# Periodic Table & Trends

| Regions of the Periodic Table |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                  |                  |                  |                 |                 |          |
|-------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|-----------------|-----------------|----------|
|                               | 1<br>1A         | _               |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                  |                  |                  |                 | 1               | 18<br>8A |
|                               | 1<br>H          | 2<br><b>2A</b>  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 13<br>3A         | 14<br>4A         | 15<br>5A         | 16<br>6A        | 17<br>7A        | 2<br>He  |
| 2                             | 3<br>Li         | 4<br>Be         |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | 5<br><b>B</b>    | 6<br>C           | 7<br><b>N</b>    | 8<br><b>O</b>   | 9<br><b>F</b>   | 10<br>Ne |
| 3                             | 11<br>Na        | 12<br><b>Mg</b> | 3<br>3B         | 4<br>4B         | 5<br><b>5B</b>  | 6<br><b>6B</b>  | 7<br>7 <b>B</b> | 8               | - 8B -          | 10              | 11<br>1B        | 12<br>2B        | 13<br><b>Al</b>  | 14<br>Si         | 15<br><b>P</b>   | 16<br><b>S</b>  | 17<br>Cl        | 18<br>Ar |
| 4                             | 19<br><b>K</b>  | 20<br>Ca        | 21<br><b>Sc</b> | 22<br><b>Ti</b> | 23<br><b>V</b>  | 24<br>Cr        | 25<br><b>Mn</b> | 26<br><b>Fe</b> | 27<br><b>Co</b> | 28<br><b>Ni</b> | 29<br><b>Cu</b> | 30<br><b>Zn</b> | Ga 31            | 32<br><b>Ge</b>  | 33<br><b>As</b>  | 34<br>Se        | 35<br><b>Br</b> | 36<br>Kr |
| 5                             | 37<br><b>Rb</b> | 38<br><b>Sr</b> | 39<br><b>Y</b>  | 40<br><b>Zr</b> | 41<br><b>Nb</b> | 42<br><b>Mo</b> | 43<br><b>Tc</b> | 44<br>Ru        | 45<br><b>Rh</b> | 46<br><b>Pd</b> | 47<br><b>Ag</b> | 48<br><b>Cd</b> | 49<br><b>In</b>  | 50<br><b>Sn</b>  | 51<br><b>Sb</b>  | 52<br><b>Te</b> | 53<br><b>I</b>  | 54<br>Xe |
| 6                             | 55<br><b>Cs</b> | 56<br><b>Ba</b> | 57<br><b>La</b> | 72<br><b>Hf</b> | 73<br><b>Ta</b> | 74<br><b>W</b>  | 75<br><b>Re</b> | 76<br><b>Os</b> | 77<br><b>Ir</b> | 78<br><b>Pt</b> | 79<br><b>Au</b> | 80<br><b>Hg</b> | 81<br><b>Ti</b>  | 82<br><b>Pb</b>  | 83<br><b>Bi</b>  | 84<br><b>Po</b> | 85<br>At        | 86<br>Rn |
| 7                             | 87<br><b>Fr</b> | 88<br><b>Ra</b> | 89<br><b>Ac</b> | 104             | 105             | 106             | 107             | 108             | 109             |                 |                 |                 |                  |                  |                  |                 |                 |          |
|                               |                 |                 | 58              | 59              | 60              | 61              | 62              | 63              | 64              | 65              | 66              | 67              | 68               | 69               | 70               | 71              |                 |          |
|                               |                 |                 | Ce              | Pr              | Nd              | Pm              | Sm              | Eu              | Gd              | Tb              | Dy              | Но              | Er               | Tm               | Yb               | Lu              |                 |          |
|                               |                 |                 | 90<br><b>Th</b> | 91<br><b>Pa</b> | 92<br><b>U</b>  | 93<br><b>Np</b> | 94<br><b>Pu</b> | 95<br><b>Am</b> | 96<br><b>Cm</b> | 97<br><b>Bk</b> | 98<br><b>Cf</b> | 99<br><b>Es</b> | 100<br><b>Fm</b> | 101<br><b>Md</b> | 102<br><b>No</b> | 103<br>Lr       |                 |          |

# History of the Periodic Table

1871 – Mendeleev arranged the elements according to: 1. Increasing atomic mass
 2. Elements w/ similar properties were put

in the same row

- 1913 Moseley arranged the elements according to: 1. Increasing atomic number
  - 2. Elements w/ similar properties were put in the same column

# Group Names

| Alkali<br>+1 | Alkaline<br>Earth<br>Metals<br>+2 | +3 |                 | -3                        | -2           | Halogen<br>-1 | Noble<br>Gases |
|--------------|-----------------------------------|----|-----------------|---------------------------|--------------|---------------|----------------|
| H            |                                   |    |                 |                           |              |               | Не             |
|              |                                   |    |                 |                           |              |               | 2              |
|              |                                   |    |                 |                           |              |               |                |
| Li           | Be                                | B  | $ \mathcal{C} $ | $ \mathbf{N} \setminus  $ | $\mathbf{O}$ | F             | Ne             |
| 3            | 4                                 | 5  | 6               | 7                         | 8            | 9             | 10             |
|              |                                   |    |                 |                           |              |               |                |
| Na           | Mg                                | Al | Si              | P                         | S            | Cl            | Ar             |
| 11           | 12                                | 13 | 14              | 15                        | 16           | 17            | 18             |
|              |                                   |    |                 |                           |              |               |                |

|   |                 | AL              |                 | Regions of the Periodic Table |                 |                 |                 |                 |                     |                 |                 |                 |                  |                  |                  | A               |                 |          |
|---|-----------------|-----------------|-----------------|-------------------------------|-----------------|-----------------|-----------------|-----------------|---------------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|-----------------|-----------------|----------|
|   | 1<br>1A         |                 |                 |                               |                 |                 |                 |                 |                     |                 |                 |                 |                  |                  |                  |                 |                 | 18<br>8A |
|   | 1<br>H          | 2<br>2A         |                 |                               |                 |                 |                 |                 |                     |                 |                 |                 | 13<br>3A         | 14<br>4A         | 15<br>5A         | 16<br>6A        | 17<br>7A        | 2<br>H   |
| 2 | 3<br>Li         | 4<br>Be         |                 |                               |                 |                 |                 |                 |                     |                 |                 |                 | 5<br><b>B</b>    | 6<br><b>C</b>    | 7<br><b>N</b>    | 8<br>O          | 9<br><b>F</b>   | N<br>N   |
| 3 | 11<br>Na        | 12<br><b>Mg</b> | 3<br>3B         | 4<br>4B                       | 5<br><b>5B</b>  | 6<br><b>6B</b>  | 7<br>7B         | 8               | - <mark>8B</mark> - | 10              | 11<br>1B        | 12<br>2B        | 13<br><b>Al</b>  | 14<br>Si         | 15<br><b>P</b>   | 16<br><b>S</b>  | 17<br>Cl        | A<br>A   |
| 4 | 19<br><b>K</b>  | 20<br><b>Ca</b> | 21<br><b>Sc</b> | 22<br><b>Ti</b>               | 23<br><b>V</b>  | 24<br><b>Cr</b> | 25<br><b>Mn</b> | 26<br><b>Fe</b> | 27<br><b>Co</b>     | 28<br><b>Ni</b> | 29<br><b>Cu</b> | 30<br><b>Zn</b> | 31<br><b>Ga</b>  | 32<br><b>Ge</b>  | 33<br><b>As</b>  | 34<br>Se        | 35<br><b>Br</b> | 3<br>K   |
| 5 | 37<br><b>Rb</b> | 38<br><b>Sr</b> | 39<br><b>Y</b>  | 40<br><b>Zr</b>               | 41<br><b>Nb</b> | 42<br><b>Mo</b> | 43<br><b>Tc</b> | 44<br>Ru        | 45<br><b>Rh</b>     | 46<br><b>Pd</b> | 47<br><b>Ag</b> | 48<br><b>Cd</b> | 49<br><b>In</b>  | 50<br><b>Sn</b>  | 51<br><b>Sb</b>  | 52<br><b>Te</b> | 53<br><b>I</b>  | 5<br>X   |
| 6 | 55<br><b>Cs</b> | 56<br><b>Ba</b> | 57<br><b>La</b> | 72<br><b>Hf</b>               | 73<br><b>Ta</b> | 74<br><b>W</b>  | 75<br><b>Re</b> | 76<br><b>Os</b> | 77<br><b>Ir</b>     | 78<br><b>Pt</b> | 79<br><b>Au</b> | 80<br><b>Hg</b> | 81<br><b>Ti</b>  | 82<br><b>Pb</b>  | 83<br><b>Bi</b>  | 84<br><b>Po</b> | 85<br><b>At</b> | 8<br>R   |
| 7 | 87<br><b>Fr</b> | 88<br>Ra        | 89<br><b>Ac</b> | 104                           | 105             | 106             | 107             | 108             | 109                 |                 |                 |                 |                  |                  |                  |                 |                 |          |
|   |                 |                 | 58              | 59                            | 60              | 61              | 62              | 63              | 64                  | 65              | 66              | 67              | 68               | 69               | 70               | 71              |                 |          |
|   |                 |                 | Ce              | Pr                            | Nd              | Pm              | Sm              | Eu              | Gd                  | Tb              | Dy              | Ho              | Er               | Tm               | Yb               | Lu              |                 |          |
|   |                 |                 | 90<br><b>Th</b> | 91<br><b>Pa</b>               | 92<br><b>U</b>  | 93<br><b>Np</b> | 94<br><b>Pu</b> | 95<br><b>Am</b> | 96<br><b>Cm</b>     | 97<br><b>Bk</b> | 98<br><b>Cf</b> | 99<br><b>Es</b> | 100<br><b>Fm</b> | 101<br><b>Md</b> | 102<br><b>No</b> | 103<br>Lr       |                 |          |

S & P block – Representative Elements

Metalloids (Semimetals, Semiconductors) – B,Si, Ge,

As, Sb, Te (properties of both metals & nonmetals)

Columns – groups or families

Rows - periods

#### The Periodic Law

- Mendeleev understood the 'Periodic Law' which states:
- When arranged by increasing atomic number, the chemical elements display a regular and repeating pattern of chemical and physical properties.

### The Periodic Law

- Atoms with similar properties appear in groups or families (vertical columns) on the periodic table.
- They are similar because they all have the same number of valence (outer shell) electrons, which governs their chemical behavior.

#### Valence Electrons

- Do you remember how to tell the number of valence electrons for elements in the s- and p-blocks?
- How many valence electrons will the atoms in the d-block (transition metals) and the f-block (inner transition metals) have?
- Most have 2 valence e-, some only have 1.

# A Different Type of Grouping

- Besides the 4 blocks of the table, there is another way of classifying element:
- Metals
- Nonmetals
- Metalloids or Semi-metals.
- The following slide shows where each group is found.



- There is a zig-zag or staircase line that divides the table.
- Metals are on the left of the line, in blue.
- Nonmetals are on the right of the line, in orange.



- Elements that border the stair case, shown in purple are the metalloids or semimetals.
- There is one important exception.
- Aluminum is more metallic than not.



- How can you identify a metal?
- What are its properties?
- What about the less common nonmetals?
- What are their properties?
- And what the heck is a metalloid?

#### Metals



- Metals are lustrous (shiny), malleable, ductile, and are good conductors of heat and electricity.
- They are mostly solids at room temp.
- What is one exception?

#### Nonmetals



- Nonmetals are the opposite.
- They are dull, brittle, nonconductors (insulators).
- Some are solid, but many are gases, and Bromine is a liquid.



#### Metalloids

- Metalloids, aka semi-metals are just that.
- They have characteristics of both metals and nonmetals.
- They are shiny but brittle.
- And they are semiconductors.
- What is our most important semiconductor?



#### Periodic Trends

- There are several important atomic characteristics that show predictable trends that you should know.
- The first and most important is atomic radius.
- Radius is the distance from the center of the nucleus to the "edge" of the electron cloud.

- Since a cloud's edge is difficult to define, scientists use define covalent radius, or half the distance between the nuclei of 2 bonded atoms.
- Atomic radii are usually measured in picometers (pm) or angstroms (Å). An angstrom is 1 x 10<sup>-10</sup> m.

#### Covalent Radius

• Two Br atoms bonded together are 2.86 angstroms apart. So, the radius of each atom is 1.43 Å.



- The trend for atomic radius in a vertical column is to go from smaller at the top to larger at the bottom of the family.
- Why?
- With each step down the family, we add an entirely new PEL to the electron cloud, making the atoms larger with each step.

- The trend across a horizontal period is less obvious.
- What happens to atomic structure as we step from left to right?
- Each step adds a proton and an electron (and 1 or 2 neutrons).
- Electrons are added to existing PELs or sublevels.

- The effect is that the more positive nucleus has a greater pull on the electron cloud.
- The nucleus is more positive and the electron cloud is more negative.
- The increased attraction pulls the cloud in, making atoms smaller as we move from left to right across a period.

# Effective Nuclear Charge

- What keeps electrons from simply flying off into space?
- Effective nuclear charge is the pull that an electron "feels" from the nucleus.
- The closer an electron is to the nucleus, the more pull it feels.
- As effective nuclear charge increases, the electron cloud is pulled in tighter.

• The overall trend in atomic radius looks like

this.



- Here is an animation to explain the trend.
- On your help sheet, draw arrows like this:



#### The Octet Rule

- The "goal" of most atoms (except H, Li and Be) is to have an octet or group of 8 electrons in their valence energy level.
- They may accomplish this by either giving electrons away or taking them.
- Metals generally give electrons, nonmetals take them from other atoms.
- Atoms that have gained or lost electrons are called ions.

#### Ions

- When an atom gains an electron, it becomes negatively charged (more electrons than protons) and is called an anion.
- In the same way that nonmetal atoms can gain electrons, metal atoms can lose electrons.
- They become positively charged cations.

#### Ions

• Here is a simple way to remember which is the cation and which the anion:



This is Ann Ion.

She's unhappy and negative.



This is a cat-ion.

He's a "plussy" cat!

## Ionization Energy

- This is the second important periodic trend.
- If an electron is given enough energy (in the form of a photon) to overcome the effective nuclear charge holding the electron in the cloud, it can leave the atom completely.
- The atom has been "ionized" or charged.
- The number of protons and electrons is no longer equal.

### Ionization Energy

- The energy required to remove an electron from an atom is ionization energy. (measured in kilojoules, kJ)
- The larger the atom is, the easier its electrons are to remove.
- Ionization energy and atomic radius are inversely proportional.
- Ionization energy is always endothermic, that is energy is added to the atom to remove the electron.

# Ionization Energy



# Ionization Energy (Potential)

• Draw arrows on your help sheet like this:



# Electron Affinity

- What does the word 'affinity' mean?
- Electron affinity is the energy change that occurs when an atom gains an electron (also measured in kJ).
- Where ionization energy is always endothermic, electron affinity is usually exothermic, but not always.

# Electron Affinity

- Electron affinity is exothermic if there is an empty or partially empty orbital for an electron to occupy.
- If there are no empty spaces, a new orbital or PEL must be created, making the process endothermic.
- This is true for the alkaline earth metals and the noble gases.

# Electron Affinity

Your help sheet should look like this:



#### Metallic Character

- This is simple a relative measure of how easily atoms lose or give up electrons.
- Your help sheet should look like this:



# Electronegativity

- Electronegativity is a measure of an atom's attraction for another atom's electrons.
- It is an arbitrary scale that ranges from 0 to 4.
- The units of electronegativity are Paulings.
- Generally, metals are electron givers and have low electronegativities.
- Nonmetals are are electron takers and have high electronegativities.
- What about the noble gases?

# Electronegativity

Your help sheet should look like this:



# Overall Reactivity

- This ties all the previous trends together in one package.
- However, we must treat metals and nonmetals separately.
- The most reactive metals are the largest since they are the best electron givers.
- The most reactive nonmetals are the smallest ones, the best electron takers.

# Overall Reactivity

Your help sheet will look like this:







Effective nuclear charge on remaining electrons increases.

Valence elost in ion formation

Result: a smaller sodium cation, Na<sup>+</sup>

Remaining e- are pulled in closer to the nucleus. Ionic size decreases.



17p+

Chlorine atom with 7 valence e-

A chloride ion is produced. It is larger than the original atom.

One e- is added to the outer shell.

Effective nuclear charge is reduced and the e- cloud expands.