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16. Turning Flight

One of the more interesting aspects of performance is turning flight. In aerial combat, the
victor is often the aircraft that has the smallest turning radius or the highest turn rate. Here we
will consider level turning flight, with the key word being level. Level flight requires the forces
in the vertical direction to balance. As we will see shortly, this requirement puts a limit on our
turning performance. If we draw the free-body diagram we can sum the forces in the vertical and
horizontal (radial) directions.

The vertical force balance gives:

(1)

And the horizontal (radial) force balance
gives us:

(2)

where ar = the radial acceleration. We can
determine a few different expressions for
the acceleration by looking at a top view of
the horizontal turn. From kinematics, we
have

(3)

We can now write the radial acceleration in
several forms:

(4)

Hence Eq. (2) becomes:

(5)
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We can now rearrange Eq.(5) to determine either the radius of the turn or the turn rate.
However, before doing that we need to introduce a definition.

Definition: Load Factor

The load factor (sometimes called the normal load factor) is defined as the lift divided by
the weight.

(6)

Then from the vertical force balance, Eq. (1) we can write

(7)

Therefore a 60 degree banked turn requires a load factor of 2, often called a “2 g” turn. Level
flight is a “1 g” flight condition. If the load limit on a vehicle is 6 g, then the steepest banked turn
allowable would be found from cos � = 1/6, or � = 80.4 deg.

We can now use a common trick to determine other trig functions of the bank angle.
Form a triangle with the known trig function
assigned to the appropriate sides. Here 1 and n to
give us cos �. Then calculate the third side using
the pathagorian theorem. We can now form the
remaining trig functions:

(8)

Turn Radius

We can rearrange Eq. (5) to solve for the range.

(9)
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We can remove airspeed from the equation using the lift coefficient to get

(10)

Note that lift does not equal the weight since we are not in straight and level flight. Here,
L = nW. In any case, we may now write an expression for the turn radius:

(11)

From Eq. (11) it is clear that if we want have a low turn radius, that we would expect to need
1. Large CL (CLmax)
2. Low altitude (high density)
3. High load factor n (nmax)
4. Low wing loading (W/S)

Turn Rate

We can establish an expression for the turn rate from the same Eq. (5).

(12)

If we eliminate the airspeed as we did previously, using Eq. (10), we obtain the
expression for turn rate:

(13)

For a high turn rate, it is clear we require:
1. Large CL

2. Low altitude (high density)
3. High load factor
4. Low wing loading
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Instantaneous and Sustained Turn Rates

From the above equation for turn rate it seems clear that the maximum turn rate can occur
when the lift coefficient has its maximum value and the load factor has its maximum value. In
general, one can think of the load factor as a structural limit, although as we will see later, it also
has an aerodynamic limit. For now, let us consider the limiting load factor as that below which
the structure will fail, typically n = 6 for civil aircraft and n = 10 or 12 for military aircraft. A turn
rate can be sustained if we can maintain the airspeed at which it occurs. For this we require thrust
to equal the drag. Hence the thrust available must be capable of equaling the thrust required
(drag). A simple example will illustrate all the ideas presented above.

Example

Consider an aircraft with the following properties: W/S = 59.88 lbs/ft2. W = 10,000 lbs,
S = 167 ft2, CLmax, = 1.5, nmax= 6, CD = 0.018 + 0.064 CL

2 , and Tmax = 5000 lbs. Find the extreme
turn rate and turn radius, and the speed at which they occur. Are these sustainable turn rates?

First, find the maximum turn rate by assuming maximum lift coefficient and maximum load
factor are occurring at the same time. For turning rate we have:

The airspeed for the maximum turn rate is given by:

The corresponding minimum turning radius is given by:
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The question now arises if we can sustain this turn rate. Is the thrust large enough to overcome
the drag at this turn rate? We can calculate the drag coefficient from:

Then the thrust required (drag) is calculated from

The thrust available is given as 5000 lbs. Hence it is not possible to sustain this turn rate since
the thrust available is less than the thrust required.

The V-n Diagram

There are two primary uses for a V-n diagram. One for turning flight, and one for straight
and level flight. The diagrams are the same, but the information obtained is different, or at least
has a different interpretation.

The level turn V-n diagram consists of showing both the aerodynamically limited load
factor and the structurally limited load factor on the same graph, as a function of airspeed. To
determine the aerodynamically limited load factor we can consider the following:

In level flight we have the definition of stall speed:

(14)

In turning flight we can define the maximum (aerodynamically limited) load factor by the
following equation for any V:

(15)

If we divide Eq. (15) by Eq.(14), we get:

(16)
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We can now construct our level turn V-n diagram.

On the graph to the right we see
both the maximum (positive) structurally
limited load factor, and the minimum
(negative) structurally limited load factor.
These are typically different in magnitude
with six being a reasonable positive
maximum load factor and two or three
being a reasonable minimum (negative)
load factor. The other curved lines show
the aerodynamically limited load factor
due to stall. At any give speed on these
curved lines, the load factor cannot exceed
the aerodynamic limit that can be
considerably less than the structural limit.
For example, in level flight, the maximum
load factor that can be achieved is one at
stall speed. If we increase our speed slightly, we can do a turn that will generate a load factor
greater than one. However if we try and turn too steep, the required load factor will exceed the
stall lift coefficient and we will be unable to achieve our turn. Hence we will be restricted again
by the maximum lift coefficient. If we continue to increase our speed, we will eventually be able
to generate a load factor (in a turn) that will equal the maximum allowable structural load factor.
The flight condition on the V-n diagram at which this occurs is called the corner point. The
associated airspeed is called the corner velocity. At the corner point we can obtain the max
instantaneous turn rate and the minimum turn radius. It will be sustainable only if we have the
thrust available to balance the drag at that load factor and speed.

We can also generate the same V-n diagram and explore it from the point of view of level
flight. The curves are the same, but we now are looking at the effect on the loads due to wind
gusts. The effect of a vertical gust is
to increase the angle-of-attack. The
change can be estimated if we assume
small angles to be:

(17)

where Wg is the vertical wind gust.
The change in the lift coefficient is
then given by:

(18)
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where a is the lift-curve slope.

The change in the lift is given by:

The change in the load factor is then given by:

(19)

The total load factor caused by a gust is then determined by adding the increment given by Eq.
(19) to the level-flight load factor of 1.

(20)

Equation (20) is that of a straight line with respect to airspeed and can be plotted on the V-n
diagram. These straight lines indicate the
load factor encountered by the aircraft due
to the gusts. When the line intersects the
maximum (or minimum) load factor limit,
the corresponding airspeed is the
maximum one that should be flown in
gusts of that magnitude. Otherwise, at
airspeeds greater than that speed where the
line intersects the max load factor line, a
gust of the specified magnitude would
exceed the structural load factor and that
can’t be good. On the other hand, if one is
flying slower then the “corner speed” then
any gust will cause an angle-of-attack to
exceed the stall angle-of-attack and cause
the aircraft to stall, but not break! In this
context, the “corner speed” is known as
the maneuvering speed. If the aircraft is flown at or below maneuvering speed, then neither a
gust or sudden control movement will cause the aircraft to exceed its maximum load factor.
Consequently, when encountering turbulent air, the aircraft should be slowed to or below
maneuvering speed to prevent “bending” the aircraft.
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Sustained Turning Rate

Previously, we indicated that the sustained turn rate can be different from instantaneous
maximum turn rate if the thrust available is not greater than or equal to the thrust required. In this
section we will impose the requirement that thrust equals drag on the turn rate and determine the
airspeed required for the maximum sustained turn rate. Hence we seek to maximize

(21)

subject to the constraint:

(22)

where . The assumption we will make here is that the thrust, T, is independent of
airspeed. Our plan of attack is to write all equations in terms of the dynamic pressure and to find
the dynamic pressure that minimizes the turn rate, subject to the constraint, T = D. To this end,
we can rewrite Eq (21) in the form:

(23)

We can differentiate this equation implicitly with respect to , to get:

or

(24)

We can no use the constraint equation, Eq. (22) to help evaluate the derivative in Eq. (24). In
particular, we can solve the T = D equation for n2,

(25)
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We can take the derivative with respect to to get:

(26)

this equation can be substituted into the left hand side of Eq. (24) to give:

(27)

The terms containing thrust cancel out! This leaves us with the remaining terms:

or
Dynamic Pressure for Maximum Sustained Turn Rate (no constraint on CLmax, or nmax)

(28)

Note that this dynamic pressure corresponds to the level-flight minimum drag speed. However
Eq.(28) was derived with only a constraint on the T = D and it does not guarantee that the
structural limit, nmax, or that the aerodynamic limit, are violated.

If CLmax is violated, we need to calculate the sustained turning rate with that constraint as
well as the T = D constraint. Under these conditions we can combine Eqs. (16 and 25) to get

(29)
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Equation (29) can be solved for V, the airspeed for the turn at with T = D:

Airspeed for max turn rate with CLmax and T = D constraints active

(30)

The final case to consider is that where the turn rate is limited by the structural load limit,
nmax. Here we must satisfy the constraints n = nmax and T = D. We can simply take Eq. (22) and
set n = nmas and solve for the dynamic pressure or airspeed at which the minimum radius turn
would occur with these constraints. The result is a quadratic equation in the dynamic pressure, .

Dynamic Pressure (or V) for max turn rate with nmax and T = D constraints active

(31)

Note that it is possible that there is no solution to Eq. (31). In that case, the thrust
available is not sufficient to balance the drag at the maximum load factor. In general, the
conditions at maximum CL generally yield the highest turn rate if the unconstrained result, Eq.
(28) is not valid.

Example

We can continue our example from the previous problem. The dynamic pressure and
airspeed can be determined from Eq. (28)
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We can calculate the load factor from:

However, lets check the lift coefficient:

Hence not a viable solution.

Should it have been ok, then

Lets now assume that the max turn rate occurs at . Then we can determine the drag from

and

We can also see what would happen if we used the maximum structural load factor. Here we
need to determine the dynamic pressure that would allow the T = D constraint to be satisfied.
Hence we have
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or

349.2 , 1314 lbs/ft2

Hence for this aircraft, the maximum sustainable turn rate occurs at the maximum CL, where
thrust available equals drag. This result is generally true if the corner turn rate is not sustainable.
In that case the highest turn rate occurs by using .


