Performance of binoculars: Berek’s model of target detection
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A model of target detection thresholds, first presented by Max Berek of Leitz, is fitted into a simple set of
closed equations. These are combined with a recently published universal formula for the human eye’s pupil
size to yield a versatile formalism, capable of predicting binocular performance gains. The model encompasses
target size, contrast, environmental luminance, binocular’s objective diameter, magnification, angle of view,

transmission, stray-light, and the observer’s age.

We analyze performance parameters of various common

binocular models and compare the results with popular approximations to binocular performance, like the well
known twilight index. The formalisms presented here are of interest in military target detection, as well as
civil applications such as hunting, surveillance, object security, law enforcement or astronomy.

1. Introduction

What can we see through a binocular? Which objects
remain hidden, despite of instrumental support offered
to our vision? These are fundamental issues, raised
with the arrival of the first telescopes and binoculars
which supported officers on the battlefields, as well as
astronomers under clear skies.

Those among us who are remotely interested in binoc-
ular observation know that there exist certain specifi-
cations that are related to the performance of such an
instrument: A 10x50 binocular has a magnification of
m = 10 and an objective diameter of D = 50 mm. But
there also exist additional numbers on the specification
sheets issued by the manufacturers, such as the twilight
index

Tiwitignt = VmD (1)

yielding liwilight ~ 22.4 for our 10x50 binocular. This
number is supposed to tell us something about the twi-
light performance of the binocular. But what exactly
that means remains opaque to most users, and even the
trained and experienced sales clerks of specialized optics
stores would, at best, cite a deprecated industry norm
(DIN 58386), through which the twilight index had once
upon a time been defined.

Truth is that this twilight index, just as any other sim-
plified approach to binocular performance, fails to yield
numbers that are sufficiently reliable for the evaluation
of binoculars in daily life situations. As an example, the
popular 8x56 low-light binocular features a twilight in-
dex of Liyilight ~ 21.2, while a 12x42, certainly less com-
mon among low-light observers, reaches liwilight = 22.4.
What is practically unknown beyond the closed circles
of human vision experts who evaluate instrumental per-
formance for the purpose of target detection in military
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applications, is the fact that there exist general purpose
models of human vision which can be combined with in-
strumental optics to deliver quite reliable data about the
performance of the combined system, human being plus
instrument.

One of these vision models has been presented about
70 years ago by Max Berek, the chief optical designer of
Ernst Leitz in Wetzlar, who signed responsible for the
first generation photographic lenses of the Leica cam-
era [1, 2]. He then paved the way to combine his theory
of vision with the performance of telescopes and binoc-
ulars to create a versatile and very general approach to
the performance limits for binocular aided observations.

With this article, we want to pay homage to Berek’s
outstanding achievement, not only because it is of great
value to the community of binocular users, but also be-
cause the relevance of his approach had subsequently
been understated, its accuracy even questioned, by the
powerful competition of Carl Zeiss [3]. Since Berek
passed away in the same year in which his approach
was published, his ideas lacked the push that is required
to gain sufficient public attention, to become generally
accepted and contribute to the pool of common wisdom.

This article begins with a short and concise introduc-
tion to luminance levels in daily life situations (Sec. 2).
In Sec. 3 we introduce a common approach to define
binocular performance, as presented by H. Koéhler and
R. Leinhos, and derive the famous twilight index. In
Sec. 4 the generalized human vision model of Berek is
presented. Since the original data were available only in
the form of inconvenient tables, using outdated physical
units, we first convert them into modern SI units and
apply numerical fit procedures to make them available
to the data processing on a computer. A comparison
with the results of the Blackwell data set is carried out,
followed by a derivation of Ricco’s law and the Weber-
Fechner law as limiting regimes of Berek’s approach. In
Sec. 5 we apply the formalism to the unaided eye and
evaluate detection ranges of various targets. The proce-



Luminance White sheet of paper...
0.000001 | Detection threshold
0.001 Under clear nightsky
0.1 In moonlight
1 Indoor, running TV

10 Street lighting
100 Indoor lighting
1000 Outdoors, rainy weather
10000 Bright daylight
100000 In direct sunlight

Table 1. Luminance (in cd/m?) of a white sheet of paper
under different ambient light conditions.

dures are then generalized in Sec. 6 to deliver the gain in
threshold contrast during observations with many pop-
ular binocular types. Distance-range gains with binoc-
ulars are discussed in Sec. 7, and our findings are sum-
marized and evaluated in Sec. 8.

2. Luminance levels in daily life

The physical unit of luminous intensity is named candela
(cd). One candela roughly corresponds to the luminous
intensity emitted by a candle, per steradian of solid an-
gle (reminding here that the sphere, integrated over all
directions, would cover a solid angle of 47 steradian).
To describe the brightness of an object, we are using its
luminous intensity per square-meter (cd/m?) which then
defines the SI unit of luminance.

We may have a few examples to gain some intuition
about luminance levels: We imagine a sheet of white
paper, and how bright this paper would appear under
different ambient light conditions. Table 2 offers a cou-
ple of examples, covering the wide range of brightness
that occurs between the deepest night and the brightest
sunlight (see also Hood et al. [4]).

Luminances of (non-luminous) objects range under
daylight conditions between 10 — 105 c¢d/m?, in twilight
roughly between 10~2—10 c¢d/m?, while during the night
these luminances usually remain below 1072 cd/m?.

What is special with a white piece of paper is its re-
flectivity, named albedo, which is close to unity, which
means that practically all light that hits the paper is
reflected back. Fresh snow does have an albedo above
0.9, while a forest typically has a far lower albedo near
0.1, which means that only 10% of its incident light is
reflected back into the environment. If we now imagine a
sheet of paper, attached to a tree inside a forest, then we
may regard this paper as a target (of albedo A; =~ 1) that
is placed in front of the background (of albedo A, =~ 0.1),
conveniently assuming that this background is of roughly
homogeneous nature. Both, target and background, are
exposed to the same ambient light, and their luminances
(L: and Ly, respectively) are therefore proportional to
their albedo. We can thus define the (Weber-) contrast
of this target against its background [5],
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With this in mind, we may now start discussing the var-
ious approaches to binocular performance.

3. Resolution gain after Kohler and Leinhos
Binocular efficiency E is commonly defined as [6]

R

E=—, (3)

r
where R stands for the range at which a target is de-
tected with the binocular, and r the corresponding range
achievable with the unaided eye. In 1957, Kohler and
Leinhos [3] of Carl Zeiss published the approximate for-
mula

D 2x
E ~ ml*QI (d_) T= , (4)

in which m denotes the magnification of the binocular,
D its objective diameter, T its transmission, and d. the
eye-pupil diameter. The exponent x is an empirical pa-
rameter that is left variable to address different ambient
light conditions, namely x = 0 in daylight, x = 1/4 in
twilight and = 1/2 under low-light conditions. As a
consequence, this performance index yields an efficiency
of ~ m in daylight and ~ DT'/? in the night. Under
twilight conditions, and for a particular observer (i.e. a
given eye-pupil diameter), the well known twilight index,
Eq. (1), emerges, in which the binocular’s transmission
is omitted. According to Kohler et al., this index is ap-
plicable within a background luminance range of 0.003
cd/m? < Ly < 0.3 cd/m?. The general validity of this
approximation has frequently been questioned: To re-
turn to our previous example, the popular 8x56 low-light
binocular reaches Iiyilight ~ 21.2, while a 12x42 yields a
higher twilight index of Liwilight ~ 22.4.

The confusion arises from the fact that there exist
quite different approaches to binocular efficiency. The
Eq. (4) has been derived from observations of test-charts
with Landolt rings, which is a classical resolution test,
designed to quantify foveal vision acuity. In real life,
target detection under low light is rarely resolution, but
rather contrast limited. Wild animals, which are ac-
tive under twilight conditions, are often well adapted to
their environment (camouflaged) and represent targets
of particularly low contrast. They remain hidden to the
observer’s eye, even when their apparent angular sizes by
far exceed the resolution limits of high contrast targets.

Human vision models, which allow to determine the
contrast thresholds of targets under various conditions,
have been presented and evaluated before. We may refer
to recent approaches, based on the Blackwell-McCready
data sets, which are particularly versatile for military
applications since they additionally consider parameters
such as stimulus duration time [7, 8].

In what follows we present another approach to target
detection, introduced during the 1940s by Max Berek. It
is a rather minimalist model, but it contains all impor-
tant ingredients which, in combination with the optical
instrument, allow for a reliable evaluation of the binoc-
ular efficiency under realistic observation conditions.



4. Berek’'s human vision model
We assume a circular target of small angular diameter
o and luminance L;, placed in front of a uniform back-
ground of luminance L;. A typical setup may consist
of a distant wild animal of albedo A;, to be detected in
front of a tree-line of albedo A,. The (Weber-)contrast
of the target against its background is then defined in
Eq. (2).

We are searching for the threshold contrast C' at which
this object turns visible to the unaided eye. Berek in-
troduced the following relationship [1

VO == \/ \/ (5)

where L, stands for the adapting luminance of the ob-
server’s eye (in what follows, L, is assumed to equal
the background luminance). The function b(L,) is the
threshold difference in luminance between target and
background that allows target recognition. If the an-
gular size o of the target is large, Eq. (5) simplifies to

C ~ La ) (6)

called the Weber-Fechner regime [4], in which the recog-
nition of a target turns independent of its size and merely
remains a function of the adapting luminance. The
meaning of the function ¢(L,) becomes clear, once Eq.
(5) is applied to small targets, so that it may be approx-
imated as

d)(La) ~ U2La0 , (7)

and this relation is known as Ricco’s law [9, 10]. It
states that for small targets and at constant adapting
luminance, the product of threshold contrast, target area
and adapting luminance has to be a constant. ¢(L,)
stands for this constant as a function of the adapting
luminance L,. Note that in this expression the angular
size o of the target has to be given in arcmin.

Berek had fitted his functions b and ¢ to measure-
ments conducted with volunteers, and tabulated them
in his publications [1, 2]. Figure 1 displays a conver-
sion of these original data into modern physical units,
combined with numerical curves, derived from fit proce-
dures, to enable a convenient use of these functions in
computer codes. The interpolations yield

logyob = —1.77 +0.824 , (8)
with z = log;,(La), and
log,g ¢ = ag + a1z + aga® + azx® +agz* ;.  (9)

with coefficients shown in Tab. 2.

The data on which Berek had based his formalism
were compiled from publications of Kiihl [11] and from
unpublished measurements carried out by Martin at
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Fig. 1. Numerical interpolations (red curves) of Berek’s b-
function, Eq. (8), and ¢-function, Eq. (9). The black dots
are Berek’s tabulated data.

Emil Busch AG, Rathenow. We shall first compare
the predictions of this model with another, more widely
available set of measurements, named the Blackwell data
set, which was derived independently by Blackwell in
1946 during a laborious series of experiments [12]. The
data points in Fig. 2 are taken from Table II of that
publication (after conversion into SI-units), solid lines
are predictions of Eq. (5). The plot shows that the gen-
eral trends coincide, although quantitative differences in
the threshold contrasts exist. In most situations, the
Blackwell data display slightly lower thresholds. Such
variations between different visual experiments are not
uncommon, because the results do critically depend on
details of the laboratory setup (e.g. the amount and dis-
tribution of false light that originates from the target
and is reflected back from the environment), as well as
experience and preparation of the test persons.

There exist numerical parameterizations of the Black-
well data set, and of extended sets by Blackwell-
McCready [13], which additionally account for varying
stimulation durations. The resulting equations, pre-
sented by Matchko et al. [7], are quite complex and
contain a plethora of empirically fitted coefficients. In-
stead, Berek’s approach remains comparably simple, and
for the purpose of the present paper its accuracy shall

ao = 0.42146
az = 0.07190
a4 = -0.0007959

a1 = 0.39557
a3z = 0.01021

Table 2. The coefficients of Eq. (9)
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Fig. 2. Threshold contrast as a function of the adapting lu-
minance for different target diameters (values at the right
hand side given in arcmin). Solid lines are Berek’s parame-
terization, Eq. (5), symbols are original Blackwell data [12].

be sufficient: First of all, real life situations never fea-
ture circular targets or perfectly uniform backgrounds,
so that those idealized setups presented here can only
offer first approximations to a world of far higher com-
plexity. Apart from that, in what follows we are going to
evaluate performance gains, which are ratios of detection
thresholds, taken with and without optical instrument,
and from such ratios, constant factors (i.e. vertical shifts
in Fig. 2) would cancel out. We shall therefore focus on
the general thrends that every successful target detec-
tion model would have to reproduce:

Figure 3 displays the threshold contrast as a func-
tion of the angular target diameter. For small targets,
Ricco’s law is approximately valid and C' ~ o~2. With
increasing target size, the curves gradually cross over
into the Weber-Fechner regime in which C turns invari-
ant of the target size. It is important to note that Ricco’s
law extends over a wider range of target sizes under low-
light conditions, which is a result of extra-foveal recep-
tive fields being active in the retina. Multiple photo-
sensitive rods, covering an increasingly wide area on the
retina, converge into single ganglion cells to add up their
individual signals [4]. The Blackwell data [12] shown in
this figure are taken from Table IIT of that publication.
At daylight, a close agreement is found between Berek’s
and Blackwell’s approach; under low light conditions,
Blackwell’s data yield somewhat lower detection thresh-
olds. As mentioned above, we shall not regard these dif-
ferences worrisome: Blackwell’s data were gained under
ideal conditions inside a well sealed lab and by trained
volunteers — the somewhat higher thresholds of Eq. (5)
may actually be closer to outdoor situations in which
perfectly homogeneous backgrounds are absent.

Note that the albedo 1 of a perfectly white target,
when placed into a forest (albedo =~ 0.1), would yield a
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Fig. 3. Threshold contrast as a function of angular target
size at three different adaptive luminances (right hand side,
in cd/m?). Curves are from Eq. (5), symbols from the Black-
well data set [12].

Weber contrast of C,, = 9. Whenever the threshold con-
trast in Fig. 3 exceeds that value, self-luminous targets
are required to grant visibility.

5. Target detection ranges: Unaided eye

To better understand the features of Eq. (5), we shall
now apply the formalism to rather familiar targets that
are observed with the unaided eye. We may specify a
particular target through its contrast C,, and diameter
s (in m), and solve Eq. (5) for the threshold detection
range

R:s{mn< T S(La)/La )} '
B VO, - L) [
(10)

which denotes the maximum distance at which the target
remains visible (note that the numerical factor /1802
arises during the unit conversion of the target half-angle
into radian). For simplicity we assume that the ob-
server’s eye is adapted to the luminance Ly of a ho-
mogeneous background, which may be a forest tree-line.
The targets to be observed are located in front of the
tree-line, at a considerable distance from the observer.
We first compare a wild boar (diameter: 1 m) of low
contrast (Cy, = 0.2) with a white mouse (10 cm) of high
contrast (C,, = 8). In deep night, the mouse, despite
of its small size, is detectable at larger distances than
the (well adapted) boar, which only turns visible at dis-
tances below 10 m. With increasing light, the curves
approach each other and cross, so that under daylight
conditions the boar is detectable at distances up to 2
km, now being beyond the mouse’s detection distances.

Interesting are self-luminous targets. Let’s consider
a somewhat idealized candle-flame of diameter ~ 1 cm.
The surface area of the (approximately spherical) flame
amounts to m cm?, and its luminous intensity to one
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Fig. 4. Detection ranges of a wild boar (diameter: 1 m), a
white mouse (10 cm) and a candle (1 cm) at different adapt-
ing luminances, obtained from Eq. (10).

candela. From a distance, we only see a disk of di-
ameter 1 cm, and, for simplicity, assume this disk to
feature a homogeneous luminous intensity of ~ 1/4
candela. The surface luminosity of that disk is then
~7n'edem™? = 10*7~! ed m™2. Note that the can-
dle’s brightness does not depend on the environment lu-
minance, so that its contrast to the forest-background
(albedo = 0.1) is a function of the background lumi-
nance. At night, this contrast is sufficiently high (about
Cy ~ 10%) to allow the dark-adapted eye a detection
of the candle at distances above 7 km, while in bright
daylight the tiny flame turns invisible just a couple of
dozen meters away.

This example offers insights that are often misunder-
stood, but of grave importance for a proper understand-
ing of binocular performance: First, an optical instru-
ment does not necessarily need to resolve a target to
grant its visibility; stars, but also distant power lines
are well below the resolution threshold, yet, due to their
high contrast, easily detectable. On the other hand, even
well resolved objects remain invisible as long as they re-
main below their threshold contrast, and the latter rises
rapidly with decreasing daylight. The implications of
these insights to the visibility of objects through binoc-
ulars are discussed in the following section.

6. Contrast gain with binoculars
We define binocular performance as the inverse of the

gain in threshold contrast through the instrument over
the unaided eye,

C
E.=—, 11
C (11)

where C'is the threshold contrast of Eq. (5), and

T ., 1 [é(ply) b(pLp)
1/Mczam*\/ o +\/ . (12)
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Fig. 5. Binocular performance for an average young observer
(below 30 years of age). The 8x56 (dashed line) beats the
12x42 (dotted line) under twilight conditions.

is the corresponding quantity obtained with the optical
instrument [2]. C; is a straightforward application of Eq.
(5) to the virtual image of the binocular. p = T+ \is the
total transmission of the binocular, which is the sum of
transmitted “useful” light T" and stray-light A\. m* is the
effective magnification of instrument and eye, defined as
m* = D/d* with the binocular’s entrance pupil diameter
D and the effective exit pupil diameter d*. The latter
amounts to the smaller of both, the instrumental exit
pupil and the eye pupil diameter. We thus obtain

B LV o(Ly) + \/b(Ly)
Fe=t (,,:,,k Vo(uLy) + \/b<uLb>> ’ 13)

which is a positive number and usually larger than unity,
since the contrast threshold of the aided eye is lower than
the same achievable with the unaided eye.

To determine the effective exit pupil diameter d*, it
is necessary to have a good estimate for the observer’s
eye-pupil diameter d, at any level of adaptive luminosity.
We employ a universal formula recently presented by
Watson et al. [14],

4~ 18.52 4 0.1222f — 0.1056y + 1.386 - 104 fy
e 2 4 0.06306 f ’
(14)
in which f = (L.a)?*! is a function of the adapting
luminance and the area of the instrument’s subjective
field of view, i.e. a = 7(a)?, a being the maximum half-
angle (in degree) of the virtual image. y is the age of the
observer (in years), with the restriction of y > 20. We
have rounded all coefficients of Eq. (14) to four signifi-
cant digits, being sufficiently accurate for our purpose.
With these preparations we are now able to compare
the binocular performance as a function of the adap-
tive luminance L,. Here we assume a target of small



size (0 = 1 arcmin) in front of a homogeneous back-
ground. The unaided eye is once again assumed to be
adapted to the background luminance Ly, (with a wide
subjective half-angle of view of 50°), and the aided eye to
the same background luminance, reduced to the trans-
mission of the instrument, puLy, with an instrumental
apparent half-angle of field of 30°. The transmission is
assumed to be p = 0.9, and the usable light T = p, i.e.
we neglect any stray-light contamination.

Figure 5 shows the results of Eq. (13) for a couple
of popular binocular sizes. Under bright daylight, the
binocular performance is proportional to its magnifica-
tion (right hand side), and in the night the objective di-
ameter rules the performance (left hand side). Interest-
ing is the crossover behavior under twilight conditions:
The vertical lines indicate the luminance range of 0.003
cd/m? < Ly < 0.3 cd/m?, for which Kohler et al. deter-
mined the validity of their twilight index, Eq. (1). While
the latter yields a performance of the 12x42 superior to
the 8x56, Fig. 5 clearly demonstrates the superiority of
the 8x56 over the entire twilight range, with exception
of its upper luminance limit at which the twilight turns
into daylight.

The cause of this obvious contradiction is the focus
of Kohler et al. on resolution charts, which require high
acuity foveal vision to be read out, thus strongly pro-
nouncing the need of magnification, even under condi-
tions in which the latter is boosted at the cost of con-
trast. Experienced observers would agree that, under
twilight conditions, it is not just fine-detail that deter-
mines visibility, but a recognition of patterns, contours,
directions or movements, and how these visual cues are
connecting to individual objects in the context of the
background motives. The 8x56 offers a brighter im-
age than the over-magnifying 12x42 [15], and the def-
inition of binocular performance through the threshold
contrast seems to reproduce the combined factors that
grant recognition of a target more accurately than a
purely resolution-based model.

Figure 5 offers a couple of further interesting insights:
The compact 8x20 binocular falls dramatically behind
in performance once the light turns dim, and well before
reaching twilight conditions. Once the observer’s eye
pupil diameter exceeds the instrument’s exit pupil of 2.5
mm, the binocular is used in over-magnification mode
and offers a correspondingly dim image. This is a general
feature of all curves shown here: Toward lower light,
the threshold contrast gain increases, up to the point at
which the eye pupil opens beyond the exit pupil of the
respective instrument, and then a sharp transition of the
performance curve occurs.

Since, with increasing age, the eye pupil diameter of
the average observer diminishes, the performance gains
of binoculars with large exit pupils diminish as well. Fig-
ure 6 shows that the aged observer experiences an 8x56
of significantly reduced contrast gain (red curve). The
curve of the 7x50 has disappeared — it is identical with
the 7x42, and the latter is outperformed by the 8x42
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Fig. 6. Binocular performance for an average elder observer
(about 60 years of age). The 8x56 (dashed line) performs
less favorably, the 10x56 (dotted line) is superior under all
conditions.

under all light conditions. A good low-light binocular is
the 10x56, the exit pupil of which is still fully usable to
the average observer of age between 50-60 years.

7. Detection range gain with binoculars

It is possible to evaluate the threshold detection range
of a given object, just as demonstrated in Eq. (10), but
now in combination with the binocular, yielding

-1
R, = s{ 2tan 7; ) ¢(MLa)/La '
180%m* \/Tcw - \/b(ﬂLa)/La
(15)
We then define the detection range gain as
R;
E,=—. 16
" (16)

This quantity is plotted in Fig. 7, for a target of mod-
erate contrast, C,, = 0.5, and with binoculars of trans-
mission p = T = 0.9 (i.e., neglecting any stray-light
contamination). Under daylight conditions, the perfor-
mance gain is almost identical to the magnification of
the binocular. This gain in distance then gradually di-
minishes with the available light, as soon as the eye-pupil
diameter exceeds the instrument’s exit pupil diameter.
As Berek points out, the case

VTCyw = /b(pLa/La) = 0 (17)

may in fact arise. This critical point is approached in low
light if the target’s contrast or the instrument’s trans-
mission is sufficiently low. In this case, the detection
range gain is not only dropping below unity, but even
to zero, implying that through the instrument the tar-
get, being still detectable with the bare eye, turns in-
visible through the binocular. Within this low contrast
regime, binocular performance depends critically on its
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Fig. 7. Detection range gain of various binoculars, evaluated
for a young observer (age about 30 years). In twilight, the
8x56 (dashed line) performs higher than the 12x42 (dotted
line).

transmission, i.e. in particular on the quality of its anti-
reflection coatings.

We note that all computations presented in this sec-
tion neglect the effects of atmospheric seeing and ex-
tinction, which would diminish the visibility of targets
at large distances. Assuming a diameter of 0.1 m, the
target being considered in Fig. 7 would be detectable to
the unaided eye at distances between 4 m (night) and
400 m (daylight), the latter corresponding to observa-
tion distances near 5000 m when using a 12x binocular.
Here, atmospheric effects would significantly reduce the
contrast of the object and yield performance values con-
siderably lower than shown in that graphic. It is possible
to account for these seeing effects through the applica-
tion of a Lambert-Beer type exponential damping of the
target contrast,

C(r) = Cyexp(—ra) , (18)

with a suitable extinction coefficient «, which has the
unit of inverse distance.

The parameter « has great potential importance for
military target recognition and also for astronomy; how-
ever, a detailed discussion of these issues is beyond the
scope of this paper. Suffice it to note that under typi-
cal “fine weather” viewing conditions, the a-parameter
would take values on the order of a =~ 0.2 km™! in the
horizontal viewing direction.

8. Summary

Binocular performance is hard to define consistently,
since it requires a careful analysis of the combined sys-
tem, instrument and observer, and the performance of
human vision itself is challenging to model. Berek was
among the first who, based on observational data taken
with volunteers, developed a general purpose target de-
tection model that incorporated target size, contrast and

ambient light conditions. He then applied this model to
visual instruments, accounting for the observer’s pupil
size, instrumental objective size, magnification, trans-
mission and straylight. Using modern approaches to hu-
man eye-pupil sizes under any environmental condition,
we are now able to add the instrument’s apparent angle
of view to the equation.

Under twilight conditions, the resulting performance
gains differ substantially from a competing approach
proposed by Kohler et al. It is important to under-
stand that none of these approaches are wrong; instead,
they are focusing on different issues: Kohler and Lein-
hos measured fine-detail, i.e. foveal acuity, using Lan-
dolt rings under various light conditions. Their results
are sound and they reflect the resolution gain of the in-
strument /observer system under these conditions. Yet,
target detection, which is simply target sighting, is not
solely a matter of resolution, and we have demonstrated
how a huge target (wild boar just 10 m away) may re-
main invisible while a tiny candle flame shines at sev-
eral km distance due to its tremendous contrast. The
contrast thresholds, derived with Berek’s theory, often
resemble more realistic measures of binocular perfor-
mance, because target detection under low light is not so
much a matter of foveal acuity, but includes elements of
extrafoveal pattern recognition, facilitated by informa-
tion processing through receptive fields inside the human
retina.

The evaluations of binocular performance shown in
this article were based on a couple of assumptions that
are not necessarily satisfied in the field: It was assumed
that the binocular was mounted, the target was placed
inside its field of view and well focused. When searching
for an object of unknown direction and distance, none of
these conditions is strictly satisfied. In this case, factors
like the objective angle of view, the depth of field and
the steadiness of the image during a hand-held panning
turn influential. It is therefore safe to claim that each
of the performance evaluations has been biased in favor
of high-magnification binoculars, because field of view,
depth of field and hand-held steadiness are limiting fac-
tors that arise particularly at high powers. The field of
view is a standard entry of each binocular’s specification
sheet that deserves no further discussion. Regarding the
impact of jitter during hand-held observations, we refer
to the analysis offered by Vukobratovich [6] and Yoder
et al. [16].

The range of distances E of objects, in which their
virtual images appear sharp in the ocular, can be derived
as [17]

2 2
m m
K + m?2 4 0.001 <E< m2  0.001 (19)
akk T B d* Etok d*

Here, .1k is the accommodation range of the observer
(in diopter, being strongly age-dependent), Ei, is the
distance (in m) onto which the binocular is focused (so
that the virtual image of an object of distance FEi,j is
at infinity), m the magnification, and d* once again



the effective exit pupil diameter (in m). The aperture-
related term 0.001/d* arises from the circle of confu-
sion which is tolerated to ascertain the perception of a
sharp image. Following Konig et al. [18], this circle of
confusion was chosen to be 3.4 arc-min in the virtual
image. When focusing onto the hyperfocal distance,
E(Hyperfokal) = 1000 - m? - d*, every object between
infinity and the minimum distance

m2

Saks + 0.002/d*

(20)

appears in focus. This depth of field diminishes with
the square of the magnification, yielding a significant
disadvantage of high power binoculars for the detection
of targets of unknown distances.

Much is left to be done: Color has been excluded en-
tirely from the vision model. Especially under bright
daylight, it is often the color contrast which is of higher
relevance to the visibility of fine structures than the
brightness contrast. Reliable models of human perfor-
mance that encompass color vision are still missing,
partly because of the high dimensionality of the color
space to be explored, and partly due to significant dif-
ferences in color perception among the observers, which
hamper the generalization of individual test results to-
ward versatile multi-purpose performance models.
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