and YCSB client are hosted separately. These

assumptions are shared with prior work [22], [23]. We now

briefly describe KVM and Cassandra.

Kernel-based Virtual Machine (KVM): Kernel-based

Virtual Machine (KVM) [26] is a Linux hypervisor (a.k.a,

virtual machine monitor) implemented as a kernel module

with a capability to leverage the rest of the Linux kernel

as a hypervisor. By doing this, KVM reuses the majority

of kernel modules and subsystems, and leverages any opti-

mizations available through the kernel. Each virtual machine

managed by KVM runs as a separate user process, and has

private virtualized hardware(a network card, disk, graphics

adapter, etc.). Although guest operating systems appear as

any other user process, the hypervisor identifies each guest

operating system as being in the “guest” mode independent

of the kernel and user modes.

Cassandra: Apache Cassandra is an open-source dis-

tributed, key-value store inspired by Google’s BigTable [6]

and Amazon’s Dynamo [27]. Cassandra exposes a multi-

level map interface to programmers (Row→ Column Family

→ Column → Value), and values are partitioned by the

row value. Like Dynamo, Cassandra maps the row value

to a machine via consistent hashing. Also like BigTable

and Dynamo, Cassandra employs eventual write consistency

across a set of replicas. Users, can however, specify the

number of replica reads to enforce stronger read consistency.

The write path for Cassandra takes the following steps

(see Figure2). First, the write is partitioned by row key

to identify the target nodes. The write is then transmitted

to each target, where the write is stored simultaneously in

the in-memory table (memtable) and disk-based commit log.

Once the memtable reaches a particular size threshold, the

memtable is flushed to file systems as an sstable. Similarly,

reads identify the target nodes and attempts to find the values

in the memtables. If the values are not found, Cassandra will

scan the sstables (Cassandra also employs bloom filters [28])

to reduce disk activity).

Methodology: We collected the overall running time of

pre-defined YCSB workloads from the output of the YCSB.

perf is utilized in order to obtain hardware event statistics

such as CPU migrations and Last Level Cache (LLC) misses.

For setting processor affinity of the YCSB client and the

KVM instance, we used taskset. As for pinning the

VCPU of KVM instance, we used virsh vcpupin in

addition to taskset.

III. THE PERFORMANCE IMPACT FROM DIFFERENT VM

SIZES

As shown in Figure 3, we measured the average running

time of 800,000 operations for three pre-defined YCSB

!"#$%&'"(

!"#)%&'"(
!"#)%&'"(
!"#)%&'"(
**$%&'"(

!"#+,-(

./'"(*-0)"#(

1,/)"(

2+##/)(3+4(

5"%6(

Figure 2: The overview of READ/WRITE operations in

Cassandra.

workloads [20] on Cassandra [7] in virtualized environ-

ments. While fixing the size of reserved memory to the

virtual machines, we varied the number of virtual processors

and the data set size, due to the limitation of available

memory size in the testing environments. Since three out of

four physical cores were dedicated to the VM instance that

hosted Cassandra, varying the number of VCPUs from one

to four can represent three situations: the number of VCPUs

are smaller than, equal to, and larger than the number of

physical cores. We employed both a 2 GB data set and an

8 GB data set while fixing the size of allocated memory

to 2 GB. This tests two situations: one where the VM has

enough memory to buffer most of the data set in memory;

and where the VM does not have enough memory.

Figure 3 finds that the execution times of Cassandra

workloads do not clearly depend on the number of virtual

processors, as long as the associated physical resources

remains the same. However, the ratio of data set size and

reserved memory size is a more decisive factor when we

compare the scale of running time between Figure 3a and

Figure 3b. This result matches with the intuition that most

data analytics workloads like Cassandra will depend on

memory capacity instead of processor capacity since they

are mostly memory (or IO) intensive.

Suppose, however, that for a user the system condition

was initially similar to Figure 3a. Then, the user may want

to find answers to the following questions:

• Performance implications as the data set size increases

• Performance benefits as the data set size decreases

• Performance optimization opportunities without chang-

ing the data set or virtual machine configuration

In order to address those issues, the rest of this section

provides statistical analysis of the behavior of Cassandra

workloads and the most influential factor to the execution

time of workloads.

We now illustrate the statistical relationships between the

size of memory for each operation against set workloads

(consisting of both READ and UPDATE).

 0

 20

 40

 60

 80

 100

A B C

R
u

n
n

in
g

 t
im

e
 o

f
8

0
0

,0
0

0
 O

p
s

 (
m

in
)

8G data set/2G mem

1-VCPU
2-VCPU
3-VCPU
4-VCPU

(a) 8G data set

 0

 5

 10

 15

 20

A B C

R
u

n
n

in
g

 t
im

e
 o

f
8

0
0

,0
0

0
 O

p
s

 (
m

in
)

2G data set/2G mem

1-VCPU
2-VCPU
3-VCPU
4-VCPU

(b) 2G data set

Figure 3: Average running time of 800,000 operations for three pre-defined YCSB workloads in virtualized environments.

Error bars represent 95% confidence intervals.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

<1 10 10
2

>10
3
 ms

8G READ CDF

A 1-VCPU
A 2-VCPU
A 3-VCPU
A 4-VCPU
B 1-VCPU
B 2-VCPU
B 3-VCPU
B 4-VCPU
C 1-VCPU
C 2-VCPU
C 3-VCPU
C 4-VCPU

(a) 8G READ operation

 0.99

 0.991

 0.992

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

<1 10 10
2

>10
3
 ms

8G UPDATE CDF

A 1-VCPU
A 2-VCPU
A 3-VCPU
A 4-VCPU
B 1-VCPU
B 2-VCPU
B 3-VCPU
B 4-VCPU

(b) 8G UPDATE operation

 0.8

 0.825

 0.85

 0.875

 0.9

 0.925

 0.95

 0.975

 1

<1 10 10
2

>10
3
 ms

2G READ CDF

A 1-VCPU
A 2-VCPU
A 3-VCPU
A 4-VCPU
B 1-VCPU
B 2-VCPU
B 3-VCPU
B 4-VCPU
C 1-VCPU
C 2-VCPU
C 3-VCPU
C 4-VCPU

(c) 2G READ operation

 0.99

 0.991

 0.992

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

<1 10 10
2

>10
3
 ms

2G UPDATE CDF

A 1-VCPU
A 2-VCPU
A 3-VCPU
A 4-VCPU
B 1-VCPU
B 2-VCPU
B 3-VCPU
B 4-VCPU

(d) 2G UPDATE operation

Figure 4: CDFs of each type of operations: Workload-A (50% read, 50% update), Workload-B (95% read, 5% update), and

Workload-C (100% read, 0% update)

A. Understanding related operations in Cassandra

Figure 4 shows the cumulative distribution function of

each operation for three pre-defined workloads while varying

the number of virtual processors and the size of the data set.

From these analysis, we find that 90% of UPDATE opera-

tions take less than 1 ms whether we employ different sizes

of data sets. This indicates that most UPDATE operations

in Cassandra only involve memory accesses. However, for

READ operations, as data size grows from 2G to 8G, disk

accesses increase. 50% of READ operations show less than

1 ms of latency, but the majority of the rest take between

10 ms and 30 ms.
Finding 1: A UPDATE operation in Cassandra is prin-

cipally related to memory access. However, depending on

the ratio between data set size and allocated memory size,

a READ operation may be linked to disk access as well as

memory access.

B. Identifying the influential factor by regression analysis

In order to identify the influential factor for Cassandra

performance, we examined the relationship between the

running time of workloads and various hardware/software

events such as the number of Last Level Cache (LLC)

loads; LLC load misses; and CPU migrations. These events

are relatively easy to obtain, compared with the detailed

application-specific information. We performed regression

analysis from 120 runs for all three pre-defined workloads

with four different virtual processor configurations, as shown

in Figure 5. In this regression analysis, we confirm that all

considered events were linearly associated with the running

time of workloads with R2 values of greater than 0.86.

Hence, we argue that the variance of running time of

workloads stem from the variance of those hardware events

in each run instead of higher level informaion like resource

utilization like [11].

Intuitively, LLC loads and LLC load misses are important

for data analytics workloads since these workloads are

memory-intensive. Thus, for memory-intensive workloads,

prior work [22] have used LLC load misses as an indicator to

memory pressure from a workload. Our regression analysis

on LLC loads and LLC load misses supports these prior

studies with quantitative experimental data. Additionally, we

found that CPU migrations pose greater impact than cache

accesses. Since CPU migration is an attempt to balance

the load across processors, one may expect that overall

performance is not negatively affected by CPU migrations.

However, we will demonstrate how CPU migration can

negatively impact the performance of memory intensive

workloads.

Running time and last level cache (LLC) loads: LLC

loads occur when private cache misses happen, which can

be described by:

N(miss(private cache)) = N(LLC loads) .

Thus, the regression analysis on LLC loads and running time

will mainly show the performance impact from private cache

misses. Figure 5a indicates that one LLC load attributes to

56.2 ns on average for the 2GB data set and 20.6 us on

average for the 8GB data set (inferred from the average slope

of the linear regression equations). Although a single miss

results in a small penalty, the number of LLC loads may

be quite numerous. If we can reduce a small percentage

of the number of LLC loads, we can expect a noticable

performance improvement. At an extreme case, if we have

no LLC loads (all operations only access L1/L2 cache), the

running time of all workloads would operate in the ns scale,
as suggested by the Y-intersect of the regression equations.

Additionally, the steeper slope for the 8GB data set

suggests that the size of the data set changes the overall

sensitivity of the workload to memory access patterns. Since

the operations are the same, the difference in sensitivity

to memory pressure stems from the difference in access

patterns of next level memory subsystem or secondary

storage systems. To summarize, LLC loads include LLC load

misses, that is,

N(LLC loads) = N(LLC hits) +N(LLC misses).

Thus, we hypothesize that LLC load misses produce greater

performance impact on the workloads with 8GB data sets.

Finding 2: While individual LLC loads pose small per-

formance impact, their numbers are numerous and noticably

affects overall performance. This implies that we have room

to enhance performance of memory-intensive data analytics

workloads by carefully treating LLC loads. Additionally, for

Size(memory) > Size(data set), LLC loads may have

greater performance impact.

Running time and LLC load misses: We confirm the

linear relationship between running time of workloads and

LLC load misses in Figure 5b. We observe that one LLC

load miss is more responsible for the running time of

workloads for the 8GB data set than the 2GB data set case

as the slope for the 8GB set is several times steeper. This

occurs principally because of more disk access for the 8G

read operation as we have shown in CDF plots (Refer to

Figure 4a.) In short,

N(LLC miss) = N(Mem access) +N(Disk access),

where memory accesses can happen in two layers in our

experimental environment: the page/buffer cache at guest OS

and host OS. In addition, we find that one LLC load miss

incurs two or three orders higher magnitudes of performance

impact on the Cassandra workloads than LLC loads, though

the number of LLC load misses is less than 1% of the

number of LLC loads. The lesson from this analysis can

be summarized by:

Finding 3: For memory-intensive workloads like Cas-

sandra, hardware events related to memory behavior can

be a good indicator to understand the overall behavior

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 1e+10 2e+10 3e+10 4e+10 5e+10 6e+10

R
u

n
n

in
g

 t
im

e
 o

f
8

0
0

,0
0

0
 o

p
e

ra
ti

o
n

s
 (

s
e

c
)

LLC loads

Running time vs. LLC-loads

y8G=2.06e-07x + 4.21e-10

R
2
=0.96

y2G=5.62e-08x+7.53e-10

R
2
=0.98

8G
2G

(a) LLC-loads

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 3e+07 6e+07 9e+07 1.2e+08 1.5e+08

R
u

n
n

in
g

 t
im

e
 o

f
8

0
0

,0
0

0
 o

p
e

ra
ti

o
n

s
 (

s
e

c
)

LLC load misses

Running time vs. LLC-load-misses

y8G=7.86e-05x+2.05e-06

R
2
=0.93

y2G=1.37e-05x + 2.90e-07
R

2
=0.95

8G
2G

(b) LLC-load-misses

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06

R
u

n
n

in
g

 t
im

e
 o

f
8

0
0

,0
0

0
 o

p
e

ra
ti

o
n

s
 (

s
e

c
)

CPU migrations

Running time vs. CPU migrations

y=8.4849e-04x+3.13e-05
R

2
=0.86

y=3.2885e-03x+7.73e-05
R

2
=0.94

8G
2G

(c) CPU migrations

Figure 5: We observe a linear relation between the running time of workloads and the number of LLC loads;LLC-load

misses; and CPU migrations.

of workloads. For example, we can observe the different

sensitivity of each application to memory pressure, which

can reveal their access patterns through space-resources like

on-chip cache; off-chip memory; and secondary storage.

Until now, we have identified that performance implica-

tions from underlying memory or storage hierarchy can be

understood by a linear relationship between the running time

of workloads and hardware performance events like LLC

loads or LLC load misses. Additionally, we have analyzed

factors that cause variance in the number of LLC loads and

LLC load misses. We expect to use these factors to develop

mechanisms to control LLC loads and LLC load misses.

For this, we analyzed the explicit relationship between the

running time and CPU migrations.

Running time and CPU migrations: CPU migrations

are the migration of processes across processing cores in a

machine as a result of processor scheduling. The version of

Linux kernel employed in this study uses the Completely

Fair Scheduler (CFS) [29]. This Linux process scheduler

pays special care to cache behavior by considering migration

cost. Migration cost in the Linux scheduler denotes the

expected amount of time after the last execution that a task

is considered to be “cache hot” in migration decisions. The

default Linux kernel scheduler considered in this study, CFS,

uses a fixed migration cost for all processes in the system

(0.5ms by default). Thus, if a task is on the run queue less

than 0.5ms, it will not be migrated. Otherwise, it might be

migrated depending on the load of the previously allocated

processor. Although used to balance load and improve

performance, paradoxically, CPU migration can hurt the

performance of memory-intensive workloads. For example,

when a CPU migration happens, the system must re-populate

the private cache after the process is migrated from one core

to another core. This private cache re-population will create

additional LLC loads, which could possibly lead to LLC load

misses and, thereby, increase memory and I/O accesses.

We illustrate (Figure 5c) that the processor-bound Linux

scheduler is associated with the slow-down of memory-

intensive workloads. The slopes of regression equations can

be interpreted as the impact on running time per migration,

that is, the slope will be related to the sensitivity of work-

loads to CPU migrations. As expected, workloads with 8GB

of data sets are more sensitive to CPU migrations since, for

the larger data set, CPU migration leads to either off-chip

memory accesses or disk accesses with higher probability.

However, the sensitivity of workloads to CPU migrations

should enclose the duration of one operation, that is,

T (operation) = T (migration) + T (processing) .

And the slope accounts for T (migration) part. For instance,
the average latency of one operation is around 1ms for 2GB

data set, and 5.6ms for 8 GB data set, Thus, we observe

that, on average, one CPU migration shares the latency of

one operation by 8.4849 × 10−4/1 × 10−3 = 84.8% and

3.2885 × 10−3/5.6 × 10−3 = 58.7% for 2GB and 8GB

data sets, respectively. Hence, by optimizing the scheduler

behavior for each workload, we can maximally expect the

same portion of reduction in the running time of workload,

or equivalently the average running time of each operation.

Intuitively, the 8GB data set case consists of signif-

icant portions of I/O accesses in its processing time,

T (processing). On the other hand, the 2GB data set mostly

hits memory only, which makes the T (processing) portion
much smaller than 8GB data set cases. Therefore, for opti-

mizing CPU migration, 2GB cases may potentially reduce

larger share of running times than 8GB cases. However, note

that the aforementioned optimization only accounts for the

enhancement of memory access parts in memory-intensive

workloads. A trade-off from minimizing CPU migrations

may include negative performance impact on processing

portion of the workloads, T (processing), because of un-

balanced loads on processors. We summarize our finding

from regression analysis on the running time and CPU

migration as follows:

Finding 4: The performance impact from CPU migration

exceeds the performance impact from cache access patterns.

It is primarily because one CPU migration can produce addi-

tional cache accesses from private cache to LLC, which can

affect the main memory accesses as well as disk accesses.

C. Discussion

Since CPU migration is the result of process scheduling,

we can manage CPU migrations by adjusting tunable param-

eters of existing process schedulers or inventing new process

schedulers. For instance, a recent study [23] expressed

the same argument and proposed a process scheduler that

balances memory load from processes in virtualized envi-

ronments. Similarly, Zhuravlev et. al. [22] and Blagodurov

et. al. [30] proposed novel process schedulers that aware

memory contention in native Linux environments. While

those prior work engineered actual process schedulers in

multi-core environments, our analysis provides a quantitative

analysis on slow-down of workloads,which can be attributed

to CPU migrations. Thereby, this study can help to develop

a method to estimate the potential performance enhancement

from optimal process scheduling in multi-core environments.

Considering the analysis in § III-B, we propose pursueing

several development directions for multi-core schedulers:

1) An efficient mechanism to quantify the overhead from

CPU migration for workloads in a specific system.

A runtime mechanisms that can adapt to dynamic

workloads could further reduce the average execution

time of a variety of workloads.

2) A variety of scheduling methods might be able to

utilize a CPU migration cost analysis model. This

includes both conventional process schedulers [29]

as well as affinity-based schedulers [23]. By better

utilizing multi-cores in a system, the performance of

co-hosted heterogeneous workloads [13] will improve.

3) In addition, we propose a novel scheduling mecha-

nism capable of considering multiple resources. This

mechanism does not need to exhaustively monitor re-

sources, since we showed that we can infer the various

resource usage like cache, memory, and secondary

storage from analyzing the running time and a few

specific hardware/software events.

IV. CONCLUSIONS

The cost and flexibility afforded by cloud computing

makes it an ideal platform to host large-scale data analytic

applications. Although it is simple to get started from

an organizational viewpoint, we have shown that optimal

performance of these applications may depend on particular

virtual machine configurations. Specifically we investigated

the role of the number of virtual processors and the size of

memory on the overall performance of Cassandra.

We found the running time of data analytics workloads

is not strongly dependent on processing capability, and that

the memory and I/O subsystems play a larger role in overall

performance. We have shown that update operations in

Cassandra consists of primarily memory accesses even with

large data set sizes relative to VM and host memory. Our

analysis has shown that read operations can be I/O bound,

however, depending on the relation between the data set size

and the size of VM memory.

We also presented regression analysis that identified the

factors that influence the performance of Cassandra for a set

of workloads. We performed regression analysis against the

running time of workloads over three performance counter

events: last level cache loads, last level cache load misses,

and CPU migrations. These results showed a statistically

strong (R2 > 0.8) linear relationship with the running

time of workloads. The regression analysis from this work

suggests that investigating the behavior of last level cache

accesses can produce insights on the dependencies between

cache, memory, and secondary storage.

We believe that results from this study can be used to

devise a mechanism to quantify the overhead from CPU

migrations for heterogeneous workloads in a system. Using

such information, it would be possible to construct process

schedulers that simultaneously takes care of both memory

and processor usage by quantifying the CPU migration cost.

Such a scheduler could improve overall performance of

heterogeneous workloads that characterize cloud computing

scenarios. In addition, our work indicates need to further

optimize Big Data tools to take advantage of multi-core

architectures. Since multi-core architectures will only be-

come more commonplace in the near future, we believe it

is paramount to address this need.

ACKNOWLEDGMENT

This manuscript has been authored by UT-Battelle, LLC,

under contract DE-AC05-00OR22725 with the U.S. De-

partment of Energy. The United States Government retains

and the publisher, by accepting the article for publication,

acknowledges that the United States Government retains a

non-exclusive, paid-up, irrevocable, world-wide license to

publish or reproduce the published form of this manuscript,

or allow others to do so, for United States Government

purposes.

REFERENCES

[1] T. Hey, S. Tansley, and K. Tolle, The Fourth Paradigm: Data-
Intensive Scientific Discovery, 2009.

[2] T. Kalil, “Big data is a big deal,” http://www.whitehouse.gov/
blog/2012/03/29/big-data-big-deal.

[3] S. Lohr, “The age of big data,” New York Times, 2012.

[4] A. McAfee and E. Brynjolfsson, “Big data: the management
revolution.” Harvard Business Review, vol. 90, no. 10, pp.
60–6, 68, 128, 2012.

[5] Apache Hadoop, http://hadoop.apache.org.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber,
“Bigtable: a distributed storage system for structured data,”
in Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation - Volume 7, ser. OSDI
’06, 2006.

[7] A. Lakshman and P. Malik, “Cassandra: a decentralized struc-
tured storage system,” SIGOPS Operating System Review,
vol. 44, no. 2, Apr. 2010.

[8] S. Chaudhuri, U. Dayal, and V. Narasayya, “An overview
of business intelligence technology,” Communication of the
ACM, 2011.

[9] B. C. Tak, B. Urgaonkar, and A. Sivasubramaniam, “Un-
derstanding the cost of cloud: Cost analysis of in-house vs.
cloud-based hosting options,” The European Business Review,
Sep 2011.

[10] H. Herodotou, F. Dong, and S. Babu, “No one (cluster) size
fits all: automatic cluster sizing for data-intensive analytics,”
ser. SoCC ’11, 2011.

[11] R. Ganesan, S. Sarkar, and A. Narayan, “Analysis of saas
business platform workloads for sizing and collocation,” in
2012 IEEE 5th International Conference on Cloud Computing
(CLOUD), june 2012.

[12] P. J. Denning, “The working set model for program behavior,”
Commun. ACM, vol. 11, no. 5, May 1968.

[13] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa,
“Bubble-up: Increasing utilization in modern warehouse scale
computers via sensible co-locations,” in Proceedings of the
44th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, 2011.

[14] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, and A. Merchant, “Automated control of multiple
virtualized resources,” in Proceedings of the 4th ACM Euro-
pean conference on Computer systems, 2009.

[15] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: man-
aging performance interference effects for qos-aware clouds,”
in Eurosys, 2010.

[16] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement
of virtual machines for managing SLA violations,” in 10th
IFIP/IEEE International Symposium on Integrated Network
Management, 2007.

[17] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and
J. Lawall, “Entropy: a consolidation manager for clusters,”
in Proceedings of the 2009 ACM SIGPLAN/SIGOPS interna-
tional conference on Virtual execution environments, 2009.

[18] Citrix Systems, “Citrix xen server 6.0 administrator
guide,” http://docs.vmd.citrix.com/XenServer/6.0.0/1.0/en
gb/reference.html.

[19] KVM, http://www.linux-kvm.org/page/Main Page.

[20] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with ycsb,”
ser. SoCC ’10, 2010.

[21] A. V. Do, J. Chen, C. Wang, Y. C. Lee, A. Zomaya, and B. B.
Zhou, “Profiling applications for virtual machine placement
in clouds,” in 2011 IEEE International Conference on Cloud
Computing (CLOUD), july 2011.

[22] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Address-
ing shared resource contention in multicore processors via
scheduling,” in Proceedings of the fifteenth edition of ASPLOS
on Architectural support for programming languages and
operating systems, ser. ASPLOS ’10, 2010.

[23] M. Lee and K. Schwan, “Region scheduling: efficiently using
the cache architectures via page-level affinity,” in Proceedings
of the seventeenth international conference on Architectural
Support for Programming Languages and Operating Systems,
ser. ASPLOS ’12, 2012.

[24] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” ser. SOSP ’03, 2003.

[25] VMware, “Vmware vsphere: The cpu scheduler in
vmware esx 4.1,” 2010, http://www.vmware.com/resources/
techresources/10131.

[26] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,
“kvm: the linux virtual machine monitor,” in Proceedings of
the Linux Symposium, vol. 1, 2007, pp. 225–230.

[27] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels, “Dynamo: amazon’s highly available key-
value store,” in Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles, ser. SOSP ’07,
2007.

[28] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM, vol. 13, no. 7,
Jul. 1970.

[29] C. S. Pabla, August 2009, http://www.linuxjournal.com/
magazine/completely-fair-scheduler.

[30] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova, “A
case for numa-aware contention management on multicore
systems,” in Proceedings of the 2011 USENIX conference on
USENIX annual technical conference, ser. USENIXATC’11,
2011.

