

An Oracle White Paper

March 2013

Performance Tuning for
Oracle Business Process Management Suite
11g

Performance Tuning for Oracle Business Process Management Suite 11g

Introduction ... 4

Understanding the Goal ... 5

Typical Issues .. 6

Performance Tuning Approach .. 6

Environmental Considerations ... 11

Use Current Versions .. 11

Application Server ... 11

Deploy Adequate Hardware ... 11

Clustering .. 11

Auditing and Logging Configuration ... 12

Deployment Architecture ... 13

ADF Applications ... 13

SSL usage ... 13

Policy Store ... 14

Additional Considerations for Development Environments............... 15

Admin Server-only or Managed Servers 15

Production Mode ... 15

JDeveloper Tuning .. 16

Application Design Considerations .. 17

BPMN Top Design Considerations .. 17

Process Complexity ... 18

Synchronous or Asynchronous .. 18

Anti-pattern: Synchronous Fault Handling.................................... 19

Anti-pattern: Designing Processes with no Fault Handling 19

Use of Metadata Services (MDS) .. 19

Use of Sub-processes and Inter-Process Communication 20

Transformation or Data Association (BPEL Translate or Assign) . 20

Use of Loops ... 21

Dehydration and Transactions ... 21

Avoid Marshaling Overhead .. 22

Performance Tuning for Oracle Business Process Management Suite 11g

Asynchronous Service operations with callbacks 22

Use Caching .. 23

Configuration of JTA Timeouts .. 24

Avoid Empty Elements in the Payload ... 25

Handling Large Volumes ... 26

Attachment handling .. 26

Complex decisions .. 26

Variables ... 27

Exception Handling .. 27

Testing .. 29

Process Engine Tuning ... 31

Tune the Instance Numbering Block Size 31

Stop Unnecessary Components .. 31

Disable DBMS job to refresh B2B Materialized View 32

Data Management – Purging ... 33

Production and Development Modes ... 33

Payload Validation ... 34

BPMN and BPEL Engine Configuration 34

Data Source Configuration .. 35

Directory Configuration .. 36

Audit Trail and Log Configuration .. 38

API Considerations .. 39

A note on task assignment distribution .. 39

Analytics .. 39

WebLogic Server Tuning ... 40

Transaction Logs ... 40

JVM Tuning ... 41

Recommended Settings .. 41

Garbage Collection Algorithm .. 44

Database Tuning ... 45

Performance Tuning for Oracle Business Process Management Suite 11g

What to tell the DBA about the SOAINFRA Schema 45

Purging .. 49

Partitioning .. 50

Automatic Workload Repository ... 50

Missing Indexes ... 51

Use Separate Tablespaces for BLOBs .. 52

Redo Logs ... 52

Tools to have in a Performance Kit Bag ... 53

Conclusion .. 55

This white paper is current up to version 11.1.1.6 which was released in February 15, 2012. It will

be updated to reflect new best practices and any different recommendations for newer releases as

they are identified and confirmed in production environments.

The recommendations in this paper are also appropriate for 11.1.1.7, however new features of

11.1.1.7 are not covered in this paper as there has not been enough real world usage of those

features at the time of writing to observe best practices.

Performance Tuning for Oracle Business Process Management Suite 11g

4

Introduction

Many organizations have built and deployed mission critical systems using Oracle Business

Process Management Suite 11g. Other organizations are building such systems now. For

these organizations considerations like the performance, scalability and reliability of their

systems are paramount.

This white paper is not intended to be a substitute for the product documentation. This white

paper should be read and its recommendations considered in conjunction with the Oracle

Fusion Middleware Performance and Tuning Guide that is included in the documentation set

for BPM.

This white paper presents a set of tried and tested performance tuning ‘best practices’ –

collected from observations of successful BPM deployments at many different organizations

over an extended period of time. This white paper was collated from the real world

experiences of the people who tune some of the largest and most critical BPM

implementations in the world, and reviewed by the people who develop BPM and the people

who run Oracle’s benchmarks and performance tests on BPM.

While every application is different and has its own set of performance tuning challenges, this

paper attempts to present a set of guidelines and a common sense approach that will hopefully

be broadly applicable.

Performance means different things to different people. For some it is a fast response time for

users, for others it is the volume of work that can be processed within a given time period (i.e.

maximum throughput), for others still it is how rapidly a system can recover from a failure. The

best practices collected in this white paper cover a broad spectrum of use cases. It is

expected that several of them will be relevant in any given scenario.

Performance Tuning for Oracle Business Process Management Suite 11g

5

Understanding the Goal

In order to maximize performance, it is necessary to monitor, analyze and tune all of the components

that make up your application. This whitepaper describes the ‘knobs’ that can be adjusted and when

and how it might be desirable to adjust them.

To be effective, performance tuning needs to be comprehensive, iterative and address several levels:

• Configuration of the BPM environment, including the deployment architecture,

• The design of your application,

• Tuning of the application server,

• Tuning of the Java Virtual Machine,

• Tuning of the database,

• Tuning of operating system and kernel parameters, and

• Tuning of disk and network I/O.

The first two items – correct configuration of the environment and good application design – typically

have the largest impact on performance. These are the areas where large, orders of magnitude

improvements in performance are typically achieved, and as such they take up a large part of this

document. The others areas are also important, but these should be considered ‘fine tuning’ as they

tend to produce relatively small improvements of up to around 20%. For this reason, it is very

important that environment configuration and application design are not neglected.

It is also important to understand that performance tuning is an iterative process. Tuning should

consist of making a small adjustment, measuring the impact, and then performing analysis and making

Performance Tuning for Oracle Business Process Management Suite 11g

6

another adjustment, and so on. Due to the vast differences in applications that customers build using

Oracle Business Process Management 11g, there are no global solutions that work well in every

environment. Improving performance is a process of learning and testing.

Typical Issues

Experience shows that there are some common areas where bottlenecks tend to occur. Being aware of

this can help us to focus initial tuning efforts in the areas where they are most likely to deliver greatest

value. The bottlenecks that have been observed tend to vary based on whether the workload is mostly

human oriented or mostly system oriented.

When the workload is mostly processes that are automated (system oriented), the commonly observed

issues are:

• Database latency, especially when there is a high rate of instance creation, and especially the

first time the system is placed under load. This is observed both on the tables and sequences.

The audit tables in particular are a hot spot,

• Exhaustion of the invoke and engine thread pools, especially when there are a lot of invokes

and callbacks, and

• Exhaustion of memory.

When the workload is mostly process that are driven by human interaction, the commonly observed

issues are:

• Lack of capacity (CPU, memory) on the web tier, i.e. the managed server(s) where the ADF

human task user interface applications are running,

• Slow BPM WorkSpace login due to failure to tune LDAP, and

• Slow BPM WorkSpace performance due to failure to create indexes in the database for Flex

Fields.

Performance Tuning Approach

When ready to start performance tuning, it is advisable to adopt a documented, repeatable process

which ensures that the state of the environment is always known, and there is clear evidence of what

improvements have been made, and what changes brought about those improvements. This generally

allows reproduction of tuning outcomes and performance gains in other environments.

If an organization does not have a defined process, the process illustrated in Figure 1 as a starting point

which can be adapted to the environment as needed.

Before starting, the success criteria should be defined, so that it will be possible to know when the

exercise is finished. That is “good enough” should be well understood by all stakeholders before starting

Performance Tuning for Oracle Business Process Management Suite 11g

7

performance tuning. These criteria may be expressed in terms like the examples below, and they

should be specific and measurable:

• Number of process instances that can be completed in a given period of time,

• Number of process instances that can be open simultaneously,

• Number of users that can concurrently be using the workspace to process tasks – this kind of

metric should include ‘think time’ to produce a hit rate that simulates actual users,

• Maximum amount of time to complete a given number of instances, or

• Maximum amount of time needed to recover after a node failure.

The end state for a performance tuning exercise is acceptable performance, together with

demonstrated stability. Avoid tuning the environment so finely that an unexpected workload spike can

cause the JVM to get behind and be unable to recover.

Important considerations when running a performance test

It is very important that individual performance test runs are as similar to each other as possible, to

ensure that it is actually meaningful to compare and draw conclusions from the results.

For each performance test run, ensure that the environment is warmed up and has reached its steady

state before starting the actual performance test. Measurements must be taken during the steady state.

Performance can differ markedly between cold and warm environments because of issues like the

impact of optimizations that are done by the JIT compiler after a number of repetitions of a particular

piece of code, the optimizations done by the database after a number of queries have been executed,

the settling of objects in the various parts of the JVM heap over time, and so on.

Ideally, a baseline should be established at the start of the performance tuning exercise. In each

iteration (test run) change only one parameter, and compare the results against the baseline and

previous test runs.

Performance Tuning for Oracle Business Process Management Suite 11g

8

Figure 1. Performance Tuning Approach

Implement Best Practices

Adopt and implement the best practices advice in this

document. There is no point in repeating the same

learning. Start with your environment in a sane state.

Create Test Harness

Create a representative workload and a repeatable test

harness that allows execution of that workload over

and over again, so that the impact of changes made

can be measured against the exact same set of inputs.

Measure

This one may seem obvious, but it is necessary to take

measurements so that a point of comparison exists.

Measurements should include the metric(s) of interest

(e.g. throughput, response time), as well as statistics

from the environment in its steady state (e.g. CPU,

IO, JVM statistics.) It is important that a starting

measurement is taken to establish a baseline before

starting a tuning exercise.

Analyze

Examine the last test run. If it was clean (there were

no errors that would make the collected data

meaningless) then analyze the data and build a new

hypothesis to test.

Tune

Tune the system. Make sure changes are documented

so that the environment will always be in a known

state, and only change one thing at a time so that it

will be clear what caused the measured differences.

Note that ‘tuning’ may include making application or

environment changes.

A good approach to iterative tuning is to consider the environment as a ‘network of queues,’ as

illustrated in Figure 2 which presents a simplified view of a typical production environment, i.e. not

every component of the environment is shown on this diagram.

The method employed in the ‘network of queues’ approach is to look at the environment as a network

of interconnected and interdependent workers, and to recognize that queues can form before any

Performance Tuning for Oracle Business Process Management Suite 11g

9

worker that is not able to keep up with the amount of work being presented to it. Workers may be

unable to keep up because they have insufficient resources (e.g. CPU, memory, etc.) or because they

have more constraints (e.g. degree of parallelism) than other workers.

Figure 2. A 'network of queues'

This diagram is not attempting to represent every possible queue in any given environment; rather, it is

intended to be a starting point to work from. Understood what the network in the particular

environment of interest looks like, and become familiar with how to measure and tune each queue.

It is necessary to run a defined workload (or the real production workload if tuning a production

environment) through the environment with appropriate monitoring so that it is possible to determine

when and where the queues form. Wait for resource exhaustion (CPU, disk, memory, bandwidth,

threads, heap, etc.) and then note where the worst queues occurred, and perform tuning to alleviate the

problems that caused those queues.

For example, if it is observed that the BPMN Service Engine is not able to keep up with the volume of

work coming in from the web servers and adapters, monitoring may show that there are a large volume

of messages coming in from a JMS adapter. To alleviate this problem, you might add more threads to

the BPMN Service Engine, or alternatively reduce the number of threads in the JMS adapter. Either of

these actions should either fix the problem, or move it (to the right or left of the diagram, respectively).

Performance Tuning for Oracle Business Process Management Suite 11g

10

After making changes – and they should be small, incremental changes – test again and measure the

impact of those changes. Make as few changes as possible in each iteration, ideally only one. Large

changes are likely to cause unpredictable results that are difficult to interpret.

Continue iterating until all of the queuing has been driven out of the network, until performance is

deemed acceptable, or until performance cannot be improved any more.

The key benefit of this approach is that it forces the practitioner to remember that the performance of

any one component is in fact dependent on the performance of many other components and helps

them to understand those relationships. Alleviating stress on one component may cause stress on

another component, which was hidden by the original problem, to become apparent.

Automation is essential here – it is important to be able to run the same workload over and over again,

so that information collected is relevant and to avoid chasing a moving target. Failure to run the same

workload will make attempts at tuning BPM very difficult.

While this may seem obvious, the importance of adopting a holistic perspective and approach to

performance tuning cannot be overstated.

Consider an example: A financial institution, through its online banking portal, allows customers to

apply for loans. The loan products are customized based on customer’s banking history, credit rating

and various other factors. The product customization and the back end processing, once a loan

application is received, are implemented using BPM. The paramount performance requirement for this

use case is to minimize latency of screen rendering to the customer. Consider that the decision on

what screen to render next may be made by BPM, which in turn needs to invoke various back-end

services in order to make that decision.

In this scenario, focusing tuning efforts on BPMN Service Engine optimization alone would not be the

optimal or desirable approach, since at the very least the following areas should also be considered:

• The impact of firewalls and network hops,

• Network optimization across the application and web tiers,

• The impact of SSL usage,

• Overhead/latency added by every component – load balancer, web server, etc., and

• Response times of the back end services.

This example demonstrates the need to think of performance holistically.

Performance Tuning for Oracle Business Process Management Suite 11g

11

Environmental Considerations

Many performance issues can be avoided by ensuring that the environment is well suited to the

intended task. Prevention is almost always better than the cure!

Use Current Versions

Environments should be built using current versions of software unless there is a good reason not to

do so. Using the current software versions ensures avoidance of any issues that are already addressed

by patches that Oracle has released for issues encountered by other customers.

Practically speaking, this means environments should be built with the latest available production

release in the 11g release stream, plus the latest available recommended patch set (if any).

Patches should be deployed into a non-production environment and tested before rolling patches into

production. Ideally, this non-production environment should be a staging environment, not an

environment that is used for development or other testing purposes. The environment should be as

close as possible to an exact replica of the production environment.

Application Server

The recommendations in this whitepaper assume that BPM is being run on WebLogic Server. Some

recommendations may not apply if a different application server is used.

Deploy Adequate Hardware

It is important to ensure that the environment in which applications are deployed has adequate

hardware resources and an appropriate physical architecture to support the performance and

availability requirements. A common cause of performance problems is trying to deploy into an

environment that does not have sufficient resources.

In practical terms, separate architectural components should be separated into separate tiers – the web

servers, application servers (i.e. the BPM servers) and database should be installed in different tiers,

since they require different tuning. If the WebCenter portal and content management components

included in BPM 11g are being used, they should also be installed on different machines.

Clustering

When the application has availability or reliability requirements, consider deploying into a cluster in

preference to using a single server instance. If it is believed that there might be a need for a clustered

Performance Tuning for Oracle Business Process Management Suite 11g

12

configuration eventually, consider deploying into a cluster from day one, even if it is a cluster with only

one node in it. This will make it easier to add more capacity later on.

Remember that availability is limited by the least available component in the environment. It is

essential to ensure that all components are configured appropriately to support the requirements.

From an availability standpoint for example, there is little point having a cluster of application servers

sharing a single database server. While such a configuration may increase the amount of work you can

process, it will not improve availability, as there is still a single point of failure in the single database

server.

If the environment is to be configured for high availability, it is necessary to ensure every component

in the environment is highly available. This means that redundancy, clusters, load balancers and virtual

IP between tiers will be required.

Production hardware sizing should ideally be determined based on the results of load testing of the

actual application. It should not be sized anecdotally, i.e. it should not be based on available

benchmarks or performance data of other BPM applications, since performance characteristics of

different BPM applications vary greatly.

Auditing and Logging Configuration

It is important to consider the amount of data that will be created by logging and auditing, and to plan

for the relevant file systems to have enough space. In particular consider the following:

• NodeManager logs, stdout/stderr files from managed servers and nohup output files are not

rolled by WebLogic Server. If there are space constraints, consider using a utility like

‘logrotate’ (see Linux man pages) to roll or otherwise manage these files,

• When enabling additional logging, e.g. diagnostic logs, be aware that these may create a very

large amount of data very quickly, and

• Ensure that there is adequate space in the temporary file system (usually /tmp). A good rule

of thumb starting point would be 2 GB of free space, however file system usage should be

monitored to determine what amount of space is adequate for a particular environment. If

there is insufficient space, the managed servers and AdminServer may not start.

Performance Tuning for Oracle Business Process Management Suite 11g

13

Deployment Architecture

The term ‘deployment architecture’ in this section is taken to refer to the way each of the components

has been laid out with respect to the physical architecture of the system, i.e. on which physical node

each component has been placed. Having the right deployment architecture is critical; the difference

between a good and bad deployment architecture can impact application performance by one or more

orders of magnitude. Ease of administration and scalability can also be attained from a well thought

out and implemented deployment architecture.

One standard deployment model has been discussed extensively in the Enterprise Deployment Guide

included in the Oracle Fusion Middleware documentation set. Review that model and the principles

behind it. Consider whether that model is a suitable starting point for designing the deployment

architecture.

This section enumerates some additional considerations for a deployment architecture which is

optimized specifically for performance.

ADF Applications

When defining a deployment architecture for an application that uses ADF, consider whether to

deploy ADF-based applications (such as, the BPM Workspace and any ADF applications created as

Task Forms for Human Tasks) on the same managed server(s) as the BPMN Service Engine, or on

different managed servers. Unless there are a very small number of human tasks, place these

applications on separate managed servers. If using WebCenter to run BPM Process Spaces, deploy the

ADF applications on to the WebCenter managed servers (as opposed to the BPM managed servers).

A key advantage of placing ADF applications on a dedicated managed server is the flexibility to tune

them independently, according to their own performance requirements. It is likely that managed

servers hosting ADF-based applications will need to be tuned differently to those hosting other

components.

SSL usage

Be aware of where in the environment SSL encryption is being used. SSL usage typically comes with a

fairly large overhead (something around 30% extra CPU usage). Ensure that SSL is only being used

where it is necessary. Note that some hardware platforms incorporate cryptographic offload

processors which may reduce or remove the observed overhead.

For many deployments with good network-level security, it is usually deemed sufficient to use SSL just

in the DMZ, terminating at the load balancer.

Unnecessary SSL usage will be detrimental to performance. For example, BPM Workspace access is

likely to be significantly impacted by the use of LDAPS (LDAP over SSL) compared to plain LDAP

communication to the Directory Service.

Performance Tuning for Oracle Business Process Management Suite 11g

14

Policy Store

For production deployments it is highly recommended to use the database or OID for the policy store.

The file-based policy store (system-jazn-data.xml) is not suitable for production environments.

While workarounds like manual synchronization of this file across the Admin Server and managed

servers, hosting the file on shared storage, etc., might be viable for some deployments, it is likely that

keeping policies in this file-based store will quickly become a bottleneck area.

Moving the policy store to an Oracle database appears to offer the best performance when compared

to the alternative approaches. This may or may not be true in every environment, so it is advisable to

do some independent testing to verify if this is the case in any particular environment.

Performance Tuning for Oracle Business Process Management Suite 11g

15

Additional Considerations for Development Environments

Development environments have different requirements when compared to production environments,

and they should be tuned differently. For example, it is often desirable to have detailed logging in

development environments but it is unlikely that this level of logging would be considered in

production. Additionally, in development environments, there is often a desire to minimize the

memory footprint and server startup time, as it is likely that there will be more frequent server restarts.

Admin Server-only or Managed Servers

When creating a WebLogic domain to run BPM, the ‘BPM for Developers’ profile is presented as an

option. If this profile is selected (as opposed to the ‘normal’ one), the resulting domain will be

configured with all of the necessary components installed on the Admin Server, and there will be no

managed servers created in the domain. This configuration allows significant reduction in the memory

footprint for the development server.

An Admin Server-only domain should be used in development environments unless there is a good

reason not to do so. An example of a good reason not to use it is a need to do some testing on

behavior of a component in a cluster. In this situation, it would be necessary to have the managed

servers.

Production Mode

WebLogic Server and the SOA/BPM Infrastructure both provide the option of running in

‘production’ or ‘development’ modes. Set these to ‘development mode’ in development environments.

These options provide additional logging but do have a negative impact on performance.

Remember to set these to ‘production’ when doing any performance testing or benchmarking of the

application, otherwise the results will not be representative of what would be seen in a real production

environment.

Performance Tuning for Oracle Business Process Management Suite 11g

16

JDeveloper Tuning

The default memory settings for JDeveloper can be a little low for doing SOA/BPM development,

especially when creating a lot of Human Task forms. Consider running JDeveloper on a 64-bit JVM

and increase the defaults, in particular the Maximum Permanent Generation Size and Maximum Heap

Size, by updating the following settings in your JDeveloper configuration file

(ORACLE_HOME/jdeveloper/ide/bin/ide.conf) to appropriate values for the environment – the

sum of these two values plus 512 MB should be less than the available memory.

AddVMOption -XX:MaxPermSize=768m
AddVMOption -Xmx2g

Note that the maximum process size for 32-bit JVMs on Windows is limited to 2 GB (or 4 GB on

some other operating systems), so it would be necessary to use smaller values on such JVMs.

Remember that the JVM uses some native memory and permanent generation in addition the heap.

Note also that the benefit observed from these particular settings varies from operating system to

operating system.

If planning to create a lot of Human Task forms or other ADF user interface components, consider

changing the default editor for JSPX files so that they open in ‘source’ view. This will greatly reduce

the time taken to open JSPX pages in JDeveloper.

To do this, select Preferences from the Tools menu, then select File Types in the navigation tree on the

left hand side. Open the Default Editors tab on the right, find JSP Source and change the default

editor to Source using the drop down box at the bottom.

Performance Tuning for Oracle Business Process Management Suite 11g

17

Application Design Considerations

Often performance problems can be inadvertently created when the architects who design applications

and the developers who implement them are not aware of the performance implications of the design

decisions they need to make. This section covers the important area of application design, which can

often yield significant performance improvements – orders of magnitude improvements, not small

incremental improvements.

BPMN Top Design Considerations

Minimize the amount of data stored in the process instance. Obviously, there is a tradeoff between

the cost of storing data locally compared to storing keys and retrieving data for use within the process,

which needs to be considered.

A reasonable starting point would be to model the process state to hold only values that are needed to

control the process flow and keys to get any other (external) data on an ‘as needed’ basis. If retrieval is

too frequent/slow, or the systems holding that data are not always available, then move more data into

the process.

Apply a similar principle to designing the data you send to a human workflow task activity through

careful task payload design. As each property of the task data definition is stored as a separate row in

the database, a complex data object should be used in preference to a large number of separate

attributes.

Do not auto-initialize variables that are always set from incoming messages.

Always model data objects in a process in the smallest scope where they are needed. In cases where a

large payload is received and/or returned by a service, consider creating a sub-process to limit the

lifetime of the data.

Do not duplicate variables that hold analytics. Values holding analytics can be referenced as process

data objects. It is not necessary to create process data objects and matching measures, counters,

and/or dimensions along with scripts to copy data. Analytics are valuable, but they do carry a small

overhead. Use them only when they are needed.

Whenever possible, refactor reused logic into, and then call a ‘reusable process’ to minimize

duplication of code across processes. A reusable process has Start and End nodes with the None

implementation type and they are not visible outside the composite in which they are defined. They

are invoked using the Call activity. The main advantage from the performance point of view is that

reusable processes are run in the same thread as the calling process, so they do not incur the penalty of

creating a new process instance. Note that the calling process will wait for the called process to finish

before it continues.

From a purely performance point of view, do not use loops over activities to process ‘sets’ (arrays,

collections) of data. In cases where the complexity of the transformation is such that it is difficult to

Performance Tuning for Oracle Business Process Management Suite 11g

18

implement in XPath, consider using a Spring component or EJB instead and implement the

transformation logic in Java. If it is important that business users can read and understand the models,

this consideration may overrule this recommendation. However, Java should be used at least to handle

large collections if nothing else.

It is important to use utilize error events to contain errors. Do not throw errors to control

normal/expected process flow. This is similar to the principle in Java and other high level languages

of not using exceptions to control program logic.

Process Complexity

As a general rule of thumb, it is not desirable to have a BPEL process with more than one hundred

activities in it or a BPMN process with more than about fifty activities. If more activities are needed,

consider breaking the process down into smaller sub-processes and chaining them together. These are

not hard and fast numbers – determine suitable numbers based on testing.

Having a large (complex) process not only makes it harder for people to understand what the process

is doing, and therefore increases the likelihood of logic errors, it also increases the amount of memory

that the process engine needs to describe the process state, manage variables, etc., and makes recovery

more difficult and resource consuming.

Synchronous or Asynchronous

As a general rule, make processes and other artifacts asynchronous unless there is a good reason to

make them synchronous. While asynchronous components do attract dehydration overhead, it is

much easier for the system to load balance them across available nodes in the cluster and to handle

rollback and retries when necessary.

Synchronous processes (BPEL or BPMN) should never have:

• Mid-process breakpoint activities (e.g. receive, onMessage, onAlarm, wait),

• A non-idempotent (i.e. non-retriable) invoke/service call,

• A non-blocking (i.e. parallel) invoke/send/throw, or

• Explicit dehydration, i.e. the checkpoint() call.

The presence of any of these in a synchronous process will force the engine to apply the same

treatment (and therefore overhead) that applies to an asynchronous process. It also makes it likely that

the process may not complete within the maximum wait time for synchronous processes, which may

cause the caller to timeout and retry, further wasting resources on the engine. If there are many

instances of such processes, there is a real danger of consuming too many worker threads in the engine

and getting into a thread starvation situation. An excess of threads can also lead to a starvation of

native memory.

Performance Tuning for Oracle Business Process Management Suite 11g

19

If a synchronous process is transient in nature, consider disabling auditing and persistence for that

process (composite) if it makes business sense to do so. This will save space and processing, however

this should only be done if it is acceptable. If making this change, only faulted instances of these

processes will be audited. This behavior is modified in Enterprise Manager by navigating to the

composite and then pressing the Settings button and choosing the appropriate Composite Instance

Audit Level setting.

Anti-pattern: Synchronous Fault Handling

Faults should always be handled asynchronously, so that the resources (transactions, memory, etc.) that

the engine is using to run the process can be released after the fault has occurred. It is desirable to

allow the engine to free these resources as quickly as possible so that they can be used for other work.

Similarly, clients should be allowed to continue while the fault is handled, as handling a fault may take a

relatively long time.

Synchronous fault handling makes it very difficult to rollback if a problem occurs. Insert an

asynchronous point (like a JMS queue) between the failing logic and the fault handling logic. This

allows the fault handling to be done on any (other) node in your cluster, and it makes it possible to

rollback (to the queue) if the fault handler cannot complete.

Anti-pattern: Designing Processes with no Fault Handling

When designing (modeling) processes, consider what types of exceptions could occur and determine

whether these need to be handled by the process. Include fault handling logic in process models. Do

not rely solely on mechanisms outside of the process model, like the Fault Management Framework

for example. Fault policies only apply to ‘invoke’ operations, e.g. a send task or invoke.

A common area where problems may occur is data associations. It is possible to get a

selectionFailure when performing a data association. By default process instances are suspended on a

data association error. If this occurs, it may cause the whole instance to be terminated and marked as

not recoverable. Include handlers for this kind of fault in your process model, using either boundary

events, or event sub-processes, or both.

Use transformation rather than assignment to deal with uninitialized data. This should not be disabled

as it allows use of the Alter Flow feature to fix data issues.

A good practice is to include an event sub-process which catches all system and business exceptions in

all process models.

Use of Metadata Services (MDS)

Always store common reusable artifacts in MDS. This means all of the WSDL and XSD files for

example. Never include a concrete endpoint address in a process. This is essential to ensure that the

Performance Tuning for Oracle Business Process Management Suite 11g

20

engine will always be able to start up, even if a remote service is not available – placing a concrete

remote WSDL in a composite will cause the server to load that WSDL at startup of that composite.

Storing artifacts in MDS also provides a single place to make changes and updates, and helps to ensure

consistency.

Use of Sub-processes and Inter-Process Communication

The use of different kinds of sub-processes and inter-process communication can have an impact on

performance. Consider the following:

• Minimize ‘chattiness’ by minimizing the number of conversations and messages in those

conversations,

• Be aware that using an embedded sub-process or a reusable sub-process is less expensive in

terms of resource and audit data production than calling another process,

• Whenever using a loop, set a completion condition so that the loop is able to terminate early if

it is successful before all of the iterations have been completed,

• Only pass the minimum required amount of data to a sub-process – note that embedded sub-

processes have access to their parent’s data, so it is not necessary to send parent process data

objects to them through their arguments,

• Be aware that exception propagation behavior varies with different styles of sub-process

invocation, and

• Be aware that the parent process pauses while an embedded sub-process is executing –

embedded sub-processes are not asynchronous.

Transformation or Data Association (BPEL Translate or Assign)

Always use data association (or assign activity in BPEL) for simple data transformations. The use of

transformations (or the transform activity in BPEL) should be reserved for when a large number of

fields need to be transformed and there is more complicated logic than just copying from source to

destination, or for when the source variable is possibly uninitialized.

Data association (assign) should be used for the assignment of simple types and complex types where

the whole type is copied. Where many children of a complex type need to be transformed, or where

there is if/then logic is present, or where there are optional elements a transformation should be used

instead.

Performance Tuning for Oracle Business Process Management Suite 11g

21

Use of Loops

Avoid extensive use of loops. Use of large loops (i.e. loops with more than ten activities in them) to

perform iterative processing tends to scale poorly with large numbers of instances and/or large

variables.

Use of large loops can require the engine to keep large data objects in the JVM heap, perform a large

number of database transactions for dehydration of state, and could also lead to garbage collection

bottlenecks.

Each iteration of a multi-instance loop creates a new scope object. With each iteration the total

allocated space grows exponentially (1+2+3+..+n). If a large loop contains a breakpoint activity (such

as a wait), the entire scope tree will need to be persisted to the dehydration store, as well as any work

items created since the last dehydration.

Do as much work as possible outside of the loop, before it starts, so that the minimum possible work

can be actually done in the loop. This might mean manipulating variables before entering the loop for

example.

If the loop is just being used to perform data manipulation and nothing else, attempt to eliminate the

loop and use a transform activity (i.e. use XSLT) in its place to achieve the necessary data

manipulation.

Dehydration and Transactions

The BPMN Service Engine uses transactions to control work and exception handling/retry

boundaries. It is important to understand where these occur and the impact that they can have on the

performance of your application.

Transactions

Understand where transaction boundaries occur, for example:

• Mid-process breakpoint activities (e.g. receive, onMessage, onAlarm, wait),

• A non-idempotent (i.e. non-retryable) invoke,

• A non-blocking (i.e. asynchronous) invoke,

• Explicit dehydration (in BPEL only), i.e. the checkpoint() call,

• An asynchronous queue (e.g. JMS), and

• A Timer Catch Event with duration of more than one second.

Performance Tuning for Oracle Business Process Management Suite 11g

22

Explicit Dehydration

It is possible to ask the engine to perform an explicit dehydration in a BPEL process (using the

checkpoint() function), however this should be used sparingly. BPMN processes do not have the

ability to force explicit dehydration. However in BPMN, it is possible to force dehydration by

modeling a timer catch event set to one second or longer.

Avoid Marshaling Overhead

Attempt to design the application and deployment environment to minimize the amount of marshaling

of data that is necessary. Minimize inter-process communication.

Colocation

Consider co-locating components with other components that they communicate with. Doing so will

not only avoid the network propagation delay, but will also avoid marshaling and un-marshaling the

data as the engine is able to recognize that this is a local call and optimize it.

BPM/SOA clusters are homogenous, i.e. all components are deployed on all nodes, so nothing needs

to be done to ensure colocation of composites. However, if using Oracle Service Bus or deploying

web services, consider colocation with the BPM/SOA clusters to minimize latency.

Direct Bindings

Creating direct bindings (SOA-Direct, OSB-Direct, etc.) for components in addition to any other

bindings, e.g. SOAP bindings allows the engine to avoid unnecessary marshaling. However, this may

not necessarily improve overall performance and scalability. Calling services through OSB may

provide more scalability as the OSB HTTP transport is capable of releasing threads to do other work

while waiting for responses.

Asynchronous Service operations with callbacks

These types of invocations using message events or send activities, and the associated catching of the

callback events can take longer than expected.

When an asynchronous service operation is invoked, the calling process does not wait for a response

but instead continues to the next activity in the flow.

However if a subsequent activity in the calling process is either a message catch event or receive

activity which invokes the service callback operation paired with an asynchronous event in the called

process, then the calling process will wait at this activity/event until the calling process dehydrates.

Performance Tuning for Oracle Business Process Management Suite 11g

23

Consider the example in Figure 3 which illustrates this scenario. Here we would expect the callback

event from the called process to be caught immediately by the calling process and the calling process to

end. Instead, because the ‘write file’ task takes a long time to complete, the ‘catch callback event’ is not

released until the ‘decide and wait’ activity is reached. This can result in an unexpected, paused or slow

execution or the calling process.

Figure 3. The calling process calls the called process asynchronously and catches the callback
event.

Where there are business scenarios that require the called process to throw the callback event

immediately and in a separate thread, then this can be achieved by setting the nonBlockingInvoke

property in the composite.xml of the called process as follows:

<component name=“CalledProcess”>
 <implementation.bpmn src=“processes/CalledProcess.bpmn”/>
 <property
 name=“bpel.partnerLink.CalledProcess.service.nonBlockingInvoke”
 type=“xs:string”
 many=“true”>true</property>
</component>

Use Caching

If it is necessary to work with a very large data set (larger than half of the heap size), consider obtaining

a full use license for Coherence and use it to store this data set. To be completely clear: this means

setting up a Coherence grid in which to store application data. This does not refer to any use of

Coherence that is made by BPM internally, for example for coordination of deployment of composites

in a cluster. Coherence usage for application data should be kept entirely separate from any such

Performance Tuning for Oracle Business Process Management Suite 11g

24

internally used Coherence grids. Consider using features like Coherence Entry Processors to distribute

processing throughout the grid (move the computation to the data, not the data to the computation).

Configuration of JTA Timeouts

When BPEL and/or BPMN processes are being invoked synchronously it is important that any

timeouts are caught at the smallest (most local) scope where they can be handled and not propagated

back to the global transaction unless necessary. In WebLogic Server, if a timeout has not been set

explicitly, the default global transaction timeout of 30 seconds is used. BPM and BPEL EJB

transaction timeouts are set to 300 seconds by default and the BPM syncMaxWaitTime configuration

property is set to 45 seconds by default.

With these default settings, the default WebLogic Server global transaction timeout will occur before

the other two and a message similar to the one shown below will be written to the WebLogic Server

log file for the BPM managed server.

Transaction Rolledback.:
weblogic.transaction.internal.TimedOutException:
Transaction timed out

When this occurs, the application has no control over handling the timeout. In order to avoid this

condition two things must be done: first establish the following relationship between the timeout

values:

 syncMaxWaitTime < BPM/BPEL EJB transaction timeout

Second, ensure that each component sets a timeout value explicitly and does not rely on the global

default transaction timeout. Note that even if a component which has not set an explicit timeout calls

one which has, if that timeout is larger than the global default it will not be used.

These two steps will ensure that timeouts are caught and can be handled at the smallest scope. If they

cannot be handled at that scope, they will be bubbled up to the next scope, and so on.

Where to adjust these settings

The Global Transaction Timeout for the domain is set in the WebLogic Server console in the

Configuration � JTA tab for the AdminServer.

The transaction timeout for BPM and BPEL EJBs are set indivually for each EJB on its Configuration

page in the WebLogic Server console. The following EJBs need to have this setting checked and

adjusted if necessary:

Performance Tuning for Oracle Business Process Management Suite 11g

25

• BPELActivityManagerBean,

• BPELDeliveryBean,

• BPELDispatcherBean,

• BPELEngineBean,

• BPELFinderBean,

• BPELInstanceManagerBean,

• BPELProcessManagerBean,

• BPELSensorValuesBean,

• BPELServerManagerBean,

• BPMNActivityManagerBean,

• BPMNDeliveryBean,

• BPMNDispatcherBean,

• BPMNEngineBean,

• BPMNFinderBean,

• BPMNInstanceManagerBean,

• BPMNProcessManagerBean,

• BPMNSensorValuesBean, and

• BPMNServerManagerBean.

SyncMaxWaitTime is set in Enterprise Manager in the BPELConfig:bpel MBean, which is

accessible from the SOA Administration � BPEL Properties menu.

Avoid Empty Elements in the Payload

Passing empty elements can add a significant overhead both in terms of marshaling and in terms of

processing and data transformation logic.

Design processes and other components so that any optional data elements can be omitted from the

payload and do not need to be passed as empty elements. Components should assume that any data

element that is present is in fact populated with data and needs to be processed.

Performance Tuning for Oracle Business Process Management Suite 11g

26

Handling Large Volumes

When handling large data volumes there are some important considerations to take into account when

designing an application. A design that works well for a small payload may not work well for a larger

payload, especially one that contains a large number of ‘records’ that need to be processed individually.

The remainder of this section discusses a number of these considerations.

Debatching

One key strategy for handling large payloads which contain many records is to use debatching.

Debatching allows control over the number of records that are processed in a single (database)

transaction. To implement debatching, an application needs to be designed such that it reads n number

of records from database/file and processes them together. n should be a parameter, so that it can be

easily changed.

Transaction Boundaries and Dehydration

Be aware that when the BPMN Service Engine executes processes, it will use a number of database

transactions for each process, possibly as many as one for each activity. Please refer to the Database

Tuning section of this whitepaper for more information about this.

Attachment handling

If there is a need to handle large variables, files or attachments in a process, store the object in an

external data store (like a content server, file system or database) and pass a URL or other pointer

through the process in preference to passing the object itself. Passing the object through the process

state (in a process data object for example) can cause a significant amount of storage consumption in

the underlying database – process data objects are written to the database many times throughout the

life of a process instance, and if the process contains a loop, you can quickly get into exponential

storage growth. This effects the performance of all instances in the system and makes database

maintenance more time consuming (since you have many more large BLOBs to deal with).

Complex decisions

If there is a need to make a complex decision, implement the decision in the rules engine rather than

modeling a set of if/then logic in the process itself. Execution of this type of logic in the rules engine

is much more efficient in terms of memory footprint, speed of execution and volume of audit data

generated.

Performance Tuning for Oracle Business Process Management Suite 11g

27

Variables

Scope must be considered carefully when designing a process. Consider where data objects are needed

and declare them in the smallest relevant scope. It is possible to declare data objects at the process,

sub-process and even activity level scope.

Avoid creating one large data object with all the data needed by all activities in the process. Instead

create smaller, modular Business Object definitions that can be reused, are smaller to pass around and

transform.

Avoid creating temporary variables for development purposes (whose later removal may be forgotten)

and try to leverage the loggers in the activities instead.

Project Data Objects

Project Data Objects (as opposed to Process Data Objects) are useful where a definition of a Data

Object should be shared across several processes in a project. Since they automatically map to flex

field attributes, they should be used where the runtime value could be potentially used to provide

additional filtering of tasks in the BPM Workspace (with custom views) or when using the Human

Workflow API. These fields can then be analyzed and indexed further to provide improved

performance. Additionally the value of the data object will be able to be obtained not only during

execution of the process instance, but also afterwards, i.e. from completed BPMN process instances,

which may be useful for building custom metric solutions.

Exception Handling

Exceptions can be handled in the process model itself or declaratively, in a fault policy file. The best

practice recommendation is to handle system faults in fault policy (so that they can be changed by

administrator without changing the model) and business exceptions in process model (so that they are

part of the model).

Fault policies are attached to a composite. If a fault occurs during runtime in a process, the framework

catches the fault and performs actions defined in the fault policy file. This provides better

performance compared to exception handling in the process itself.

There are two options to handle exceptions in process model:

• Boundary event – These can be attached to the boundary of activities (tasks or sub-processes)

to capture events thrown by activities. The scope of a boundary event is the activity or the

sub-process to which it is attached.

• Event sub-process – These are used as inline event handlers. They are similar to boundary

events except that the event handlers run inside the context of the original activity. They

cannot have outgoing or incoming sequence flows. The event sub-process is contained within

a process (or an embedded sub-process) and can be activated any time during the life time of

Performance Tuning for Oracle Business Process Management Suite 11g

28

the process (or the embedded sub-process) containing it. They are not attached to a task.

They are triggered by (i.e. catch) start error events.

Performance Tuning for Oracle Business Process Management Suite 11g

29

Testing

Testing is a very important and often overlooked part of performance tuning. There is a significant

amount of risk involved in transitioning an application into production without performing adequate

testing. Many performance problems will not show up in development and only become apparent

when applications are moved to a production-like environment.

Conduct testing of all major components of the system before production cutover, including:

• End-to-end functional testing,

• Load testing, and

• Longevity testing.

Test that the application functions correctly in the production environment, that it functions correctly

in a cluster (if using one) and that it can handle sustained load.

In addition to testing, use the best practices advice in this whitepaper to configure the production

environment so that performance- or load-related problems are less likely to occur.

If project timelines prevent adequate testing before production cutover, plan to perform additional,

detailed testing as soon as possible (e.g., starting immediately after production cutover) and quickly

implement fixes to any issues discovered.

Testing may be complicated by unavailability of test instances for some back end systems or limited (or

no) access to test hardware. Identify these risks to the project manager and/or sponsor as early as

possible so that they can be understood and mitigated.

Each of the following recommendations should be observed during testing. It is important to note

that most of these will require some specialist skills to collect and interpret the results. Identify one or

more individuals who can learn these skills, as they will be required each time additional users or

components are released into production. These skills will be needed in order to ensure that the new

workload will not overload the production servers, and to help plan for capacity growth and to tune

the environment based on the workload.

• The BPM audit trail and activity level metrics should be enabled during load testing, and the output

used to help identify bottlenecks in the process flow,

• VisualVM or similar tools should be used to help identify issues at the JVM level, e.g. garbage

collection efficiency, memory leaks, thread contention, etc. If using JRockit, it is highly

recommended that you conduct a JRA recording during the load testing, and

• Oracle Database Automatic Workload Repository (AWR) and System Performance (SAR) reports

should be run and the output analyzed by an experienced DBA to help identify any performance

issues at the database level. Look for queries that are not using indexes (i.e. are performing a table

scan) and ensure that any necessary indexes are created. Missing indexes can cause significant

performance overheads. Standard database tuning should also be performed, that is tuning of the

Performance Tuning for Oracle Business Process Management Suite 11g

30

SGA size, connections and file I/O overhead. Configure the database to store BLOBS in separate

tablespaces.

Performance Tuning for Oracle Business Process Management Suite 11g

31

Process Engine Tuning

The BPMN Service Engine (which runs BPMN processes) can be tuned in various ways to improve

performance. The optimal settings during development of an application may be quite different to

those for deployment of that application into a production environment. This section describes the

major tuning options for the BPMN Service Engine.

Tune the Instance Numbering Block Size

Instance numbers are allocated in blocks. The default block size is 1000. If there are more than 200

instances created per minute, consider increasing the size of the block. The setting that controls this is

called AuditKeyExtents and is found in the BPMN Service Engine properties, (which are accessed

from Enterprise Manager � soa-infra � SOA Infrastructure � SOA Administration � BPMN

Service Engine � Properties).

Stop Unnecessary Components

When installation is completed, there will be several components that are configured to start up by

default which may not actually be needed. If these components are not being used, stop them (in the

WebLogic Server console). When they are stopped, they will not restart, even after a server restart,

until they are explicitly restarted.

You should consider stopping:

COMPONENTS TO CONSIDER STOPPING

COMPONENT NOTES

worklistapp Included for backward compatibility. Use OracleBPMWorkspace instead.

composer Included for backward compatibility. Use BPMComposer instead.

b2bui Turn off if not using B2B functionality.

OracleAppsAdapter Turn off if not using the Oracle Applications Adapter, i.e. the E-Business

Suite adapter.

OracleAqAdapter Turn off if not using Oracle AQ.

MQSeriesAdapter Turn off if not using WebSphere MQ.

OracleBAMAdapter Turn off if not using Oracle BAM.

It is reasonable to expect that stopping these components would reduce the memory usage by around

100 to 120 MB.

Performance Tuning for Oracle Business Process Management Suite 11g

32

Note that composer has some functionality for editing Domain Value Maps that BPMComposer

does not include. If you are using DVM’s you may wish to keep composer active.

In order to disable the loading of B2B at server startup, it is also necessary to set the

b2b.donot_initialize property to true. This property must first be defined (in Enterprise Manager �

soa-infra � SOA Infrastructure � SOA Administration � B2B Server Properties � More B2B

Configuration Properties… � Operations). The property name is b2b.donot_initialize and the value

is true. The managed servers must be restarted after defining this property.

Disable DBMS job to refresh B2B Materialized View

If B2B is not being used, disable the DBMS job that refreshes the B2B materialized view. This job

runs every minute by default.

To find the job, use a query like the one below. Update the schema user to match the environment:

select
 job
, schema_user
, broken
, what
, interval
from
 dba_jobs
where
 schema_user = “DEV_SOAINFRA”

Look for the job which contains something like the following in the WHAT column. Note that it may

be different if a different schema prefix was used in the environment.

dbms_refresh.refresh('"DEV_SOAINFRA"."B2B_SYSTEM_MV"');

To remove the job, take note of the job number from the JOB column and then use a command like

the following, substituting in the correct job number in place of ‘24’:

begin
 dbms_job.remove(24);
end;

Alternatively, alter the materialized view to be refreshed on demand, using a command similar to this:

alter materialized view dev_soainfra.b2b_system_mv refresh on demand;

Performance Tuning for Oracle Business Process Management Suite 11g

33

Data Management – Purging

Management of the SOAINFRA database schema is one of the most important considerations for

ensuring good overall performance of BPM. Review the information on purging in the Database

Tuning section of this whitepaper, and review the other references listed in that section, for more

information.

Production and Development Modes

Run production servers with both WebLogic Server and the SOA/BPM Infrastructure set to

‘production’ mode. Setting the mode to ‘development’ can have a significant negative impact on

performance. If it is ever necessary to change the setting for the SOA/BPM Infrastructure (e.g., if

trying to capture some additional logging information to help diagnose an issue), then ensure that the

setting is changed back to ‘production’ as soon as practical. It is not necessary to change WebLogic

Server to ‘development’ mode for debugging purposes.

For the SOA/BPM Infrastructure, ensure that the Audit Level is set to ‘production’ in the ‘SOA

Infrastructure Common Properties’ in Enterprise Manager as shown in Figure 4. Additionally, set

‘Capture Composite Instance State’ and ‘Payload Validation’ to off (i.e. uncheck them) in production

environments.

Note that it may sometimes be desirable to retain instance tracking in Enterprise Manager. In this

case, leave the ‘Capture Composite Instance State’ set to on (i.e. checked) and be aware that there will

be a small overhead.

Figure 4. SOA Infrastructure Common Properties

Performance Tuning for Oracle Business Process Management Suite 11g

34

Payload Validation

This setting should only be enabled in test and development environments under normal

circumstances. Consider enabling this in production for a short period of time if you are attempting to

collect diagnostic information.

BPMN and BPEL Engine Configuration

Configure the number of threads used for various purposes in the BPEL and BPMN engines. Figure 5

shows an example of the settings for the BPMN engine. Ensure familiarity with these settings and

what they do.

Figure 5. BPMN Service Engine Properties

Here is a list of the most important settings and some guidance on the impact of changing them. Click

on the ‘More BPMN Configuration Properties’ link and review the details of the other settings that are

available.

BPMN SERVICE ENGINE PROPERTIES

PROPERTY NOTES

Dispatcher Invoke Threads Number of threads available to process invocation messages, this controls

how many service invocations can occur at any one time. Higher settings

will allow more concurrency.

Dispatcher Engine Threads Number of threads available to process engine messages. Higher settings

will allow more concurrency.

Dispatcher System Threads Number of threads available to process system messages. Higher settings

will allow more concurrency.

Performance Tuning for Oracle Business Process Management Suite 11g

35

BPMN SERVICE ENGINE PROPERTIES

PROPERTY NOTES

Audit Level Controls the granularity of audit trail messages that are logged. Higher

settings will use more memory and increase database activity.

Payload Validation Controls whether the engine will validate incoming and outgoing payload

XML documents. Turning this on will increase CPU utilization.

Large Document Threshold The maximum size of a variable that will be stored in the normal database

tables. If a variable is larger than this value, it will be stored in a separate

table for large documents. Higher settings may impact database

performance.

One Way Delivery Policy Controls whether one way messages are persisted and whether such

persistence is synchronous with delivery. This setting will affect response

times and CPU utilization.

A Note on Heap Utilization When Adjusting Threads

Be aware that increasing the number of threads in the engine will almost certainly also increase the

heap utilization. Ensure that the impact of these changes is monitored and there is enough heap for

the number of threads configured. If there is available memory, increase the heap size when increasing

the number of threads in the engine.

Consider that a larger heap will probably mean longer garbage collection times. If changing the thread

count or heap size, carefully consider the garbage collection algorithms and the new/old ratio.

On 32-bit JVMs, increasing the number of threads will consume more native memory (which is limited

at 2 GB on 32-bit Windows operating systems), so the maximum heap size (-Xmx) may need to be

reduced to allow for this.

Data Source Configuration

A number of data sources are used by the SOA/BPM Infrastructure to connect to the database

server(s). There are a number of options that should be tuned on each of these data sources. These

settings are found in the ‘Connection Pool’ tab of the Data Source ‘Configuration’ page in the

WebLogic console. Click on the ‘Advanced’ link to see all of these options.

Initial and Maximum Connection Pool Capacity

Ensure that the ‘Initial capacity’ and ‘Maximum capacity’ are appropriate based on concurrent access to

the database. ‘Appropriate’ means that the total across all data sources should be less than the

maximum number of connections allowed by the database. Initial capability should be large enough to

Performance Tuning for Oracle Business Process Management Suite 11g

36

handle a reasonable load, so that it is not necessary to obtain new connections when processing load

increases.

Connection Creation Retry Frequency

Ensure that the ‘connection creation retry frequency’ is set to a non-zero (number of seconds) value.

This will prevent the system from creating many connections in quick succession, which would more

than likely make the problem worse rather than better. A small positive number (1-3) is probably

satisfactory, however this should be monitored to determine the optimum value for a specific

environment.

XA Connection Timeout

Enable ‘XA Connection timeout’ and set the value of ‘XA Connection Timeout’ to 0 (seconds). This

will prevent BPM from holding on to connections for an extended period of time before releasing

them, and in turn will help to prevent connection starvation (running out of connections).

Shrinking

Consider disabling shrinking to avoid repeated opening and closing of connections. Alternatively, set

the shrink period to a large value.

If it is expected that the environment will have infrequent spikes and very low normal usage, it is safe

to ignore this setting.

Statement Cache

Consider the statement cache hit/miss ratio. There is a tradeoff between memory consumption and

statement cache (the number of statements cached per connection). If hit/miss ratio is poor (low

percentage), then consider increasing the size of statement cache. Information on connections

displayed in the WebLogic Server console (e.g. maximum connections, maximum wait time, etc.)

should be used to understand JDBC behavior during performance test runs.

Directory Configuration

If LDAP is being used for either the user or policy stores, and especially when using it for the user

store, there are some LDAP optimizations that should be made, and which are described in this

section.

Suboptimal configuration of LDAP can result in slow login times. It is important to understand how

LDAP configuration can impact on the performance of BPM. When a user logs in to BPM, the

Performance Tuning for Oracle Business Process Management Suite 11g

37

container (WebLogic) will call the LDAP provider for authentication. After successful authentication,

the SOA verification service will then call the LDAP provider to obtain group/role and permission

information and will create a BPM user object. This second interaction can take a significant amount

of time – tens of seconds – and the aim is to avoid that delay.

Ensure all LDAP patches are applied

Ensure that all of the available LDAP performance patches applied. First, upgrade environments to

BPM 11.1.1.6 if not already on this release. This release includes many important LDAP fixes. Then

apply patches 13454820 and 13791927.

LDAP Tuning

Applying the patches alone will not be enough to ensure the best performance, it is also necessary to

carry out some tuning. The following tuning actions are recommended:

• Ensure that there are indexes on attributes in the searchable attribute list:

o The recommended searchable attribute list is: cn, sn, givenName, uid, manager,

title, mail, and telephoneNumber,

o The presence of an index on manager is very important, as BPM loads the

management hierarchy from the LDAP when you login,

o For more information, you should refer to

http://download.oracle.com/docs/cd/B31017_01/integrate.1013/b28982/service_c

onfig.htm#sthref306

• Keep the search base as narrow as possible. Consider creating a separate tree in your LDAP

for BPM users if this is practical/possible. For more information, please review

http://docs.oracle.com/cd/E21764_01/core.1111/e10108/human.htm#BABJCDDA

• If using Active Directory, consider this additional tuning:

o If using nested groups, enable token groups, but measure the impact of this change.

If it has a negative impact, add predicates to narrow queries to just those groups that

are actually used for authorization. The use of nested groups has been observed to

produce quite different results in different environments, so it is not possible to

predict if it will have a positive or negative effect,

o Enable group caching.

• Specify the maximum group membership search level to a reasonable number, like 3 for

example,

• Consider following LDAP Referrals, if referrals are enabled in the LDAP server,

• If the LDAP server supports caching, leverage caching at the LDAP server level,

Performance Tuning for Oracle Business Process Management Suite 11g

38

• For more information on group membership cache and connection pool size, please refer to

http://docs.oracle.com/cd/E17904_01/web.1111/e13707/atn.htm#BABFHHGE

What to do if you still have slow LDAP performance

If these recommendations have been exhausted and LDAP performance is still unacceptable, consider

the following additional actions:

• Trace LDAP calls and timings in order to find slow queries and consider creating indexes to

make those queries faster. Use a tool like Wireshark to trace the LDAP calls that the BPM

server is making,

• Collect more information by enabling performance profiling using the following settings:

-Doracle.bpel.services.perf.enabled=true
-Doracle.bpel.services.perf.dir=$ORACLE_HOME/perf/
-Doracle.bpel.services.perf.file=perf.log

Note: The trailing slash at the end of the second setting is required.

• Run oidstats.sql to collect statistics on the OID database,

• Ensure the OID database is on different disk(s) than the SOA database, and

• Use AWR on the OID database to understand its performance.

Find more details on LDAP performance profiling in the following document:

https://support.us.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1267753.1

Other options

There may be instances where it is not possible (e.g. company policy) to change the LDAP

configuration. In such instances a viable alternative could be to create a copy of the LDAP

users/groups needed by BPM in a smaller, lightweight BPM-specific LDAP instance. This would

allow this instance to tuned independently and remove the overhead of searching large user trees of

other applications. This can increase the performance of the LDAP calls considerably without having

to impact the global configuration of the corporate LDAP. For users of Active Directory, LDS or

ADAM could be such an alternative. It should be noted however that automated ways to sync user

credentials should also be employed, where required.

Audit Trail and Log Configuration

Set the Engine log to the ‘warning’ level (or above) to minimize log-related I/O. Excessive logging can

reduce the performance of the engine.

Performance Tuning for Oracle Business Process Management Suite 11g

39

API Considerations

When using the TaskQueryService.queryTasks() API, it is possible to adversely affect performance

by:

• specifying Predicate objects that are not selective enough,

• specifying large page sizes, or

• specifying expensive OptionalInfo options.

When using the BPM API, you should always cache the WorkflowContext object (for each user) and

reuse it for each subsequent API call by that user. Repeatedly calling authenticate(),

authenticateOnBehalfOf() or createContext() is very expensive by comparison.

A note on task assignment distribution

The distribution of tasks/processes across users can influence overall performance. When assignment

is skewed heavily to a single assignee (e.g., all the tasks in the system assigned to a single group), this

can cause performance issues. This is unlikely to occur in a production system, but it could easily

occur in a test environment. This should be considered when designing test cases.

Analytics

Analytics preferences can be configured at both the BPM project and process level. These settings

include the configuration on when the BPMN Service Engine should take process-sampling points and

where to publish the data. The default is to sample for interactive activities of a process and publish

the data to the BPM cube tables in the database.

If no analytics information is required for the project, switch off the sampling, i.e. select ‘Do not

generate’, and data targets.

Be aware that while the analytics preferences can be set for individual BPMN processes, the default is

to inherit then from the BPM project preferences and then in turn from the BPMN Service Engine

settings.

Performance Tuning for Oracle Business Process Management Suite 11g

40

WebLogic Server Tuning

The Performance and Tuning Guide (see link below) provides extensive information about best

practices for configuring and tuning the WebLogic Server and JVM. Review this document, at least

Chapter 2 (‘Top Performance Areas’), and implement the recommendations.

Standard JVM tuning should be carried out, with a focus on heap size and garbage collection.

http://download.oracle.com/docs/cd/E14571_01/core.1111/e10108/toc.htm

Transaction Logs

Consider storing WebLogic Server transaction logs on shared disk. This may help to improve

reliability and fault tolerance.

Performance Tuning for Oracle Business Process Management Suite 11g

41

JVM Tuning

BPM is supported on various JVMs. The choice of JVM has an impact on performance. The general

rule of thumb for BPM is to use HotSpot in preference to other JVMs. For SPARC, we have found

that most applications will get better performance with HotSpot. Use the latest stable release of the

JVM that is available. Use the same JVM and the same version of that JVM in all environments.

The second main consideration, if running on a 64-bit platform, is whether to use a 32-bit or 64-bit

JVM. The general recommendation is to use a 64-bit JVM unless there is some good reason not to.

64-bit JVMs do consume more memory than 32-bit JVMs, in part because they use twice as much

memory to store each reference. If this is an issue, consider using the UseCompressedOops (or

equivalent) JVM setting, which will cause the 64-bit JVM to use less memory for references.

It is reasonable to expect the use of UseCompressedOops to reduce memory usage by something in

the order of 10%.

As a general rule of thumb, use a 64-bit processor architecture and operating system in preference to a

32-bit environment.

Some applications can benefit from having a larger number of smaller JVMs. If an application fits into

that category, and it does not need to keep as much data in memory in any one JVM, consider using a

number of 32-bit JVMs.

Because of the large amount of variation in applications built using BPM, it is not possible to give a

recommendation that will work for every case. It is important to test each application and tune the

JVM. This should be an iterative process to find the best configuration for the specific environment

and workload.

When tuning your JVM(s) consider sizing of the heap and permanent generation (in HotSpot) as well

as the garbage collection algorithm selection and configuration. Remember that the heap is not the

only memory that is used by the JVM.

Recommended Settings

There are some basic JVM settings that are recommended in most cases. Consider using these settings

in all of your environments. The table below summarizes the recommended settings, which are

discussed in the following section.

Start with a small set of options which are as simple as possible, for example just Xms, Xmx and

possibly the garbage collection algorithm. This will allow the JVM to make decisions about its

behavior. Add additional settings only if there is a problem seen in the collected JVM statistics.

In the table below, ‘recommended’ indicates settings the settings that are often found to be in use after

this process of tuning.

Note that XX settings are by definition experimental and are subject to change without notice.

Performance Tuning for Oracle Business Process Management Suite 11g

42

RECOMMENDED JVM SETTINGS

HOTSPOT JROCKIT PURPOSE

-XX:PrintGCTimeStamps

-XX:PrintGCDetails

-Xloggc:filename.log

-XX:PrintGCTimeStamps

-XX:PrintGCDetails

-Xloggc:filename.log

(Recommended) Enable verbose

garbage collection logging in

production. Logs will be written in to

the file named in the –Xloggc setting.

-XX:+HeapDumpOnOutOfMemoryError -XX:+HeapDumpOnOutOfMemoryError (Recommended) request that the JVM

dump the heap if an

OutOfMemoryException occurs.

-server n/a (Recommended) Tell the JVM to run

in ‘server’ mode.

-Xms

-Xmx

-Xms

-Xmx

(Recommended) Set the initial and

maximum heap size. Generally set

them the same to avoid the overhead

of heap size adjustment.

-XX:PermSize

-XX:MaxPermSize

n/a (Recommended) Set the initial and

maximum size of the permanent

generation. Generally set them the

same to avoid the overhead of

permanent generation size

adjustment.

-XX:+UseCompressedOops

(default in JDK 1.6.0_23+)

-XXcompressedRefs (Optional) Tell a 64-bit JVM to use

less memory for references.

-XX:+UseParallelOldGC -XgcPrio:throughput (Optional) Tells the JVM to optimize

the garbage collection for best

throughput – will run until the heap is

nearly full, and then stop all threads to

garbage collect. The alternative is to

optimize for latency.

n/a -XXtlaSize:min=1k,preferred=512k (Optional) Thread local allocation size.

-XX:+CMSClassUnloadingEnabled

-XX:+UseConcMarkSweepGC

-XgcPrio:pausetime

or

-XgcPrio:deterministic

(Optional) If you are running ADF

applications – like Human Task user

interfaces on the same managed

server as BPM, you should consider

using the Concurrent Garbage

Collection algorithm. This has been

Performance Tuning for Oracle Business Process Management Suite 11g

43

RECOMMENDED JVM SETTINGS

HOTSPOT JROCKIT PURPOSE

shown to give better performance in

this particular scenario.

Garbage collection logging is very useful when attempting to tune a JVM. The overhead of collecting

this information is very low. Turn on garbage collection logging in all environments including

production. If there is a need to do some performance tuning, it is helpful to have to have actual

garbage collection data from the production environment. Leaving garbage collection logging on all

the time will mean that the data will be available if it is ever needed. If a problem occurs, it will not be

necessary to attempt to reproduce it in order to capture garbage collection data, and there are tools that

will parse the garbage collection log data to produce information about the garbage collection behavior

during the test.

Similarly, if there is an outage due to insufficient memory, it is extremely helpful to know what was

happening when memory was exhausted. Use the settings in the table for the relevant JVM to collect

and save information to help investigate the cause of memory exhaustion outages.

If using the HotSpot JVM, explicitly tell it to run in ‘server’ mode on 64-bit machines. This setting will

enable various optimizations that will improve performance on modern 64-bit multicore processor

architectures.

In large JVMs (those with more than 2GB heap is a good rule of thumb) working out if the heap needs

to be resized and resizing it when necessary can consume a lot of resources. Generally the initial and

maximum heap size should be set the same to avoid this additional overhead. This is also appropriate

for heap sizes under 2GB, but is of reduced value in those environments compared to environments

with larger heaps.

Similarly, in the HotSpot JVM set the initial and maximum size of the permanent generation the same

for much the same reason.

If running in a 64-bit environment and the heap is approaching the size of the available memory,

enable compressed references to reduce the amount of memory consumed by the JVM. This setting is

listed as optional as it may or may not have a positive impact on performance depending on your

application. However, it will reduce the memory footprint. If this is a consideration in the

environment, conduct some testing to analyze the impact of using this option. Note that JRockit will

use compressed references by default in some circumstances.

Note that UseCompressedOops is supported and enabled by default in Java SE 6u23 and later. In

Java SE 7, UseCompressedOops is the default for 64-bit JVM processes when Xmx isn't specified or

is less than 32GB. For JDK 6 before the 6u23 release, use the -XX:+UseCompressedOops flag to

enable the feature.

Performance Tuning for Oracle Business Process Management Suite 11g

44

Garbage Collection Algorithm

The recommended garbage collection setting for SOA/BPM is UseParallelOldGC which will cause

the JVM to use the Parallel Scavenger collector in the young generation and the Parallel Old collector

in the tenured generation.

If running ADF applications (human task user interfaces) on the same managed server as BPM is

running on, use the concurrent garbage collector (UseConcMarkSweepGC).

A new garbage collector, known as G1, has been introduced in JDK 7. Not enough testing has been

done with this new garbage collector in order to give a recommendation at the date of writing this

paper.

Performance Tuning for Oracle Business Process Management Suite 11g

45

Database Tuning

BPM uses a database to store instance state and other information. The performance of the database

can have a significant impact on the performance of BPM, so it is important that the database is tuned.

If the nature of the workload on the BPM server changes significantly, check the database performance

and retune it if necessary.

What to tell the DBA about the SOAINFRA Schema

Often a DBA will want some basic information about which objects are important and what makes the

database grow, both in terms of the number of rows, and in terms of how big each of those rows is.

This section presents the information that has been found to be most useful to provide to DBAs in

order to help them understand how the database is likely to behave when running BPM.

All BPM metadata is stored in the SOAINFRA schema. BPM instance state is stored across the SOA

and Human Workflow (HWF) tables:

• SOA tables are used for message dispatch, state management, messages, payload and headers,

pending requests (e.g. callbacks for timers), etc., and

• HWF tables are used for work items, the query framework, comments, attachments, callbacks

for tasks, etc.

The diagram below presents a subset of the SOAINFRA schema, highlighting those tables that are

important for BPM.

Performance Tuning for Oracle Business Process Management Suite 11g

46

Figure 6. Tables used to store state in BPM (not a complete ER diagram)

Core State Tables

The table below lists the core database tables that are used to store BPM state, and what kind of

information is stored in each of those tables.

TABLE WHAT IT HOLDS

CUBE_INSTANCE Represents process

CUBE_SCOPE Instance state as BLOB

WF_TASK Task Instance and Link to Process Comments and Attachments

WF_TASK_TL Title translation

WF_MESSAGE_ATTRIBUTE Task payload

WF_ATTACHMENT Task and Process Attachments

Performance Tuning for Oracle Business Process Management Suite 11g

47

TABLE WHAT IT HOLDS

WF_COMMENTS Task and Process Comments

WF_TASK_HISTORY Change Events

WF_ASSIGNEE Assignees for each task/process instance - one row per assignee/per

instance

What creates rows

It is important to understand what kinds of operations will result in rows being created in the database.

The key operations to be aware of are:

• Creating process instances results in inserts into core state tables,

• Updates to task payload,

• Asynchronous operations cause storage of message payload and “bookmark” in

XML_DOCUMENT, WORK_ITEM, DLV_SUBCRIPTION, etc., and

• Audit records are written for entry and exit of every scope and model element.

Additionally, there are some important “multipliers” to be aware of. These result in the creation of

multiple rows:

• Process scopes (one row per scope created in WFTASK),

• Task assignments (one row per assignee created in WFASSIGNEE), and

• Task payload design (one row per element created in WFMESSAGEATTRIBUTE).

Being aware of these considerations will also help you to design your processes to minimize the

database overhead.

A note on WF_ASSIGNEE

The data volume per row is not as significant as WF_TASK and WF_TASK_HISTORY, but

nonetheless, WF_ASSIGNEE is a key table in the queries for the task list and process tracking lists in

the BPM Workspace. As WF_ASSIGNEE can potentially have multiple rows per instance, the

number of rows in the table can grow large.

Performance Tuning for Oracle Business Process Management Suite 11g

48

Core Audit Tables

Enter and exit events are recorded for each scope and element. Events are stored in

BPM_AUDIT_QUERY.

For example, one instance of the following process model produces twenty audit events:

• 2 scopes (process, sub-process) and 8 BPMN elements, and

• 10 total events � 2 (for enter and exit) = 20 events per instance.

Figure 7. Example Process

What causes changes to row sizes

Just as it is important to understand what operations create more rows, it is also important to know

what will makes those rows larger:

• Hydration points causes state to be written, e.g. asynchronous activities or events,

• Transition to a new scope takes up additional space, however leaving the scope releases the

state stored for that scope, and

• Instance state is released when a process instance completes.

As an example, consider the process above. With a 166 byte payload, the red boxes indicate the

payload size that would be stored in CUBE_SCOPE at various times in the execution of the process

instance.

A note on running statistics

It has been observed that high CPU usage on the database can occur when there are many concurrent

users logging into the BPM Workspace and/or when there are many tasks created in a short period of

time. The typical issue here is that database statistics have not been collected resulting in a sub-optimal

plan being generated by the Oracle cost-based optimizer. It is recommended that DBAs run anaylze

table periodically (at least once a day initially and weekly after that).

Performance Tuning for Oracle Business Process Management Suite 11g

49

analyze table wftask compute statistics;
analyze table wfassignee compute statistics;

How to Query Size of Process Instance State

The following query can be used to find the size of the state data for a process instance. This

information is stored in the database in a compressed format, so the uncompressed numbers are more

useful for making high level comparisons about parsing times and compression overheads. The

compressed numbers are useful for knowing how much storage space is being used in the database.

select
 count(*),
 min(scope_csize) minc, -- scope_csize is the compressed size
 max(scope_csize) maxc,
 avg(scope_csize) avgc,
 min(scope_usize) minu, -- scope_usize is the uncompressed size
 max(scope_usize) maxu,
 avg(scope_usize) avgu
from
 cube_instance

Purging

Purging, partitioning and general management of the SOAINFRA database has proven to be a major

factor in ensuring good performance in production deployments of BPM (and SOA).

Failure to properly manage the database is the single most significant factor causing performance issues

that has been observed. It can impact performance of runtime SQL queries, asynchronous routing

rules and asynchronous BPEL processes. It can slow down console access when querying for auditing

data. There can be a very large overhead when purging data – longer maintenance windows are

required, defragmentation of the database can take a long time. If retention periods are long,

significant amounts of disk space are required and tables with BLOB columns grow to take up a

majority of the database space.

Extensive work has been done in this area to provide patches and practical guidance on how to

manage your SOAINFRA database. In addition to ensuring environments are on the latest release and

have all the appropriate patches installed, review the ‘SOA 11g Database Growth Management

Strategy’ whitepaper and implement its recommendations. This whitepaper is available at

http://www.oracle.com/technetwork/database/features/availability/soa11gstrategy-1508335.pdf

Performance Tuning for Oracle Business Process Management Suite 11g

50

Partitioning

From release 11.1.1.6, the Repository Creation Utility (RCU) can automatically set up database

partitions by default. This helps to improve performance of operations like searching for process

instances or tasks when there is a large amount of historical data in the SOAINFRA schema. Use the

partitioning settings provided, and monitor them and adjust them as necessary based on the volume of

data in your environment.

Automatic Workload Repository

In order to continue to get good performance from the BPM server, it is necessary to periodically

check the database – the one storing the SOAINFRA schema – to see if there are any performance

issues there. Keep redoing this, as the workload changes and the usage of space in the database

changes. Depending on the volume of traffic going through the system, consider tuning the database

every week or every month for example.

Tuning an Oracle database is a specialist task. It requires a highly trained and experienced DBA to do

it well. If there is not such a person on staff, consider hiring one or contracting with a consultant or

service provider who can provide these skills.

The Oracle database includes a feature called the Automatic Workload Repository which will automate

collection of statistics about database performance. This information can be used for database tuning.

In order to run the reports it is necessary to license the Database Tuning option from Oracle.

When there is a representative workload running on the BPM server, ideally during load testing, prior

to production, run AWR reports for a suitable period, e.g. three to seven days. The AWR reports will

highlight any poorly performing queries. The assistance of a Database Administrator may be needed to

interpret the information in the report and make the necessary changes to address the issues identified.

Here are some specific areas to check in a database that is supporting BPM/SOA:

SPECIFIC INFORMATION TO CHECK IN AWR REPORTS FOR SOA/BPM

DETAIL NOTES

Redo logs There will normally be a lot of redo activity on the SOA database. Ensure

that the redo logs are large enough. Place them on a different disk to the

database files. Check the number of log switches, one every twenty

minutes is ideal, more than this is too high and indicates that the redo logs

should be made larger to reduce the number of switches.

Parsing Check the hard parsing amount. It should be zero. If it is not, this indicates

that the SGA is probably too small, increase the size of SGA and test again.

Hard parsing is caused by use of literals in SQL (as opposed to bind

variables). If the queries in question are customer developed, e.g. in a

database adapter, then change them to use bind variables.

Performance Tuning for Oracle Business Process Management Suite 11g

51

SPECIFIC INFORMATION TO CHECK IN AWR REPORTS FOR SOA/BPM

DETAIL NOTES

SGA Check the buffer hit and library cache hit percentages. They should be

100%, if not increase the size of SGA.

MEMORY_TARGET Do not use this setting. Have the DBA tune the memory manually instead.

This will result in a better tuned database. Start with 60% of physical

memory allocated to SGA and 20% to PGA.

AUDIT_TRAIL Do not use this setting.

Top 5 Check the average wait times. Anything over 5ms indicates a problem. If

there are database CPU events in the Top 5, this indicates that SGA is too

small. There may be missing indexes. Check the optimizer statistics*.

Database file sequential/scattered

read

These indicate time spent doing table scans and index scans (respectively).

If these are high, move data files to more disks to reduce disk I/O

contention, or move them to faster disks.

Enqueue high watermark This indicates hardware contention that occurs when there are multiple

users inserting into LOB segments at once while the database is trying to

reclaim unused space. Enable secure files to improve LOB performance

(SECURE_FILES=ALWAYS).

* To gather optimizer statistics, use a command similar to the following, substituting in the correct

schema name for the environment in place of DEV_MDS:

exec dbms_stats.gather_schema_stats(
 ownname => 'DEV_MDS',
 options => 'GATHER AUTO')

Missing Indexes

One issue that is often observed, and that is easy to fix is, missing indexes. If there are queries running

that are performing table scans (i.e. reading a whole table) because there is no index available, create a

suitable index that would allow the query to be processed without a table scan. This can create a

significant performance boost.

One important example of missing indexes is Flex Field columns in WF_TASK. These are not

indexed by default. When planning to use a Flex Field column for searching process instances or tasks,

it is advisable to create an index on that column.

Performance Tuning for Oracle Business Process Management Suite 11g

52

Use Separate Tablespaces for BLOBs

If large BLOBs are being stored in the database, create a separate tablespace for the BLOBs. If there

are different types of storage available, consider where to place this tablespace on the storage farm in

order to get optimum performance of queries. Discuss this with the Database Administrator.

Use secure files to improve LOB performance. It is enabled using the setting

SECURE_FILES=ALWAYS, but must be done before defining objects, i.e. before running RCU. If

objects are already defined, it is possible to use the PL/SQL online redefinition package to migrate

existing LOB data into secure files. Talk to the Database Administrator about how to do this.

Redo Logs

Ensure that the database redo logs are placed on different disks than the database files and that they

are large enough to support the environment. See the AWR section above for more details.

Performance Tuning for Oracle Business Process Management Suite 11g

53

Tools to have in a Performance Kit Bag

This section presents a list of tools that are recommend to be familiar with and available when

performance tuning. Since performance tuning is often done at the same time as investigating a

problem, tools that are useful when you need to analyze a problem to determine its root cause are also

included, as well as those that are useful for performance tuning work. The tools recommend here are

the same tools that Oracle’s performance specialists use internally.

TOOL COMMENTS

Thread Dump Know how to make WebLogic take a thread dump. You are often going to

want a number of thread dumps over a period of time. On Unix-based

systems, kill -3 <pid> is the best. You can also use jstack for HotSpot or

jrcmd <pid> print_threads for JRockit.

Thread dumps are useful for seeing what is happening inside your server

and for identifying resource contention issues.

Heap Dump Know how to make WebLogic take a heap dump. You can also use jmap

for HotSpot or jrcmd <pid> hprofdump filename=dump.hprof for JRockit

R28 and newer.

Heap dumps are useful for seeing how memory is being used, for analyzing

memory problems, troubleshooting problems that require detailed

information from objects in memory, and also for JVM tuning.

MAT, YourKit or simliar Memory Analyzer Tool.

MAT is useful for reading and analyzing heap dumps, especially for

analyzing memory problems. Be aware that it is necessary to have more

memory in MAT’s heap than the size of the heap dump to be analyzed.

YourKit is often more convenient for reading large heap dumps, however it

can be more complicated to use than MAT.

VisualVM This is part of the HotSpot JDK.

This is a good tool for watching a JVM in real time and seeing thread and

memory usage. It has a plugin called VisualGC that allows you to watch the

garbage collection in real time. This is useful for JVM tuning and sizing.

AWR Application Workload Repository.

This is part of the Oracle database. It is useful for understanding what is

happening in your database, and for database tuning. This is a tool that

should be used on an ongoing basis, not just a one-off tuning exercise.

ThreadLogic ThreadLogic builds upon the popular TDA (Thread Dump Analyzer) by

adding logic for common patterns found in application servers. ThreadLogic

is able to parse thread dumps and provide advice based on predefined and

externally defined patterns. You can find more info on ThreadLogic at

Performance Tuning for Oracle Business Process Management Suite 11g

54

TOOL COMMENTS

http://java.net/projects/ThreadLogic.

Wireshark Allows you to monitor packets travelling over the network – a fairly low level

tool.

Very useful for tuning LDAP performance issues.

OATS/LoadRunner/JMeter Load testing tools.

Select a tool that can be used to record (or script) load tests and to replay

these against your server for load testing. It does not matter so much which

particular tool is selected, as it does that one is selected. If it is necessary to

test any ADF user interfaces then ensure the tool that can handle HTTP

headers, substitution of parameters in the HTTP query string and cookies.

JRMC + WLDF plugin JRockit Mission Control

Useful for observing, recording and analyzing JVM performance. The

WebLogic Tabs plugin allows you to trace ECIDs.

WLDF WebLogic Diagnostic Framework.

Useful for collecting and analyzing low level diagnostic information from

WebLogic Server.

Performance Tuning for Oracle Business Process Management Suite 11g

55

Conclusion

This paper has presented a collection of recommendations and options. It is important to remember

that there is no globally relevant set of performance tuning recommendations for BPM, as the

applications that are built and run on top of BPM vary widely. It will be necessary to test these

recommendations to determine which ones are appropriate in a given environment.

Also, remember that performance tuning is not a one off exercise. It needs to be repeated regularly,

and especially when there are significant changes to the workload profile and when new applications

are deployed.

Performance tuning is an iterative process and must be carried out with care to achieve the best results.

Performance Tuning for Oracle Business Process

Management Suite 11g

March 20132

Editor: Mark Nelson. Contibuting Authors: Vikas

Anand, Deepak Arora, Heidi Buelow, Christopher

Karl Chan, Manoj Das, Pete Farkas, Mark Foster,

Simone Geib, Sabha Parameswaran, David Read,

Derek Sharpe, Sushil Shukla, Kavitha Srinivasan,

Meera Srinivasan, Shumin Zhao. Reviewers:

Partricio Barletta, Kim LiChong, Andrew Dorman,

Ralf Mueller, Bhagat Nainani, Robert Patrick,

David Read, Will Stallard.

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065. U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability

or fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations

are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by

any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective

owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license

and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open

Company, Ltd. 0410

