Perimeter, area and volume work book

Common formulae

Shape	Name	Formula for Area
Square	Base \times Height	

Section 1: Area of a rectangle

Example 1. Calculate the area given the dimensions
Area $=$ length \times height
$=10 \mathrm{~cm} \times 5 \mathrm{~cm}$ $=50 \mathrm{~cm}^{2}$
10 cm

Example 2. Calculate a missing dimension given the area

$50 \mathrm{~cm}^{2}$	5 cm	Area $=$ length \times height	
		$50 \mathrm{~cm}^{2}=\mathrm{xcm} \times 5 \mathrm{~cm}$	
		x	$=50 \mathrm{~cm}^{2} \div 10 \mathrm{~cm}$
			= 5 cm

Worksheet 1 Area of a rectangle

True or false
Write either T or F in the box depending on the answer.
1.

Area of $A B C D=14 \mathrm{~cm}^{2}$
2.

Area of $A B C D=12 \mathrm{~cm}^{2}$
3.

Area of $A B C D=12 \mathrm{~cm}^{2}$
4.

Area of $A B C D=12 \mathrm{~cm}^{2}$
5.

Area of $A B C D=36 \mathrm{~cm}^{2}$
6.

Area of $A B C D=48 \mathrm{~cm}^{2}$
7.

Area of $A B C D=12 \mathrm{~cm}^{2}$
8.

Area of $\mathrm{ABCD}=14 \mathrm{~cm}^{2}$
9.

Area of ABCD $=144 \mathrm{~cm}^{2}$
10

Area of $\mathrm{ABCD}=16 \mathrm{~cm}^{2}$

Worksheet 2 Area of a rectangle

Calculate the missing length given the area

Q1

Area $=$ length \times width
$24 \mathrm{~cm}^{2}=2 \times p$
$\frac{24}{2}=p$
$p=\quad c m$

Q2

Area $=$ length \times width
$24 \mathrm{~cm}^{2}=3 \times p$
$24=p$
$p=$
cm

Q3

Area $=$ length \times width
$48 \mathrm{~cm}^{2}=$
$\times p$
$\underline{48}=p$
$p=\quad c m$

Q4

p
Area $=$ length \times width

$$
c m^{2}=\quad \times p
$$

$$
\square=p
$$

$p=\quad c m$

Q5
$1.5 \mathrm{~cm} \quad$ Area $=48 \mathrm{~cm}^{2}$
p
Area $=$ length \times width

$$
c m^{2}=\quad \times p
$$

$$
\cdots=p
$$

$p=\quad c m$

Q6

Area $=$ length \times width

$$
c m^{2}=\quad \times p
$$

$\square=p$
$p=\quad c m$

Q10

Q7

Area $=$ length \times width

$$
c m^{2}=\quad \times p
$$

$$
\square=p
$$

$p=\quad c m$
Q8

p
Area $=$ length \times width

$$
c m^{2}=\quad \times p
$$

$\square=p$
$p=\quad c m$

Q9

p
Area $=$ length \times width

$$
c m^{2}=\quad \times p
$$

$$
\square=p
$$

p
Area $=$ length \times width

$$
c m^{2}=\quad \times p
$$

$$
\square=p
$$

$$
\mathrm{p}=\quad \mathrm{cm}
$$

Q11

$\frac{1}{5} \mathrm{~cm}$| Area $=$ |
| :---: |
| $\frac{1}{4} \mathrm{~cm}^{2}$ |

Area $=$ length \times width
$-c m^{2}=-\times p$
$-\quad-\quad p$
$\mathrm{p}=-\mathrm{cm}$
$p=$
cm

Section 3: Area of a triangle

Area of a triangle $=1 / 2$ (base \times perpendicular height).

Note the words "perpendicular height". This is the height that is at right angles to the base. This is important.
A common trick that examiners use is to give you the slope height, NOT the perpendicular height

Area $=1 / 2$ (base \times perpendicular height).

$$
=1 / 2(6 \mathrm{~cm} \times 4 \mathrm{~cm}) \text { NOT }=1 / 2(6 \mathrm{~cm} \times 5 \mathrm{~cm}) .
$$

Example 1: Find the area given the dimensions
Area of a triangle $=1 / 2$ (base \times perpendicular height).

Example 2: Find a dimension given the area.
Area of a triangle $=1 / 2$ (base \times perpendicular height).
Find the perpendicular height

Area $=1 / 2($ base \times perpendicular height $)$.
$6 \mathrm{~cm}^{2}=1 / 2(6 \mathrm{~cm} \times$ height $)$.
$12 \mathrm{~cm}^{2}=(6 \mathrm{~cm} \times$ height $)$.
$12 \mathrm{~cm}^{2} \div 6 \mathrm{~cm}=$ height
Height $=\mathbf{2} \mathbf{~ c m}$

Q1.

Area $=1 / 2$ (base \times perpendicular height).
$=1 / 2(4 \times 4)$
$=\quad \mathrm{cm}^{2}$

Q2

Area $=1 / 2$ (base \times perpendicular height).
$=1 / 2(\quad \times \quad)$
$=\quad \mathrm{cm}^{2}$

Q3

Area $=1 / 2$ (base \times perpendicular height).
$=1 / 2(\times)$
$=\quad \mathrm{cm}^{2}$

Q4

Area $=1 / 2$ (base \times perpendicular height).
$=1 / 2(x)$
$=\quad \mathrm{cm}^{2}$

Q5

Area $=1 / 2($ base \times perpendicular height $)$.
$=1 / 2(\times)$
$=\quad \mathrm{cm}^{2}$

Q6

Area $=1 / 2($ base \times perpendicular height $)$.
$=1 / 2(\quad \times \quad)$
$=\quad \mathrm{cm}^{2}$

Q7

Area $=1 / 2$ (base \times perpendicular height).
$=1 / 2(\times)$
$=\quad \mathrm{cm}^{2}$
Q8

Area $=1 / 2$ (base \times perpendicular height).
$=1 / 2(\times)$
$=\quad \mathrm{cm}^{2}$

Q9

Area $=1 / 2($ base \times perpendicular height).
$=1 / 2(\times)$
$=\quad \mathrm{cm}^{2}$

Section 4: Perimeter of a rectangle

Perimeter = distance around a shape. Think of it as taking a journey around the outside of the shape.

Worksheet 3: Perimeter of a rectangle

Q1

Q5

18 cm
Perimeter $=2 \times(\quad \mathrm{cm}+\quad \mathrm{cm})$
$=\quad \mathrm{cm}$

Q6

1.8 cm

Perimeter $=2 \times(\quad \mathrm{cm}+$
$=\quad \mathrm{cm}$
$\mathrm{cm}+\quad \mathrm{cm}$
$=\quad \mathrm{cm}$

Q7


```
Perimeter \(=2 \times(\)
    \(+\)
        )
=
```

Q8

Perimeter $=2 \times(-m+-m)$
$=$

Section 5: Area of a parallelogram

Once again, take care with questions trying to trick you. It is the perpendicular height, NOT the slope height

Ignore the 2.5 cm . It is a red-herring.

Worksheet 5: Area of a parallelogram

Q1.

Area = base \times perpendicular height
$=5 \mathrm{~cm} \times 2 \mathrm{~cm}$
$=\mathrm{cm}^{2}$

Q2.

Area $=$ base \times perpendicular height
$=\mathrm{cm} \times \mathrm{cm}$
$=\quad \mathrm{cm}^{2}$

Q3.

Area = base \times perpendicular height
$15 \mathrm{~cm}^{2}=5 \mathrm{~cm} \times \mathrm{xcm}$
$\mathrm{x}=\mathrm{cm}$

Q4.

Area = base \times perpendicular height
$1.5 \mathrm{~cm}^{2}=5 \mathrm{~cm} \times x \mathrm{~cm}$
$\mathrm{x}=\quad \mathrm{cm}$

Section 6: Area of a trapezium

Area $=\frac{h(a+b)}{2}$
Where a, b are the two parallel sides, and h is the perpendicular height

b

Once again, don't be fooled by questions that give you the slant height. It is the perpendicular height that you need.

Example 1

10 cm

12 cm
Calculate the area of this trapezium

$$
\begin{aligned}
\text { Area } & =\frac{h(a+b)}{2} \\
\text { Area } & =\frac{8 \times(10+12)}{2} \\
\text { Area } & =\frac{8 \times 22}{2} \\
& =88 \mathbf{c m}^{2}
\end{aligned}
$$

Worksheet 6: Area of a trapezium

Q1
10 cm

14 cm

$$
\begin{aligned}
& \text { Area }=\frac{h(a+b)}{2} \\
& \text { Area }=\frac{8 \times(10+14)}{2} \\
& \text { Area }=\frac{8 \times 24}{2}
\end{aligned}
$$

$$
=\quad \mathrm{cm}^{2}
$$

Q2

Area $=\frac{h(a+b)}{2}$
Area $=\frac{\times(10+14)}{2}$
Area $=\frac{\times 24}{2}$
$=\quad \mathrm{cm}^{2}$

Q3
8 cm

Q5
8.4 cm

24.4 cm

Area $=\frac{h(a+b)}{2}$
Area $=\frac{\times(\quad+\quad)}{2}$
Area $=\frac{\times}{2}$
$=\quad \mathrm{cm}^{2}$

Q6

$24 \frac{2}{5} \mathrm{~cm}$
Area $=\frac{h(a+b)}{2}$
Area $=\frac{\square \times(\square+\square)}{2}$

Q7

Area $=\frac{h(a+b)}{2}$

Area $=\frac{}{2}$
Area $=\frac{\square \times \square}{2}$
$=-\mathrm{cm}^{2}$

Section 7: Area of a compound shapes

Key point 6

A compound shape is made up of simple shapes.
To find the area of a compound shape, split it into simple shapes like rectangles and triangles.
Find the area of each shape and then add them all together.

Example 3

Calculate the perimeter and area of this compound shape.

Example 1:

Calculate the area and perimeter of this shape

Divide the shape into two rectangles, A and B. Calculate their areas. Add them. 10 cm

	B	A	4 cm	Area A: $3 \mathrm{~cm} \times 4 \mathrm{~cm}=12 \mathrm{~cm}^{2}$ Area $B=7 \mathrm{~cm} \times 9 \mathrm{~cm}=63 \mathrm{~cm}^{2}$	
9 cm		3 cm		Total area	$\begin{aligned} & =12 \mathrm{~cm}^{2}+63 \mathrm{~cm}^{2} \\ & =75 \mathrm{~cm}^{2} \end{aligned}$
		5 cm		Perimeter	$\begin{aligned} & =10+4+3+5+7+9 \\ & =38 \mathrm{~cm} \end{aligned}$

Worksheet 7: Area of a compound shapes

Q1

Area A: $4 \mathrm{~cm} \times 4 \mathrm{~cm}=16 \mathrm{~cm}^{2}$
Area B: $6 \mathrm{~cm} \times 9 \mathrm{~cm}=54 \mathrm{~cm}^{2}$

$$
\begin{aligned}
\text { Total area } & =16 \mathrm{~cm}^{2}+54 \mathrm{~cm}^{2} \\
& =\mathrm{cm}^{2}
\end{aligned}
$$

Q2

Area A: $3 \mathrm{~cm} \times 4 \mathrm{~cm}=12 \mathrm{~cm}^{2}$

Area B: $6 \mathrm{~cm} \times$	$\mathrm{cm}=$	cm^{2}
Total area	$=12 \mathrm{~cm}^{2}+$	cm^{2}
	$=$	cm^{2}

Q3

Q4

Area A: $\mathrm{cm} \times \quad \mathrm{cm}=\quad \mathrm{cm}^{2}$
Area B: $5 \mathrm{~cm} \times \quad \mathrm{cm}=\quad \mathrm{cm}^{2}$

$$
\text { Total area }=\mathrm{cm}^{2}+\mathrm{cm}^{2}
$$

Section 8: Surface area of 3D solids (cuboids/cubes)

When we talk about the surface area of a shape, we are referring to the total area of all of its faces.
A reminder, a face is the surface of a shape. A cube or a cuboid, has six faces.

In this diagram you can see three of them, but there will be two blue, two green and two red surfaces.

Surface area $=$ area of all the surfaces of a shape.

Surface rea of cuboid $=2 \times$ area blue rectangle (one front, one back) $+2 \times$ area red rectangle (one top, one bottom) $+2 \times$ area green rectangle (one left, one right)

Area $=\left(2 \times 80 \mathrm{~cm}^{2}\right)+\left(2 \times 40 \mathrm{~cm}^{2}\right)+\left(2 \times 50 \mathrm{~cm}^{2}\right)$
$=160 \mathrm{~cm}^{2}+80 \mathrm{~cm}^{2}+100 \mathrm{~cm}^{2}$
$=340 \mathrm{~cm}^{2}$

Q1

4 cm			
Front and back	$\begin{array}{l}2 \times 4 \times 4 \mathrm{~cm}^{2} \\ =32 \mathrm{~cm}^{2}\end{array}$		
Left and right side	$\begin{array}{l}2 \times 5 \times 4 \mathrm{~cm}^{2} \\ =40 \mathrm{~cm}^{2}\end{array}$		
Top and bottom	$\begin{array}{l}2 \times 4 \times 5 \mathrm{~cm}^{2} \\ =40 \mathrm{~cm}^{2}\end{array}$		
Total Surface Area	$\begin{array}{l}32+40+40 \mathrm{~cm}^{2} \\ =\end{array} \quad \mathrm{cm}^{2}$	$]$	
:---			

Q2

Q3

Q4

50 cm		
Front and back	$\begin{aligned} & 2 \times \\ & \mathrm{cm}^{2} \\ & = \end{aligned}$	$\begin{gathered} \times \\ \mathrm{cm}^{2} \\ \hline \end{gathered}$
Left and right side	$\begin{aligned} & 2 \times \\ & \mathrm{cm}^{2} \\ & = \\ & \hline \end{aligned}$	$\begin{gathered} \times \\ c^{2} \end{gathered}$
Top and bottom	$\begin{aligned} & 2 \times \\ & \mathrm{cm}^{2} \\ & = \end{aligned}$	$\begin{gathered} \times \\ \mathrm{cm}^{2} \end{gathered}$
Total Surface Area	$=$	$\begin{array}{cc} + & + \\ \mathrm{cm}^{2} & \\ \mathrm{~cm}^{2} & \\ \hline \end{array}$

Q5

25 cm			
Front and back	=	$\begin{aligned} & \mathrm{x} \\ & \mathrm{~cm}^{2} \\ & \mathrm{~cm}^{2} \end{aligned}$	\times
Left and right side	$=$	$\begin{aligned} & \times \\ & \mathrm{cm}^{2} \\ & \mathrm{~cm}^{2} \end{aligned}$	\times
Top and bottom	=	$\begin{aligned} & \times \\ & \mathrm{cm}^{2} \\ & \mathrm{~cm}^{2} \end{aligned}$	\times
Total Surface Area	$=$	$\begin{aligned} & + \\ & \mathrm{cm}^{2} \\ & \mathrm{~cm}^{2} \end{aligned}$	+

Q6

Q7

250 cm

Front and back	$=$	$\begin{aligned} & \times \\ & \mathrm{cm}^{2} \\ & \mathrm{~cm}^{2} \end{aligned}$	\times
Left and right side	$=$	$\begin{aligned} & \times \\ & \mathrm{cm}^{2} \\ & \mathrm{~cm}^{2} \end{aligned}$	\times
Top and bottom	$=$	$\begin{aligned} & \times \\ & \mathrm{cm}^{2} \\ & \mathrm{~cm}^{2} \end{aligned}$	\times
Total Surface Area	$=$	$\begin{aligned} & + \\ & \mathrm{cm}^{2} \\ & \mathrm{~cm}^{2} \\ & \hline \end{aligned}$	+

Q8

Front and back	=	$\begin{gathered} \mathrm{cm}^{2} \\ \mathrm{~cm}^{2} \\ \hline \end{gathered}$	
Left and right side	=	cm^{2} cm^{2}	\times
Top and bottom	$=$	$\begin{aligned} & \times \\ & \mathrm{cm}^{2} \\ & \mathrm{~cm}^{2} \\ & \hline \end{aligned}$	\times
Total Surface Area	$=$	$\begin{aligned} & + \\ & \mathrm{cm}^{2} \\ & \mathrm{~cm}^{2} \end{aligned}$	+

Section 9: Surface area of 3D solids (prisms)

You can calculate the surface area of any 3D prism

Key point 7

A prism is a 3D solid that has the same cross-section all through its length.

In exactly the same way that you calculated the surface area of a cuboid, so you can calculate the surface area of a prism

One way of thinking about it is to think about the net that would make the shape.

Finding areas of rectangles should not be a problem. The area of the two orange triangles you will have to think about
Area

```
= 1/2 (base }\times\mathrm{ height)
    =1/2(6cm }\times7\textrm{cm}
    = 1/2(42cm}\mp@subsup{}{}{2}
    =21 cm
```

```
Total area \(=(10 \mathrm{~cm} \times 5 \mathrm{~cm})+(10 \mathrm{~cm} \times 6 \mathrm{~cm})+(10 \mathrm{~cm} \times 6 \mathrm{~cm})+\left(2 \times 21 \mathrm{~cm}^{2}\right)\)
    \(=50 \mathrm{~cm}^{2}+60 \mathrm{~cm}^{2}+60 \mathrm{~cm}^{2}+42 \mathrm{~cm}^{2}\)
    \(=212 \mathrm{~cm}^{2}\)
```


Worksheet 9: Surface area of 3D solids (prisms)

Q1

Q2

Q3

Area of triangle	$1 / 2($ base \times height $)$ $1 / 2(6 \times 8)$ $=24 \mathrm{~cm}^{2}$
Area of base	$4 \mathrm{~cm} \times 6 \mathrm{~cm}$ $=24 \mathrm{~cm}^{2}$
Area of top	$4 \mathrm{~cm} \times 10 \mathrm{~cm}$ $=40 \mathrm{~cm}^{2}$
Area of back	$8 \mathrm{~cm} \times 4 \mathrm{~cm}$ $=32 \mathrm{~cm}^{2}$
Total	$(2 \times 24)+24+40$ +32 $=$

Area of triangle	$\begin{aligned} & 1 / 2(\text { base } \times \text { height }) \\ & 1 / 2(6 \times 8) \end{aligned}$
Area of base	$\begin{aligned} & 6 \mathrm{~cm} \times \mathrm{cm}^{2} \\ & = \end{aligned} \mathrm{cm}^{2}$
Area of top	$\begin{aligned} & 10 \mathrm{~cm} \times 8 \mathrm{~cm} \\ & =80 \mathrm{~cm}^{2} \end{aligned}$
Area of back	$\begin{aligned} & 8 \mathrm{~cm} \times 8 \mathrm{~cm} \\ & =64 \mathrm{~cm}^{2} \end{aligned}$
Total	$\begin{array}{cc} (2 \times &)+ \\ & +80+64 \\ = & \mathrm{cm}^{2} \end{array}$

Area of triangle	1⁄2 (base \times height)
	$\left.\begin{array}{ll} 1 / 2(& \times \\ = & \mathrm{cm}^{2} \end{array}\right)$
Area of base	$\begin{array}{ll} & \mathrm{cm} \times \\ \mathrm{cm} & \\ = & \mathrm{cm}^{2} \end{array}$
Area of top	$\begin{gathered} \mathrm{cm} \times 8 \mathrm{~cm} \\ =\quad \mathrm{cm}^{2} \end{gathered}$
Area of back	$\begin{aligned} & 6 \mathrm{~cm} \times 8 \mathrm{~cm} \\ & =48 \mathrm{~cm}^{2} \\ & \hline \end{aligned}$
Total	$\begin{aligned} & (2 \times)^{+} \\ & 48 \\ & 48 \\ & = \\ & =\mathrm{cm}^{2} \end{aligned}$

Area of triangle	$\begin{aligned} & 1 / 2(\text { base } \times \text { height }) \\ & 1 / 2(6 \times 4) \end{aligned}$
Area of base	$\begin{array}{ll} & \mathrm{cm} \times \\ \mathrm{cm} & \\ = & \mathrm{cm}^{2} \end{array}$
Area of Left top	$\begin{aligned} & 5 \mathrm{~cm} \times 4 \mathrm{~cm} \\ & =20 \mathrm{~cm}^{2} \end{aligned}$
Area of right top	$\begin{array}{ll} & \mathrm{cm} \times \\ \mathrm{cm} & \\ = & \mathrm{cm}^{2} \end{array}$
Total	$\begin{array}{rr} (2 \times &)^{+}+ \\ & +20+ \\ = & \mathrm{cm}^{2} \end{array}$

Q5

Area of triangle	½ (base \times height)
	$\left.\begin{array}{ccc} 1 / 2(& \times \\ = & \mathrm{cm}^{2} \end{array}\right)$
Area of base	$\begin{array}{lc} & \mathrm{cm} \times \\ \mathrm{cm} & \\ = & \mathrm{cm}^{2} \end{array}$
Area of Left top	$\begin{gathered} \mathrm{cm} \times 2 \mathrm{~cm} \\ =\quad \mathrm{cm}^{2} \end{gathered}$
Area of right top	$\begin{aligned} & 5 \mathrm{~cm} \times \mathrm{cm}^{2} \mathrm{~cm} \\ & =\quad \mathrm{cm}^{2} \end{aligned}$
Total	$\begin{aligned} & (2 \times+)^{+}+ \\ & =\quad \mathrm{cm}^{2} \end{aligned}$

Q6

Area of triangle	$1 / 2$ (base \times height)
	$\begin{array}{lll} 1 / 2(& \times &) \\ = & \mathrm{cm}^{2} \\ \hline \end{array}$
Area of base	$\begin{array}{lc} & \mathrm{cm} \times \\ \mathrm{cm} & \\ = & \mathrm{cm}^{2} \end{array}$
Area of Left top	$\begin{array}{lc} \mathrm{cm} \times & \mathrm{cm} \times \\ = & \mathrm{cm}^{2} \end{array}$
Area of right top	$\mathrm{cm} \times$ $=$ cm^{2}
Total	$\begin{aligned} & (2 \times)^{+}+ \\ & =\quad \mathrm{cm}^{2} \end{aligned}$

Q7

| Area of rectangle | $\begin{array}{l}2 \mathrm{~cm} \times 4 \mathrm{~cm} \\ \text { A (front) }\end{array}$ | | cm^{2} |
| :--- | :--- | :--- | :--- |$]$

Area of rectangle A (front)	$\begin{aligned} & \mathrm{cm} \times 4 \mathrm{~cm} \\ = & \mathrm{cm}^{2} \end{aligned}$
Area of rectangle B (front)	$\begin{aligned} & 2 \mathrm{~cm} \times \quad \mathrm{cm} \\ & =\quad \mathrm{cm}^{2} \\ & \hline \end{aligned}$
Total area of front	$\begin{array}{ll} + & = \\ \mathrm{cm}^{2} \end{array}$
Area of base	$\begin{aligned} & 6 \mathrm{~cm} \times \mathrm{cm}^{2} \mathrm{~cm} \\ & =\quad \end{aligned}$
Area of rectangle C (Left hand side)	$\begin{aligned} & 2 \mathrm{~cm} \times \mathrm{cm}^{2} \mathrm{~cm} \\ & =\quad \end{aligned}$
Area of rectangle D (Top surface)	$\begin{aligned} & 4 \mathrm{~cm} \times \mathrm{cm}^{2} \mathrm{~cm} \\ & =\quad \end{aligned}$
Area of rectangle E (Left hand side)	$\begin{aligned} & 2 \mathrm{~cm} \times \quad \mathrm{cm} \\ & =\quad \mathrm{cm}^{2} \\ & \hline \end{aligned}$
Area of rectangle F (Top surface)	$\begin{aligned} & 2 \mathrm{~cm} \times \mathrm{cm}^{2} \mathrm{~cm} \\ & =\quad \end{aligned}$
Area of rectangle G (Right hand side)	$\begin{aligned} & 4 \mathrm{~cm} \times \quad \mathrm{cm} \\ & =\quad \mathrm{cm}^{2} \end{aligned}$
$\begin{aligned} & \text { Total }(2 \times \text { Front })+ \\ & \text { base }+C+D+E+ \\ & F+G \end{aligned}$	

Area of rectangle A (front)	$\begin{aligned} & \mathrm{cm} \times 4 \mathrm{~cm} \\ & =\quad \mathrm{cm}^{2} \end{aligned}$
Area of rectangle B (front)	$\begin{array}{ll} & \mathrm{cm} \times \\ \mathrm{cm} & \\ = & \mathrm{cm}^{2} \end{array}$
Total area of front	$\begin{array}{ll} + & = \\ \mathrm{cm}^{2} \end{array}$
Area of base	$\begin{array}{ll} & \mathrm{cm} \times \\ \mathrm{cm} & \\ = & \mathrm{cm}^{2} \end{array}$
Area of rectangle C (Left hand side)	$\begin{aligned} & 3 \mathrm{~cm} \times \mathrm{cm}^{2} \\ & =\quad \mathrm{cm} \end{aligned}$
Area of rectangle D (Top surface)	$\begin{array}{ll} & \mathrm{cm} \times \\ \mathrm{cm} & \\ = & \mathrm{cm}^{2} \end{array}$
Area of rectangle E (Left hand side)	$\begin{aligned} & 2 \mathrm{~cm} \times \mathrm{cm}^{2} \mathrm{~cm} \\ & =\quad \end{aligned}$
Area of rectangle F (Top surface)	$\begin{array}{ll} & \mathrm{cm} \times \\ \mathrm{cm} & \\ = & \mathrm{cm}^{2} \end{array}$
Area of rectangle G (Right hand side)	$\begin{aligned} & 4 \mathrm{~cm} \times \quad \mathrm{cm} \\ & =\quad \mathrm{cm}^{2} \end{aligned}$
$\begin{aligned} & \text { Total }(2 \times \text { Front })+ \\ & \text { base }+C+D+E+ \\ & F+G \end{aligned}$	

Section 10: Volume of cubes and cuboids

Volume $=$ length \times width \times height
The unit of volume is $\mathrm{mm}^{3}, \mathrm{~cm}^{3}$, or m^{3} or, if it was something massive, km^{3}.

Example 1: Calculate the volume given the dimensions

8 cm

Volume

$$
\begin{aligned}
& =\text { length } \times \text { width } \times \text { height } \\
& =8 \mathrm{~cm} \times 10 \mathrm{~cm} \times 6 \mathrm{~cm} \\
& =480 \mathrm{~cm}^{3}
\end{aligned}
$$

Example 2: Calculate a missing dimension given volume

Volume	$=$ length \times width \times height
240	$=8 \mathrm{~cm} \times 10 \mathrm{~cm} \times x \mathrm{~cm}$
240	$=80 \times x \mathrm{~cm}$
$240 / 80$	$=x \mathrm{~cm}$
\boldsymbol{x}	$=\mathbf{3 c m}$

Worksheet 10: Volume of cubes and cuboids

Q1

$\begin{aligned} \text { Volume } \quad & =\text { length } \times \text { width } \times \text { height } \\ & =4 \mathrm{~cm} \times 5 \mathrm{~cm} \times 4 \mathrm{~cm} \\ & =\quad \mathrm{cm}^{3}\end{aligned}$

Q2

Volume

$$
\begin{aligned}
& =\text { length } \times \text { width } \times \text { height } \\
& =4 \mathrm{~cm} \times 5 \mathrm{~cm} \times \quad \mathrm{cm} \\
& =\quad \mathrm{cm}^{3}
\end{aligned}
$$

Q3

Volume
cm

$$
\begin{aligned}
& =\text { length } \times \text { width } \times \text { height } \\
& =\quad \mathrm{cm} \times \quad \mathrm{cm} \times
\end{aligned}
$$

$$
=\quad \mathrm{cm}^{3}
$$

Q4

50 cm
Volume
cm
$=\quad \mathrm{cm}^{3}$

Q5

Volume
$=$ length \times width \times height
$=\mathrm{cm} \times \mathrm{cm} \times$
cm
$=\quad \mathrm{cm}^{3}$

Q6

Volume
$=$ length \times width \times height
cm
$=\quad \mathrm{cm}^{3}$

Q7

25 cm

Think about this one. If you calculated the volume in Q6, then this is half of the shape. If it is half the size of Q6, then what will it's volume be?

```
Volume \(\quad=1 / 2(\) length \(\times\) width \(\times\)
height)
cm)
\(=\quad \mathrm{cm}^{3}\)
```

Q8.


```
Volume = =1/2(length }\times\mathrm{ width }
height)
    =1/2( cm x cm
x
    cm)
        = cm
```


Section 11: Volume of prisms

Cross sectional area means the area of the base.

Key point 12

Volume of a prism $=$ area of cross-section \times length

area of cross-section

Example 5

Work out the volume of this prism.

Write down the formula.

Volume $=$ area of cross-section \times length
Area of $\Delta=\frac{1}{2} \times 10 \times 8$
$=5 \times 8$
$=40 \quad$ Substitute the area of the cross-section and $=40$ the length into the formula.
Volume $=40 \times 7$
$=280 \mathrm{~cm}^{3}$

Write the units.

Example 2. More complex shape

Volume $=$ cross sectional area \times length
Cross sectional area $=\operatorname{area} \mathrm{A}+\operatorname{area} \mathrm{B}$
$=(4 \times 2)+(2 \times 4)$
$=8 \mathrm{~cm}^{2}+8 \mathrm{~cm}^{2}$
$=16 \mathrm{~cm}^{2}$
Volume $\quad=$ cross sectional area \times length
$=16 \mathrm{~cm}^{2} \times 4 \mathrm{~cm}$
$=64 \mathrm{~cm}^{3}$

Q1

Volume $=$ cross sectional area \times length cross sectional area $=1 / 2$ (base \times height)

$$
=1 / 2(6 \mathrm{~cm} \times 4 \mathrm{~cm})
$$

$$
=12 \mathrm{~cm}^{2}
$$

Volume $=$ cross sectional area \times length

$$
\begin{aligned}
& =12 \mathrm{~cm}^{2} \times 4 \mathrm{~cm} \\
& =\quad \mathrm{cm}^{3}
\end{aligned}
$$

Q2

Volume $=$ cross sectional area \times length cross sectional area $=1 / 2$ (base \times height)

$$
=1 / 2(6 \mathrm{~cm} \times
$$

cm)

$$
=\quad \mathrm{cm}^{2}
$$

Volume $=$ cross sectional area \times length

$$
\begin{aligned}
& =\quad \mathrm{cm}^{2} \times 8 \mathrm{~cm} \\
& =\quad \mathrm{cm}^{3}
\end{aligned}
$$

Q3

Volume $=$ cross sectional area \times length cross sectional area $=1 / 2$ (base \times height)

$$
=1 / 2(\quad \mathrm{~cm} \times
$$

cm)

$$
=\quad \mathrm{cm}^{2}
$$

Volume $=$ cross sectional area \times length

$$
\begin{array}{ll}
= & \mathrm{cm}^{2} \times \quad \mathrm{cm} \\
= & \mathrm{cm}^{3}
\end{array}
$$

Q4

$\begin{aligned} & \text { Volume }=\text { cross sectional area } \times \text { length } \\ & \text { cross sectional area }=1 / 2(\text { base } \times \text { height }) \\ &=1 / 2(6 \mathrm{~cm} \times 4 \mathrm{~cm}) \\ &=\quad \mathrm{cm}^{2}\end{aligned}$
Volume $=$ cross sectional area \times length

$$
\begin{aligned}
& =\mathrm{cm}^{2} \times \quad \mathrm{cm} \\
& =\quad \mathrm{cm}^{3}
\end{aligned}
$$

Q5

Volume $=$ cross sectional area \times length cross sectional area $=1 / 2$ (base \times height) $=1 / 2(\mathrm{~cm} \times$ cm)

$$
=\quad \mathrm{cm}^{2}
$$

Volume $=$ cross sectional area \times length

$$
\begin{array}{lll}
= & \mathrm{cm}^{2} \times & \mathrm{cm} \\
= & \mathrm{cm}^{3} &
\end{array}
$$

Q6

Volume $=$ cross sectional area \times length cross sectional area $=1 / 2$ (base \times height)

$$
=1 / 2(\quad \mathrm{~cm} \times
$$

cm)

$$
=\mathrm{cm}^{2}
$$

Volume $=$ cross sectional area \times length

$$
\begin{array}{lll}
= & \mathrm{cm}^{2} \times & \mathrm{cm} \\
= & \mathrm{cm}^{3} &
\end{array}
$$

Q7

Volume $=$ cross sectional area \times length cross sectional area

$$
\begin{aligned}
& =(\text { base } \times \text { perpendicular height }) \\
& =(6 \mathrm{~cm} \times 4 \mathrm{~cm}) \\
& =\quad \mathrm{cm}^{2}
\end{aligned}
$$

Volume $=$ cross sectional area \times length

$$
\begin{array}{ll}
= & \mathrm{cm}^{2} \times \\
= & \mathrm{cm}^{3}
\end{array}
$$

Q8

Volume $=$ cross sectional area \times length cross sectional area

$$
\begin{aligned}
& =(\text { base } \times \text { perpendicular height }) \\
& =(\quad \mathrm{cm} \times \quad \mathrm{cm}) \\
& = \\
& \mathrm{cm}^{2}
\end{aligned}
$$

Volume $=$ cross sectional area \times length

$$
\begin{array}{ll}
= & \mathrm{cm}^{2} \times \quad \mathrm{cm} \\
= & \mathrm{cm}^{3}
\end{array}
$$

Q9

Volume $=$ cross sectional area \times length cross sectional area

$$
\begin{aligned}
& =(\text { base } \times \text { perpendicular height }) \\
& =(\quad \mathrm{cm} \times \quad \mathrm{cm}) \\
& =\left(\mathrm{cm}^{2}\right.
\end{aligned}
$$

Volume $=$ cross sectional area \times length

$$
\begin{array}{ll}
= & \mathrm{cm}^{2} \times \\
= & \mathrm{cm}^{3}
\end{array}
$$

Q10

Volume $=$ cross sectional area \times length
Cross sectional area $=$ area $A+\operatorname{area} B$

$$
\begin{aligned}
& =(4 \times 2)+(2 \times 4) \\
& =8 \mathrm{~cm}^{2}+8 \mathrm{~cm}^{2} \\
& =\quad \mathrm{cm}^{2}
\end{aligned}
$$

Volume $=$ cross sectional area \times length

$$
\begin{array}{lll}
= & \mathrm{cm}^{2} \times \quad \mathrm{cm} \\
= & \mathrm{cm}^{3} &
\end{array}
$$

Q11

Volume $=$ cross sectional area \times length
Cross sectional area $=\operatorname{area} A+\operatorname{area} B$

$$
=(\quad \times \quad)+
$$

(x)

$$
\mathrm{cm}^{2}
$$

$$
=\quad \mathrm{cm}^{2}+
$$

$$
=\mathrm{cm}^{2}
$$

Volume $=$ cross sectional area \times length

$$
\begin{array}{ll}
= & \mathrm{cm}^{2} \times \quad \mathrm{cm} \\
= & \mathrm{cm}^{3}
\end{array}
$$

Q12

Volume $=$ cross sectional area \times length
Cross sectional area $=\operatorname{area} A+\operatorname{area} B$

$$
=(\quad x \quad)+
$$

(x)

$$
\begin{aligned}
& =\mathrm{cm}^{2}+ \\
\mathrm{cm}^{2} & =\mathrm{cm}^{2}
\end{aligned}
$$

Volume $=$ cross sectional area \times length

$$
\begin{array}{ll}
= & \mathrm{cm}^{2} \times \quad \mathrm{cm} \\
= & \mathrm{cm}^{3}
\end{array}
$$

Section 12: Converting area and cubic units

$1 \mathrm{~cm}=10 \mathrm{~mm}$
$1 \mathrm{~m}=100 \mathrm{~cm}$

So $1 \mathrm{~cm}^{2}=10 \mathrm{~mm} \times 10 \mathrm{~mm}$

$$
=100 \mathrm{~mm}^{2}
$$

10 mm
And $1 \mathrm{~cm}^{3}=10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 10 \mathrm{~mm}$

$$
=1000 \mathrm{~mm}^{2}
$$

10 mm

Likewise

$$
\begin{aligned}
1 \mathrm{~m}^{2} & =100 \mathrm{~cm} \times 100 \mathrm{~cm} \\
& =10,000 \mathrm{~cm}^{2}
\end{aligned}
$$

100 cm
And $1 \mathrm{~m}^{3}=100 \mathrm{~cm} \times 100 \mathrm{~cm} \times 100 \mathrm{~cm}$

$$
=1,000,000 \mathrm{~cm}^{2}
$$

100 cm

Worksheet 12: Converting area and cubic units		Q8 Convert $3.7 \mathrm{~cm}^{3}$ into mm^{3}			
Q1 Convert $7 \mathrm{~cm}^{2}$ into mm^{2}		$1 \mathrm{~cm}^{3}=1000 \mathrm{~mm}^{3}$			
		$3.7 \mathrm{~cm}^{3}=$	$\times \quad \mathrm{mm}^{3}$		
		$=$	mm^{3}		
$1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2}$					
$7 \mathrm{~cm}^{2}=7 \times$	$0 \mathrm{~mm}^{2}$	Q9			
	mm^{2}	Convert $3.7 \mathrm{~m}^{3}$ into cm^{3}			
Q2 Convert $70 \mathrm{~cm}^{2}$ into mm^{2}		$1 \mathrm{~m}^{3}=1000000 \mathrm{~cm}^{3}$			
		$3.7 \mathrm{~m}^{3}=$	$\times \quad \mathrm{cm}^{3}$		
Convert $70 \mathrm{~cm}^{2}$ into mm^{2}			cm^{3}		
$1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2}$					
$70 \mathrm{~cm}^{2}=$	$\times 100 \mathrm{~mm}^{2}$	Q10			
	mm^{2}	Convert $0.37 \mathrm{~m}^{3}$ into cm^{3}			
Q3		$1 \mathrm{~m}^{3}=1000000 \mathrm{~cm}^{3}$			
Convert $0.70 \mathrm{~cm}^{2}$ into mm^{2}		$0.37 \mathrm{~m}^{3}=$	$\times \mathrm{cm}^{3}$		
		cm^{3}			
$1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2}$					
$0.70 \mathrm{~cm}^{2}=$	mm^{2}		Q11		
		Convert $0.37 \mathrm{~m}^{3}$ into mm^{3}			
		$1 \mathrm{~m}^{3}=1000$	$000 \mathrm{~cm}^{3}$		
Q4		$1 \mathrm{~cm}^{2}=100$	m^{2}		
Convert $0.7 \mathrm{~cm}^{2}$ into mm^{2}		$\begin{aligned} 0.37 \mathrm{~cm}^{3} & = \\ & =\end{aligned}$	$\times \quad \mathrm{cm}^{3}$		
		cm^{3}			
$1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2}$			$\mathrm{cm}^{3}=$	mm^{3}	
$0.7 \mathrm{~cm}^{2}=$	mm^{2}				
		Q12			
		Convert $37 \mathrm{~m}^{3}$	to mm^{3}		
Q5					
Convert $0.07 \mathrm{~cm}^{2}$ into mm^{2}		$\begin{aligned} & 1 \mathrm{~m}^{3}=1000000 \mathrm{~cm}^{3} \\ & 1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2} \end{aligned}$			
$1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2}$		$37 \mathrm{~cm}^{3}=\times \mathrm{cm}^{3}$			
$0.07 \mathrm{~cm}^{2}=$	mm^{2}		cm^{3}		
		$\mathrm{cm}^{3}=$	mm^{3}		
Q7		Q13			
Convert $3.07 \mathrm{~cm}^{3}$ into mm^{3}		Convert $137 \mathrm{~m}^{3}$ into mm^{3}			
$1 \mathrm{~cm}^{3}=1000 \mathrm{~mm}^{3}$		$1 \mathrm{~m}^{3}=1000000 \mathrm{~cm}^{3}$			
$3.07 \mathrm{~cm}^{3}=$	mm^{3}	$1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2}$			
		$137 \mathrm{~cm}^{3}=$	$\times \quad \mathrm{cm}^{3}$		
		$\begin{gathered} = \\ \mathrm{cm}^{3}= \end{gathered}$	$\begin{aligned} & \mathrm{cm}^{3} \\ & \mathrm{~mm}^{3} \end{aligned}$		

