

Scale

What happens when all the dimensions are doubled?

In 3-D what happens when all dimensions are doubled?

$2 x$

Surface Area $=6 * x^{2}$
Volume $=x^{3}$
Area: multiplied by $4=2^{2}$
Volume: multiplied by $8=2^{3}$

$$
\text { Surface Area }=6^{*}(2 x)^{2}=24 x^{2}
$$

$$
\text { Volume }=(2 x)^{3}=8 x^{3}
$$

$2 x$

When all linear dimensions are multiplied by 2

Perimeter	Multiplied by 2
Area	Multiplied by 4
Surface Area	Multiplied by 4
Volume	Multiplied by 8

Table of scale factors
Scale factor of s

scale factor	2	3	s
	multiplied by	multiplied by	multiplied by
Lengths	2	3	s
Areas	4	9	$\mathrm{~s}^{2}$
Volumes	8	27	$\mathrm{~s}^{3}$

8 Foot Model of DaVinci's Horse

	Leonardo's Horse scale factor = 3	
height	8 feet	24 feet
Length of mane	4.5 feet	
Size of hoofprint	48 sq in	
Width of horseshoe		16 inches
Weight (volume)		15 tons

more photos of horse are at: http://www.math.msu.edu/~winter/horse/

Leonardo's Horse

scale factor $=3$

height	8 foot	24 foot
Length of mane	4.5 feet	$3^{*} 4.5=13.5$
Size of hoofprint	48 sq in	$9^{*} 48=432$
Width of horseshoe	$16 / 3=5.333$	16 inches
Weight (volume)	$15 / 27=.5555$	15 tons

Area is multiplied by 9

Suppose both horses are hollow. Fill the 15 -inch model with water, and pour it into the 24 -foot horse. How many "fills" are needed?

15 inches $=1.25$ feet. Scale factor is $s=24 / 1.25=19.2$

This is a volume problem. Answer is $\mathrm{s}^{3}=7077.888$

More Typical Problem - Two similar bricks

Surface area	58 sq in	362.5 sq in
length	x	5
width	28 cu in	y
volume	s	
Scale factor Small to large		

$$
\begin{array}{ll}
\text { Two bricks } & 58 \mathrm{~s}^{2}=362.5 \\
\mathrm{~s}=2.5
\end{array}
$$

Surface area	58 sq in	362.5 sq in $=\mathrm{s}^{2} 58$
length	x	$5=\mathrm{s}^{*} \mathrm{x}$
width	3.5	y $=\mathrm{s}^{*} 3.5$
volume	28 cu in	z $=\mathrm{s}^{3 *} 28$
Scale factor Small to large		

Two bricks

Surface area	58 sq in	362.5 sq in
length	$\mathrm{x}=5 / 2.5=2$	5
width	3.5	$\mathrm{y}=3.5^{*} 2.5$ $=8.75$
volume	28 cu in	$\mathrm{z}=28^{*} 2.5^{3}$ $=437.5$
Scale factor Small to large	$58 \mathrm{~s}^{2}=362.5$ $\mathrm{~s}=2.5$	

Spheres, Cylinders

Surface area $=4 \pi r^{2}$
Volume $=\frac{4}{3} \pi r^{3}$

Volume =
(Area of base)height
Surface area $=$ $2^{*} A+P^{*} h$ where P is the perimeter of the base and h is the height

Volume of a Cone

17

Cones, Pyramids
(base is circle or polygon)

$$
\mathrm{V}=\frac{1}{3} \mathrm{Ah}
$$

Remember: triangles with same base and height have same area; same is true for pyramids.

Pyramid; Base is a polygon
Can be tipped.
$\mathrm{h}=$ perpendicular height above the base = perpendicular distance E to base ABCD

Problem

Tennis ball can

Which is greater:
the height of three stacked balls
or
the circumference of the can holding them?
height $=3 \mathrm{~d}$
circumference of can $=$ circumference of ball $=\pi^{\star} d$, which is larger

Tennis ball can

Which is greater:
the height of three stacked balls
or the circumference of the can holding them?

