Slide 1 / 130

njea

Slide 3 / 130

Slide 2 / 130

NEW JERSEY CENTER FOR TEACHING & LEARNING

Ionic Compounds and Ionic Bonding

Slide 4 / 130

Periodic Table Review

Table of Contents: Ionic Compounds and Ionic Bonding

Click on the topic to go to that section

- Periodic Table Review
- · Valence Electrons and the Octet Rule
- · lons
- Ionic Bonding
- · Properties of Ionic Compounds
- · Predicting an Ionic Compound's Formula
- · Naming Ionic Compounds
- · Formulas and Names of Ionic Compounds with Transition Metals
- · Polyatomic ions
- Formula and Names of Compounds with Polyatomic ions (Ternary Ionic Compounds)
- Polyatomic Patterns

Slide 5 / 130

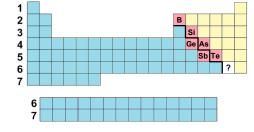
Periodic Table - Review

The periodic table is "periodic" because of certain trends that are seen in the elements.

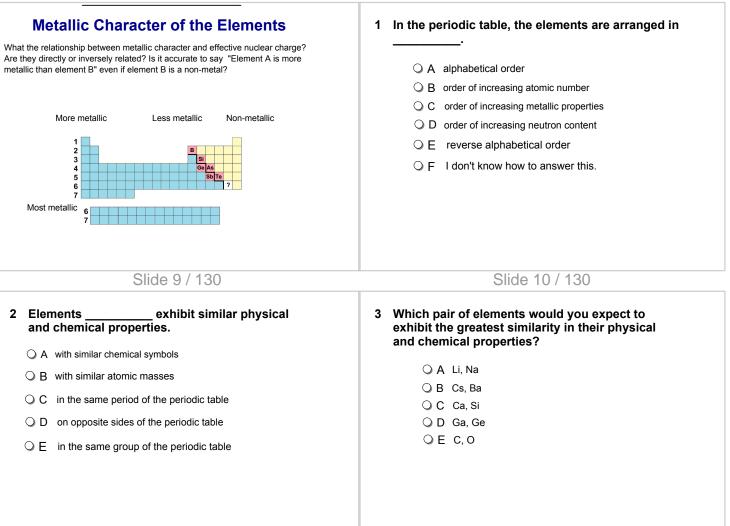
Some of these trends can be seen in the properties of atoms we covered in the last unit: atomic size, ionization energy, electronegativity and metallic character.

Would you predict that elements from the same family/group would have similar physical and chemical properties?

Slide 6 / 130


Return to Table

of Contents


The Periodic Table of the Elements

The periodic table can be divided into three large classifications of elements.

What type of elements are highlighted in blue, in yellow and in pink? What is unique about the elements that are highlighted in pink?

Slide 7 / 130

Slide 11 / 130	Slide 12 / 130		
 4 Which one of the following is a nonmetal? ○ A W ○ B Sr ○ C Os ○ D Ir ○ E S 	 5 Potassium is a and chlorine is a A metal, nonmetal B metal, metal C metal, metalloid D metalloid, nonmetal E nonmetal, metal 		

Slide 8 / 130

Valence Electrons and the

Review: Octet Rule

Atoms tend towards having complete outer shells of electrons (remember stability).

A full outer shell will have: 2 electrons in the s subshell and 6 electrons in the *p* subshell ($s^2 p^2$ configuration)

Octet rule: atoms tend towards having a total of 8 electrons

8 valence electrons make an octet

Which elements on the periodic table have a complete outer shell? What is true about these elements relative chemical reactivity?

Valence Electrons

Number of valence

1 - 4

1 2

1A 1

1 H 2A 2

11 Na 19 K 37 Rb

55 Cs

87 88 103 Fr Ra Lr

3 4 Li Be

Return to Table

Slide 15 / 130

Valence Electrons

Valence electrons are the electrons in the highest occupied energy level of an element's atoms.

Octet Rule

The valence electrons determine the chemical properties of an element. Why do you think this would be true?

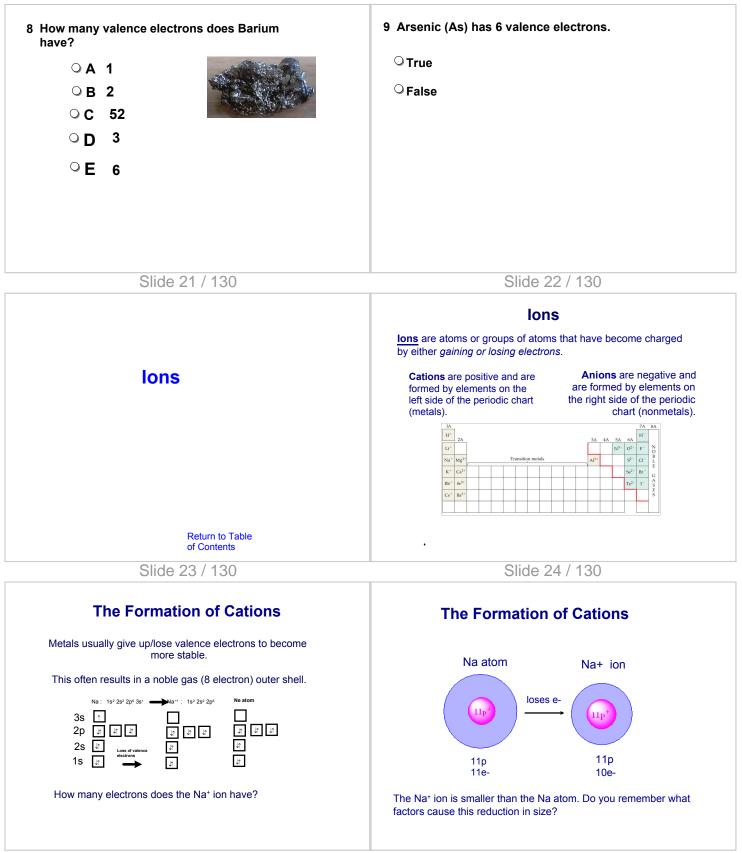
> To find the number of valence electrons in an atom of a representative element (elements found in the s and p blocks), simply look at its group number.

Atoms in group 3 have 3 valence electrons, atoms in group 17 have 7 valence electrons, etc.

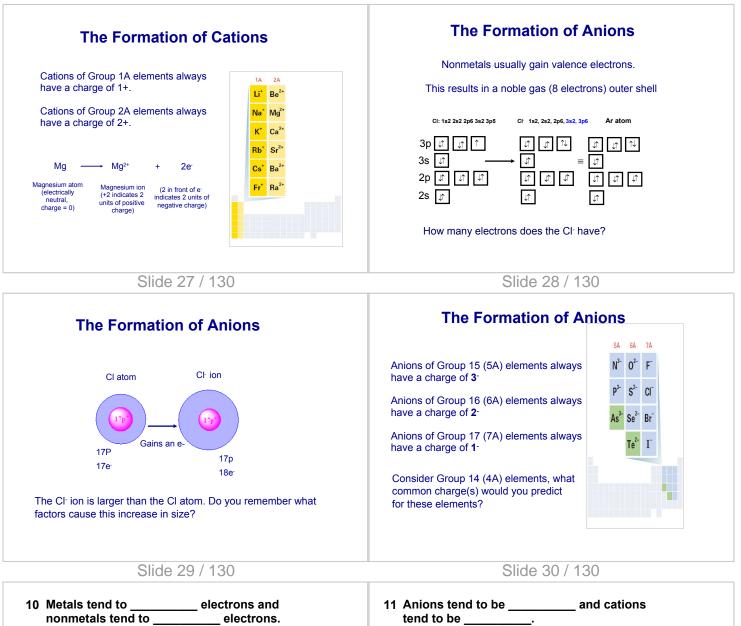
Valence electron

Slide 17 / 130

Slide 17 / 130	Slide 18 / 130	
How many valence electrons does potassium have? A 3 B 1 C 19 D 4 E 8	7 How many valence electrons does Aluminum have? O A 5 O B 7 O C 3 O D 27 O E 13	


of Contents

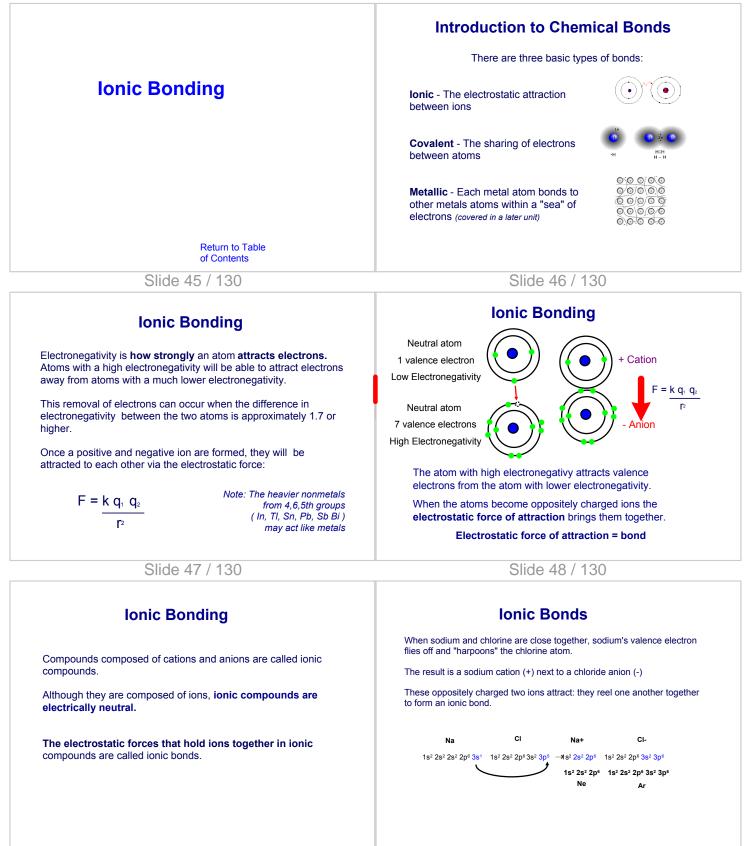
Slide 16 / 130


electrons in neutral atoms: 3 4 5 6 7 8

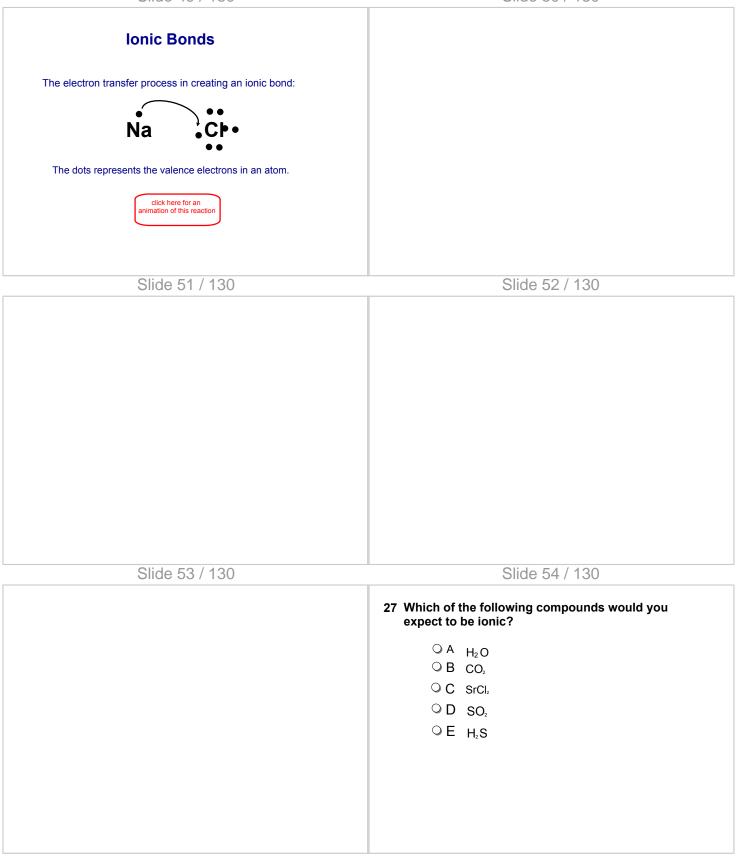
There is one exception: helium has only 2 valence electrons.

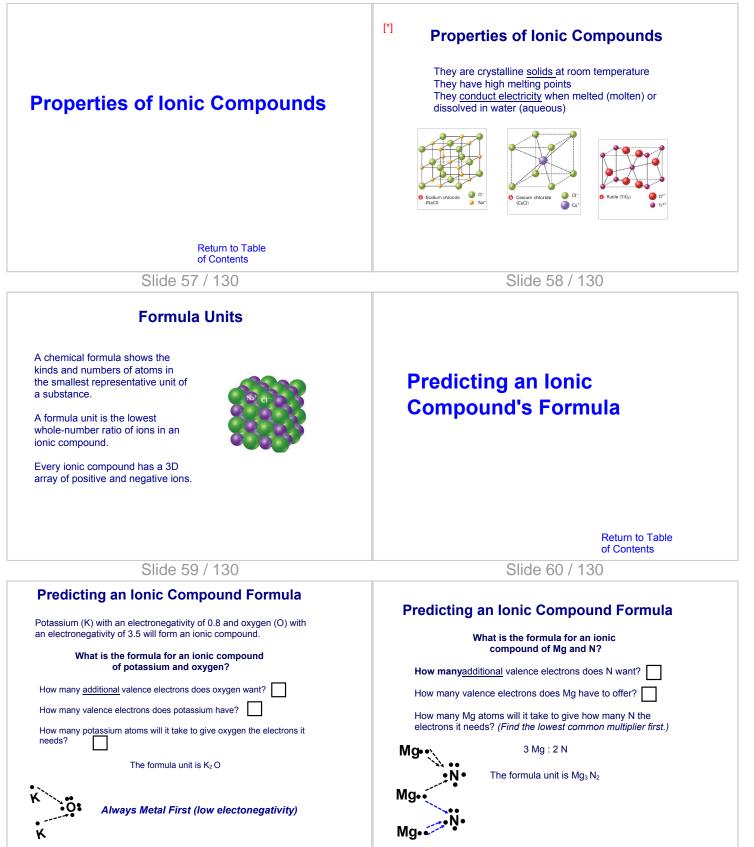
6 C 7 8 N 0 10 Ne

Slide 25 / 130

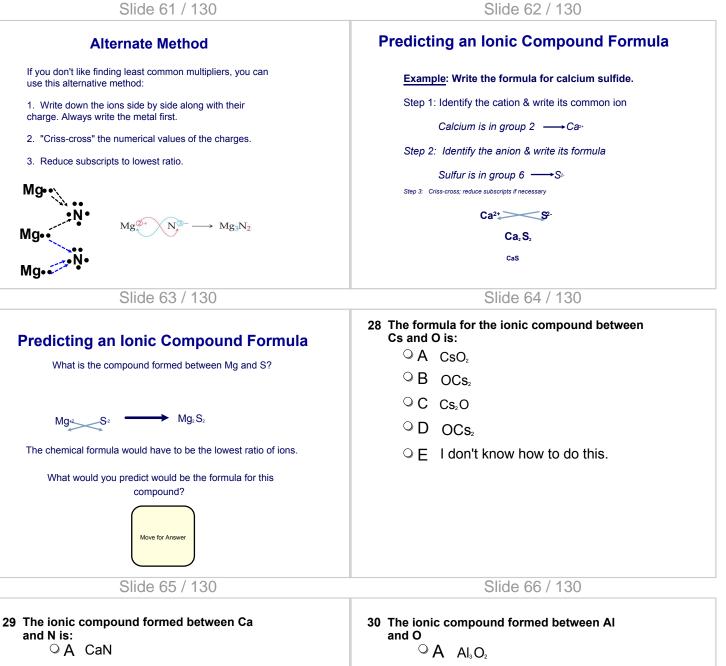

- 🔾 A gain, gain
- B lose, lose
- C gain, lose
- O D lose, gain
- $\bigcirc \mathsf{E} \quad \text{neither, they keep their electrons}$

11 Anions tend to be ______ and cations tend to be ______.
A metals, metals
B nonmetals, nonmetals
C metals, nonmetals
D nonmetals, metals
E metalloids, metalloids


12 Metals lose electrons to form cations	13 Anions are formed from nonmetals		
☉True	⊖True		
○ False	⊖False		
Slide 33 / 130	Slide 34 / 130		
14 Nonmetals tend to lose electrons forming ions	15 This is the ion formed from a calcium atom		
⊖True	⊖ A Ca⁺		
⊖False	⊖ B Ca²+		
	⊖ C Ca⁻		
	○ D Ca²-		
Slide 35 / 130	Slide 36 / 130		
16 Phosphorous forms an ion with a charge of	17 Aluminum forms an ion with a charge of		
○ A 1+	·		
○ B 2-	○ A 2+		
○ C 3+	○ B 1-		
OD 3-	○ C 3+ ○ D 2-		
○E 2+	0 E 0		


 18 Of the following, contains the greatest number of electrons. ○ A P³⁺ ○ B P ○ C P²⁻ ○ D P³⁻ ○ E P²⁺ 	19 Oxygen forms an ion with a charge of ○ A 2- ○ B 2+ ○ C 3- ○ D 3+ ○ E 6+		
Slide 39 / 130	Slide 40 / 130		
20 lodine forms an ion with a charge of ○ A 7- ○ B 1+ ○ C 2- ○ D 2+ ○ E 1-	21 This is the ion formed from nitrogen ○ A N ⁻ ○ B N ²⁻ ○ C N ³⁺ ○ D N ³⁻		
Slide 41 / 130	Slide 42 / 130		
22 Predict the charge of the most stable ion of S? ○ A 3+ ○ B 1- ○ C 6+ ○ D 2+ ○ E 2-	23 OA +1 OB +2 OC +3 OD +13 OE -5		

Slide 43 / 130



Slide 49 / 130

Slide 61 / 130

- \bigcirc B Ca₂N₂
- \bigcirc D Ca₂N₃
- \bigcirc E I don't know how to do this.

- $\bigcirc B Al_2O_3$
- ○C AIO
- $\bigcirc D Al_2O_2$
- **F** I don't know how to do this.

31 What is the ionic compound formed between Ca and AI?	32 What is the ionic compound formed between P and Br?
◯ A CaAl	○ A P₃Br
	○ B BrP
	 C This compound is not considered ionic
\bigcirc D No compound is formed.	○ D (BrP)₂
	○ E I don't know how to do this.
Slide 69 / 130	Slide 70 / 130
33 What is the formula for sodium phosphide?	34 What is the formula for strontium bromide?
$\bigcirc A$ SP ₃	○ A SrBr
○ B NaP	○ B SrBr₂
OC Na₃P	\odot C Sr ₂ Br
$\bigcirc D $ NaP ₃	\bigcirc D BrSr ₂
• E I don't know how to do this.	
Slide 71 / 130	Slide 72 / 130

 35 The formula for barium sulfide is Ba_2S_2 .

⊖True

○False

Naming Ionic Compounds

Return to Table of Contents

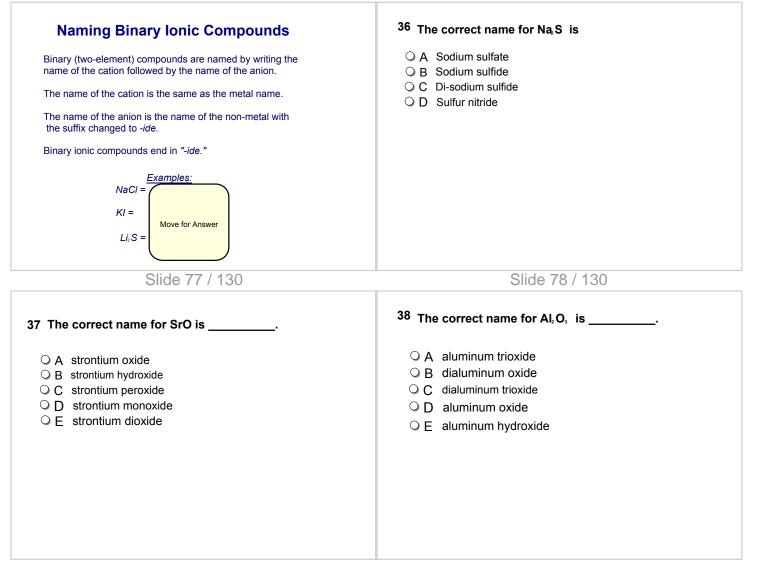
Naming Binary Ionic Compounds - Cations

Many cations have the same name as the original, neutral atom.

Charge	Formula	Name
+1	H+	Hydrogen ion
τι	Li*	Lithium ion
	K+	Potassium ion
	Cs⁺	Cesium ion
	Ag⁺	Silver ion
+2	Mg ²⁺	Magnesium ion
' 2	Ca ²⁺	Calcium ion
	Ba ²⁺	Barium ion
	Cd ²⁺	Cadmium ion
+3	Al ³⁺	Aluminum ion

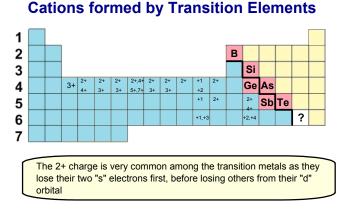
Naming Binary Ionic Compounds - Anions

All monoatomic anions end in "-ide".


The ions that are produced from Group 7A (or 17) elements are called halide ions.

Can you guess the origin of the name halides?

Group 15	
Nitride N ³⁻ Phosphide P ³⁻	


Slide 76 / 130

Slide 75 / 130

Slide 79 / 130

Cations formed by Transition Elements Recall that s-block metals and some p block elements Names and Formulas of like aluminum have only one possible ionic charge, based on the Octet Rule. **Ionic Compounds with** However, most transition metals (d block elements) can **Transition Metals** have more than one ionic charge. For this reason, there is a system for designating the charge on each ion. Sn, Pb from the p-block are called post-transition metals and will form more than one type of ion and behave like transition metals. Return to Table of Contents Slide 81 / 130 Slide 82 / 130 **Cations Formed by Transition Elements**

Slide 83 / 130

Silver, Zinc, and Cadmium lons

Why do these ions only have one possible charge?

Let's look at their electron configurations.

The "d" orbital of both zinc and cadmium are full and therefore very stable so the only electrons it will lose are the two "s" electrons...

Zn: [Ar]4s²3d¹⁰ Zn²⁺: [Ar]3d¹⁰

The "d" orbital is also full with silver as it has largely taken an electron from it's own "s" orbital to make stabilize the "d" orbital. Therefore, it only has 1 electron left to lose.

Ag: [Kr]5s¹4d¹⁰ Ag⁺ : [Kr]4d¹⁰

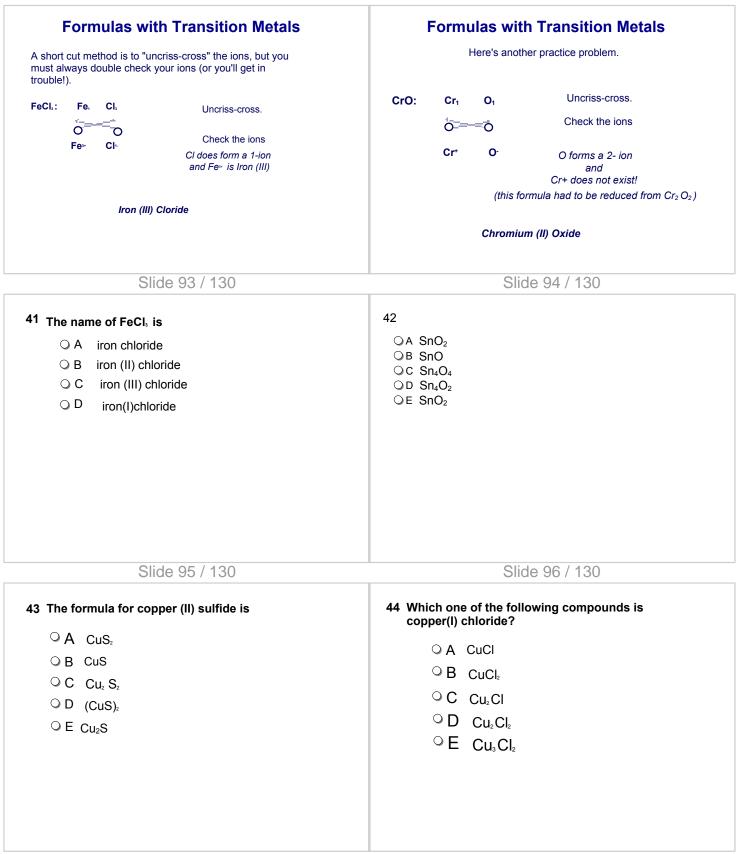
Silver, cadmium and zinc only form one cation, Ag, Cd2+ and Zn2+

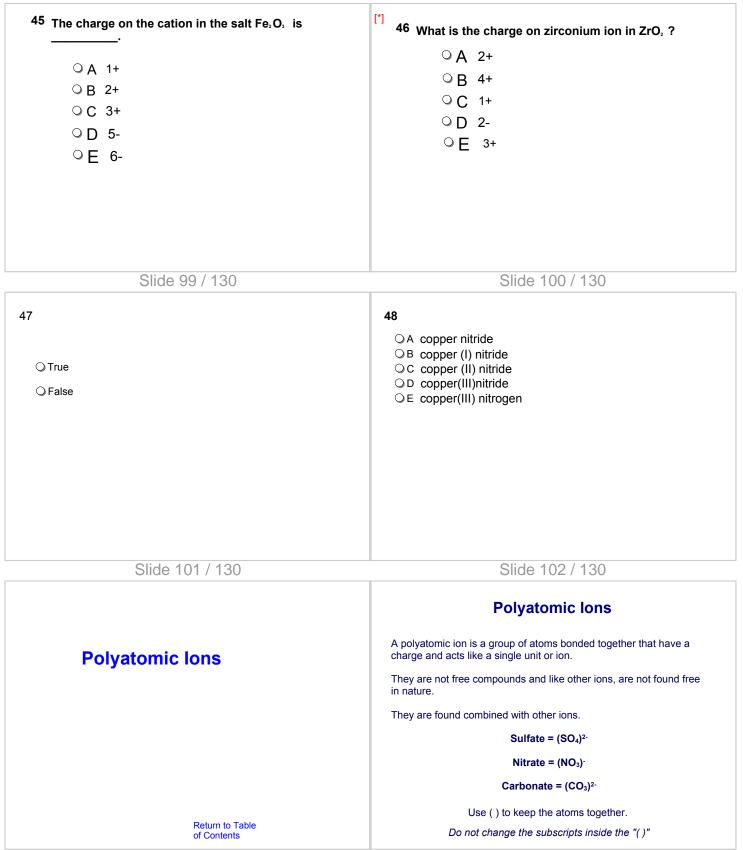
Note the two mercury cations, which one is a polyatomic ion?

Tin (Sn) and Lead (Pb) act like transition metals and they share two common charges, why do you think this is true?

Slide 84 / 130

Cations formed by Transition Elements


We will use the Stock naming system (Roman numerals) to name transition metals.


Formula	Name	
Cu ⁺¹	Copper (I) ion	
Co-2	Cobalt (II) ion	
Fe-2	Iron (II) ion	
Mn-2	Manganese (II) ion	
Pb-2	Iead (II) ion	
Cr₊₃	Chromium (III) ion	
Fe₊₃	Iron (III) ion	

What would be the names of Cu 2+ and Mn 7+?

Slide 85 / 130

Writing Formulas with Transition Metals	Writing Formulas with Transition Metals		
The charge on the cation is indicated by the Roman numeral, as shown in this example.	The charge on the cation is indicated by the Roman numeral, as		
Iron (III) oxide	shown in this example.		
Fe ³⁺ O ² . Write ion formulas.			
	Tin (IV) oxide Sn ⁺⁺ O ² Write ion formulas.		
Fe ³ O ² Criss-cross charges.			
- *	Sn ⁴⁺ O ² Criss-cross charges.		
Fe ₂ O ₃ Reduce if necessary.			
r c ₂ O ₃ Reduce in necessary.			
	Sn _z O ₄ SnO ₂ Reduce if necessary.		
Slide 87 / 130	Slide 88 / 130		
39 Which metal is capable of forming more than one cation?	40 Which metal is <u>not</u> capable of forming more than one cation?		
ОДК	○ A Cu		
○ A IC ○ B Cs			
○ C Ba	○ B Au		
-	○C Fe		
	○ D Sn		
⊖ E Sn	°E AI		
	~ E Ai		
Slide 89 / 130	Slide 00 / 120		
Slide 897 130	Slide 90 / 130		
Formulas with Transition Metals	Example Formula with Transition Metals		
In order to correctly name a formula containing a transition metal, it is necessary to first determine the charge on the cation.	In the case of FeCl ₃ , we make the following substitutions:		
Since all compounds are neutral, then the total positive cation charge must equal the total negative anion charge.	(charge of cation) (# of cations) +(charge of anion) (# of anions) = 0		
In other words:	(x) (1) + (-1) (3) = 0		
Total cation charge + Total anion charge = 0	Thus $x = 3$ and the cation is Fe ^{**} or iron(III).		
(charge of cation) (# of cations) + (charge of anion) (# of anions) = 0			

Slide 103 / 130

Polyatomic Ions

Most of the polyatomic ions contain oxygen atoms.

Many anions names end with "-ite" or "-ate"

In "ite/ate" pairs, the ion with $\underline{\text{fewer}}$ oxygen atoms will have the "ite" ending

Examples: sulfite /sulfate nitrite /nitrate

Note that the suffix does not indicate the actual number of O atoms.

Slide 105 / 130

Formulas and Names of Ionic Compounds with Polyatomic Ions

(Ternary Ionic Compounds)

Slide 104 / 130

Polyatomic Ions

Familiarize yourself with the polyatomic ions on your reference sheet Be careful of *-ide*, *-ite*, and *-ate*!

H· = proton	Selected Polyatomic lons			
or hydrogen ion	← H ₃ O ⁺	hydronium	CrO ₄ ²⁻	chromate
	Hg ₂ ²⁺	dimercury(I)	Cr ₂ O ₇ ²⁻	dichromate
	NH4 ⁺	ammonium	MnO ₄ -	permanganate
	C ₂ H ₃ O ₂ -		NO ₂ -	nitrite
	CH ₃ COO-	J	NO ₃ -	nitrate
	CN-	cyanide	O22-	peroxide
	CO32-	carbonate	OH-	hydroxide
or bicarbonate	← HCO3-	hydrogen carbonate	PO43-	phosphate
	C ₂ O ₄ ²⁻	oxalate	SCN-	thiocyanate
	CIO-	hypochlorite	SO32-	sulfite
	CIO2-	chlorite	SO42-	sulfate
	CIO3-	chlorate	HSO4-	hydrogen sulfate
	CIO4-	percholrate		thiosulfate

Slide 106 / 130

Writing Formulas for Ternary Ionic Compounds

Ternary ionic compounds, compounds that contain 3 or more elements, are neutral, just like binary ionic compounds. Therefore, the goal is to find the lowest ratio of cations to anions that will yield a neutral compound.

This ratio is represented in a formula unit.

Examples of formula units

 $CaCO_3 Zn(C_2H_3O_2)_2$

AgNO₃ Na₂SO₃

Return to Table of Contents

Slide 107 / 130

Writing Formulas for Ternary Ionic Compounds (con't)

To write a formula, the criss-cross method can again be used.

Example: Write the formula for lithium phosphate.

Step 1: Identify the cation & write its formula

Lithium is in group 1 --> Li*

Step 2: Identify the anion & write its formula

Phosphate is a polyatomic ion --> PO₄³⁻

Step 3: Criss-cross; reduce subscripts if necessary

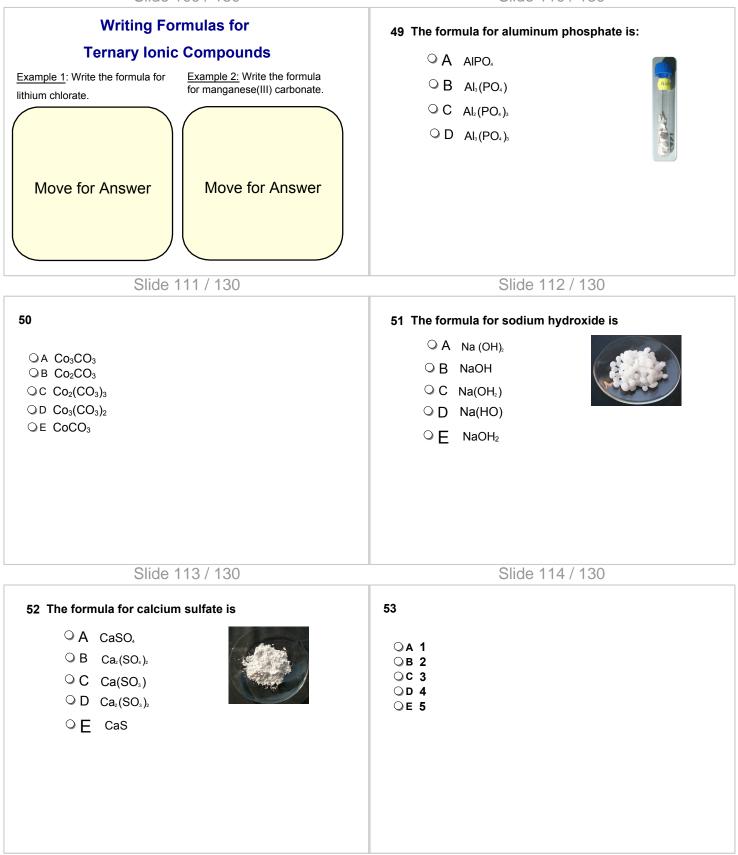
 $Li_{1}^{1+} \longrightarrow Li_{3}(PO_{4})_{1}$ or simply $Li_{3}(PO_{4})$

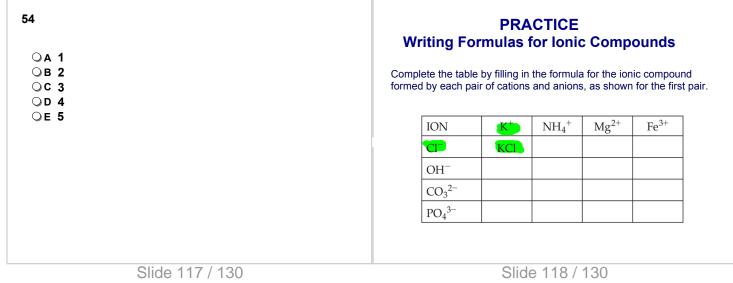
Slide 108 / 130

Writing Formulas for Ternary Ionic Compounds

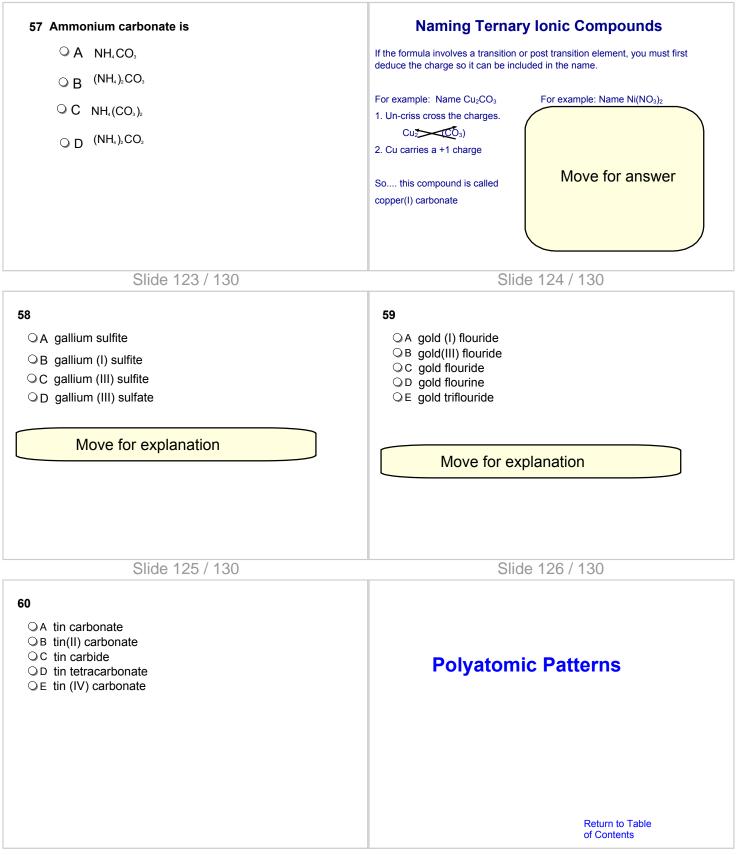
Example: Write the formula for calcium nitrite.

 Ca^{2+} (NO₃)⁻ \longrightarrow Ca(NO₃)₂

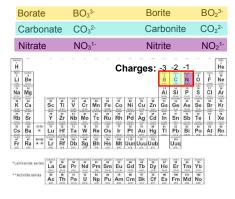

When writing formulas with polyatomic ions, there are two important things to remember:


1) It is helpful to use " () " to keep the atoms together, keeping the charge OUTSIDE the ()

> For example: nitrate (NO₃)¹⁻ carbonate (CO₃)²⁻

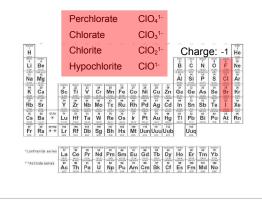

2) NEVER alter any symbols or subscripts INSIDE the "()". Once finished, if there is no subscript outside of the "()", remove the "()"

Slide 109 / 130



Slide 127 / 130

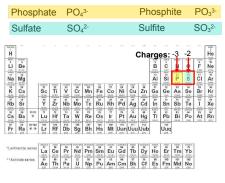
Polyatomic Patterns


Tips for remembering polyatomic ions using patterns: Boron, Carbon, and Nitrogen polyatomic ions have a maximum of 3 oxygens.

Slide 129 / 130

Polyatomic Patterns

Tips for remembering polyatomic ions using patterns: All of the halogens follow the same naming pattern: Per-ate = 4 oxygens, ---ate = 3 oxygens, ---ite = 2 oxygens, --- hypo-ite = 1 oxygen.



Slide 128 / 130

Polyatomic Patterns

Tips for remembering polyatomic ions using patterns:

Phosphorus and Sulfur polyatomic ions have a maximum of 4 oxygens.

Slide 130 / 130