Performance Measurements of a User-Space DAFS Server

with a Database Workload

Samuel A. Fineberg and Don Wilson

NonStop Labs
Hewlett-Packard Company
19333 Vallco Parkway, M/S 4402
Cupertino, CA 95014
fineberglhp.com

ABSTRACT

We evaluate the performance of a user-space Direct Access File
System (DAFS) server and Oracle Disk Manager (ODM) client
using two synthetic test codes as well as the Oracle database. Tests
were run on 4-processor Intel Xeon-based systems running
Windows 2000. The systems were connected with ServerNet II, a
Virtual Interface Architecture (VIA) compliant system area
network. We compare the performance of DAFS/ODM and local-
disk based I/0, measuring I/0 bandwidth and latency. We also
compare the runtime and CPU utilization of the Oracle database
running the TPC-H benchmark over DAFS/ODM and local disk.

Categories and Subject Descriptors

B.4.m [Input/Output and Data Communications]:
Miscellaneous; C.4 [Performance of Systems]: Performance
attributes; D.4.3 [Operating Systems]: File Systems
Management — Distributed file systems; D.4.8 [Operating
Systems]: Performance — Measurements;

General Terms

Experimentation, Measurement, Performance.

Keywords

DAFS, Database, File Systems, 1/0, Networks, Performance
Evaluation, RDMA.

1. INTRODUCTION

The Direct Access File System (DAFS) is a new standard for
building high-performance network-attached file servers using
RDMA-enabled networks. DAFS is designed to enhance the
performance of applications within a datacenter, including
databases. Oracle has recently introduced the Oracle Disk
Manager (ODM) file system API to allow its database to take
advantage of advanced file systems like DAFS. Hewlett-
Packard’s NonStop Labs group has built a prototype user-
space DAFS server and a user-space ODM client in order to
evaluate DAFS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM SIGCOMM 2003 Workshops, August 25&27, 2003, Karlsruhe, Germany.
Copyright 2003 ACM 1-58113-748-6/03/0008...$5.00.

In this work we evaluate our DAFS/ODM prototype using two
synthetic test codes as well as the Oracle database. These tests
were run on 4-processor Intel Xeon-based servers running
Windows 2000, connected with the ServerNet II system area
network. We make comparisons between the performance of
DAFS/ODM and local-disk based 1/O, measuring 1/O
bandwidth and latency. We also compare the runtime and CPU
utilization of Oracle running TPC-H over DAFS/ODM and
local disk.

2. DAFS SERVER

The server described in this paper has been built to conform to
the Direct Access File System (DAFS) [4, 6] protocol. DAFS
is a new file-access protocol, based on NFS Version 4 [16].
DAFS is designed to enable high-performance file sharing in
data center environments using RDMA-enabled interconnect
technologies. These include network technologies such as the
Virtual Interface Architecture (VIA) [3, 9], iWarp [1], and
InfiniBand [10].

DAFS was developed by the DAFS Collaborative, a group of
over 80 organizations including industry, academics, and
research labs. DAFS is a file access protocol, like NFS [2] or
CIFS [17], that can be accessed either through a kernel-based
or user-library based client. The DAFS collaborative has
defined an API that takes advantage of DAFS’s advanced
features, but other interfaces can be supported by the DAFS
protocol as well.

2.1 DAFS Details

DAFS is a client-server distributed file access protocol.
Therefore, data requested from a DAFS server is specified as
bytes at a offset in a file, not raw disk blocks. DAFS builds on
the NFS4 specification, but adds enhanced features ideal for
local file sharing environments. By local file sharing, we mean
systems that are in close proximity and connected by a high-
speed RDMA-enabled private network.

Because DAFS is simply a messaging protocol it can be
implemented at several levels in an operating system. VIA is
by its nature a user-space networking model, so user-space
implementations of both DAFS clients and servers are possible
as demonstrated in this work. DAFS clients and servers can
also be implemented inside an operating system kernel. For
example, Magoutis et. al. [11, 12] implemented a user-space
client and a kernel-space server. In addition, Broadband
Storage, Fujitsu, and Network Appliance demonstrated kernel
based servers and clients at the first DAFS Developers
Conference. The DAFS protocol is flexible enough to allow
clients to deliver many different file APIs. This could include
the familiar Windows and UNIX file APIs, as well as new

APIs such as the DAFS API [5], Oracle’s ODM API [14, 15],
or MPI2-1/0 [13].

2.1.1 Session Management and Request/Response
Model

A DAFS client initially connects to a server by establishing a
connection to a well known network address on the server. For
example, on VIA based systems, the client connects to a VI
with a known remote address and a known discriminator
(which is like a TCP/IP port number). DAFS requests and
responses are simply send/receive style messages with a
specified format. DAFS messages include a generic header that
is the same for any type of request/response, a fixed-size
portion unique to the specific request/response, and a “heap”
containing variable-sized fields and data. Request messages
are sent from a client to the server, and responses are sent from
the server to a client. The client and server must pre-post
“receives” before they can accept a request or response
messages.

A DAFS server will pre-post a number of receives to each of
its active client connections. The number of pre-posted
receives will determine the number of outstanding requests the
server can accept from each client connection (this parameter
is negotiated as part of the session establishment protocol).
The server will then pre-post an additional receive before
responding to each client request.

Clients pre-post a receive to be used for the response before
sending each server request. In addition, clients will need to
pre-post additional receives if they want to use the optional
back-channel request features of DAFS. Since our server did
not support back-channel requests, clients only received
messages in response to a request.

All DAFS server state is stored as part of a session. Session
state includes credentials, open files, locks, etc. When a
session is lost, all open filehandles must be closed, all locks
are released, etc. Note that a session does not necessarily
correspond to a network connection. If a connection is lost, the
client can attempt to re-attach to the pre-existing session.
However, for the server implemented in this paper, sessions
only exist for the life of a connection.

2.1.2 Non-file Access DAFS Commands

DAFS includes commands to browse files and directories. A
DAFS file or directory is referenced by using a filehandle. The
root of a server’s filesystem can be obtained using the
DAFS_PROC_GET_ROOTHANDLE request. Then, directories
can be browsed using DAFS_PROC_LOOKUP (to look up the
filehandle of a directory or file) and DAFS_PROC_ LOOKUPP
(to look up the parent directory of a directory or file).
Directory contents can be read using
DAFS PROC_READDIR x where x is either INLINE or
DIRECT (the difference between inline and direct requests will
be described later in this section).

Other non-file access DAFS requests include commands for
creating directories, deleting files, managing locks, managing
the server’s response cache (if it has one), providing hints
about file usage, reading/writing file attributes, etc. Each of
these requests has a header and heap format outlined in the
DAFS specification, and DAFS also specifies the header and
heap format for the server’s response.

2.1.3 File Access Commands

Before any data can be read or written, DAFS files must be
explicitly opened using the DAFS_ PROC_OPEN request. The
open request takes the filehandle of the containing directory, as
well as any other desired parameters, and the response returns
a filehandle to the specified file. Open files can be closed using
the DAFS PROC_CLOSE request. Once a file is open, the client
can read from or write to the file wusing the
DAFS PROC_READ x or DAFS PROC WRITE x requests
where x is either INLINE or DIRECT.

2.1.3.1 Inline I/O

Inline requests carry their data in the actual request or response
messages. Therefore, for DAFS PROC_READ INLINE, the
request packet will specify the filehandle, offset, and number
bytes to be read. The response packet will include status,
number of bytes successfully read, and the actual data from the
file. A DAFS_PROC_WRITE INLINE request will contain the
filehandle, offset, the number of bytes to be written, and the
data to be written to the file. Then, the response will return
status and the actual number of bytes written. Because all data
must fit in a single message, inline I/O data sizes are limited by
the amount of space available in the maximum size
request/response message.

2.1.3.2 Direct I/O

Direct requests separate the data transfer from the
request/response messages, transferring the data with RDMA
reads or RDMA writes. For example, a
DAFS PROC_READ DIRECT request message specifies a
filehandle, file offset, and requested number of bytes to read.
In addition, it will include the virtual address of the user’s data
buffer on the client machine and a “memory handle” for that
buffer. The server then reads the file bytes and copies them
directly to the user buffer on the client system with a RDMA
write. Finally, after the RDMA write has completed, a
response will be sent specifying status and the amount of data
successfully read.

Note that all buffers must be “registered” prior to issuing any
DAFS request. Registering memory causes the operating
system to lock the memory pages into RAM and it sets up
virtual to physical address translation tables in the NIC. This
allows an RDMA-enabled NIC to perform user-space DMA
using the user’s virtual address instead of a physical address.
Inline request/response buffers can be pre-registered when the
client library is initialized. Therefore, for inline I/O there is
usually no per-I/O memory registration overhead, but data
must be copied from the user buffer to one of these “system”
buffers. For direct I/O, there is usually no copying needed
since I/O can occur directly to/from the user buffer. However,
the user buffer must be registered before it can be used in any
direct I/Os.

2.1.3.3 Inline vs. Direct I/0 Trade-offs

There are numerous trade-offs between direct and inline I/O. In
general, direct I/O is considered better because the client saves
the overhead of copying data to or from a message buffer. This
can save a significant amount of CPU overhead, improving the
performance of CPU-bound applications. In addition, with
direct /O RDMA data transfer lengths can be up to the
network’s Maximum Transfer Unit (MTU) size (ServerNet II’s
MTU is 4GB, though a more typical MTU size for other VIA

networks is 64KB). To limit buffer usage, most DAFS
implementations will limit the maximum single transfer size
(our server limits this to 1MB by default). However, when a
DAFS server processes a single direct read or write request, it
may issue one or more RDMA operations. This means that a
direct operation can be of virtually unlimited size, reducing the
number of request/response messages. Finally, bulk data
movement is server-driven, i.e., the clients do not initiate
RDMA transfers. Since the server initiates all RDMA, it can
schedule data movement to avoid overloading its data links.
The server can also use this control over RDMA to efficiently
utilize its buffer memory and ensure fairness.

Inline 1/Os require copying from system buffers to user
buffers. In addition, they must fit into a single request or
response packet, so they are limited in size. However, direct
I/O actually requires additional steps over inline I/O. As with
inline /O, direct I/O operations still must send a request and
response message. In addition, direct I/O clients must register
user data buffers so that they can be used as targets of server-
initiated RDMA. Inline message buffers also need to be
registered, however, in most cases DAFS clients will pre-
register all message buffers at client initialization time. This
pre-registration eliminates any per-I/O memory registration
overhead. While the extra operations required for direct I/0
should take less time than additional request/response
messages, for short I/Os that fit in a single request/response
message, the copying overhead of inline I/O may be less than
the additional overhead needed for direct I/O.

2.2 Prototype DAFS Server Details

The DAFS server used in this paper was developed by HP’s
NonStop Labs. It supports a subset of the DAFS 1.0
specification. The server is a user space service/daecmon for
Windows 2000 and Linux (however, all performance testing
was performed on Windows). It uses the Virtual Interface
Provider Library (VIPL) 1.0 [9] for all communication
operations. To ensure compatibility, messages are constructed
using the protocol stubs from the DAFS 1.0 SDK! (we do not
use any of the SDK’s transport functions).

All of the DAFS server’s buffers are pre-allocated and pre-
registered. This includes both a pool of send/receive buffers
for request/response messages as well as a pool of direct I/O
buffers used for RDMA. Memory registration only occurs once
at program initialization. Further, disk I/O is performed
directly to/from the server’s message or direct I/O buffers, so
no additional data copies are required.

The prototype DAFS server is heavily multithreaded and
utilizes an I/O driven architecture to enhance request
pipelining. The server is designed to handle many concurrent
requests such that the utilization of the system’s functional
units will be maximized. This approach optimizes total server
throughput, but it may increase the latency of a single DAFS
request.

Files are stored on the native filesystem (ext2 for Linux and
NTFS for Windows 2000) and file access is performed with the
standard filesystem APIs. The server does optionally use
several performance features of Win32, including
asynchronous and unbuffered 1/0. Asynchronous I/O
eliminates contention for file pointers. When the DAFS server

! The DAFS SDK 1.0 is available from the DAFS Collaborative
web site (http://www.dafscollaborative.org).

opens a file for a client, it only actually opens it once. If the
server utilizes a synchronous I/O interface, each operation
must consist of a seek followed by a read or write. The seek
and the read/write must act as a single atomic operation, so the
file must be locked. This means that only a single I/O may be
operating on each file at a time. With asynchronous 1/0, called
“overlapped” in Win32, the offset is included in the read or
write command and the file pointer is ignored. This means that
multiple reads and writes can be issued simultaneously,
without locking the file.

The second Windows feature we utilized is “unbuffered 1/0”.
This option is selected when a file is opened. Access to files
open in this mode bypasses the Windows buffer cache. This
has two disadvantages, first it means that Windows will do no
caching of data. However, this works well since both Oracle
and the RAID controller already do their own caching. The
second disadvantage is that all data must be sector (512 bytes
in most cases) aligned. This is a problem for general I/O, but
ODM allows you to easily impose this restriction on Oracle
(by setting ODM’s “Physical Block Size” parameter to 512).
Unbuffered I/O tends to be much faster than buffered I/O when
data is read only once and accesses are random. The data
copying overhead generated by buffered I/O can be very large,
and it may consume a significant amount of a system’s CPU
cycles.

3. ORACLE DISK MANAGER

The Oracle Disk Manager (ODM) API [14, 15] is a file access
interface specification for use with Oracle databases. It is a
built-in feature of the Oracle 9i database. ODM provides an
alternate interface for creating, deleting, and accessing files.
The ODM interface is a stripped down file API with several
enhancements over traditional file APIs. Oracle attempts to
create and open all files with ODM. If the files are not
available through the ODM library an error is returned, and
Oracle will revert to the normal filesystem APIs.

3.1 ODM Commands

ODM files are created with the odm create command.
odm_create includes a file size parameter so files can be
pre-allocated. In addition, ODM files include a file type
specifying the database’s intended use for the file. After the
file has been created, it can be accessed by the Oracle instance
that created it. However, the file does not become persistent
and is not accessible by any other Oracle instances until it is
committed with the odm_commit command. If Oracle crashes
before calling odm commit, or the file is intentionally
aborted using the odm abort command, the file and all
changes will be lost.

Once a file has been committed, it can be opened by one or
more Oracle instances. To open a file, Oracle uses the
odm identify command. odm_ identify, like
odm_commit, includes a file type parameter. odm_identify
also includes a “key” parameter to prevent the accidental
opening of a file by an Oracle instance that is not part of the
same cluster.

Once a file has been identified, all I/O is performed using the
odm_io command. odm_io uses an asynchronous descriptor-
based interface. It specifies what I/O requests to initiate and
what to wait for. When a thread wants to wait for I/O to
complete, it can tell odm io to either wait on specific I/O
requests or wait for some number of I/O requests to complete.

Diskless system

Local disk system

- ServerNet Il
; % Switch “f %
Ultra3 Ultra3
SCSI SCSI

| l
Ry R

14 18GB 15K Ultra3 disks
per Enclosure

Figure 1. Test system configuration

Any parameter can be set to NULL, so odm_io can be used to
queue I/O without waiting or odm_io can wait for I/O without
queuing anything. This interface provides a lot of flexibility
for different I/O usage patterns with a minimum of command
syntax. I/Os are segregated by thread, so only the thread that
issued an I/O request can wait for it. Odm also has provisions
for batch I/0 using a “ODM_RELATED” flag, however this was
ignored in the prototype server.

Odm also includes several other functions including a close
command (odm unidentify), commands for managing
mirrored volumes (which were not implemented in the
prototype), and a command for resizing a file (which is used
when extending database files).

3.2 Prototype ODM Client

The prototype ODM client was implemented by NonStop Labs.
It is implemented as a user-space dynamic-link library (DLL)
for Oracle 91 on Windows 2000. The client library uses the
DAFS SDK 1.0 protocol stubs for compatibility, but like our
DAFS server, all data movement operations were re-
implemented directly on top of VIPL. Currently our ODM
library only supports a single DAFS server, specified in a file
that is read when the DLL is initialized. The DAFS filesystem
appears as a special drive letter, also set in the configuration
file. Oracle attempts to open all files using ODM. When Oracle
uses an ODM command on a non-DAFS filesystem the ODM
library will return an error indicating that the file is not an odm
file.

The ODM library is heavily multithreaded, and decouples
asynchronous I/Os from the Oracle threads. The number of
outstanding 1/Os supported by the prototype ODM is tunable.
Small 1/Os are implemented using the inline read/write
commands and pre-allocated/pre-registered data buffers.
Larger I/Os are implemented using the direct read and write
commands.

Our ODM library registers/deregisters direct read and write
buffers “on the fly.” This creates a lot of memory registration
overhead, however, it was less than we originally expected,
and it was necessary. While we could attempt to cache client
memory registrations, it would lead to problems. ODM has no
concept of memory registration, and there are no restrictions
on the system calls that a client can perform. Unfortunately,
some system calls can modify the virtual-to-physical address
mappings without notifying the ODM library or the network
driver. For example, consider what happens if a program
“malloc”s a chunk of memory, uses it for a direct I/O, then

frees it. At this point there is no guarantee that in a subsequent

“malloc” the OS will not re-map a different chunk of physical
memory to that same virtual address. This problem was
observed previously when implementing MVICH! (an
implementation of the Message Passing Interface over VIA) as
well as in DSA [19] (a VIA-based storage library for SQL
server). While we could implement appropriate OS hooks that
would perform memory deregistration as part of the “free”
command, this is outside the scope of the user-space DLL that
we implemented. In addition, we could have forced the client
to notify ODM when it does anything that could affect the
virtual to physical address mappings of its memory, but this
would have required changes to Oracle.

4. DAFS TESTBED SYSTEM

Our goal in testing DAFS/ODM was to compare its
performance with locally connected disks. To run our “local
disk” experiments we used a system configuration that was
reasonable for running Oracle. Therefore, the system had
multiple Intel Xeon CPUs, lots of memory, high performance
15000RPM disks, and high performance RAID controllers.
This “local disk” system became our baseline for
measurement, and we ran all “local disk” experiments on this
system alone.

To test DAFS/ODM, we added a second multiprocessor Xeon
system with a configuration similar to the first, but with no
high performance disks. In addition, we added a fast system
area network to connect the two systems. For the DAFS/ODM
tests, the second “diskless” system ran the DAFS/ODM client
software (e.g., Oracle), and the “local disk” system ran the
DAFS server software.

4.1 System Configuration

The system configuration used for our tests is illustrated in
Figure 1. The specific system configurations were as follows:

® HP Proliant 6400R System:
- four Xeon SO0MHz processors with IMByte L2 cache
- 3GB RAM

- dual bus PCI 64/33
® ServerNet II system area network

* Windows 2000 Server

! For information on MVICH see:
http://www.nersc.gov/research/FTG/mvich/.

In addition, the “local disk” system also had the following
storage hardware:

* Two Proliant Smart Array 5304 Controllers

- 128 MBytes of battery-backed disk cache per control-
ler
- 4ultra3 SCSI ports per controller (only one was used)
® Two Proliant 4314R disk enclosures

- 1 ultra3 SCSI Bus with 14 disk slots (per enclosure)
- 14 18GB 15000 RPM ultra3 disks (Seagate) per
enclosure

The Smart Array controller was configured for RAID 1/0 (i.e.,
mirrored striped disks) with one entire enclosure (14 disks) per
RAID partition. We formatted each RAID partition with a
separate NTFS filesystem. Both systems also had some lower
performance SCSI drives that were used for their operating
system and Oracle binaries.

4.2 ServerNet II SAN

All DAFS commands were sent over the ServerNet II system
area network (SAN). ServerNet II [7, 8] is a hardware-based
VIA 1.0 compliant network, developed by the HP’s NonStop
Enterprise Division. ServerNet and ServerNet II were
originally developed for HP (Tandem) NonStop servers, and
they were marketed as a general system area network for PC
clusters from 1997-2000. In 2000 ServerNet was discontinued
as a separate product, but it is still utilized as the internal
fabric on NonStop Kernel based servers. ServerNet II has a
VIPL 1.0 library, and it supports several optional features of
VIA. These include RDMA read and Reliable Reception (both
of which were used for the server). The ServerNet II NICs used
for this work were 64-bit/66MHz PCI cards. ServerNet II
networks can be built in a variety of topologies using 12-port
switches. For this work, however, only a single switch was
needed.

Each ServerNet NIC has two ports that can be attached into
separate network fabrics. In a dual-fabric network ServerNet
can tolerate a fabric failure by switching all traffic to the
alternate. In addition, ServerNet II can stripe network traffic
across both fabrics to achieve better performance. The
ServerNet network used for these experiments was set up with
dual fabrics. However, both ports were attached to the same
ServerNet switch. This configuration does not provide the
same level of fault tolerance as dual-switch configuration, but
it does have similar performance.

In theory ServerNet II should perform at 1.25 Gbit/sec per link
per direction, i.e., 5 Gbits/sec, which translates to over 400
MBytes/sec (after protocol overhead). However, our test
system’s PCI 64/33 bus limits performance to only 250
MBytes/sec. In addition, ServerNet II bandwidth is affected by
many factors including the system’s PCI implementation, driver
tuning parameters, the type of data transfer operation, the number
of network fabrics used, and the number of Virtual Interfaces (VIs)
used. These performance factors are outside the scope of this
paper. For the configuration and usage model utilized in this
paper’s experiments, we measured the maximum ServerNet II
bandwidth to be 110 MBytes/sec.

5. RAW /O BENCHMARK RESULTS

We used three benchmarks to measure the performance of the
test system. The first two of these were raw 1/O tests. Odmblast
was an ODM based 1/O stress tests and Odmlat was an ODM

based I/O latency tester. The final test was an Oracle based
TPC-H [18] benchmark, which will be discussed in Section
6.0. All of the tests were run on local disk as well as over
DAFS. We utilized the ODM library for all tests except the
local disk TPC-H test. For the DAFS tests, ODM
communicated with our DAFS server over ServerNet II. For
local disk Odmblast and Odmlat, a special ODM library was
used that emulated the ODM commands using direct Win32
calls. The local disk TPC-H test accessed the local filesystem
directly from Oracle (i.e., it did not use ODM).

5.1 Odmblast

Odmblast is an odm-based stress test. It was designed to create
a high load on the DAFS server using the ODM client
interface. The odmblast code consists of a closed loop in which
up to 32 I/Os are outstanding. Each call to odm_io issues 16
I/0 requests and waits on 16 requests (from the previous call to
odm_io). Odmblast has the ability to spread its requests
across two files. In the reported experiments we map these
files to two separate filesystems, each with a separate RAID
controller and disk set. This improves performance and mimics
the Oracle layout we utilized in Section 6. We issued enough
I/Os to ensure that the entire file could not be held in the RAID
cache or system RAM (4GB of I/O per file for the
measurements shown).

Odmblast sequences through a series of tests. These tests are
sequential read, sequential write, random read, random write,
and random read/write mix. Each test reads or writes an
amount of data equal to the file size (i.e., with two 4GB files,
4GB of I/0 requests are issued to each file for a total of 8GB of
1/0).

For the sequential read and write tests, [/Os are issued with
increasing offset and fixed block size, alternating between the
two files. Therefore, the first set of 1/Os uses offsets filel @0,
file2@0, filel@1*blocksize, file2@1*blocksize,...,
filel@7*blocksize, file2@7*blocksize; the second set of
requests uses offsets filel @8 *blocksize, file2@8*blocksize,...,
file2@15*blocksize. For random read and write tests, odmblast
still alternates between filel and file2, but we used a uniform
random number generator to create offsets. For the random
read/write mix test, the offset was chosen randomly and the
choice between read and write was also decided by the random
number generator. Both random and sequential offsets are
limited to full disk sectors (512 bytes) to allow the use of
unbuffered I/O.

Figure 2 shows read performance across a range of block sizes.
The DAFS results highlight the limitations of our ServerNet II
network. Local disk sequential reads run over twice as fast as
sequential reads over DAFS. Random reads do not perform
quite as well as sequential, especially for small block sizes.
This difference between sequential and random reads was
evident for both DAFS and local 1/0, and is probably due to
the ineffectiveness of the read-ahead RAID cache (i.e., read-
aheads often went unused due to the random access pattern)
and the 64KB RAID block size. For both sequential and
random [/O, DAFS has a bandwidth ceiling at about 90
MBytes/sec. The largest factor in this bandwidth limit is
ServerNet II. As mentioned previously, the maximum
ServerNet II bandwidth for our system was 110 MBytes/sec.
While we might expect DAFS reads to reach the full ServerNet
IT bandwidth, there are several factors preventing this. These
include some protocol inefficiency, imperfect request
pipelining, as well as competition for PCI bus resources (at

250.0

=R R B .
52000 — e - - B- - Local Seq Rd
ﬁ K _ X ’ — X- =Local Rand Rd
g 150.0 ~— e — # —DAFS SeqRd
s o —o—DAFS Rand Rd
$1000 1 X
Z /A == — — — = - - - - - gt
S X
@ 500 -
oo T T T T T
0 200000 400000 600000 800000 1000000
/0 Size (bytes)

Figure 2. Odmblast read bandwidth vs. I/O block size

least one of the RAID controllers shares a PCI bus with the
ServerNet II NIC).

Figure 3 shows write performance across a range of block
sizes. Write performance for both local disk and DAFS was
much lower than read. The lower local disk write performance
was mostly due to the expense incurred through mirroring.
This expense was somewhat offset by the RAID cache, but the
odmblast test wrote enough data that the system had to
eventually wait for data to flush to disk. What is interesting is
that small random writes exceeded the performance of small
sequential writes. When random writes increase in size they
become more like sequential writes, so the two performance
curves converge. The differences between local disk and
DAFS were harder to explain. For small random writes, DAFS
performance is actually higher than local disk. We do not have
a good explanation for this anomalous behavior. For large
block sizes, performance of DAFS is 25%-35% worse than
local I/0. We can not blame this behavior on bandwidth
limitations, since it never exceeds the achieved DAFS read
performance, so it must be due to inefficiencies in our
DAFS/ODM code.

In Figure 4, we show performance for a random 50%/50%
read/write mix at random offsets. Performance is better than
random writing alone, which is not surprising since half of the
operations are reads. For local I/O the performance falls in the
expected mid-ground between read and write performance.
What is interesting is that the DAFS random read/write
bandwidth actually exceeds both the DAFS random read and
DAFS random write performance demonstrated previously.
DAFS performance is ultimately limited to <110 MBytes/sec
by the ServerNet II bandwidth. However, this indicates that
our DAFS/ODM code pipelines requests better, and more
efficiently uses its network bandwidth, when the workload is a
mix of reads and writes.

5.2 Odmlat

Odmlat was designed to measure the latency of I/O requests.
Our prototype DAFS/ODM was designed to optimize
throughput at the expense of latency, so we did not expect the
latency to be extremely low. Odmlat simply issues a single I/O
with a fixed size, waits for it to complete, then repeats this
with increasing offsets within the file. This continues for a
specified number of iterations, enough to get an accurate

100.0
90.0 +
8004 P—— L .----tTTETTTITIIEEmEm oo E
o | N e e e D e e e m e m e e e ————— == —
3 70.0 A X
e00 %6 [~ 0 ST —f
£ 500 - —-— -7
S
% 40.0 - -~ - Local Seq Wr
£ 300 — X~ —Local Rand Wr
0 500 — A —DAFS Seq Wr
10.0 —o—DAFS Rand Wr
0.0 T T T T T
0 200000 400000 600000 800000 1000000

I/O Size (bytes)

Figure 3. Odmblast write bandwidth vs. I/O block size

140.0

e e — e

1200 - X
3 A
9 100.0 /@/r
m
= 80.0 .X
P .
.'§ 60.0
° — X- =Local Rand riw
§ 400 —o&— DAFS Rand riw
g |k

20.0

0.0 T T T T T T T
0 131072 262144 393216 524288 655360 786432 917504 1048576

/O Size (bytes)

Figure 4. Odmblast random read/write mix bandwidth vs. I/O block size

timing. The total time is divided by the number of operations
to get the time per operation.

Our goal was to use odmlat to determine the components that
affect DAFS/ODM response time. Therefore, we used
sequential I/O to normalize the effects of the RAID cache. In
other words, we wanted the RAID cache to affect all 1/0O
equivalently, rather than randomly. We only ran these tests
over DAFS/ODM (not on local disk) and we performed a linear
regression of the data to separate out the response time
components.

The components that we expected to see from a DAFS/ODM
I/0 were the following.

Treq: The time required to perform a zero-byte
request/response. This is essentially the fixed amount of time it
takes to send/receive a request, process the request, and
send/receive a response message.

Tgisk: The time required to perform a disk I/O on the server.
This fixed time is essentially the amount of time it takes for the
server to perform a zero-byte I/O to disk, including system call
overhead (recall our DAFS server runs in user-space).

Tydma: The time required to perform a server initiated zero-
byte RDMA operation. This fixed value includes the time
required to initiate an RDMA operation and process its
completion. This time will also include the fixed portion of the
amount of time required for registering a user buffer.

Rinline: The overall data rate (measured MBytes/sec) to disk
for a single inline I/O. This is an aggregate measure of how
fast data moves in an inline operation. It is affected by the
speed of memory copies (recall that for inline I/Os we copy the
users I/O buffer into a pre-registered message buffer), data
transfer for a send/receive network operation as well as the
disk transfer rate. It is not the I/O bandwidth, since I/Os must
include some of the previously described fixed components as
well.

Rgirect: The overall data rate (MBytes/sec) to disk for a single
direct I/0. This is an aggregate measure of how fast data
moves in an direct operation. It is affected by the speed of
memory registration (recall that we register user I/O buffers
every time we perform a direct [/O), RDMA data transfer rate,

as well as the disk transfer rate. It is not the I/O bandwidth,
since I/0s must include some of the previously described fixed
components as well,

From these components we can create performance models for
inline and direct I/Os. Inline I/Os take the following time:

Tintine /0 = Treq + Taisk + Size/Rjpjipe.

Therefore, they consist of a request/response, a disk I/O, and
data transfer. Direct I/Os take the following time:

T‘rdma /0~ Treq + Trdma + Tdisk + Size/Rdirect'

Therefore, direct I/O consists of a request/response, an RDMA
operation, a disk I/O, and data transfer. Note that because
direct I/0 data transfer is different than inline I/O data transfer,
we use a different data transfer rate parameter.

The basic measurements are shown in Figure 5. This graph
shows that write latencies are slightly higher than read
latencies. This probably reflects the benefit of the RAID
controller’s read-ahead buffering, especially since the I/O was
sequential. Zero-byte read/write operations took about 90
microseconds. The DAFS server does not issue an 1/O for the
zero-byte case, so the zero-byte latency (90 microseconds)
should be T,.,. As I/O size increases, the latency increases due
to the fact that a disk I/O must be issued on the server side, and
also due to the disk and network bandwidth. We performed a
linear regression and determined that the fixed portion of this
increase (Tg4is) was 535 microseconds for write and 519
microseconds for read. At an I/O size of 16 KBytes (16384
bytes), ODM switches from inline to direct I/O. The graph
shows a continuous line between these points, however, in
reality the line should have a step between 16383 bytes and
16384 bytes. The added latency (T,gy,) Was determined to be
446 microseconds for write and 372 microseconds for read.
This was due to the additional RDMA operation and the
memory registration overhead. What is interesting is that the
slope of the graph for I/Os <16 KBytes (inline) is essentially
the same as the slope for >16 KByte I/Os (direct). From these
slopes we calculated the rates shown in Table 1. The difference
between inline and direct I/O transfer rates was <3%. For both
inline and direct I/0, reads were about 10% faster than writes.

5000.0

4000.0 -

3000.0

2000.0 -

Time per Operation
(microseconds)

1000.0 A

0.0 ‘ ‘ ‘
0 16384 32768 49152

65536 81920 98304 114688 131072

Bytes per /0 Operation

Figure 5. Odmlat I/O latency vs. block size

The difference between read and write performance reflects
those seen with odmblast in Section 5.1.

Transfer Read Write
Rate Type (MBytes/sec) (MBytes/sec)
Rinline 47.4 44.4
Ryirect 48.8 43.5

Table 1: Data transfer rates for DAFS 1/0 requests

This data might naively indicate that we should always use
inline I/O since the direct I/O transfer rate is not higher and
direct I/O must incur additional latency (i.e., Tgirect 70 = Tinline
10 T Trama)- However, this only works for I/Os that can fit in a
single message. For larger messages: Tijine 1o =
Ceiling(Sizetotal/sizeinline max)Treq + Sizetotal/Rinline (where
ceiling is a function that rounds to the next higher integer).
Because our ODM library was limiting the size of inline
requests to 16383 bytes (our server’s actual inline request size
limit was set to 32K and could have been bigger at the expense
of system RAM), we did not see any inline I/Os requiring
multiple messages.

In addition, the real cost of inline I/O is the additional CPU
overhead due to buffer copying. This cost can be large,
especially when (unlike odmlat) multiple I/Os are in flight
simultaneously, as is the normal case for database I/O. In
addition, we are being penalized by the total time it takes to
register memory, even though memory registrations are
parallelized across the ODM threads. In an ideal world, we
would require Oracle to pre-register its buffers, but this would
require changes to both Oracle and the ODM specification.

6. ORACLE BASED TPC-H RESULTS

The previously described tests, while useful in characterizing
DAFS/ODM performance, do not represent a realistic usage
model. ODM is an Oracle I/O interface, so it was critical that
we make measurements using the Oracle database. We chose
to utilize TPC-H for our Oracle tests. TPC-H is a decision
support benchmark created by the Transaction Processing
Performance Council [18].

6.1 TPC-H Experiments

TPC-H is designed to emulate database systems that examine
large volumes of data, execute complex queries, and give
answers to business questions. The queries give answers to
real-world business questions, simulate ad-hoc queries, and are
far more complex than OLTP queries. The database must be
continuously open to queries from multiple users, so we
simultaneously ran multiple query “streams.” In addition, the
database was continuously updated throughout the test by an
“update thread,” and these updates could not be allowed to
corrupt running queries.

The TPC-H test was run on Oracle 9i Enterprise Edition
(Release 1) for Windows. We set the Oracle block size to 16
KBytes, which meant that Oracle would never issue I/Os of
less than 16 KBytes. The large block size enabled more
efficient access to both local and remote disk, and it was
reasonable given the large queries in TPC-H. In addition, we
set the ODM physical block size to 512 bytes to ensure that all
I/0s would be 512-byte (sector) aligned, which was needed for
Windows unbuffered I/0.

We used two different disk configurations, as described in
Section 4. For the “local disk” test, we ran Oracle on the “local
disk” system and placed the files on the attached disks. The
database files were stored on NTFS, not on a “raw” filesystem.
The database’s tablespace files were spread across the two
RAID filesystems to improve performance. For the
“DAFS/ODM?” test we ran Oracle on the “diskless” system and
ran our DAFS server software on the “local disk” system. The
ODM “.dll” file was installed on the “diskless” system and
Oracle built its database files using ODM’s file APIs. ODM
files were stored on the “local disk™ system, and were accessed
remotely using the ODM library, which communicated with
the DAFS server software over ServerNet II. The database’s
files were spread across the same two RAID filesystems used
for “local disk” Oracle, with file locations matching in both
cases.

The goal of our tests was to measure the relative performance
of DAFS/ODM vs. local disk. We were not attempting to
create a fully auditable TPC-H implementation that could be
directly compared with other published results. Our tests used
the 30GB database size from the TPC-H specification, which
was sufficiently large so that it would not fit in RAM or disk

Time (Hrs:Min)

local

Figure 6. Average query stream runtime

cache. Per the TPC-H spec, we ran a single update thread while
the queries were executing.

Unfortunately, given our system configuration, the full
benchmark took an unreasonable amount of time. Therefore we
chose to run only three simultaneous query streams instead of
the 4 required by the benchmark rules. While this change may
have somewhat reduced our peak concurrency, it did
significantly reduce execution time. Therefore, there was some
bottleneck (most likely I/O rate, i.e., number of I/O operations
per second our disks could process) preventing the 4th query’s
additional work from being overlapped effectively. We also
left out query 13, which we were unable to run successfully.
This was due to incompatibilities that we were unable to
resolve between the SQL code provided by TPC and Oracle’s
SQL.

In addition to varying whether the tests were run on local disk
or DAFS, we also varied the “inline cutoff” size where ODM
switched from “inline” to “direct” I/O. We wanted to use inline
transport for small I/Os since it had lower latency. However, as
I/Os grew, the latency became less relevant and we want to
take advantage of the benefits of direct (RDMA) I/O. Because
16 KBytes was the basic block size of our Oracle database, and
would therefore be used frequently, we decided to compare
TPC-H performance with two different settings of the “inline
cutoff” size. One of these settings would perform 16 KByte
I/Os inline, and the other would preform 16 KByte 1/Os direct.

We chose not to calculate the “TPC-H power” metric, instead
we measured the runtimes for each of the query streams as well
as the update thread. Runtimes of the streams and update
thread varied significantly between runs. In order to make
some sense of the measurements, Figure 6 shows the average
runtime of the query streams across each run category. From
this graph, the first observation you should make is that TPC-H
with local I/O was faster than DAFS. In second place is DAFS
with 16K-inline I/Os, and in last place is DAFS with 16K-
direct 1/Os. Its is not really surprising that local 1/O is faster
than DAFS since the DAFS server issues essentially the same
file commands that the local disk version uses and doesn’t
need to send data through network. In addition, local disk I/O
through Ultra3 SCSI was faster than ServerNet II, as was
shown with odmblast in Section 5.1. The only advantage the
DAFS case has over local I/O was that the overhead of
accessing the NTFS filesystem was off-loaded to the server.
However, Windows 2000 unbuffered I/O running over SCSI
was extremely efficient, and the overhead was actually the

17:13

DAFS 16k-direct

DAFS 16k-inline

same or less than the ServerNet II message processing
overhead (although both were quite low).

To demonstrate the difference in overhead, we measured CPU
utilization for the three cases. Figures 7 and 8 compare the
CPU utilization for TPC-H over DAFS with the local disk
case. We have smoothed these graphs (the line represents a
running average of CPU utilization over a 20 minute period) in
order to make them more readable. The first observation one
can make is that the CPUs were not saturated in any of these
cases, so there is likely additional performance tuning that
could have been performed on the benchmark.

Referring to the local /O and DAFS client curves, TPC-H
CPU utilization reached a peak of about 80%, and was mostly
between 40% and 70%. On average, CPU utilization was
higher for the DAFS clients than for local I/0. This reflects the
low CPU utilization of Windows I/O when running in
“unbuffered” mode. The ODM client also uses relatively little
CPU, but it does add some protocol processing overhead,
which turned out to be greater than the Windows I/O overhead.

Comparing the 16K-inline vs. 16K-direct results, we see very
similar client CPU utilization. In order to determine the
relative impact of 16K I/Os, we enabled tracing in our DAFS
server (the trace code was removed for all performance

100 - Local /O
DAFS Client
O - - - - DAFS Server
80
70 |
°
@ 601
g 50 - ﬁ Al J
o \Y W
O 40
X
30 - _
l -!',-«,-.‘_“!‘_”‘ . Il -.,z‘ '..‘ A
20 | AR KRN SRR N
0 1 N u
0 : : : : :
0 200 400 600 800 1000

Time (mins)

Figure 7. Comparison of TPC-H CPU Utilization
(16K-direct I/0s)

100 Local VO
DAFS Client
94 |eeaa DAFS Server
80
10 A
3 W
60 - v
s VRV
o 50 | / V
o
O 40
2
30 4
20 i‘_, = NG Pk}
o | | | | .
0 200 400 600 800 1000

Time (mins)

Figure 8. Comparison of TPC-H CPU Utilization
(16K-inline I/0s)

measurements). From these traces we were able to measure the
relative frequency of different I/O operations. Figure 9 shows
the distribution of I/O types and sizes in TPC-H as seen by the
DAFS server. As you can see, the vast majority of TPC-H’s
I/Os were 16 KByte reads. Therefore, if the client CPU
utilization for both cases is similar, the additional overhead for
client memory registration is similar to the overhead associated
with copying data to pre-registered buffers (for 16 KByte
reads).

Referring again to Figures 7 and 8, server-side direct I/O CPU
utilization is on average about 5%-10% higher than for inline
I/0. Recall from Section 5.2 that direct I/Os incur an additional
overhead (T,qp,) due to the extra RDMA step necessary on the
server side. The server-side RDMA overhead includes both
network latency as well as CPU overhead for creating,
executing, and completing the RDMA in the server (it does not
include the portion of T, resulting from memory
registration on the client). These results indicate that the
additional server-side CPU overhead associated with 16K-
direct reads is actually greater than the server-side buffer
copying overhead associated with 16K-inline reads.

The additional CPU utilization associated with small direct
reads not only increased server CPU utilization, but it also

16 KByte
Write
0.3%

16 KByte >16 KByte
Read Read
79.4% 19.1%

>16 KByte
Write
1.1%

Figure 9. TPC-H 1/0 Operation Frequency

decreased overall throughput. This is due to the imperfect
pipelining of I/O requests, which did not allow all of the
latency to be overlapped. The lower throughput of 16K-direct
I/Os, combined with the distribution of I/O operations (16
KByte reads were the dominant operation over all other
operations by a factor of about 4 to 1), resulted in the 16K-
inline case having better overall TPC-H performance.

6.2 TPC-H Summary

The Oracle TPC-H benchmark tests demonstrated that, for this
system configuration, local I/O was still faster. This was due to
several factors including inefficiencies in our DAFS/ODM
code, limited ServerNet II bandwidth, and the efficiency of
Windows unbuffered I/0. Performance with DAFS, however,
was not much worse. Run-times with inline 16 KByte transfers
were <10% worse than local disk, and with direct 16 KByte
I/Os performance was <30% worse than local disk. These
results are similar to the 22% TPC-C performance degradation
Zhou demonstrated with wDSA [19] (wDSA is similarly
designed transparent user-space DLL for performing I/O over
VIA).

While the DAFS server results were worse than local disk, they
do not reflect many of the advantages of DAFS over local disk.
DAFS provides shared access for Oracle Real Application
Clusters (RAC), and it provides system management flexibility
because it virtualizes the disks. While there are other network
filesystems like NFS or CIFS, none of these directly support
Oracle. Oracle can also support cluster database access with
shared Fiber Channel or iSCSI attached storage, but only with
raw partitions that are harder to manage than DAFS. Also,
while we did not have the opportunity to measure it for this
work, Fiber Channel 1/O typically performs slightly worse than
direct attached Ultra3 SCSI due to its higher adapter to disk
latency.

Finally, both this work and [19] indicate that there is a
deficiency in user-level APIs that do not expose memory
registration. Neither ODM or the win32 API (used for wDSA)
can correctly cache memory registrations. This problem needs
to be addressed either by improved operating system support or
better user-space APIs. Until this occurs, user space /0 will
not be able to reach its full potential.

7. CONCLUSIONS

In this paper we have evaluated the performance of a user-
space DAFS server and ODM client. We have shown that our
server and client achieve performance close to the limits of our
ServerNet I system area network. Local SCSI /O, however,
was able to outperform DAFS due to the higher bandwidth of
the local I/O buses in our test configuration. In addition, we
have shown that for a non-trivial database application DAFS
can get performance within 10% of local disk, while providing
the advantages of a network-attached file system.

While our performance was good, there are several factors that
limited our results. First, we observed that local disk
performance that exceeded ServerNet II bandwidth, especially
for reads. Unfortunately, our ServerNet II drivers did not
support multiple NICs, so we had no way to address this
(without switching to another network technology). Another
limiting factor was the fact that Oracle would not pre-register
memory for ODM. Therefore ODM had to register memory as
part of every direct I/O operation. We would have also
benefitted from a kernel-based DAFS server, since it would

have eliminated the server-side system call overhead. Finally,
we needed to tune our TPC-H benchmark better, either by
adding more disks or changing some other configuration
parameters, so that CPU utilization would be closer to 100%
(i.e., so that the CPU would be the bottleneck, not I/0). With a
different or better tuned benchmark, we might have observed
some of the performance benefits provided by RDMA.

8. ACKNOWLEDGEMENTS

The authors would like to thank the members of HP’s Industry
Standard Servers (ISS) Storage group for their assistance in
performing this work. In addition, we would like to thank
Kostas Magoutis for his assistance in preparing the final
version of this paper.

9. REFERENCES

[1] Bailey, S., The Remote Direct Memory Access Protocol
(iWarp), Internet Draft draft-bailey-roi-rdma-00, Internet
Engineering Task Force, February 2002.

[2] Callaghan, B., NFS lllustrated, Addison Wesley Longman,
Inc., 2000.

[3] Compagq, Intel, Microsoft, Virtual Interface Architecture
Specification, December 1997,
http://www.intel.com/design/servers/vi/th
e spec/specification.htm.

[4] DAFS Collaborative, DAFS: Direct Access File System
Protocol, Version 1.00, September 2001,
http://www.dafscollaborative.org.

[5] DAEFS Collaborative, Direct Access File System Application
Programming Interface (DAFS API), Version 1.00,
November 2001,
http://www.dafscollaborative.org.

[6] DeBergalis, M., et. al., “The Direct Access File System,”
FAST ‘03: 2nd USENIX Conference on File and Storage
Technologies, pp. 175-188, April 2003.

[7] Garcia, D., and Watson, W., “Servernet I1,” 2nd Parallel
Computer Routing and Communication Workshop, June
1997.

[8] Heirich, A., Garcia, D., Knowles, M., Horst, R., ServerNet II:
a Reliable Interconnect for Scalable High Performance

Cluster Computing, Tandem Labs Technical Report,
September, 1998.

[9] Intel Corporation, Intel Virtual Interface Architecture
Developers Guide, version 1.0., September 1998,
http://developer.intel.com/design/servers
/vi/developer/ ia_ imp guide.htm.

[10] Infiniband Trade Association, InﬁniBandTM Architecture
Specification, Version 1.0, October 2000.

[11] Magoutis, K., “Design And Implementation of a Direct
Access File System (DAFS) Kernel Server for FreeBSD,”
USENIX BSDCon 2002 Conference, February 2002.

[12] Magoutis, K., et. al., “Structure and Performance of the Direct
Access File System,” USENIX Annual Technical Conference,
Monterey, CA, June 2002.

[13] Message Passing Interface Forum, MPI-2: Extensions to the
Message-Passing Interface, July 1997, http://www.mpi-
forum.org.

[14] Oracle Corporation, Oracle Disk Manager Interface and
Functions, March 2001.

[15] Oracle Corporation, Oracle Disk Manager: an Oracle White
Paper, April 2001.

[16] Shepler, S., et. al. NF'S version 4 Protocol, Internet
Engineering Task Force RFC3010, December 2000

[17] Storage Networking Industry Association, Common Internet
File System (CIFS) Technical Reference, Revision 1.0, SNIA
Technical Proposal, March 2002,
http://www.snia.org/English/Collaterals/W
ork Group Docs/NAS/CIFS/CIFS Technical Re
ference.pdf.

[18] Transaction Processing Performance Council (TPC), TPC
Benchmark H (Decision Support) Standard Specification
Revision 1.4.0, April 2002,
http://www.tpc.org/tpch/spec/tpchl40.pdf.

[19] Zhou, Y., et. al., “Experiences with VI Communication for
Database Storage,” 29th Annual International Symposium on
Computer Architecture, pp. 257-268, May 2002.

	Performance Measurements of a User-Space DAFS Server
	with a Database Workload
	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. Introduction
	2. DAFS Server
	2.1 DAFS Details
	2.1.1 Session Management and Request/Response Model
	2.1.2 Non-file Access DAFS Commands
	2.1.3 File Access Commands
	2.1.3.1 Inline I/O
	2.1.3.2 Direct I/O
	2.1.3.3 Inline vs. Direct I/O Trade-offs

	2.2 Prototype DAFS Server Details

	3. Oracle Disk Manager
	3.1 ODM Commands
	3.2 Prototype ODM Client

	4. DAFS Testbed System
	4.1 System Configuration
	4.2 ServerNet II SAN

	5. Raw I/O Benchmark Results
	5.1 Odmblast
	5.2 Odmlat

	6. Oracle based TPC-H results
	6.1 TPC-H Experiments
	6.2 TPC-H Summary

	7. Conclusions
	8. Acknowledgements
	9. References

