
 1

Jim Gray with help from Bryan Bouma @ sun and Alainna Wonders @ JHU

17 January 2007

Performance of Sun X4500 at JHU (Thumper.pha.jhu.edu) under Windows, NTFS and SQLserver 2005

Executive summary: This is a balanced system with 16GB of fast memory, 4 fast processors, and enough

disks and disk bandwidth to keep them busy when doing OLTP or data mining.

Sun Microsystems loaned an X4500 to the Johns Hopkins University Physics Department in Baltimore, Maryland to

do Windows-SQLserver performance experiments and to be a public resource for services like SkyServer.org,

LifeUnderYourFeet.net, and CasJobs.sdss.org. The system’s applications will soon be on the Internet, but for now

we are just testing it. I termserved to Thumper.pha.jhu.edu from San Francisco.

The X4500 is a quad-core 2.6GHz Opteron,

with 16GB of RAM, 6 Marvell SATA

controllers, 48 500GB Hitachi 7krpm

SATAII disks, and dual Gbps Ethernet in a

4U package consuming about 0.8 KW when

all the disks are working hard.

As a first step we installed Windows 2003

Standard SP1 in 64-bit mode, Visual Studio

2005, and SQLserver 2005 Standard (64bit)

SP1.

An earlier study showed that this system

using a JBOD (just a bunch of disk ==

Raid0) configuration with 10 GB test files on each disk delivered 8,689 random 8KB reads/s and 13,080 random

8KB writes/s with a 160-deep queue and 2,670 MB/S sequential read and 1,881 MB/S sequential writes. The small

files (10GB) were mandated by the short test period available and so the seeks were across 2.5% of the disk. As seen

below, ~100 IO/s/disk rather than the ~200 IO/s/disk implicit in the random IO numbers should be expected if seeks

must cross 1/3 of the disk surface on each request – i.e. if most of the disk space is used for randomly accessed files.

This time the 48 disks were mirrored across the 6 controllers to create 24 dynamic volumes (we chose mirroring

rather than JBOD because this will be a showcase service and we avoided RAID5 because it has given us so much

trouble in the past). This decision gives up about ½ the disk capacity (12TB vs 24TB) and about ½ the write IO

bandwidth (mirrored writes cost 2 accesses). But it buys peace of mind. Advanced write combining (write cache)

was enabled for each volume.

Using memspeed.exe, single processor memory

reads at 3.0 GB/S, writes at 1.7 GB/S, and copies

at 1.3 GB/S. Using SSE, 4 processors, read at 6.4

GB/S, write at 8.9 GB/S, and copy at 4.3 GB/S

The first IO tests measured the sequential and

random performance of the system. We created

a 400GB file on each volume and then used

SqlIo.exe to generate sequential or random read

and write traffic against that array, first one disk

at a time and then a ramp of 2, 3, ..23 volumes

(46 disks) in parallel. The resulting throughput

is cartooned in Figure 2 (a screenshot from

Perfmon.)

The graph suggests that each disk delivers about

100 random iops while reading and nearly 150

iops when writing (likely due to the disk cache).

random reads random writes

one at a time
2, 3

,..
23 at a

 tim
e

random reads random writes

one at a time
2, 3

,..
23 at a

 tim
e

Figure 2: A perfmon graph if 8-deep random IO 8KB. Red is

cpu (x10), pink is MB/s and black is trnsfers/second/100

(peak at right is 6.6K iops, 50MBps, and 4% of 4cpus = 15%

of one cpu.) These are physical IOs so the mirrored writes

actually run ad 3.3k logical iops and 25MBps at the

application level.

Figure 1: Mirrored disk layout, each mirror uses two controllers

and so can tolerate a disk or path failure. One mirror is dedicated

to the system disk leaving 23 for database applications.

 2

There are no bottlenecks in the memory or controller (at 6.6k iops there are 3.6 cpu’s available to the application.)

Figure 3 graphs the measured read and write and the attached spreadsheet has the actual numbers.

The second part of Figure 4 shows the sequential IO behavior of a single mirrored volume for various queue depths

and block sizes. Averaged across the surface, the disks deliver ~55MB/s, the outer edge is 65 MB/s and the inner

tracks are 44 MBps.

In between these experiments we ran a torture test doing over 200 hours of small random IOs. One of the 48 drives

(H:) started misbehaving (writing very slowly) during this process and is being retired.

Figure 3: The graph at right shows the

random IO/s of Figure 2. Each experiment

was run for 5 minutes using SqlIO.exe with

8KB requests keeping the queue to each

volume 8-deep. The “bump” in the read

throughput at about 12 drives seems to be

real (repeated many times). These

numbers are lower than reported in a

previous report because the seeks are

across the entire disk (each has a 400GB

file) whereas previous experiments used

files 40x smaller and so had much quicker

seeks. Your random IO performance is

guaranteed not to exceed these numbers ☺

unless you have smaller files. At peak the

array is delivering ~3.5k writes per second

or 4.6k reads per second. Only one of the

4 cpus is busy at the peak – leaving a lot of

processing power for applications.

Figure 4. The one disk sequential

bandwidth peaks at about 57MB/s and is

approximately the same for reads and

writes. The disk achieves nearly full

bandwidth with fairly small requests

(16KB) and fairly shallow queues (2-deep).

Ramdom IO/s

Sun X4500 1..23 mirrored disks (8-deep 8KB requests)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

B G J M P S V Y

B
D

F

B
D

F
G

H
I

B
D

F
G

H
IJ

K
L

B
D

F
G

H
IJ

K
L

M
N

O

B
D

F
G

H
IJ

K
L

M
N

O
P

Q
R

B
D

F
G

H
IJ

K
L

M
N

O
P

Q
R

S
T

U

B
D

F
G

H
IJ

K
L

M
N

O
P

Q
R

S
T

U
V

W
X

IO
/s

Read IO/s

Write IO/s

About 48% of one cpu at 4.5k read IO/s

and 84% of one cpu at 3.4k writeIO/s

(the mirror tax).

One Disk Sequential MB/s vs Request Size

0

10

20

30

40

50

60

70

1
K

B

2
K

B

4
K

B

8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

1
2

8
K

B

2
5

6
K

B

5
1

2
K

B

1
M

B

2
M

B

4
M

b

M
B

/s

2 deep request queue

4 deep request queue

 3

The following two figures show the array’s sequential IO performance using 2-deep 256KB requests. The figure

captions explain the diagrams and results.

Figure 5. A perfmon screen shot of the

bandwidth x10MB/s (white line), the

physical IOs x100 (black line), and the cpu

consumption (% of 4 cpus red line) for the

experiments graphed below. First each

individual disk is tested for a minute and

then the growing array of discs is tested for

a minute each. It shows that the cpus are

nearly idle (4x20% at most == 80% of one

of the 4 cpus). At peak the system is

reading at 1.09 GB/s and writing at 2.14

GB/s (mirrored writes). The application

only sees ½ that write bandwidth.

Figure 6. The same data as Figure 5

showing the sequential disk read and write

bandwidth using SqlIO. The request queue

was kept 2-deep and requests were 256KB.

The read bandwidth could be about twice

the write bandwidth since the file system

can read from both disks in parallel while

each write must write both disks in the

mirrored pair. The Windows 2003 volume

manager does not have that optimization

and so read and write bandwidth are

comparable. Again, when writing

~2GB/s the system has 3.2 cpus available

to applications. The tests do not include the

“H” volume which failed (slowed down)

during the experiments.

Reads
Peak at 1.09 GB/s

mirrored writes
Peak at 2.14 GB/s

aabboouutt 22xx tthhee ccppuu ccoosstt

~~8800%% ooff oonnee pprroocceessssoorr

Sequential MB/s

Sun X4500 1..23 mirrored disks (2-deep 256KB requests)

0

200

400

600

800

1,000

1,200

B G J M P S V Y

B
D

F

B
D

F
G

H
I

B
D

F
G

H
IJ

K
L

B
D

F
G

H
IJ

K
L
M

N
O

B
D

F
G

H
IJ

K
L
M

N
O

P
Q

R

B
D

F
G

H
IJ

K
L
M

N
O

P
Q

R
S

T
U

B
D

F
G

H
IJ

K
L
M

N
O

P
Q

R
S

T
U

V
W

X

M
B

/s

Read MB/s

Write MB/s

About 40% of one cpu at 1GB/s read

and 80% of one cpu at 1GB/s write

(the mirror tax).

 4

13K mirrored log

writes at ~9K tps
peaks at about 14

threads delivering 10k
tps

scale for wirtes is 10x
lower here so that it

fits on graph.

13K mirrored log

writes at ~9K tps
peaks at about 14

threads delivering 10k
tps

scale for wirtes is 10x
lower here so that it

fits on graph.

Figure 6: The out-of-the-box performance of

SQLserver on the DebitCredit transaction.

SQL testing – transaction processing

We created the simple TheBank database described in

“Thousands of DebitCredit Transactions-Per-Second:

Easy and Inexpensive,” MSR-TR-2005-39 consisting

of 10M bank accounts (equivalent to a very large

bank). The database uses one file group striped

across 22 volumes (44 disks). The DebitCredit

benchmark was run against it using 1, 2,… and more

threads. Figure 6 cartoons the throughput. With

about 8 request streams the system is processing ~9k

transactions per second (peak of 11k tps) and using

about 30% of the 4 cpus – it is bottlenecked on the log

force (every SQLserver transaction forces the log.)

The big pink spike after about 10 minutes is

checkpoint IO. Two generations of database people

spent their careers optimizing this benchmark. One

early optimization addressed the log force bottleneck

by introducing group commit.

Very few people need more than 9Ktps – that would

be a VERY busy time for the whole Visa credit card

system which involves many computers. That may

explain why SQLserver lacks group commit. But,

group commit is easy to implement, and indeed Erik

Christensen invented a nice adaptive algorithm and

prototyped it in a SQLserver.exe (Eric’s change is not

going to appear in the product anytime soon, it is just

for experiments.)

Figure 7 shows the performance of Eric’s group-

commit implementation as we ramp up to 80 threads

driving the server. At about 18 threads, the system is

delivering about 20k tps and using about 80% of the

cpu. As more threads are added, the number of log

writes per second actually declines to about 20/s (this

is Eric’s algorithm kicking in.) Indeed the whole

scale for the log writes was reduced by 10x so that it

shows well in this graph compared to Figure 6 –

rather than 13k log writes per second it is doing more

like 20-40 log writes per second and of course doing

3x more transactions per second in the process.

ra
m

p
up

 to
 ~

80
 th

re
ad

s

ramp up to ~20k tps

Disk writes/s go from ~8Kps to ~2Kps

cpu stabilizes at 80% of 4 cores

ra
m

p
up

 to
 ~

80
 th

re
ad

s

ramp up to ~20k tps

Disk writes/s go from ~8Kps to ~2Kps

cpu stabilizes at 80% of 4 cores

Figure 7: The performance of SQLserver on the

DebitCredit Transaction using Eric Christian’s group

commit algorithm.

 5

SQL testing – transaction processing

Next we created four tables, ten, hundred, thousand, and page, that had respectively 10-byte, 100-byte, 1KB, and

8KB records. We populated these tables with 2B, 1B, 100M,

and 10M rows giving us a 36GB, 105GB, 96GB and 77GB

tables respectively (see Table 2).

We then ran the following two queries against these tables

using read-uncommitted transaction isolation. We use

count_big() to avoid overflowing the counter (count()

overflows at 4B.

The first statement tries to saturate the disks’

sequential bandwidth the second statement tries

to saturate the cpus (all 4 of them). Figure 8

shows the results graphically. It is possible to

keep all four cpus busy. Table 3 translates

Figure 8 into numbers. The cpus can read 21M records per second. The database can drive the disks at 75% of

their rated speed – 750MB/s.

Table 2: the sizes of the for test SQL tables

 GB rows byes/record

ten 36 2B 19

hundred 105 1B 112

Thousand 96 100M 1,029

page 77 10M 8,232

Table 3: Times and throughput for trivial and complex

predicates.

Trivial predicate

scan

time

cpu

time
cpu%

cpu

us/rec

Mrec

/sec
MB/s

Ten 96 235 245% 0.12 21 415

Hundred 157 209 170% 0.21 6 710

Thousand 141 127 150% 0.13 0.7 750

Page 111 91 120% 9.15 0.1 750

Complex predicate

scan

time

cpu

time
cpu%

cpu

us/rec

Mrec

/sec
MB/s

Ten 1,746 6,956 398% 3.48 1.1 11

Hundred 917 3,593 392% 3.59 1.1 117

Thousand 209 440 210% 0.44 4.8 514

Page 112 108 96% 0.11 0.9 742

fragmentation

512KB

read ahead

740 MB/s

3 cpus

to
1.5 cpus

fragmentation

512KB

read ahead

740 MB/s

3 cpus

to
1.5 cpus

fragmentation

512KB

read ahead

740 MB/s

3 cpus

to
1.5 cpus

100 % cpu

for 10B, 100B
records
with complex
predicate

60% cpu

for 1KB,
records
with complex
predicate

30% cpu
for 8KB,
records

with complex
predicate

100 % cpu

for 10B, 100B
records
with complex
predicate

60% cpu

for 1KB,
records
with complex
predicate

30% cpu
for 8KB,
records

with complex
predicate

Figure 8. The trivial query uses 3 cpus on 10 byte records and 1.5 cpus on big records. Small records can at ½

speed (400MB/s), large records (100B or more) go at 740MB/s, about 75% of the peak rate of Figure 6. The

graph at right compares the trivial workload (first 4 peaks) with complex predicate. It uses 4 cpus for the 10B and

100B predicates (cpu bound not IO bound) but for 1kB and 8KB records it is IO bound.

 trivial predicate
select count_big(*)

 from table

 where a = 0

 complex predicate:
select stdev(

 sqrt(

 sin(a*pi())*sin(a*pi())

 +cos(a*pi())*cos(a*pi())

)-1.0)

 from table

 6

Summary

This system has great memory bandwidth, excellent IO bandwidth, lots of IOs/second, and seems both compact and

relatively power-efficient.

As a rough rule of thumb, when configured as a JBOD, the raw hardware delivers

2.6 GB/s sequential read,

2.2 GB/s sequential write, and

5K random reads or writes per second on big files and 9K random IO/s on small files.

When configured with Windows native RAID1 (mirroring) in 23 volumes it delivers about ½ that performance:

2.6 GB/s sequential read,

2.2 GB/s sequential write,

4.6K random 8KB reads per second, and

3.5K random 8KB writes per second.

We want to configure fewer RAID10 volumes (6 rather than 24) but NTFS does not support that (it supports only

mirrors (RAID1) or JBOD (RAID0)). . We will install the Veritas (Semantic) product that adds RAID10 support to

NTFS. The system will have a mirrored system drive and five RAID10 2x4 volumes, and one RAID10 2x3 volume

using the Veritas software. These experiments will be repeated when we get that configuration.

SQLserver 2005 delivers about 9K tps on the DebitCredit benchmark and is log-limited. When group-commit is

added to SQLserver 2005, it cpu saturates at about 20k tps.

Sequential scans run at 750MB/s if the records are 100 bytes or more and the predicates are simple. If the records

are small (10 bytes) then the scans are cpu limited and the system runs at 21 million records per second (the 5M

records/second/cpu we see in other benchmarks). SQL is able to use all the cpus if the records are short or if the

query is complex. In particular a very complex predicate can be cpu limited for records of 100B or even 1KB.

This is the fastest Intel/AMD system we have ever benchmarked. The 6+ GB/s memory system (4.5GB/s copy) is

very promising. Not reported here, but very promising is that we repeated most of the SkyServer Query log

analysis on this system – performance was 3x to 100x what we experienced on previous systems – largely due to the

64-bit SQL and to the 16GB of RAM. We hope to report the SkyServer query results soon.

Our next steps are to reconfigure the disk array to be a few volumes and then install the SkyServer DR5, CasJobs,

SkyServer Weblogs, LifeUnderYour feet, and perhaps some other portals on this server. We expect it to be on the

public internet so that scientists can use it and so that people can experiment with it.

Acknowledgements

Greg Papadopoulos and Jason Woods arranged for the loan of this system to JHU for testing and as the basis for

some eScience Internet services. We are VERY grateful to them and to Sun for that. Microsoft donated software

and some support. John. Fowler, Ben Lenail, and Pete May of Sun facilitated this process. Jan Vandenberg, Alex

Szalay, and Ani Thakar of JHU are intimately involved in this project and provided advice all along the way.

Catharine van Ingen helped improve the presentation.

