Periodic Table Trends

Pre-AP

Target Words

- Valence Electron
- Alkali Metals
- Alkali Earth Metals
- Halogens
- Transition Metals
- Lanthanides
- Actinides
- Noble Gases
- Metal

- Nonmetal
- Metalloids
- Group
- Period
- Periodic Law
- Chemical/Physical Properties and Changes

Periodic Table History

• Atoms; Who was it that proposed the first scientific atomic theory?

• John Dalton — Where did all his empirical evidence come from?

Atomic Weights — Relative weights in most cases.

Periodic Table History

- Atomic Weight was a big deal, several scientists made their names by compiling lists of weights.
- By the mid 1800's 70 or so elements had all been discovered and weighed, with some disagreement.
- Unfortunately, part of the problem was the several systems of notation and weights being used.

Karlsruhe Congress

- In 1860 some of the most prominent chemists in Europe called together the first international chemistry conference in Karlsruhe, Germany.
- Issues involving nomenclature, notation, and other topics were considered highly important.
- For example, acetic acid was represented by no less than 19 different proposed formulas!

Karlsruhe Congress – Weighty Matters

- Perhaps the most important item was working on standardized atomic weights.
- Thanks have to go to Avagadro for some really important work and papers that he had released.
- By the end of the Congress, values for important elements were adopted as standard.
 - Hydrogen 1
 - Carbon − 12
 - Oxygen − 16

Enter Mendeleev

Russian Chemist, famously wrote
 Principles of Chemistry and in 1869
 presented to the Russian Chemical
 Society his first draft of his extended
 periodic table.

• His table not only arranged the elements known at the time, but also predicted elements not yet discovered!

Mendeleev's Table

Reiben	Gruppe I. R*0	Gruppo II. — RO	Gruppe III. — R*0°	Gruppe 1V. RH ⁴ RO ²	Groppe V. RH ¹ R ² 0 ⁵	Grappe VI. RH ^a RO ³	Gruppe VII. RH R*0'	Gruppo VIII. — RO
1	II=1							
2	Li=7	Be=9,4	B=11	C=12	N=14	O=16	F=19	
8	Na=23	Mg == 24	A1=27,8	Si=28	P=31	8=32	Cl=35,5	
4	K=39	Ca=40	-=44	Ti=48	V=51	Cr=52	Mn=55	Fo=56, Co=59, Ni=59, Cu=63.
5	(Cu=63)	Zn=65	-=68	-=72	As=75	So=78	Br=80	
6	Rb==86	Sr=87	?Yt=88	Zr== 90	Nb == 94	Mo≔96	-=100	Ru=104, Rh=104, Pd=106, Ag=108.
7	(Ag=108)	Cd=112	In=113	Sn==118	Sb=122	Te== 125	J=127	100
8	Cs==133	Ba=137	?Di=138	?Co=140	_	-	-	
9	(-)	_	_	_	_		-	
10	-	-	?Er=178	?La==180	Ta=182	W=184	-	Os=195, Ir=197, Pt=198, Au=199.
11	(Au=199)	Hg=200	T1== 204	Pb== 207	Bi=208	-	-	
12	_	-	-	Th=231	_	U==240	_	

Mendeleev's Table

- Elements were placed in vertical columns according to atomic mass numbers
- Similar properties and characteristics seemed to repeat in certain patterns.
- These patterns were dubbed **periodic** patterns.
- Using these patterns he rearranged the table to put properties in alignment, hence **periodic table.**
- Blank spaces were left to make room for undiscovered elements.
- Naturally, we discovered and filled those in!

Moseley Cleans Up

- Henry Moseley, British Physicist
- Used early X-Ray diffraction techniques to refine our understanding on atomic structure and atomic numbers.
- He actually demonstrated that atomic numbers were not just assigned, but had a link to X-ray spectra! (Moseley's Law)
- Using this new information he re-arranged Mendeleev's Periodic Table into a more modern format, by number instead of weight.
- Naturally his new organization left gaps were filled in by future chemists.

Spectra Lines

• What relationships can you see when you look at your periodic table and these X-ray plates? Is there a connection?

Exercise

- Make a timeline of events including the publication of atomic theory, standardization of weights, and the development of the periodic table.
- Draw a sketch of the periodic table, and fill in the trend lines we learned about.

• How do all these trends interact? How are they connected? Draw an excellent concept map.

Arrangement

• Groups – Vertical up and down the table.

• Period – Horizontal, from right to left across the table.

Major Families

- Elements on the Periodic Table are arranged in **Families.**
- Families are grouped together because they have similar properties and characteristics.
- Why are they similar? Why do they share properties?
- Does it have to do with their configurations?

Metals

- Mostly silver/gray colors, with the exception of Cu and Au.
- Mostly solid, except for Hg, which is a liquid.
- High melting points, generally above 800 degrees C.
- Excellent conductors of heat and electricity.
- Misc. Physical Very shiny/lustrous when polished, highly malleable and ductile.
- Reactive with Acids.
- Found in Groups 1-12, some in 13-16 under the step line

Non-Metals

- Highly variable colors.
- Solids and gases, except for Br.
- Low melting points.
- Poor conductors of heat and electricity.
- Very dull, brittle, often powdery.
- Not reactive with Acids.
- Found in Group 18, some in 14-17 above the step line.

Metalloids

- Silvery gray to black.
- Solids at room temperature.
- Variable melting points.
- Not good conductors of heat and electricity by themselves.
- Toes the line between metal/nonmetal.
- Reactions with acids vary.
- Found along the step line in Groups 13-17.

Alkali Metals

- Usually gray-white.
- Solids at room temperature.
- Low melting points.
- Not good conductors of heat and electricity.
- Considered metals.
- Extremely reactive! Never found freeform in nature, but is always in important compounds.
- Found in Group 1.

Alkaline Earth Metals

- Usually gray-white.
- Solids at room temperature.
- Low melting points.
- Not good conductors of heat and electricity.
- Considered metals.
- Almost reactive as the alkali metals. Harder and denser and stronger than the alkalis too. These are found throughout the Earth's crust.
- Found in Group 2.

Transition Metals

- Silvery Gray.
- Solids at room temperature, except Hg.
- High melting points.
- Good conductors of heat and electricity.
- Considered metals, obviously.
- High luster, very dense and very strong.
- Less reactive than the alkali/alkaline metals.
- Found in Group 3-12.

Halogens

- Various colors.
- Gases, except Br.
- Non-metals.
- Very reactive, often makes salts.
- Found in Group 17.

Noble Gases

- Gases.
- Light up in fun colors.
- Non-metals.
- Least reactive of all the elements!
- Found in Group 18.

The families

Periodic Law

- When elements are arranged in order of increasing atomic number, there is a periodic pattern in their physical and chemical properties.
- There are numerous trends in the periodic table dealing with several different factors.

• You will need to know four of these trends and the reasons why they exist.

Periodic Trends

- Atomic Radius
 - How big is the atom? (Tricky Question)
- Ionic Radius
 - How big is an atom when it is an ion?
- Electronegativity
 - How strongly will this atom attract electrons?
- Ionization Energy
 - How much energy does it take to remove electrons?

Getting Real with Atoms

• What do atoms look like? What defines the boundaries?

- Atoms are not solid balls of matter. The line between atom and empty space is fuzzy.
- The nucleus is solid, but the electrons are in a cloud of potential places.

What do Atoms look like?

- We are used to seeing something like this;
- However, this is a simplified model designed to be easily read and printed on a page.
- Electrons do not have neat little orbits that can be easily measured and marked for us.

Helium, He

Atomic number: 2
Mass number: 4
(2 protons + 2 neutrons)
2 electrons

The Real Deal

- This is a computer drawing made from data gathered about an atom of helium.
- That tiny dot in the center is the nucleus.
- The cloud is all the places you would detect those two electrons the darker, the more likely they are to be there.
- The boundaries of an atom $| \mathring{A} = 100,000 \text{ fm}$ are not so clear-cut!

Atomic Radii

- How do we define it? Two options;
 - The distance from the atomic nucleus to the outermost stable electron shell in a neutrally charged atom
 - Half the distance between nuclei of atoms of the same element that are covalently bonded

So.....those trends?

- Hold on two important concepts are key here!
- First, **Nucleus Strength** as the number of protons and neutrons in the nucleus increases, they can attract and hold on to electrons more strongly!
 - Bigger nucleus, more pull!
- Second, **Shielding** electrons work together to 'block' or disperse the pull of the nucleus, the more electrons, the more they can weaken the pull of the nucleus.
 - More electrons, less pull!

Atomic Radius Trends

• Across **periods**, the atomic radius **decreases!**

- Down **groups**, the atomic radius will **increase**.
- Why? It has to do with the interactions of the nucleus and the electrons!

Atomic Radius Explained
Across a period each element is gaining more electrons and

- Across a **period** each element is gaining more electrons and protons. Where are they going?
 - Protons (and neutrons) are filling the nucleus up.
 - Electrons are filling up the electron shells.
- However, the electrons are not filling up a **new**, more distant shell!
- So the denser nucleus has a pull that increases faster than the electron's push with a stronger pull, the electrons are forced closer!

Atomic Radius Explained

- Down a **group** each element is gaining more electrons and protons. Where are they going?
 - Protons (and neutrons) are filling the nucleus up.
 - Electrons are filling up the electron shells.
- This time, the electrons are forced into **new**, more distant shells.
- While the nucleus is becoming more dense, the electrons are forced further and further away because the inner electron shells 'block' and 'push them outthey <u>cannot</u> get closer.

Atomic Radius Illustrated

Ionic Radius Explained

- Ions are the results of losing or gaining electrons. Gains/losses of electrons change the balance of **push/pull**.
- When an atom gains electrons and becomes **negatively** charged, the other electrons get a stronger 'blocking' bonus and push further from the nucleus.
- When an atom loses electrons and becomes **positively** charged, the other electrons lose their 'blocking' bonus and get pulled closer.

Cations

Anions

Cramped

Apart

Ionic Radius Trends

• Across **periods**, the ionic radius **decreases!**

- Down **groups**, the ionic radius will **increase**.
- Ionic radius follows the same patterns as atomic radius for essentially the same reasons.

Ionic Radius Illustrated

- Neutral
 Atomic
 Radius in
 Gray
- Cations in Red
- Anions in Blue

Ionization Energy

- The outermost shell of the atom is most important, it is the **valence shell** and is responsible for chemical reactivity.
- Every atom wants to have a complete **valence shell.**

• **Ionization Energy** is the energy needed to yank an electron from the **valence shell**.

Ionization Energy Trends

Across periods, the ionization energy <u>increases!</u>

• Down **groups**, the ionization energy will **decrease**.

• Why? It has to do with the interactions of the nucleus and the electrons! (Again.)

Ionization Energy Explained

- Across a **period** the atomic radius is decreasing.
 - That means the **valence shell** is kept closer and closer to the nucleus.
- The closer the **valence electrons** are to the nucleus, the tighter it can hold onto those electrons!
- Down a **group** the atomic radius is increasing.
 - That means the **valence shell** is forced further and further away from the nucleus.
- The further the **valence electrons** from to the nucleus, the harder it is for them to be held.

19

Rb

RUBIDIUM

Cs

CESIUM

Fr

FRANCIUM

Ionization Energy

Co

COBALT

Rh

Mt

MEITNERIUM

Na SODIUM

Mg 24.305 AGNESIUM	
	i

Ba

BARIUM

Ra

Ac-Lr

TITANIUM

ZIRCONIUM

VANADIUM

Nb

NIOBIUM

Ta

Cr

CHROMIUM

Mo

MOLYBDENUM

W

TUNGSTEN

Hs

HASSIUM

Fe

Ru

Mn

MANGANESE

Tc

TECHNETIUM

Re

Bh

BOHRIUM

Eu

PALLADIUM

Ds

DARMSTADTIUM

Gd

Tb

Cu

Ag

Au

Rg

Cn

DYSPROSIUM

ACTINIDES

AC

LANTHANUM

Ce

Pa

Ŋρ

Es

Fm

Er

103 LAWRENCIUM

Increases

Ho

HOLMIUM

THALLIUM

Electronegativity

• How attractive is the atom to electrons?

• What kind of force does the atom exert on other atoms as it tries to yank their electrons?

Electronegativity Trends

• Across **periods**, the electronegativity **increases!**

• Down **groups**, the electronegativity will **decrease**.

• Why? It has to do with the interactions of the nucleus and the electrons! (Again.)

Electronegativity Explained

- Across a **period** the atomic radius is decreasing.
 - The electron shells are tight and close, exposing more of the nucleus' pulling field or zone of influence to the **target electron**
- The closer the target **electrons** can get to the nucleus, the harder it can pull on them.
- Down a **group** the atomic radius is increasing.
 - That means the **valence shell** is further away and the nucleus is already swarming with electrons how hard can a nucleus pull when it is already surrounded?
- The further the **target electrons** are from the nucleus, the less force the nucleus can exert on it.

Electronegativity Illustrated

H 2.20																	He
Li 0.98	Be 1.57											B 2.04	C 2.55	N 3.04	0 3.44	F 3.98	Ne
Na 0.93	Mg 1.31												Si 1.90	P 2.19	S 2.58	CI 3.16	Ar
K 0.82	Ca 1.00	Sc 1.36	Ti 1.54	V 1.63	Cr 1.66	Mn 1.55	Fe 1.83	Co 1.88	Ni 1.91	Cu 1.90	Zn 1.65	Ga 1.81	Ge 2.01	As 2.18	Se 2.55	Br 2.96	Kr 3.00
Rb 0.82	Sr 0.95	Y 1.22	Zr 1.33	Nb 1.6	Mo 2.16	Tc 1.9	Ru 2.2	Rh 2.28	Pd 2.20	Ag 1.93	Cd 1.69	In 1.78	Sn 1.96	Sb 2.05	Te 2.1	1 2.66	Xe 2.60
Cs 0.79	Ba 0.89	*	Hf 1.3	Ta 1.5	W 2.36	Re 1.9	Os 2.2	lr 2.20	Pt 2.28	Au 2.54	Hg 2.00	TI 1.62	Pb 2.33	Bi 2.02	Po 2.0	At 2.2	Rn 2.2
Fr 0.7	Ra 0.9	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
*	La 1.1	Ce 1.12	Pr 1.13	Nd 1.14	Pm 1.13	Sm 1.17	Eu 1.2	Gd 1.2	Tb 1.1	Dy 1.22	Ho 1.23	Er 1.24	Tm 1.25	Yb 1.1	Lu 1.27		
**	Ac 1.1	Th 1.3	Pa 1.5	U 1.38	Np 1.36	Pu 1.28	Am 1.13	Cm 1.28	Bk 1.3	Cf 1.3	Es 1.3	Fm 1.3	Md 1.3	No 1.3	Lr 1.291		