1. Plan

What You'll Learn

- To find perimeters of rectangles and squares, and circumferences of circles
- To find areas of rectangles, squares, and circles

. . . And Why

To find the amount of fencing material needed to build a fence, as in Example 1

Check Skills You'll Need

Simplify each absolute value.

1. $|4-8| 4$
2. $|10-(-5)|$

Find the distance between the points to the nearest tenth.
4. $A(2,3), B(5,9) 6.7$
5. $K(-1,-3), L(0,0) 3.2$
6. $W(4,-7), Z(10,-2) 7.8$
7. $C(-5,2), D(-7,6) 4.5$
8. $M(-1,-10), P(-12,-3) 13.0$
9. $Q(-8,-4), R(-3,-10) 7.8$

Vocabulary Tip

You can think of the perimeter of a polygon as the distance around it and the area as the number of square units it encloses.

Online
active math

For: Perimeter/Area Activity Use: Interactive Textbook, 1-9

Hands-On Activity: Finding Perimeter and Area

Draw each figure on centimeter grid paper.

- a rectangle with length 5 cm and width 3 cm
- a rectangle with length 8 cm and height 2 cm
- a rectangle with each side 4 cm

1. To find the perimeter of each rectangle, find the sum of the lengths of the sides. Record the perimeter of each rectangle. 1-2. See margin.
2. To find the area of each rectangle, count the number of square centimeters in its interior. Record the area of each rectangle.
3. Do rectangles with equal perimeters have the same area? no
4. Do rectangles with the same area have the same perimeter? no
5. Use a piece of string and make a loop. Tie a slip knot. Adjust the loop and fix its total length at 36 cm . Use the loop to approximate different rectangles on your grid paper. Record their lengths, widths, perimeters, and areas. What do you notice? Check students' work.

The perimeter P of a polygon is the sum of the lengths of its sides. The area A of a polygon is the number of square units it encloses. For special figures such as squares, rectangles, and circles, you can use formulas for perimeter (called circumference in circles) and area.

Some formulas for perimeter and area are given in the chart at the top of the next page. You will also find the chart on pages 764 and 765 to be useful at times.

Lesson 1-9 Perimeter, Circumference, and Area

Differentiated Instruction solutions for All Learners

Special Needs
 L1

In Example 3, encourage students to first estimate the perimeter. Ask: What is the size of a square unit on the coordinate grid? one square unit Students then check that the solution is reasonable.
learning style: visual

Below Level L2

Review the difference between rational and irrational numbers before discussing why π is irrational.

Objectives

1 To find perimeters of rectangles and squares, and circumferences of circles
2 To find areas of rectangles, squares, and circles

Examples

1 Real-World Connection
2 Finding Circumference
3 Finding Perimeter in the Coordinate Plane
4 Finding Area of a Rectangle
5 Finding Area of a Circle
6 Finding Area of an Irregular Shape

Brofessional

Math Background

Strictly speaking, a polygon has no area because it is composed only of segments. A polygonal region is the union of a polygon and its interior. You can use Euclidean geometry to derive formulas for the areas of polygonal regions, but you need calculus to find the areas of some nonpolygonal regions.

More Math Background: p. 2D

Lesson Planning and Resources

See p. 2E for a list of the resources that support this lesson.

[^0]Key Concepts

Guided Instruction

Hands-On Activity

Encourage students to use the term counterexample in Exercises 3 and 4.

ㅊx:

Students may think they need to add 3 ft only once to each dimension. Discuss why 3 ft is added twice to each dimension. Have students examine a window frame to help clarify each new length and width.

ExANPLE Teaching Tip

The calculator value for π is used for all the examples and exercises in this lesson.

Margaret's garden is a square 12 ft on each side. She wants a 1 - ft -wide path around the entire garden. What will the outside perimeter of the path be? 56 ft
$\odot G$ has a radius of 6.5 cm . Find the circumference of $\odot G$ in terms of π. Then find the circumference to the nearest tenth. 13π; about 40.8 cm
(3) Quadrilateral $A B C D$ has vertices $A(0,0), B(9,12)$, $C(11,12)$, and $D(2,0)$. Find the perimeter. 34

Vocabulary Tip

For a rectangle,
"length" and "width" are sometimes used in place of "base" and "height."

Square with side length s

Perimeter $P=4 s$
Area $A=s^{2}$
Area

Rectangle with base b and height h
Perimeter $P=2 b+2 h$
Area $A=b h$

Circle with radius r and diameter d

Circumference $C=\pi d$,

$$
\text { or } C=2 \pi r
$$

Area $=\pi r^{2}$

The units of measurement for perimeter and circumference include inches, feet, yards, miles, centimeters, meters, and kilometers. When measuring area, use square units such as square inches (in. ${ }^{2}$), square centimeters $\left(\mathrm{cm}^{2}\right)$, square meters $\left(\mathrm{m}^{2}\right)$, and square miles $\left(\mathrm{mi}^{2}\right)$.

1) EXADMPLE Real-World Connection

Fencing Your pool is 15 ft wide and 20 ft long with a 3 -ft wide deck surrounding it. You want to build a fence around the deck. How much fencing will you need?
To find the perimeter of the pool with the deck, first find the width and length of the pool with the deck.

Width of pool $=15+3+3=21$ and deck

Length of pool $=20+3+3=26$ and deck
Perimeter of a rectangle $=2 b+2 h$
Use the formula for the perimeter of a rectangle.

$$
\begin{array}{ll}
P=2(21)+2(26) & \text { Substitute. } \\
P=42+52 & \text { Simplify. } \\
P=94 &
\end{array}
$$

You will need 94 ft of fencing.

Suppose you want to frame a picture that is 6 in. by 7 in . with a $\frac{1}{2}$-in. wide frame.
a. Find the perimeter of the picture. 26 in .
b. Find the perimeter of the outside edge of the frame. 30 in .

Notice that the formulas for a circle involve π. Since the number π is irrational,

$$
\pi=3.1415926 \ldots
$$

you cannot write it as a terminating decimal. For an approximate answer, you can use 3.14 or $\frac{22}{7}\left(3.14 \approx \frac{22}{7}\right)$ for π. You can also use the rounded decimal you get by pressing π on your calculator. For an exact answer leave the result in terms of π.

Difierentiated Instruction solutions for All Learners

Advanced Learners
 L4

After students find the perimeter in Example 1, have them find the area of the deck.

English Language Learners ELL

Review the terms radius, diameter, and circumference. Compare the radius of a bicycle wheel to its diameter. Emphasize that circumference is the distance that the wheel rolls in one revolution.

Vocabulary Tip

Read $\odot A$ as "circle A."

2 ExADPLE Finding Circumference

Find the circumference of $\odot A$ in terms of π. Then find the circumference to the nearest tenth.

$$
\begin{array}{ll}
C=\pi d & \\
C=12 \pi & \text { This is the exact answer. } \\
12 \times \pi \text { 可 } 37.599172 & \text { Use a calculator. } \\
C \approx 37.7 &
\end{array}
$$

The circumference of the circle is 12π in., or about 37.7 in.
2) Find the circumference of a circle with a radius of 18 m in terms of $\pi .36 \pi \mathrm{~m}$
b. Find the circumference of a circle with a diameter of 18 m to the nearest tenth
56.5 m

3 ExANPLE Finding Perimeter in the Coordinate Plane

Algebra Find the perimeter of $\triangle A B C$.
Find the length of each side. Add the lengths to find the perimeter.

$$
\begin{array}{rlr}
A B & =|5-(-1)|=6 & \text { Use the Ruler Postulate. } \\
B C & =|6-(-2)|=8 & \\
A C & =\sqrt{(5-(-1))^{2}+(6-(-2))^{2}} & \text { Use the Distance Formula. } \\
& =\sqrt{6^{2}+8^{2}}=\sqrt{100}=10 & \\
A B & +B C+A C=6+8+10=24 &
\end{array}
$$

The perimeter of $\triangle A B C$ is 24 units.

Graph quadrilateral $K L M N$ with vertices $K(-3,-3), L(1,-3), M(1,4)$, and $N(-3,1)$. Find the perimeter of $K L M N$. See margin.

To find area, you should use the same unit for both dimensions.

Video Tutor Help
Visit: PHSchool.com Web Code: aue-0775

4 Example Finding Area of a Rectangle

You are designing a rectangular banner for the front of the museum. The banner will be 4 ft wide and 7 yd high. How much material do you need?

$$
\begin{aligned}
7 \mathrm{yd} & =21 \mathrm{ft} & & \text { Change yards to feet using } \mathbf{1} \mathrm{yd}=\mathbf{3} \mathrm{ft} . \\
\text { Area } & =b h & & \text { Use the formula for area of a rectangle. } \\
A & =4(21) & & \text { Substitute } \mathbf{4} \text { for } b \text { and } 21 \text { for } h . \\
A & =84 & &
\end{aligned}
$$

The area of the banner is 84 square feet $\left(\mathrm{ft}^{2}\right)$. You need at least $84 \mathrm{ft}^{2}$ of material.
Find the area of the banner in Example 4 by first changing all units to yards. Compare your answer to the one in Example 4. How do they compare? $9 \frac{1}{3} \mathrm{yd}^{2} ; 9 \frac{1}{3}$ is one-ninth of 84 .

Guided Instruction

EXANPLE Teaching Tip

Students may think that finding area in terms of π is less accurate than using an approximation for π, when the opposite is true. At this point, encourage students to find area both in terms of π and by using an approximation for π.

Example Math Tip

Use the figure from Example 6 to remind students that Postulate 1-10, The area of a region is the sum of the areas of its nonoverlapping parts, does not apply to perimeter.

Auditory Learners

Have students discuss ways to remember the formulas in this lesson. Encourage suggestions from the class.

Additional Examples

To make a project, you need a rectangular piece of fabric 36 in. wide and 4 ft long. How many square feet of fabric do you need? $12 \mathrm{ft}^{2}$

Quick Check

20 units

Additional Examples

(5) Find the area of $\odot B$ in terms of π.

$2.25 \pi \mathrm{yd}^{2}$
6 Find the area of the figure below.

$125 \mathrm{ft}^{2}$

Resources

- Daily Notetaking Guide 1-9 L3
- Daily Notetaking Guide 1-9Adapted Instruction

Closure

Find the area and perimeter of the square. Find the area and circumference of the circle in terms of π.

square: $64 \mathrm{~cm}^{2}$; 32 cm ; circle: $32 \pi \mathrm{~cm}^{2} ; 8 \sqrt{2} \pi \mathrm{~cm}$

ExADPLE Finding Area of a Circle

The diameter of a circle is 10 in . Find the area in terms of π.

$$
\begin{aligned}
\text { radius } & =\frac{10}{2} \text { or } 5 & & r=\frac{d}{2} \\
\text { Area } & =\pi r^{2} & & \text { Use the formula for area of a circle. } \\
A & =\pi(5)^{2} & & \text { Substitute } 5 \text { for } r . \\
A & =25 \pi & &
\end{aligned}
$$

The area of the circle is $25 \pi \mathrm{in}^{2}$.
Quick Check
(5)

The diameter of a circle is 5 ft .
a. Find the area in terms of $\pi . \quad \frac{25}{4} \pi \mathrm{ft}^{2}$
b. Find the area to the nearest tenth. $19.6 \mathrm{ft}^{2}$

The following postulates are useful in finding areas of figures with irregular shapes.

Postulate 1-9

If two figures are congruent, then their areas are equal.
Postulate 1-10
The area of a region is the sum of the areas of its nonoverlapping parts.

Example 6 applies Postulate 1-10 by summing the areas of the parts of a figure.

ExADIPLE Finding Area of an Irregular Shape

Multiple Choice What is the area of the figure at the right?
(A) $12 \mathrm{~cm}^{2}$
(B) $24 \mathrm{~cm}^{2}$
(C) $30 \mathrm{~cm}^{2}$
(D) $36 \mathrm{~cm}^{2}$

Test-Taking Tip

Marking diagrams on a test can help you understand the problem. If you cannot mark on the test, make a sketch of the diagram on scratch paper.

$$
\begin{aligned}
\text { Area } & =b h & & \text { Use the formula for the area of a rectangle. } \\
A_{1} & =6 \cdot 2=12 & & \text { Find the area of each rectangle. } \\
A_{2} & =4 \cdot 2=8 & & \\
A_{3} & =2 \cdot 2=4 & & \\
\text { Total Area } & =12+8+4=24 & & \text { Add the areas. }
\end{aligned}
$$

The area of the figure is $24 \mathrm{~cm}^{2}$. The correct choice is B.
Quick Check
Copy the figure in Example 6. Separate it in a different way. Find the area. See margin.

Quick Check

6.

$24 \mathrm{~cm}^{2}$

Practice by Example
Example 1 (page 62)

for Help

Find the perimeter of each figure.
1.

2.

36 cm

Find the perimeter of each rectangle with the given base and height.
3. 21 in., 7 in. 56 in.
4. $16 \mathrm{~cm}, 23 \mathrm{~cm} 78 \mathrm{~cm}$
5. $24 \mathrm{~m}, 36 \mathrm{~m} 120 \mathrm{~m}$
6. Framing A rectangular certificate 8 in . by 10 in . will have a frame $1 \frac{1}{2} \mathrm{in}$. wide surrounding it. What is the perimeter of the outside edge of the frame? 48 in.
7. Fencing A garden that is 5 ft by 6 ft has a walkway 2 ft wide around it. Find the amount of fencing needed to surround the walkway. 38 ft

Example 2 (page 63)

Example 3 (page 63)

Example 4 (page 63)

Example 5 (page 64)

Find the circumference of each circle in terms of π.

9.

10.

3.7π in.
$\frac{1}{2} \pi \mathrm{~m}$ 11.

Find the circumference of the circle to the nearest tenth.
12. $r=9$ in.
56.5 in.
56.5 in .
13. $d=7.3 \mathrm{~m}$
22.9 m
14. $d=\frac{1}{2} \mathrm{yd}$
1.6 yd
351.9 cm

Draw each figure in the coordinate plane. Find the perimeter. See back of book.
16. $X(0,2), Y(4,-1), Z(-2,-1)$
17. $A(-4,-1), B(4,5), C(4,-2)$
18. $L(0,1), M(3,5), N(5,5), P(5,1)$
19. $S(-5,3), T(7,-2), U(7,-6), V(-5,-6)$

Find the area of each rectangle with the given base and height. 20-25. See margin.
20. $4 \mathrm{ft}, 4 \mathrm{in}$.
21. 30 in., 4 yd
22. 2 ft 3 in., 6 in.
23. $40 \mathrm{~cm}, 2 \mathrm{~m}$
24. $3 \mathrm{~m}, 190 \mathrm{~cm}$
25. $240 \mathrm{~cm}, 5 \mathrm{~m}$
26. Find the area of a section of road pavement that is 20 ft wide and 100 yd long. $6000 \mathrm{ft}^{2}$ or $666 \frac{2}{3} \mathrm{yd}^{2}$
Find the area of each circle in terms of π.
27.

28.

29.

30.

31.

32.

20. $1 \frac{1}{3} \mathrm{ft}^{2}$ or 192 in. 2
21. 4320 in. 2 or $3 \frac{1}{3} y d^{2}$
22. $1 \frac{1}{8} \mathrm{ft}^{2}$ or 162 in. ${ }^{2}$
23. $8000 \mathrm{~cm}^{2}$ or $0.8 \mathrm{~m}^{2}$
24. $5.7 \mathrm{~m}^{2}$ or $57,000 \mathrm{~cm}^{2}$
25. $120,000 \mathrm{~cm}^{2}$ or $12 \mathrm{~m}^{2}$

3. Practice

Assignment Guide

1 A B	$1-19,50,55$
2 A B 20-49, 51-54, 56-63	
C Challenge	$64-70$
Test Prep	$71-75$
Mixed Review	$76-88$

Homework Quick Check

To check students' understanding of key skills and concepts, go over Exercises 6, 37, 41, 46, 51.

Visual Learners

Exercises 6, 7 Encourage students to draw the rectangles, write the applicable formula next to each drawing, and label their drawings with the appropriate units.
Exercises 20-26 Use these exercises to highlight the importance of using the same units when working with measurements.

Alternative Method

Exercises 37-38 Each figure

 can be separated in several ways. After students find the areas, have them share with a partner how they separated the figures.Exercise 58 Once students understand the question, write $x \cdot \square=\left(4 x^{2}-2 x\right)$ on the board and have them try to fill-in the box. Students should recognize that $x \cdot(4 x-2)$ and $4 x^{2}-2 x$ are equivalent.

Diversity

Exercise 60 Some students may be unfamiliar with weatherstripping. Invite a student to explain its use.
Exercise 64 If necessary, review the procedure for making tables on a graphing calculator.

Example 6

 (page 64)B
Apply Your Skills

39c. There are 144 square inches in one square foot. A square whose sides are 12 in . long and a square whose sides are 1 ft long are the same size.

Real-World Connection
Postulate 1-10 can help you estimate the area of the "footprint" of El Castillo.

Find the area of each circle to the nearest tenth.

33. $r=7 \mathrm{ft}$
34. $d=8.3 \mathrm{~m}$
$54.1 \mathrm{~m}^{2}$
35. $d=24 \mathrm{~cm}$
452.4 cm 2
36. $r=12 \mathrm{in}$.
452.4 in. ${ }^{2}$

$153.9 \mathrm{ft}^{2}$

Find the area of the shaded region. All angles are right angles.

37. $310 \mathrm{~m}^{2}$

38. 80 in. $^{2} 4 \mathrm{in}$.

39. a. What is the area of a square whose sides are 12 in . long? 144 in. ${ }^{2}$
b. What is the area of a square whose sides are 1 ft long? $1 \mathrm{ft}^{2}$
c. Reasoning How many square inches are in a square foot? Explain.
40. a. Count squares to find the area of the polygon outlined in blue. 30 squares
b. Use a formula to find the area of each square outlined in red. 16; 9; 4; 1
c. How does the sum of your results in part (b) compare to your result in part (a)? Which postulate does this support? They are =. Post. 1-10
41. Estimation On a postcard from Mexico, Ky sketched the "footprint" of the pyramid known as El Castillo in the ancient Mayan city Chichen Itza. He said he estimated the three different lengths on each side to be $22 \mathrm{~m}, 6 \mathrm{~m}$, and 11 m . Use those estimates to estimate the area of El Castillo's footprint. $3289 \mathrm{~m}^{2}$
42-45. Answers may vary. Check students' work. Samples are given. Estimation Estimate the perimeter and area of each object.

42. the front cover of your notebo
43. a classroom bulletin board 45. the top of your desk 12 ft ; $8 \mathrm{ft}^{2}$
$8 \mathrm{ft} ; 3.75 \mathrm{ft}^{2}$
44. Writing Choose one exercise from Exercises 42-45 and explain why you chose your unit of length. See margin.
45. The area of an $11-\mathrm{cm}$ wide rectangle is $176 \mathrm{~cm}^{2}$. What is its length? 16 cm
46. The perimeter of a rectangle is 40 cm and the base is 12 cm . What is its area? $96 \mathbf{c m}^{2}$
47. A square and a rectangle have equal area. The rectangle is 64 cm by 81 cm . What is the perimeter of the square? 288 cm
48. a. Critical Thinking Can you use the formula for the perimeter of a rectangle to find the perimeter of any square? Explain. See margin.
b. Can you use the formula for the perimeter of a square to find the perimeter of any rectangle? Explain. See margin.
c. Use the formula for the perimeter of a square to write a formula for the area of a square in terms of its perimeter. $A=\left(\frac{P}{4}\right)^{2}$ or $A=\frac{P^{2}}{16}$
49. The surface area of a three-dimensional figure is the GPS sum of the areas of all of its surfaces. You can find the surface area by finding the area of a net for the figure.
a. Draw a net for the solid shown. Label
 the dimensions. See back of book.
b. What is the area of the net? What is the surface area of the solid? 208 in. $^{2}, 208$ in. ${ }^{2}$
50. Answers may vary. Sample: For Exercise 44, you use feet because the bulletin board is too big for inches.
51. a. Yes; every square is a rectangle.
b. Answers may vary. Sample: No, not all rectangles are squares.

Real-World Connection
Four 6 in.-by-6 in. tiles will
cover $1 \mathrm{ft}^{2}$. cover $1 \mathrm{ft}^{2}$.
52. Tilling The students in the Art Club are tiling a wall that is 8 ft by 16 ft at the entrance to the community center. They are using tiles that are 6 in. by 6 in. to create a multi-colored design. How many tiles do the students need? 512 tiles

Algebra Draw each rectangle in the coordinate plane. Find its perimeter and area.
53. $A(-3,2), B(-2,2), C(-2,-2), D(-3,-2) 53-54$. See back of book.
54. $A(-2,-6), B(-2,-3), C(3,-3), D(3,-6)$

Coordinate Geometry On graph paper, draw polygon $A B C D E F G H$ with vertices $A(1,1), B(10,1), C(10,8), D(7,8), E(7,5), F(4,5), G(4,8)$, and $H(1,8)$.
55. Find the perimeter of the polygon. 38 units
56. Divide the polygon into rectangles. Find the area of the polygon. 54 units 2
57. Biology In the Pacific Northwest, a red fox has a circular home range with a radius of about 718 meters. To the nearest thousand square meters, what is the area of the home range of a red fox? $1,620,000 \mathrm{~m}^{2}$
58. Multiple Choice A rectangle has a base of x units. The area is $\left(4 x^{2}-2 x\right)$ square units. What is the height of the rectangle in terms of x ? \mathbf{D}
(A) $(4-x)$ units
(B) $\left(4 x^{3}-2 x^{2}\right)$ units
(C) $(x-2)$ units
(D) $(4 x-2)$ units

Challenge

Go no phscrool.com

For: Graphing calculator procedures
Web Code: aue-2120

Home Maintenance To determine how much of each item to buy, tell whether you need to know area or perimeter. Explain your choice. 59-62. See margin.
59. wallpaper for a bedroom
60. weatherstripping for a door
61. fence for a garden
62. paint for a basement floor
63. Coordinate Geometry The endpoints of a diameter of a circle are $A(2,1)$ and $B(5,5)$. Find the area of the circle in terms of $\pi .6 .25 \pi$ units 2
64. Graphing Calculator You want to build a rectangular corral by using the side of a barn for one side and 100 ft of fencing for the other three sides.
a. Make a table on your graphing calculator listing integer values for the base and the corresponding values of the height and area.
b. Make a graph using your table values. Graph the base on the horizontal axis and area on the vertical axis. a-b. See back of book.
c. What are the dimensions of the corral with the greatest area? 25 ft by 50 ft

65. How many circles with the given radius are needed for the sum of their areas to equal the area of a circle with the second given radius?
a. 1 in., 3 in. 9
b. 2 in. , 6 in. 9
c. 3 in. , 9 in. 9
d. Make a Conjecture How many circles with a radius of n in. are needed for the sum of their areas to equal the area of a circle with a radius of $3 n$ in.? 9

Algebra Find the area of each figure.

66. a rectangle with side lengths of $\frac{2 a}{5 b}$ units and $\frac{3 b}{8}$ units $\frac{3 a}{20}$ units 2
67. a square with perimeter $10 n$ units $\frac{25 n^{2}}{4}$ units 2
68. a square with side lengths of $(3 m-4 n)$ units $\left(9 m^{2}-24 m n+16 n^{2}\right)$ units 2

4. Assess \& Reteach

Lesson Quiz

A rectangle is 9 ft long and 40 in . wide.

1. Find the perimeter in inches. 296 in.
2. Find the area in square feet. $30 \mathrm{ft}^{2}$
3. The diameter of a circle is 18 cm . Find the area in terms of $\pi .81 \pi \mathrm{~cm}^{2}$
4. Find the perimeter of a triangle whose vertices are $X(-6,2), Y(8,2)$, and $Z(3$, 14). 42 units
5. Find the area of the figure below. All angles are right angles. 256 in. ${ }^{2}$

Alternative Assessment

Have students draw and label a rectangle and a circle, each having an area between 20 and 25 in. ${ }^{2}$ They should include with each drawing a written explanation of how each area can be verified.
59. Area; the wall is a surface.
60. Perimeter; weatherstripping must fit the edges of the door.
61. Perimeter; the fence must fit the perimeter of the garden.
62. Area; the floor is a surface.

Test Prep

A sheet of blank grids is available in the Test-Taking Strategies with Transparencies booklet. Give this sheet to students for practice with filling in the grids.

Resources

For additional practice with a variety of test item formats:

- Standardized Test Prep, p. 75
- Test-Taking Strategies, p. 70
- Test-Taking Strategies with Transparencies

69. Answers may vary.

Sample: one

8 in.-by-8 in. square

+ one 5 in.-by-5 in.
square + two
4 in.-by-4 in. squares

69. Open-Ended The area of a $5 \mathrm{in} .-\mathrm{by}-5 \mathrm{in}$. square is the same as the sum of the areas of a 3 in.-by- 3 in . square and a $4 \mathrm{in} .-\mathrm{by}-4 \mathrm{in}$. square. Find two or more squares whose total area is the same as the area of an $11 \mathrm{in} .-b y-11 \mathrm{in}$. square. See left.
70. Track An athletic field is a rectangle, 100 yards by 40 yards, with a semicircle at each of the short sides. A running track 10 yards wide surrounds the field. Find the perimeter of the outside of the running track to the nearest tenth of a yard. 388.5 yd

Test Prep

For Exercises 71 and 72, a rectangular garden has a rectangular walkway around it . The width of the walkway is 8 ft .
71. How many feet greater than the perimeter of the garden is the outside perimeter of the walkway? 64
72. If the garden is a square with a perimeter of 260 ft , what is the area of the walkway in square feet? 2336
73. You need to tile a 12 ft -by- 15 ft floor. The color you want allows you the choices found in the table at the right. How many dollars would it cost to tile the floor with 12 in.-by-12 in. tiles? 540
74. How many tiles would cover the 12 ft -by- 15 ft

Size of Tiles	Cost
$12^{\prime \prime} \times 12^{\prime \prime}$	$\$ 3 / \mathrm{ft}^{2}$
$11^{\prime \prime} \times 11^{\prime \prime}$	$\$ 3 / \mathrm{ft}^{2}$
$10^{\prime \prime} \times 12^{\prime \prime}$	$\$ 4 / \mathrm{ft}^{2}$
$6^{\prime \prime} \times 8^{\prime \prime}$	$\$ 4.50 / \mathrm{ft}^{2}$

75. How many dollars would it cost to cover the 12 ft -by- 15 ft floor with the tiles that are 6 in. by 8 in.? 810

Mixed Review

Lesson 1-8
76. The midpoint of $\overline{C D}$ has coordinates $(5,6)$. Point C has coordinates $(-5,-1)$. Find the coordinates of point $D .(15,13)$

Find (a) $A B$ to the nearest tenth and (b) the coordinates of the midpoint of $\overline{A B}$.
77. $A(4,1), B(7,9)$
78. $A(0,3), B(3,8)$ 5.8 units; $(1.5,5.5)$
79. $A(9,2), B(-3,9)$
81. $A(4,10), B(-2,3)$
9.2 units; $(1,6.5)$
8.5 units; $(5.5,5)$
0. $A(0,1), B(-4,6)$ 6.4 units; $(-2,3.5)$
82. $A(-1,1), B(-4,-5)$
6.7 units; (-2.5, -2)

Lesson 1-7

$\overleftrightarrow{B G}$ is the perpendicular bisector of $\overline{W R}$ at point I.

$\overline{W I} \cong \overline{R I}$
83. What is $m \angle B I R$? 90
84. Name two congruent segments.
85. $\overline{W R}$ has length 124 . What is the length of $\overline{I R}$? 62 units

Lesson 1-5

For the given coordinates, find $P Q$.

86. $P: 12, Q:-6$
18 units
87. $P: 3, Q: 9$
6 units
88. P : $-23, Q: 10$
33 units

[^0]: Bell Ringer Practice
 Check Skills You'll Need
 For intervention, direct students to:
 Skills Handbook, p. 757

 ## Finding Distance

 Lesson 1-6: Example 1
 Extra Skills, Word Problems, Proof Practice, Ch. 1

 ## Activity

 1. 5 cm by $3 \mathrm{~cm} \rightarrow 16 \mathrm{~cm}$

 8 cm by $2 \mathrm{~cm} \rightarrow 20 \mathrm{~cm}$
 4 cm by $4 \mathrm{~cm} \rightarrow 16 \mathrm{~cm}$
 2. 5 cm by $3 \mathrm{~cm} \rightarrow 15 \mathrm{~cm}^{2}$

 8 cm by $2 \mathrm{~cm} \rightarrow 16 \mathrm{~cm}^{2}$
 4 cm by $4 \mathrm{~cm} \rightarrow$
 $16 \mathrm{~cm}^{2}$

