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Abstract

We describe the implementation of periodic boundary conditions in pde2path 2.3, and give
examples on their use in some scalar model problems in 1D, 2D and 3D.
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1 Introduction

The tutorial [RU18] gives an elementary introduction to the new OOPDE setting of pde2path [UWR14,
Uec18], using the (cubic–quintic) steady Allen–Cahn equation

G(u) := −c∆u− λu− u3 + γu5 !
= 0, (1)

and variants of this as model problems, where u = u(x) ∈ R, x ∈ Ω ⊂ Rd, d = 1, 2, 3, Ω an interval,
a rectangle or cuboid, respectively, and where we consider various boundary conditions (BC). Here
we use some variants of (1) to explain the use of periodic BC (pBC) in a simple scalar setting, again
in 1D, 2D and 3D. At many places we refer to [RU18] for background, and thus recommend to new
users to start with the demos explained in [RU18]. Some other pde2path demos also use periodic
BC, namely nlb, schnaktravel, and twoFluid, and problems with pBC have for instance been
treated with pde2path in [ZHKR15, DU16]. The software, including a number of demo directories,
documentation, tutorials and a quickstart guide [dWDR+18] with installation instructions and a demo
overview can be downloaded from [Uec18]. The demo directories for this tutorial are in demos/acpbc.

In §2 we briefly review the algorithm used to implement periodic BC by transforming the finite
element matrices (stiffness and mass matrix) as well as the load vector from homogeneous Neumann
BC to periodic BC. This discussion follows to some extent that in §2.6 of [DRUW14] but extends it
to all dimensions 1, 2, and 3. In §3 we then give the tutorials on how to use these pBC in 1D, 2D
and 3D for variants of (1).
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2 Transform from homogeneous Neumann BC to periodic BC

2.1 Mathematical algorithm

We start with the one dimensional case with Ω = (a, b) ⊂ R. With Neumann BC the values of the
finite element solution u at x = a and x = b are unknowns to be solved for. The finite element basis
functions (hat functions) φ1 and φnp corresponding to the nodes x1 := a and xnp := b, respectively,
are different from those at the interior points x2, . . . , xnp−1. Namely, they are “incomplete” as they
lack contributions from [a−h, a) and (b, b+h] respectively, see Fig. 1 (a). In the case of periodic BC,
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Figure 1: Finite element hat functions in one dimension on an interval with Neumann BC in (a) and with

periodic BC in (b).

where x = a and x = b are identified (and the node xnp dropped from the grid), the basis function at
x = a is given by φ1 and φnp . Denoting the hat functions in the periodic setting by ψj , we have

ψj = φj , j = 2, . . . , np − 1,

ψ1 = φ1 + φnp |[a,b).

The finite element matrices for the periodic case can thus be generated from those for the homogeneous
Neumann case by adding up corresponding entries, e.g., for the mass matrices Mper and MNeum

Mper
ij = (ψi, ψj)L2(Ω) = (φi, φj)L2(Ω) = MNeum

ij , i, j ∈ {2, . . . , np − 1},

Mper
1j = (ψ1, ψj)L2(Ω) = (φ1 + φnp , φj)L2(Ω) = MNeum

1j +MNeum
npj , j ∈ {2, . . . , np − 1},

Mper
j1 = (ψj , ψ1)L2(Ω) = MNeum

j1 +MNeum
jnp

, j ∈ {2, . . . , np − 1},

Mper
11 = (ψ1, ψ1)L2(Ω) = (φ1 + φnp , φ1 + φnp)L2(Ω) = MNeum

11 +MNeum
1np

+MNeum
np1 +MNeum

npnp
.

For the stiffness matrix the modification is completely analogous. These modifications are in pde2path

carried out efficiently by a matrix multiplication. Let us, for illustration, take the case np = 4 with
x1 = a, x4 = b. The transformation is then carried out via

Mper = p.mat.fill′ ∗ MNeum ∗ p.mat.fill,
Kper = p.mat.fill′ ∗ KNeum ∗ p.mat.fill,

(2)

where

p.mat.fill =


1 0 0
0 1 0
0 0 1
1 0 0

 .

The multiplication by p.mat.fill′ from the left adds up the pertinent rows (here rows 1 and 4) and
drops the redundant row 4. The right multiplication by p.mat.fill does the same with the columns.
For the load vector F per = ((f, ψ1)L2(Ω), . . . , (f, ψnp−1)L2(Ω))

T we have analogously

Fper = p.mat.fill′ ∗ FNeum.

To recover the solution vector u on the full grid (x1, . . . , xnp), e.g. for plotting purposes, one
performs simply p.mat.fill ∗ uper. pde2path also provides the matrix p.mat.drop for dropping the
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redundant components of a vector (e.g. a vector of grid points on a Neumann domain). For the above
example

p.mat.drop =

1 0 0 0
0 1 0 0
0 0 1 0

 .

The above example of p.mat.fill and p.mat.drop applies only in the case of one equation
(p.nc.neq=1 in pde2path). For a system of equations the above matrices are simply repeated as
blocks on the diagonal of the full matrix.

In higher dimensions pde2path assumes that the boundary segments to be identified via the
periodic BC are flat and aligned with the coordinate axes (typically the domain Ω is a rectangle in
2D and a cuboid in 3D but, e.g., if in 2D the periodic BC are to be imposed only in the x-direction,
then only the part of ∂Ω with the minimal and the maximal values of x must consist of two parallel
lines spanning the same y-interval, see Fig. 2 for an example). With periodic BC in the xj-direction

Figure 2: Example of an admissible domain in 2D with periodic BC only in the x-direction. ∂Ω is plotted by

the full blue line.

(j ∈ {1, 2, 3}) the xi-coordinates with i 6= j of the boundary points on the xj-sides have to be identical
in order to match the boundary point. The procedure is analogous to 1D: the finite element basis
functions at the retained boundary segments consist of the sum of the “incomplete” Neumann basis
functions on the opposite boundary sides.

In the case of periodic BC in more than one direction the transformation matrices p.mat.fill and
p.mat.drop can be written as the product of matrices for each direction. For instance, for periodic
BC in x and y

p.mat.fill = Ax ∗ Ay, p.mat.drop = By ∗ Bx, (3)

where Axand Bx are the fill and drop matrices, respectively, for periodic BC in the x−direction, and
Ay, By are for the y-direction.

2.2 Internal pde2path commands for using periodic BC

The periodic BC to be used are encoded in the switch p.sw.bcper. The possible values are

p.sw.bcper = j, periodic BC in the j−direction, j ∈ {1, . . . , d} in d-D (d ≤ 3)

p.sw.bcper = [i j], periodic BC in the directions i and j; i, j ∈ {1, . . . , d} in d-D (2 ≤ d ≤ 3)

p.sw.bcper = [1 2 3], periodic BC in all three directions in 3D.

The first step in the generation of finite element matrices for periodic BC is to generate the matrices
with Neumann BC along the boundary segments in the directions p.sw.bcper. Examples in the OOPDE
setting are given in [RU18], and in 2D one can alternatively use the Matlab pdetoolbox function
assempde and for rectangular geometries use the pde2path functions recnbc*.

The function box2per is then called to produce the transformation matrices and the new (reduced)
number of uknowns p.nu. This is done in the call

[p.mat.fill, p.mat.drop, p.nu] = getPerOp(p, dir),

where dir is a local name for p.sw.bcper. Next, box2per drops the redundant entries in the solution
vector:

p.u = [p.mat.drop ∗ p.u(1 : p.np ∗ p.nc.neq); aux],
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where aux are the auxiliary variable in the solution vector (as described in the main manual). Finally,
box2per transforms the finite element matrices by envoking p=setfemops(p).

In getPerOp the product (3) of the one-directional transformation matrices is built. The matrices
for each direction are built in getPerOp1dir. The transformation (2) of finite element matrices is
carried out in filltrafo. Note that filltrafo is always called in setfemops resp. oosetfemops
but because the fill and drop matrices are set to the scalar value 1 in stanparam by default, the
transform is an identity unless box2per has been called. If (in d ≥ 2) there are nonperiodic BC
other than homogeneous Neumann, encoded via QBC and GBC, then we also need to transform these
matrices, see §3.2.

When solution data are saved in a file (pt*.mat), the matrix data p.mat are not saved in order to
limit disk space use. Instead, p.mat.fill and p.mat.drop are saved as empty matrices [ ] if periodic
BC are used and as the scalar 1 otherwise. When loading data via loadp, the matrices p.mat.fill

and p.mat.drop are built again via getPerOp.

3 Examples

3.1 pBC in 1D

For translationally invariant PDEs (such as (1)), pBC often (in 1D always) yield translationally
invariant systems, which is problematic from the continuation point of view since nontrivial spatial
derivatives of a solution u are then in the kernel of ∂uG(u). This phase invariance typically has to
be fixed by a phase condition, see, e.g., [DRUW14, §2.5] and [RU17]. For simplicity, for the 1D case
we consider a variant of (1) with some x–dependent terms (which break the translational invariance),
namely

G(u) := −div(c(x)∇u)− λu− u3 + γu5 − 0.5xu
!

= 0, c(x) = 1 + 0.1x2, (4)

on Ω = (−5, 5) with pBC, i.e., u(5) = u(−5). We first fix γ = 1, and take λ as the primary bifurcation
parameter. There is the trivial solution branch u ≡ 0, on which we find a number of bifurcation points.
We follow the bifurcating branches, which show some folds, which we then continue in the second
parameter γ. Finally we illustrate adaptive mesh refinement for this problem.

(4) has also been considered in [RU18, §3.3] (demo directory acsuite/ac1Dxa) with homogeneous
Neumann BC, and we only need a few adaptions of these files. However, for convenience we give
somewhat complete listings of the pertinent functions, summarized in Table 1.

Table 1: Functions in ac1Dpbc.

function purpose,remarks
p=acinit(p,lx,nx,par) init function, setting the domain, the grid and FEM operators, the parameters, and

the starting point u ≡ 0 for the continuation.
p=oosetfemops(p) set FEM matrices (stiffness K and mass M)
r=sG(p,u) encodes G from 1 (including the BC)
Gu=sGjac(p,u) Jacobian ∂uG(u) of G
Guuphi=spjac(p,u) ∂u(∂uG(u)φ), needed for fold continuation, see [RU18, §3.1.2]
[p,idx]=e2rs(p,u) classical elements2refine selector as in pdejmps

The first two essential changes compared to the files in ac1Dxa occur in acinit and oosetfemops,
namely

function p=acinit(p,lx,nx,par) % init routine for AC on interval with pBC

p=stanparam(p); screenlayout(p); p.sw.sfem=-1;

p.fuha.sG=@sG; p.fuha.sGjac=@sGjac; p.fuha.e2rs=@e2rs; % the relevant fun.handles

pde=stanpdeo1D(lx ,2*lx/nx); p.pdeo=pde; % domain and mesh

5 p.np=pde.grid.nPoints; p.nu=p.np; p.sol.xi=1/(p.nu); [po ,t,e]= getpte(p);

p.mesh.bp=po; p.mesh.bt=t; p.mesh.be=e; % background mesh (for mesh adaption)
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p.u=zeros(p.np ,1); p.u=[p.u; par ’]; % initial guess (here 0, explicitly known)

p.sw.bcper =1; p=box2per(p); % prepare fill , drop for periodic BC , here in x

% p=setfemops(p); % would be called here in a non -periodic setting , now omitted

10 p.nc.nsteps =20; p.sw.foldcheck =1; p.plot.auxdict ={’c’,’lambda ’,’gamma’,’d’};

p.plot.pstyle =1; p.usrlam =[0 0.5 1]; p.nc.nsteps =100; p.sw.jac=1;

p.sw.bifcheck =2; p.nc.ilam =2; p.nc.lammax =2; p.sol.ds =0.1; p.nc.dsmax =0.2;

Listing 1: ac1Dpbc/acinit.m, very similar to acsuite/ac1Dxa/acinit. The difference is that in line 8 we
transform the problem to a periodic domain via p=box2per(p,1), i.e., compute p.mat.fill and p.mat.drop,
and reduce the number of unknowns by 1. Then, since setfemops (which immediately calls oosetfemops

due to sfem=-1) is already called in box2per, a call to setfemops can be omitted here.

function p=oosetfemops(p) % for 1Dpbc , with x-dep. K

x=getpte(p); c=1+0.1*x.^2; [K,M,~]=p.pdeo.fem.assema(p.pdeo.grid ,c,1,1);

p.mat.M0=p.mat.fill ’*M; % we need M0 to transform the nonlinearity

p.mat.K=filltrafo(p,K); p.mat.M=filltrafo(p,M); % transform of K and M

Listing 2: ac1Dpbc/oosetfemops.m. Lines 4,5 contain the transformation of the system matrices to the
periodic domain.

p.mat.fill and its transpose are then used in sG to first extend u. Then f is computed on the
extended grid and afterwards mapped back to the reduced grid, and the same applies to ∂uf in sGjac

and ∂u(∂uGφ) in spjac for fold continuation, see Listings 2-5.

function r=sG(p,u) % AC with periodic BC

par=u(p.nu+1: end); up=u(1:p.nu); % params , and u on periodic domain

u=p.mat.fill*up; % extend (’fill ’) u to full domain

x=getpte(p); x=x’; % extract the point coordinates from p

5 f=par(2)*u+u.^3-par(3)*u.^5+0.5*x.*u; % f, with x-dependent term

F=p.mat.M0*f; % multiply by M, map back to active nodes of periodic domain

r=p.mat.K*up -F; % bulk part of PDE

Listing 3: ac1Dpbc/sG.m. As u is the reduced solution (periodic boundaries dropped), it is first extended
to the full domain where we compute the nonlinearity f (line 5), which is then mapped back to the periodic
domain via M0=fill′*M, where M is the full mass matrix. On the other hand, the matrices K,Q in line 7
are already reduced, see Listing 2, and thus act on the reduced vector up.

function Gu=sGjac(p,u) % PDE Jacobian for AC with pBC

par=u(p.nu+1: end); up=u(1:p.nu); % params , and u on periodic domain

u=p.mat.fill*up; % extend (’fill ’) u to full domain

x=getpte(p); x=x’; fu=par(2)+3*u.^2-5*par(3)*u.^4+0.5*x; % f_u on ext. domain

5 Fu=p.mat.M0*( spdiags(fu ,0,p.np,p.np)*p.mat.fill); % map fu to per.dom

Gu=p.mat.K-Fu;

Listing 4: ac1Dpbc/sGjac.m. Jacobian of sG.m in Listing 3. Again, u is first extended to the full domain,
where ∂uf is computed, which is then mapped back to the periodic domain via M0.

function Guuphi=spjac(p,u) % pa_u (G_u phi), called in getGu if p.spcontsw ==1

nu=p.nu; n=p.np; par=u(2*nu+1: end);

phip=u(nu+1:2* nu); up=u(1:nu); % params , Evec , PDE -vars (per.domain)

phi=p.mat.fill*phip; u=p.mat.fill*up; % u and phi on extended domain

5 fuu =6*u-20* par (3)*u.^3; % 2nd derivative

Guuphi=-p.mat.M0*spdiags(fuu.*phi ,0,n,n)*p.mat.fill; % mapped back to per.domian

Listing 5: ac1Dpbc/spjac.m, following the same principles as sGjac in Listing 4.

For some results from running cmds.m we refer to Fig. 3, which should also be compared to [RU18,
Fig. 7]. At the end of cmds.m we also give an example of mesh-adaption with pBC, which in 1D works
just as with any other type of BC.

%% cell 1: init and cont of trivial branch

p=[]; par=[1 -2 1 0.1]; % here par(4)=coefficient of x-dependent terms

3 p=acinit(p,5,80,par); p=setfn(p,’tr’); p=cont(p);

%% cell 2: switch to first 3 bifurcating branches and continue

p=swibra(’tr’,’bpt1’,’b1’ ,-0.1); p=cont(p);
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(a) bifurcation diagram (b) example plots
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(c) illustration of mesh adaption
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Figure 3: Results for (4) from ac1Dpbc/cmds.m. (a) Bifurcation diagram, (b) example plots from b1
(black in (a)), b2 (blue) and b1-a (red). (c) Example plots from mesh-adaption of b3/pt10 (magenta
branch in (a)). Left: solution on original (equi-distributed) grid of 80 points. Middle: after grid
adaption to 150 points. Right: point distribution before (top) and after (bottom) adaption. The
default error estimator typically selects elements with high curvature for refinement, and it also sees
the discontinuity of the term 0.5xu at the boundary of the periodic domain.

%% cell 3: fold -cont

p=spcontini(’b1’,’fpt2’,3,’b1f’); % init fold continuation with par 3 new prim.par

3 p.plot.bpcmp=p.nc.ilam (2); figure (2); clf; % use this new parameter for plotting

p.sol.ds= -0.01; p.nc.lammin =0.25; % new stepsize and range in new primary par.

p.sw.spjac =1; p.fuha.spjac=@spjac; % spectral jac

tic; p=cont(p,15); toc

%% cell 4: switch back to regular continuation from one of the fold points

8 p=spcontexit(’b1f’,’pt13’,’b1 -a’); p.nc.dsmax =0.5; p.sw.bifcheck =0; p.plot.bpcmp

=0;

p.nc.lammin =-3; p.sol.ds=-1e-3; clf(2); p=cont(p,1); p=cont(p,20); % continue

p=loadp(’b1 -a’,’pt1’,’b1 -b’); p.sol.ds=-p.sol.ds/5; % other direction

p.plot.bpcmp =0; p.nc.lammin =-3; p.nc.dsmax =0.3; p=cont(p,20);

%% cell 5: bifurcation diagram and solution plotting

13 f=3; c=0; figure(f); clf; % f=figure -Nr , c=component number (of branch)

plotbra(’tr’,f,c,’cl’ ,[0.5 0.5 0.5],’lsw’ ,0); plotbra(’b1’,f,c,’cl’,’k’,’lab’ ,10);

Listing 6: ac1Dpbc/cmds.m (slightly abbreviated). Quite similar to acsuite/ac1Dxa/cmds.m. After init
we first continue the trivial branch, with BP detection, and then follow the first three bifurcating branches
(Cells 1 and 2). In Cell 3 we continue the left fold point on b1 in γ down to γ = 0.25, and in cell 4 we
switch back to regular continuation in λ from this point again. Cells 5 and 6 deal with plotting, and then
illustrate mesh adaption, which in 1D with pBC works as with other BC by computing the error estimates
on the extended domain, see Listing 7.

function [p,idx]=e2rs(p,u) % classical elements2refine selector as in pdejmps

par=u(p.nu+1: end); a=0; [x,t]= getpte(p); x=x’; c=1+0.1*x.^2; % c and f on ext.dom

u=p.mat.fill*u(1:p.nu); fv=par(2)*u+u.^3-par(3)*u.^5+0.5*x.*u;

E=p.pdeo.errorInd(u,c,a,fv);

5 p.sol.err=max(max(E)); idx=p.pdeo.selectElements2Refine(E,p.nc.sig);

Listing 7: ac1Dpbc/e2rs.m. For the error estmates we set a = 0 and compute c, f on the extended domain.
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3.2 pBC in 2D

In 2D we consider (1) on the rectangle Ω = (−2π, 2π)× (−π, π), i.e.,

− c∆u− λu− u3 + γu5 = 0 in Ω, (5)

with BC u = 0 on x = −2π, u = d sin(y + 1) on x = 2π, and periodic BC in y. (6)

Note that neither homogeneous Dirichlet nor Neumann BC on y = ±π are compatible with the BC
on x = 2π. On the other hand, the y–dependent BC on x = 2π in (6) have the effect that the problem
is not translationally invariant in y.

We adapt files from acsuite/ac2D, and refer to [RU18] for the implemntation of the BC on x = 2π
via a matrix QBC and a vector GBC. Then again the first two pertinent changes compared to the files
in acsuite/ac2D occur in acinit and oosetfemops, and afterwards the changes in sG, sGjac and
spjac follow the same principles as in §3.1.

function p=acinit(p,lx,ly,nx,par)

p=stanparam(p); screenlayout(p); p.sw.sfem=-1;

p.fuha.sG=@sG; p.fuha.sGjac=@sGjac; p.fuha.e2rs=@e2rs;

pde=stanpdeo2D(lx ,ly ,2*lx/nx); % % domain and mesh , h as argument

5 p.pdeo=pde; p.np=pde.grid.nPoints; p.nu=p.np; p.sol.xi=1/(p.nu);

p.u=zeros(p.np ,1); p.u=[p.u; par ’]; p.nc.nsteps =20;

p=box2per(p,2); % prepare fill , drop for periodic BC , here in y

Listing 8: ac2Dpbc/acinit.m. Line 7 (and the subsequent omission of setfemops) contains the only change
compared to acsuite/ac2D/acinit.m.

function p=oosetfemops(p) % in problem -dir

gr=p.pdeo.grid; [K,M,~]=p.pdeo.fem.assema(gr ,1,1,1); % indep. of BC

bc1=gr.robinBC (0,0); bc2=gr.robinBC(1,’sin(y+1)’); bc4=gr.robinBC (1,0);

gr.makeBoundaryMatrix(bc1 ,bc2 ,bc1 ,bc4); % bottom , right , top , left

5 [Q,G,~,~]=p.pdeo.fem.assemb(gr); % the BC matrices

p.nc.sf=1e3; % stiff spring constant for DBC via Robin -BC

p.mat.M0=p.mat.fill ’*M; % we need M0 to transform the nonlinearity

p.mat.K=filltrafo(p,K); p.mat.M=filltrafo(p,M); % standard transforms of

p.mat.Q=filltrafo(p,Q); p.mat.G=p.mat.fill ’*G; % system matrices

Listing 9: ac2Dpbc/oosetfemops.m. Uncomment line 4 to identify the boundary segments. Here the
Dirichlet BC are on segments 2 and 4, they are implemented by the stiff-spring approximation with stiff
spring constant p.nc.sf (set in line 6), and the associated boundary matrices/vectors are set up in lines
7–9. Afterwards, all the system matrices, including Q and G are transformed to the periodic domain.

For mesh refinement in 2D with pBC we need to adapt e2rs.m, see Listing 10. The selection of
elements to refine happens on the full (extended) domain, but in in order to keep the identification
of periodic boundaries consistent we remove boundary triangles from the refinement list, using the
function rmbdtri.m.

function [p,idx]=e2rs(p,u) % classical elements2refine selector as in pdejmps

par=u(p.nu+1: end); c=par (1); a=0; fv=nodalf(p,u);

u=p.mat.fill*u(1:p.nu); E=p.pdeo.errorInd(u,c,a,fv);

p.sol.err=max(max(E)); idx=p.pdeo.selectElements2Refine(E,p.nc.sig);

5 idx=rmbdtri(p,idx); % rm triangles near per.bdry from ref.list

Listing 10: ac2Dpbc/e2rs.m; the error is estimated on the full domain, but elements at the periodic
boundaries afterwards need to be removed from the refinement list.

With these preparations we can now proceed as in demo acsuite/ac2D; starting from d = 0 and
u ≡ 0 we first continue in d, and then in λ to detect and localize the bifurcation points from the
’primary’ branch. See ac2Dpbc/cmds.m for the code, which also contains a fold continuation, and
Fig. 4 for some example results.
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Figure 4: Example results for (5), (6). Primary branch (tr, black) and 3 bifurcating branches (b1, blue; b2,

magenta, and b3 red). In the last two plots we illustrate mesh-adaption at b2/pt10. The error-estimator mainly

selects triangles with high curvature, but triangles near the y-boundaries are removed from the refinement list

via rmbdtri.

3.3 pBC in 3D

To give a 3D example with periodicity in all three space directions, we break the translational invari-
ance of (1) in all directions by adding the term h(x, y, z)u to (1), i.e., we consider

−c∆u− λu− u3 + γu5 − h(x, y, z)u
!

= 0, (7)

where we choose
h(x, y, z) = 1/(1 + (x+ 1)2 + (y + 1)2 + (z + 1)2).

See sG.m and sGjac.m in acpbc3D for this modification of acsuite/ac3D, where we use some (non-
homogeneous) Dirichlet BC. We run the model on the same domain as in [RU18, §5], namely
Ω = (−2π, 2π) × (−3π/2, 3π/2) × (−π, π), and thus the only relevant modifications concern the
boundary conditions. We call p=box2per(p,[1 2 3]) in acinit.m, and due to the periodicity in all
3 directions we do not set any BC in oosetfemops. See Fig. 5 for some example results, which also
illustrate that in 3D it is useful to play with different plot options. Please also explore some other
branches for interesting solutions/pictures by using suitable modifications in cmds.m.

3.4 A quasilinear problem with periodic BC

In [RU18, §5] we consider a quasilinear variant of (1), namely

−∇ · [c(u)∇u]− f(u) = 0, (8)

with c(u) = c0 + δu + εu2, and f(u, λ) = λu + u3 − u5, in 1D, 2D and 3D. Here we focus on 2D
with pBC in x and y direction, and to break translational invariance, similar to (7), change f to

f(u, λ) = λ(x)u + u3 − u5 where λ(x) =
λ

1 + 0.5((x+ 1)2 + (y + 1)2)
. The FEM formulation of (8)

reads

G(u) := K(u)u− F (u) = 0, (9)
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Figure 5: Example outputs from ac3Dpbc/cmds.m.

respectively Mu̇ = −G(u) for the evolutionary problem, where now

Kij(u) =

∫
Ω
c(u)∇φi · ∇φj dx (10)

depends on u. This needs c(u) on the element centers, which is obtained from first interpolating u
from the nodes to the element centers. Similarly, instead of using Mf , which is also possible and up
to a O(h2) interpolation error gives the same results, see [RU18, Remark 1.1], we now also evaluate
F via assema. As usual, for pBC we need to combine this with first extending u to the full domain,
and then reducing the assembled matrices/vectors to the reduced domain, for which we need fill,

drop, generated in oosetfemops. Additionally, in oosetfemops we also generate and save the space-
dependent factor xft for λ, and a matrix p2c, which in OOPDE yields the interpolation from point
values to element centers. Then we can encode G as in sG in Listing 11.

function r=sG(p,u) % rhs for ql-AC

par=u(p.nu+1: end); c0=par (1); lam=par (2); ga=par (3); del=par (4); epsi=par (5);

u=u(1:p.nu); uf=p.mat.fill*u; ut=(p.mat.p2c*uf)’; % interpol. to elem. centers

c=c0+del*ut+epsi*ut.^2; f=lam*p.xft.*ut+ut.^3-ga*ut.^5;

5 [K,~,F]=p.pdeo.fem.assema(p.pdeo.grid ,c,0,f); % assemble K and F (M not used)

K=filltrafo(p,K); F=p.mat.fill ’*F; r=K*u-F;

Listing 11: acqlpbc/sG.m, for (8) with periodic BC. We now need to assemble K = K(u) in each step. In
line 4 we interpolate uf to the element centers, in line 5 compute c and f , and in line 6 we assemble K and
F ; remainder as usual.

The main trick to encode the Jacobian

Gu(u)v = −∇ · (c(u)∇v)−∇ · (cu(u)∇uv)− fu(u)v, (11)

is to use differentiation matrices p.Dx and p.Dy, also generated in oosetfemops, to obtain the co-
efficients ux, uy needed in (11). These act on the full vector, and hence are not transformed via
filltrafo. The first order terms ∇·(cu(u)∇uv) are then approximated via the matrix K1 in sGjac2D,
see Listing 12.

function Gu=sGjac2D(p,u) % Jac for ql-AC

par=u(p.nu+1: end); c0=par (1); lam=par (2); ga=par (3); del=par (4); epsi=par (5);

n=p.nu; u=u(1:n); uf=p.mat.fill*u; M=p.mat.M; gr=p.pdeo.grid;

ut=(p.mat.p2c*uf)’; c=c0+del*ut+epsi*ut.^2; % diff. coefficient defined on centers

5 cu=del +2* epsi*uf; fu=lam*p.xft +3*ut.^2 -5*ga*ut.^4;

[K,Fu ,~]=p.pdeo.fem.assema(gr ,c,fu ,0); Fu=filltrafo(p,Fu); K=filltrafo(p,K);

ux=p.mat.Dx*uf; uy=p.mat.Dy*uf; % 1st derivatives as coefficients

cuux=filltrafo(p,spdiags(cu.*ux ,0,p.np,p.np)); % coeff.matrix

cuuy=filltrafo(p,spdiags(cu.*uy ,0,p.np,p.np));

10 K1=p.mat.Kx*cuux+p.mat.Ky*cuuy; % first order derivatives acting on v

Gu=K-K1 -Fu; % putting it all together

Listing 12: acqlpbc/qlsGjac.m, implementing (11) with periodic BC. In line 6 we assemble Fu, together
with K, and then we set up the first order terms from (11).
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With these preparations we may now proceed as in §3.2 to continue the primary branch and follow
some bifurcations. Mesh adaption works as before.
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Figure 6: Example outputs from acqlpbc/cmds2D.m.
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