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Jim Gray with help from Bryan Bouma @ sun and Alainna Wonders @ JHU 

17 January 2007 

Performance of Sun X4500 at JHU (Thumper.pha.jhu.edu) under Windows, NTFS and SQLserver 2005   

 

Executive summary:  This is a balanced system with 16GB of fast memory, 4 fast processors, and enough 

disks and disk bandwidth to keep them busy when doing OLTP or data mining. 

 

Sun Microsystems loaned an X4500 to the Johns Hopkins University Physics Department in Baltimore, Maryland to 

do Windows-SQLserver performance experiments and to be a public resource for services like SkyServer.org, 

LifeUnderYourFeet.net, and CasJobs.sdss.org.  The system’s applications will soon be on the Internet, but for now 

we are just testing it.  I termserved to Thumper.pha.jhu.edu from San Francisco.  

 

The X4500 is a quad-core 2.6GHz Opteron, 

with 16GB of RAM, 6 Marvell SATA 

controllers, 48 500GB Hitachi 7krpm 

SATAII disks, and dual Gbps Ethernet in a 

4U package consuming about 0.8 KW when 

all the disks are working hard.  

 

As a first step we installed Windows 2003 

Standard SP1 in 64-bit mode, Visual Studio 

2005, and SQLserver 2005 Standard (64bit) 

SP1.      

 

An earlier study showed that this system 

using a JBOD (just a bunch of disk == 

Raid0) configuration  with 10 GB test files on each disk delivered 8,689 random 8KB reads/s and 13,080 random 

8KB writes/s with a 160-deep queue and 2,670 MB/S sequential read and 1,881 MB/S sequential writes.   The small 

files (10GB) were mandated by the short test period available and so the seeks were across 2.5% of the disk. As seen 

below, ~100 IO/s/disk rather than the ~200 IO/s/disk implicit in the random IO numbers should be expected if seeks 

must cross 1/3 of the disk surface on each request – i.e. if most of the disk space is used for randomly accessed files.  

 

This time the 48 disks were mirrored across the 6 controllers to create 24 dynamic volumes (we chose mirroring 

rather than JBOD because this will be a showcase service and we avoided RAID5 because it has given us so much 

trouble in the past).   This decision gives up about ½ the disk capacity (12TB vs 24TB) and about ½ the write IO 

bandwidth (mirrored writes cost 2 accesses).  But it buys peace of mind.  Advanced write combining (write cache) 

was enabled for each volume. 

 

Using memspeed.exe, single processor memory 

reads at 3.0 GB/S, writes at 1.7 GB/S, and copies 

at 1.3 GB/S. Using SSE,  4 processors, read at 6.4 

GB/S, write at 8.9 GB/S, and copy at 4.3 GB/S 

 

The first IO tests measured the sequential and 

random performance of the system.   We created 

a 400GB file on each volume and then used 

SqlIo.exe  to generate sequential or random read 

and write traffic against that array, first one disk 

at a time and then a ramp of 2, 3, ..23 volumes 

(46 disks) in parallel. The resulting throughput 

is cartooned in Figure 2 (a screenshot from 

Perfmon.)    

 

The graph suggests that each disk delivers about 

100 random iops while reading and nearly 150 

iops when writing (likely due to the disk cache). 
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Figure 2: A perfmon graph if 8-deep random IO 8KB.  Red is 

cpu (x10), pink is MB/s and black is trnsfers/second/100 

(peak at right is 6.6K iops, 50MBps, and 4% of 4cpus = 15% 

of one cpu.)  These are physical IOs so the mirrored writes 

actually run ad 3.3k logical iops and 25MBps at the 

application level. 

Figure 1: Mirrored disk layout, each mirror uses two controllers 

and so can tolerate a disk or path failure.  One mirror is dedicated 

to the system disk leaving 23 for database applications.  
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There are no bottlenecks in the memory or controller (at 6.6k iops there are 3.6 cpu’s available to the application.)    

Figure 3 graphs the measured read and write and the attached spreadsheet has the actual numbers.    

The second part of Figure 4 shows the sequential IO behavior of a single mirrored volume for various queue depths 

and block sizes.  Averaged across the surface, the disks deliver ~55MB/s, the outer edge is 65 MB/s and the inner 

tracks are 44 MBps. 

 

In between these experiments we ran a torture test doing over 200 hours of small random IOs.   One of the 48 drives 

(H:) started misbehaving (writing very slowly) during this process and is being retired.  

  

 

Figure 3: The graph at right shows the 

random IO/s of Figure 2.  Each experiment 

was run for 5 minutes using SqlIO.exe with 

8KB requests keeping the queue to each 

volume 8-deep.  The “bump” in the read 

throughput at about 12 drives seems to be 

real (repeated many times).  These 

numbers are lower than reported in a 

previous report because the seeks are 

across the entire disk (each has a 400GB 

file) whereas previous experiments used 

files 40x smaller and so had much quicker 

seeks. Your random IO performance is 

guaranteed not to exceed these numbers ☺ 

unless you have smaller files.   At peak the 

array is delivering ~3.5k writes per second 

or 4.6k reads per second.   Only one of the 

4 cpus is busy at the peak – leaving a lot of 

processing power for applications.    

 

Figure 4. The one disk sequential 

bandwidth peaks at about 57MB/s and is 

approximately the same for reads and 

writes.   The disk achieves nearly full 

bandwidth with fairly small requests 

(16KB) and fairly shallow queues (2-deep).  

 

 

Ramdom IO/s

Sun X4500 1..23 mirrored disks (8-deep 8KB requests)
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The following two figures show the array’s sequential IO performance using 2-deep 256KB requests.    The figure 

captions explain the diagrams and results.  

  

Figure 5. A perfmon screen shot of the 

bandwidth x10MB/s (white line), the 

physical IOs x100 (black line), and the cpu 

consumption (% of 4 cpus red line) for the 

experiments graphed below.  First each 

individual disk is tested for a minute and 

then the growing array of discs is tested for 

a minute each.  It shows that the cpus are 

nearly idle (4x20% at most == 80% of one 

of the 4 cpus). At peak the system is 

reading at 1.09 GB/s and writing at 2.14 

GB/s (mirrored writes).   The application 

only sees ½ that write bandwidth.   

 

Figure 6.  The same data as Figure 5 

showing the sequential disk read and write 

bandwidth using SqlIO. The request queue 

was kept 2-deep and requests were 256KB.   

The read bandwidth could be about twice 

the write bandwidth since the file system 

can read from both disks in parallel while 

each write must write both disks in the 

mirrored pair.  The Windows 2003 volume 

manager does not have that optimization 

and so read and write bandwidth are 

comparable.    Again, when writing 

~2GB/s the system has 3.2 cpus available 

to applications. The tests do not include the 

“H” volume which failed (slowed down) 

during the experiments.      

 

 

 

Reads 
Peak at 1.09 GB/s 

mirrored writes 
Peak at 2.14 GB/s 

aabboouutt  22xx  tthhee  ccppuu  ccoosstt  

~~8800%%  ooff  oonnee  pprroocceessssoorr  

Sequential MB/s

Sun X4500 1..23 mirrored disks (2-deep 256KB requests)
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13K mirrored log 
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threads delivering 10k 
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lower here so that it 

fits on graph. 
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Figure 6: The out-of-the-box performance of 

SQLserver on the DebitCredit  transaction.  

SQL testing – transaction processing 

 
We created the simple TheBank database described in 

“Thousands of DebitCredit Transactions-Per-Second: 

Easy and Inexpensive,” MSR-TR-2005-39 consisting 

of 10M bank accounts (equivalent to a very large 

bank).  The database uses one file group striped 

across 22 volumes (44 disks). The DebitCredit 

benchmark was run against it using 1, 2,… and more 

threads.   Figure 6 cartoons the throughput.  With 

about 8 request streams the system is processing ~9k 

transactions per second (peak of 11k tps) and using 

about 30% of the 4 cpus – it is bottlenecked on the log 

force (every SQLserver transaction forces the log.)   

The big pink spike after about 10 minutes is 

checkpoint IO.  Two generations of database people 

spent their careers optimizing this benchmark.  One 

early optimization addressed the log force bottleneck 

by introducing group commit.   

 

Very few people need more than 9Ktps – that would 

be a VERY busy time for the whole Visa credit card 

system which involves many computers.  That may 

explain why SQLserver lacks group commit.   But, 

group commit is easy to implement, and indeed Erik 

Christensen invented a nice adaptive algorithm and 

prototyped it in a SQLserver.exe (Eric’s change is not 

going to appear in the product anytime soon, it is just 

for experiments.)   

 

Figure 7 shows the performance of Eric’s group-

commit implementation as we ramp up to 80 threads 

driving the server. At about 18 threads, the system is 

delivering about 20k tps and using about 80% of the 

cpu.  As more threads are added, the number of log 

writes per second actually declines to about 20/s (this 

is Eric’s algorithm kicking in.)  Indeed the whole 

scale for the log writes was reduced by 10x so that it 

shows well in this graph compared to Figure 6 – 

rather than 13k log writes per second it is doing more 

like 20-40 log writes per second and of course doing 

3x more transactions per second in the process.  
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Figure 7: The performance of SQLserver on the 

DebitCredit Transaction using Eric Christian’s group 

commit algorithm.  
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SQL testing – transaction processing  

 
Next we created four tables, ten, hundred, thousand, and page, that had respectively 10-byte, 100-byte, 1KB, and 

8KB records.   We populated these tables with 2B, 1B, 100M, 

and 10M rows giving us a 36GB, 105GB,  96GB and 77GB 

tables respectively (see Table 2).  

 

We then ran the following two queries against these tables 

using read-uncommitted transaction isolation.  We use 

count_big() to avoid overflowing the counter (count() 

overflows at 4B.  

     

The first statement tries to saturate the disks’ 

sequential bandwidth the second statement tries 

to saturate the cpus (all 4 of them).   Figure 8 

shows the results graphically.  It is possible to 

keep all four cpus busy.   Table 3 translates 

Figure 8 into numbers.   The cpus can read 21M records per second.  The database can drive the disks at 75% of 

their rated speed – 750MB/s. 

 

Table 2: the sizes of the for test SQL tables  

 GB rows byes/record 

ten 36 2B 19 

hundred 105 1B 112 

Thousand 96 100M 1,029 

page 77 10M 8,232 

Table 3:  Times and throughput for trivial and complex 

predicates. 

Trivial  predicate 

  
scan 

time 

cpu 

time  
cpu% 

cpu 

us/rec 

Mrec 

/sec 
MB/s 

Ten 96 235 245% 0.12 21 415 

Hundred 157 209 170% 0.21 6 710 

Thousand 141 127 150% 0.13 0.7 750 

Page 111 91 120% 9.15 0.1 750 

       

Complex predicate 

  
scan 

time 

cpu 

time  
cpu% 

cpu 

us/rec 

Mrec 

/sec 
MB/s 

Ten 1,746 6,956 398% 3.48 1.1 11 

Hundred 917 3,593 392% 3.59 1.1 117 

Thousand 209 440 210% 0.44 4.8 514 

Page 112 108 96% 0.11 0.9 742 
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Figure 8. The trivial query uses 3 cpus on 10 byte records and 1.5 cpus on big records.  Small records can at ½ 

speed (400MB/s), large records (100B or more) go at 740MB/s, about 75% of the peak rate of Figure 6.  The 

graph at right compares the trivial workload (first 4 peaks) with complex predicate.  It uses 4 cpus for the 10B and 

100B predicates (cpu bound not IO bound) but for 1kB and 8KB records it is IO bound.  

 trivial predicate 
select count_big(*)  

  from   table 

  where  a = 0 

 

 complex predicate:   
select stdev(         

         sqrt( 

            sin(a*pi())*sin(a*pi()) 

        +cos(a*pi())*cos(a*pi()) 

  )-1.0)  

  from table 
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Summary 

 

This system has great memory bandwidth, excellent IO bandwidth, lots of IOs/second, and seems both compact and 

relatively power-efficient.      

 

As a rough rule of thumb, when configured as a JBOD, the raw hardware delivers  

2.6 GB/s sequential read, 

2.2 GB/s sequential write, and 

5K random reads or writes per second on big files and 9K random IO/s on small files. 

 

When configured with Windows native RAID1 (mirroring) in 23 volumes it delivers about ½ that performance: 

2.6 GB/s sequential read,  

2.2 GB/s sequential write,  

4.6K random 8KB reads per second, and 

3.5K random 8KB writes per second. 

 

We want to configure fewer RAID10 volumes (6 rather than 24) but NTFS does not support that (it supports only 

mirrors (RAID1) or JBOD (RAID0)).  .  We will install the Veritas (Semantic) product that adds RAID10 support to 

NTFS.  The system will have a mirrored system drive and five RAID10 2x4 volumes, and one RAID10 2x3 volume 

using the Veritas software. These experiments will be repeated when we get that configuration. 

 

SQLserver 2005 delivers about 9K tps on the DebitCredit benchmark and is log-limited.   When group-commit is 

added to SQLserver 2005, it cpu saturates at about 20k tps.  

 

Sequential scans run at 750MB/s if the records are 100 bytes or more and the predicates are simple.   If the records 

are small (10 bytes) then the scans are cpu limited and the system runs at 21 million records per second (the 5M 

records/second/cpu we see in other benchmarks).  SQL is able to use all the cpus if the records are short or if the 

query is complex.   In particular a very complex predicate can be cpu limited for records of 100B or even 1KB.  

 

This is the fastest Intel/AMD system we have ever benchmarked.  The 6+ GB/s memory system (4.5GB/s copy) is 

very promising.    Not reported here, but very promising is that we repeated most of the SkyServer Query log 

analysis on this system – performance was 3x to 100x what we experienced on previous systems – largely due to the 

64-bit SQL and to the 16GB of RAM.   We hope to report the SkyServer query results soon.  

 

Our next steps are to reconfigure the disk array to be a few volumes and then install the SkyServer DR5,  CasJobs,  

SkyServer Weblogs,  LifeUnderYour feet, and perhaps some other portals on this server.   We expect it to be on the 

public internet so that scientists can use it and so that people can experiment with it.  
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