Periodic Table & Trends | Regions of the Periodic Table |-------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|-----------------|-----------------|----------| | | 1
1A | _ | | | | | | | | | | | | | | | 1 | 18
8A | | | 1
H | 2
2A | | | | | | | | | | | 13
3A | 14
4A | 15
5A | 16
6A | 17
7A | 2
He | | 2 | 3
Li | 4
Be | | | | | | | | | | | 5
B | 6
C | 7
N | 8
O | 9
F | 10
Ne | | 3 | 11
Na | 12
Mg | 3
3B | 4
4B | 5
5B | 6
6B | 7
7 B | 8 | - 8B - | 10 | 11
1B | 12
2B | 13
Al | 14
Si | 15
P | 16
S | 17
Cl | 18
Ar | | 4 | 19
K | 20
Ca | 21
Sc | 22
Ti | 23
V | 24
Cr | 25
Mn | 26
Fe | 27
Co | 28
Ni | 29
Cu | 30
Zn | Ga 31 | 32
Ge | 33
As | 34
Se | 35
Br | 36
Kr | | 5 | 37
Rb | 38
Sr | 39
Y | 40
Zr | 41
Nb | 42
Mo | 43
Tc | 44
Ru | 45
Rh | 46
Pd | 47
Ag | 48
Cd | 49
In | 50
Sn | 51
Sb | 52
Te | 53
I | 54
Xe | | 6 | 55
Cs | 56
Ba | 57
La | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
Ir | 78
Pt | 79
Au | 80
Hg | 81
Ti | 82
Pb | 83
Bi | 84
Po | 85
At | 86
Rn | | 7 | 87
Fr | 88
Ra | 89
Ac | 104 | 105 | 106 | 107 | 108 | 109 | | | | | | | | | | | | | | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | | | | | | | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | Lu | | | | | | | 90
Th | 91
Pa | 92
U | 93
Np | 94
Pu | 95
Am | 96
Cm | 97
Bk | 98
Cf | 99
Es | 100
Fm | 101
Md | 102
No | 103
Lr | | | # History of the Periodic Table 1871 – Mendeleev arranged the elements according to: 1. Increasing atomic mass 2. Elements w/ similar properties were put in the same row - 1913 Moseley arranged the elements according to: 1. Increasing atomic number - 2. Elements w/ similar properties were put in the same column # Group Names | Alkali
+1 | Alkaline
Earth
Metals
+2 | +3 | | -3 | -2 | Halogen
-1 | Noble
Gases | |--------------|-----------------------------------|----|-----------------|---------------------------|--------------|---------------|----------------| | H | | | | | | | Не | | | | | | | | | 2 | | | | | | | | | | | Li | Be | B | $ \mathcal{C} $ | $ \mathbf{N} \setminus $ | \mathbf{O} | F | Ne | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | | | | | | | | | Na | Mg | Al | Si | P | S | Cl | Ar | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | | | | | | | | | | | | AL | | Regions of the Periodic Table | | | | | | | | | | | | A | | | |---|-----------------|-----------------|-----------------|-------------------------------|-----------------|-----------------|-----------------|-----------------|---------------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|-----------------|-----------------|----------| | | 1
1A | | | | | | | | | | | | | | | | | 18
8A | | | 1
H | 2
2A | | | | | | | | | | | 13
3A | 14
4A | 15
5A | 16
6A | 17
7A | 2
H | | 2 | 3
Li | 4
Be | | | | | | | | | | | 5
B | 6
C | 7
N | 8
O | 9
F | N
N | | 3 | 11
Na | 12
Mg | 3
3B | 4
4B | 5
5B | 6
6B | 7
7B | 8 | - <mark>8B</mark> - | 10 | 11
1B | 12
2B | 13
Al | 14
Si | 15
P | 16
S | 17
Cl | A
A | | 4 | 19
K | 20
Ca | 21
Sc | 22
Ti | 23
V | 24
Cr | 25
Mn | 26
Fe | 27
Co | 28
Ni | 29
Cu | 30
Zn | 31
Ga | 32
Ge | 33
As | 34
Se | 35
Br | 3
K | | 5 | 37
Rb | 38
Sr | 39
Y | 40
Zr | 41
Nb | 42
Mo | 43
Tc | 44
Ru | 45
Rh | 46
Pd | 47
Ag | 48
Cd | 49
In | 50
Sn | 51
Sb | 52
Te | 53
I | 5
X | | 6 | 55
Cs | 56
Ba | 57
La | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
Ir | 78
Pt | 79
Au | 80
Hg | 81
Ti | 82
Pb | 83
Bi | 84
Po | 85
At | 8
R | | 7 | 87
Fr | 88
Ra | 89
Ac | 104 | 105 | 106 | 107 | 108 | 109 | | | | | | | | | | | | | | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | | | | | | | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | | | | | | | 90
Th | 91
Pa | 92
U | 93
Np | 94
Pu | 95
Am | 96
Cm | 97
Bk | 98
Cf | 99
Es | 100
Fm | 101
Md | 102
No | 103
Lr | | | S & P block – Representative Elements Metalloids (Semimetals, Semiconductors) – B,Si, Ge, As, Sb, Te (properties of both metals & nonmetals) Columns – groups or families Rows - periods #### The Periodic Law - Mendeleev understood the 'Periodic Law' which states: - When arranged by increasing atomic number, the chemical elements display a regular and repeating pattern of chemical and physical properties. ### The Periodic Law - Atoms with similar properties appear in groups or families (vertical columns) on the periodic table. - They are similar because they all have the same number of valence (outer shell) electrons, which governs their chemical behavior. #### Valence Electrons - Do you remember how to tell the number of valence electrons for elements in the s- and p-blocks? - How many valence electrons will the atoms in the d-block (transition metals) and the f-block (inner transition metals) have? - Most have 2 valence e-, some only have 1. # A Different Type of Grouping - Besides the 4 blocks of the table, there is another way of classifying element: - Metals - Nonmetals - Metalloids or Semi-metals. - The following slide shows where each group is found. - There is a zig-zag or staircase line that divides the table. - Metals are on the left of the line, in blue. - Nonmetals are on the right of the line, in orange. - Elements that border the stair case, shown in purple are the metalloids or semimetals. - There is one important exception. - Aluminum is more metallic than not. - How can you identify a metal? - What are its properties? - What about the less common nonmetals? - What are their properties? - And what the heck is a metalloid? #### Metals - Metals are lustrous (shiny), malleable, ductile, and are good conductors of heat and electricity. - They are mostly solids at room temp. - What is one exception? #### Nonmetals - Nonmetals are the opposite. - They are dull, brittle, nonconductors (insulators). - Some are solid, but many are gases, and Bromine is a liquid. #### Metalloids - Metalloids, aka semi-metals are just that. - They have characteristics of both metals and nonmetals. - They are shiny but brittle. - And they are semiconductors. - What is our most important semiconductor? #### Periodic Trends - There are several important atomic characteristics that show predictable trends that you should know. - The first and most important is atomic radius. - Radius is the distance from the center of the nucleus to the "edge" of the electron cloud. - Since a cloud's edge is difficult to define, scientists use define covalent radius, or half the distance between the nuclei of 2 bonded atoms. - Atomic radii are usually measured in picometers (pm) or angstroms (Å). An angstrom is 1 x 10⁻¹⁰ m. #### Covalent Radius • Two Br atoms bonded together are 2.86 angstroms apart. So, the radius of each atom is 1.43 Å. - The trend for atomic radius in a vertical column is to go from smaller at the top to larger at the bottom of the family. - Why? - With each step down the family, we add an entirely new PEL to the electron cloud, making the atoms larger with each step. - The trend across a horizontal period is less obvious. - What happens to atomic structure as we step from left to right? - Each step adds a proton and an electron (and 1 or 2 neutrons). - Electrons are added to existing PELs or sublevels. - The effect is that the more positive nucleus has a greater pull on the electron cloud. - The nucleus is more positive and the electron cloud is more negative. - The increased attraction pulls the cloud in, making atoms smaller as we move from left to right across a period. # Effective Nuclear Charge - What keeps electrons from simply flying off into space? - Effective nuclear charge is the pull that an electron "feels" from the nucleus. - The closer an electron is to the nucleus, the more pull it feels. - As effective nuclear charge increases, the electron cloud is pulled in tighter. • The overall trend in atomic radius looks like this. - Here is an animation to explain the trend. - On your help sheet, draw arrows like this: #### The Octet Rule - The "goal" of most atoms (except H, Li and Be) is to have an octet or group of 8 electrons in their valence energy level. - They may accomplish this by either giving electrons away or taking them. - Metals generally give electrons, nonmetals take them from other atoms. - Atoms that have gained or lost electrons are called ions. #### Ions - When an atom gains an electron, it becomes negatively charged (more electrons than protons) and is called an anion. - In the same way that nonmetal atoms can gain electrons, metal atoms can lose electrons. - They become positively charged cations. #### Ions • Here is a simple way to remember which is the cation and which the anion: This is Ann Ion. She's unhappy and negative. This is a cat-ion. He's a "plussy" cat! ## Ionization Energy - This is the second important periodic trend. - If an electron is given enough energy (in the form of a photon) to overcome the effective nuclear charge holding the electron in the cloud, it can leave the atom completely. - The atom has been "ionized" or charged. - The number of protons and electrons is no longer equal. ### Ionization Energy - The energy required to remove an electron from an atom is ionization energy. (measured in kilojoules, kJ) - The larger the atom is, the easier its electrons are to remove. - Ionization energy and atomic radius are inversely proportional. - Ionization energy is always endothermic, that is energy is added to the atom to remove the electron. # Ionization Energy # Ionization Energy (Potential) • Draw arrows on your help sheet like this: # Electron Affinity - What does the word 'affinity' mean? - Electron affinity is the energy change that occurs when an atom gains an electron (also measured in kJ). - Where ionization energy is always endothermic, electron affinity is usually exothermic, but not always. # Electron Affinity - Electron affinity is exothermic if there is an empty or partially empty orbital for an electron to occupy. - If there are no empty spaces, a new orbital or PEL must be created, making the process endothermic. - This is true for the alkaline earth metals and the noble gases. # Electron Affinity Your help sheet should look like this: #### Metallic Character - This is simple a relative measure of how easily atoms lose or give up electrons. - Your help sheet should look like this: # Electronegativity - Electronegativity is a measure of an atom's attraction for another atom's electrons. - It is an arbitrary scale that ranges from 0 to 4. - The units of electronegativity are Paulings. - Generally, metals are electron givers and have low electronegativities. - Nonmetals are are electron takers and have high electronegativities. - What about the noble gases? # Electronegativity Your help sheet should look like this: # Overall Reactivity - This ties all the previous trends together in one package. - However, we must treat metals and nonmetals separately. - The most reactive metals are the largest since they are the best electron givers. - The most reactive nonmetals are the smallest ones, the best electron takers. # Overall Reactivity Your help sheet will look like this: Effective nuclear charge on remaining electrons increases. Valence elost in ion formation Result: a smaller sodium cation, Na⁺ Remaining e- are pulled in closer to the nucleus. Ionic size decreases. 17p+ Chlorine atom with 7 valence e- A chloride ion is produced. It is larger than the original atom. One e- is added to the outer shell. Effective nuclear charge is reduced and the e- cloud expands.