

Cassification of Elements

- roup	→1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
↓Perio	bd														©В	yju's		
1	1 H		i	PI	R	10	DI	<u>ר</u>	TR	B	LE							2 He
2	3 Li	4 Be						-		_			5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
Lanthanides		des	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
Actinides		des	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	
Actinides		des	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Periodic Classification of Elements

 "The periodic table is a tabular method of displaying the elements in such a way, that the elements having similar properties occur in the same vertical column or group".

John Dalton's Periodic Tables

	EL	E	ME	INTS	
\odot	Hydrogen.	W.4	Θ	Strontian	W.c 46
Φ	Azote	5	$\mathbf{\Theta}$	Barytes	68
	Carbon	54	Ō	Iron	50
O	Oxygen	7	\oslash	Zinc	56
\mathbf{Q}	Phosphorus	s.9	C	Copper	56
\oplus	Sulphur	13		Lead	9 0
\odot	Magnesia	20	(\mathbb{S})	Silver	190
Θ	Lime	24	G	Gold	190
$\mathbf{\Phi}$	Soda	28	P	Platina	190
	Potash	42	\bigcirc	Mercury	167

Dobereiner's Triads:

- This classification is based on the atomic mass.
- According to this, when elements are arranged in order of increasing atomic masses, groups of three elements, having similar properties are obtained.
- The atomic mass of middle element of the triad being nearly equal to the average of the atomic masses of the other two elements.
- For Example Li (6.9), Na (23), K (39).
- Limitation: It fails to arrange all the known elements in the form of triads, even having similar properties.

Dobereiner's Triads

Element	Atomic Mass	Average	Density	Average
CI	35.5		1.56	
Br	79.9	81.2	3.12	3.25
I	126.9		4.95	
Ca	40.1		1.55	
Sr	87.6	88.7	2.6	2.53
Ba	137.3		3.5	

Note: In each case, the numerical values for the atomic mass and density of the middle element are close to the averages of the other two elements

Newland's Law of Octaves:

• According to this 'when elements are placed in order of increasing atomic masses, the physical and chemical properties of every 8th element are a repetition of the properties of the first element.'

Limitations

- Law of octaves was applicable only upto calcium (only for lighter elements).
- Newland adjusted two elements in the same slot (e.g. Co and Ni), having different properties. For example; Co and Ni with Fluorine, Chlorine, Bromine and Iodine.
- According to Newland, only 56 elements existed in nature and no more elements would be discovered in future.

• **Mendeleev's Periodic Table:** Mendeleev's periodic table is based on the physical and chemical properties of elements and their atomic masses.

- Mendeleev's Periodic Law: According to this "The physical and chemical properties of the elements are the periodic function of their atomic masses."
- **Periodicity of Properties:** The repetition of properties of elements after certain regular intervals is known as Periodicity of Properties.

1 H Hydrogen 1.01 2s ¹		Periodic Table														2 Helium 4.01 13 ³		
3 Li Lithium 6.97 [He] 2s ¹	4 Be Beryllium 9.01 [He]2s ²		01	FE	Ele	en	ne	er	ht	S			5 Boron 10,81 (He) 2s ² 2p ¹	6 Carbon 12,01 (He]2s ² 2p ²	7 Nitrogen 14.01 [He] 2s ² 2p ³	8 Oxygen 15,99 (He] 2x ² 2p ⁴	9 Flagerine 18,99 [He] 25 ² 2p ⁵	10 Neon 20,18 (He) 2s ² 2p ⁶
11 Na Sodium 22,99 [Nej 3s ¹	12 Mg Magnesium 24,3 [Ne] 34 ²												15 Aluminum 26,98 [Ne] 36 ² 3p ¹	14 Si silicon 28.08 [Nej 3u ² Sp ²	15 P Photphonas 50,97 [Ne] 5s ² 5p ³	16 S Sulfur 32,07 [Ne] 3x ² 3p ⁴	17 Cl Chlorine 35,45 (Nej 3s ² 3p ⁵	16 Argon 39,95 [Ne] 3s ² 3p ⁶
19 K Potassium 39,1 [Ar] 45 ¹	20 Calcium 40,08 [Ar] 4s ²		21 SC Scandium 44.96 [Ar] 4s ² 3d ¹	22 Ti ¹ ^{47,87} ⁴ ⁴ ² ³	23 V Vanadium 50.94 (Ar) 4s ² 3d ⁵	24 Cr Chromium 51,99 (Ar) 4s ¹ 3d ⁵	25 Min Manganese 54,94 [Ar] 45 ² 3d ⁵	26 Fe Iron 55,845 (4/) 4s ² 3d ⁶	58,93 (Ar) 45 ² 3d ⁷	28 Ni Nicket 58,69 [Ar] 45 ² 3d ⁸	20 Copper 63,55 [Ar] 4s ¹ 3d ¹⁰	30 Zin 65,38 (Ar) 4s ² 5d ¹⁰	51 Gallium 69,72 (Ar) 4s ² 5d ¹⁰ 4p ¹	32 Germanium 72,63 [Ar(4s ² 5d ¹⁰ 4p ²	55 Ass Arsenic 74,92 (Ar) 4s ² 5d ¹⁰ 4p ³	34 See Selenium 78,98 [Ar] 4s ² 3d ¹⁰ 4p ⁴	55 Br Gromine 79,9 [Ar] 4s ² 3d ¹⁰ 4p ⁵	36 Kr Koypton 83,8 (Ar) 4s ² 3d ¹⁰ 4p ⁶
37 Rb Rubidium 85,47 (10) 5s ²	38 Sr 87,62 [Kr] 5s ²		39 Y Yttrium 88,91 [Kr]5s ² 4d ¹	40 Zr 2irconium 91,22 [kr]5s ² 4d ²	41 Nb Niobium 92,91 (Kr) 5s ¹ 4d ⁴	42 Molybdenum 95,95 [kr] 5s ¹ 4d ⁵	43 TC 98 (Kr) 5s ² 4d ⁵	Ru Fothenium 101,07 [Kr] 5s ¹ 4d ⁷	45 Rh Rhodium 102,91 [Kr] 5s ¹ 4d ^g	46 Pol Palladium 106,42 [Kr] (5s ⁰) 4d ²⁰	47 Ag Silver 107,87 [Kr] 5s ¹ 4d ¹⁰	48 Ccd Cadmium 112,41 [kr]5v ² 4d ¹⁰	49 In 114,81 [Kr] 5s ² .4d ¹⁰ Sp ¹	50 Sin 118,71 [Kr] 5s ² 4d ¹⁰ Sp ²	51 Sb Antimony 121,76 [K1] 5x ² 4d ¹⁰ Sp ³	52 Tel 127,6 (Kr) 5s ² 4d ¹⁰ 5p ⁴	53 10dine 126,9 [Kr] 5s ² 4d ¹⁰ 5p ³	54 Xenon 131,29 [Kr] 5s ² 4d ¹⁰ 5p ⁶
55 CS Cesium 132,91 (Xe) 6s ¹	56 Ba Barium 137,33 (Xe) 5s ²	57—71 La Lanthanides	Lu	72 Hafnium 178,49 [Xe] 65 ² 4t ¹⁴ 5d ²	73 T 180,95 (Xe) 66 ² 4t ²⁴ 5d ³	183,84 [Xe] 6s ² 4f ¹⁴ 5d ⁴	75 Re Rhenium 186,2 [Xe] 6s ² 4t ²⁴ 5d ⁵	76 Osmium 190,25 [Xe] 6s ² 4f ²⁴ 5d ⁶	77 Iridium 192,22 [Xe] 6s ² 4f ¹⁴ 5d ⁷	78 Piatinum 195,08 [Xe] 6s ² 4f ¹⁴ 5d ⁸	79 Au Gold 196,97 [Xe] 6s ² 4f ¹⁴ 5d ⁹	80 Hg Mercury 200.59 [Xe] 6s ² 4f ¹⁴ 5d ¹⁰	81 Thailium 204.38 (Xe) 6s ² 4f ³⁴ 5d ¹⁰ 6p ³	82 Pb Lead 207,2 [Xe] 6s ² 4f ¹⁴ 5d ¹⁰ 6p ²	83 Bismuth 208,98 [Xe] 55 ² 4f ¹⁴ 5d ¹⁰ 6p ³	84 Polonium 209 [Xe] 6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁴	85 Artatine 210 Piel 6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁵	56 Rn Ridon 222 [Xe] 6s ² 4f ⁵⁴ 5d ¹⁰ 6p ⁶

<u>Merits of Mendeleev's Periodic Table</u>

- Mendeleev's left vacant places in his table which provided an idea for the discovery of new elements. Example: Eka-boron, Eka-aluminium and Eka-silicon.
- Mendeleev's periodic table was predicted properties of several undiscovered elements on the basis of their position in Mendeleev's periodic table.
- It is useful in correcting the doubtful atomic masses of some elements.
- Noble gases could accommodate in the Mendeleev's periodic table without disturbing the periodic table after discovery.

Limitations of Mendeleev's Periodic Table

- (a) No fixed position for hydrogen: No correct position of the hydrogen atom was in Mendeleev's periodic table.
- Example: Position of hydrogen with alkali metals and halogens (17th group).
- (b) No place for isotopes: Position of isotopes were not decided. Example: Cl-35 and Cl-37.
- (c) No regular trend in atomic mass: Position of some elements with lower atomic masses before with higher atomic mass.
- Example: Ni-58.7 before Co-58.9.

The Modern Periodic Table:

• In 1913, Henry Moseley showed that the atomic number of an element is a more fundamental property than its atomic mass.

Group	→1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
↓Period				@BYJU'S													iu's	
1	1 H			PI	R	10	DI	<u>ר</u>	TF	B	LE	Ze			10lo	sors		2 He
2	3 Li	4 Be		_				-					5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg						13 Al	14 Si	15 P	16 S	17 Cl	18 Ar					
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
Lant	thani	des	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
Actinides			89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

- **Modern Period Law:** The physical and chemical properties of elements are the periodic function of their atomic number.
- Modern periodic table is based on atomic number of elements.
- Atomic number (Z) is equal to the number of protons present in the nucleus of an atom of an element.
- Modern periodic table contains 18 vertical column known as group and seven horizontal rows known as periods.
- On moving from left to right in a period, the number of valence electrons increases from 1 to 8 in the elements present.
- On moving from left to right in a period, number of shell remains same.
- All the elements of a group of the periodic table have the same number of valence electrons.

Total des elements -110 91 (metal) 27 (nonmetal)

=> Earth में सबसे ५ यादा => 02

> In Period ic Table Lightest dem. > Hydrogen

=> 11 11 11 II metal => Li

 $\Rightarrow 11 11 11 Heaviest elem \Rightarrow Anonoctium$ $11 ci 11 11 Meaviest elem \Rightarrow Os (osmium)$

Group	→1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
↓Perio	od																@B	tju's
1	1 H			PI	R	10	DI	<u>ר</u>	TF	B	LE							2 He
2	3 Li	4 Be					-	-					5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg						13 Al	14 Si	15 P	16 S	17 Cl	18 Ar					
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
Lanthanides			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
Actinides		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		

Don't Forget to Like / Comment & Share this video

www.Youtube.com/safaltaclass

www.Facebook.com/safaltaclass

www.Instagram.com/safaltaclass

