Periodic Trends

C. Souders - Battlefield

Standard of Learning

(SOL CH.2 d, e, f, h): The student will demonstrate an understanding of the periodic table and the relationship between properties of elements and their electron structure.

Essential Question(s)

- How are elements in a family or group related and what the general trends regarding properties?
- How are elements in a period related and what are the general trends regarding properties?
- How is ionization energy impacted by the shielding effect?

PWCS Standards Based Planning Process

Standards: What will students know and be able to do?

Essential Understandings -

- When elements are listed in order by atomic number, repeating patterns of physical and chemical properties identify families of elements with similar properties.
- The periodic table shows these families or groups in columns.
- The horizontal rows are called periods.
- The valence electrons govern the chemical properties of the elements. Many of the properties of the elements change predictably across a period or down a group of the periodic table. Some examples of these are
 - o atomic radius
 - o electronegativity
 - o ionization energy (the shielding effect tends to reduce ionization energy)
- Basic trends in periods and families help to predict the outcomes of atomic interactions.
- Elements may occur in three physical states (solid, liquid, gas). These states are characterized by:
 - o density
 - conductivity
 - o melting point
 - \circ boiling point
 - o malleability
 - o ductility

Essential Skills -

- Given a randomly arranged set of elements with atomic number(s) and properties, arrange them in order, showing appropriate breaks from one period to another.
- Relate the first ionization energy to the position of the element with respect to other members of its period by its period location and to other members of its family by its family location.

Essential Skill (Continued) -

- Match the names of selected specific groups on the periodic chart with the elements they represent (alkali metals, alkaline earth metals, halogens, noble gases, transition elements, etc.)
- Compare the 1 through 18 numbering system with the A/B system(s) and relate to the chemical and physical characteristics of the elements contained therein.
- Relate the electronegativity of an element to its position on the periodic chart.
- Relate the shielding effect to the first ionization energy.
- Using the "BrINCIHOF" mnemonic, "HONCIBrIF" mnemonic or saying "go to number 7 and make the shape of a 7", list the elements that occur in the diatomic state when in the free state.
- Given an appropriate periodic chart, the student will be able to ascertain each of the characteristics of an element and will use that information to completely describe the element.

Assessment: How will the student and I know when he/she is successful?

- **Before Lesson (Pre-Assessment)** This lesson will follow a previous lesson on reading the periodic table, subatomic particles, electron configurations, etc. Assessment results should provide information to the teacher on whether or not the students are ready to move on. Students should be able to interpret short hand notation of an element, identify the number of protons, neutrons and electrons and write the electron configuration for an element. There is an introduction activity provided that identifies if a student can interpret data given to them.
- **During Lesson (Formative)** Concepts will start off simple and build throughout the lesson. Student assignments are important for the teacher to tell if there is a good level of understanding. Students can generally understand *what* the pattern of the specific periodic trend is but they have a difficult time applying that trend in a question. It is important for the teacher to not only question what the trend is but to ask questions that require application.
- After Lesson (Summative) There is a quiz that assesses student progress in this lesson. This information would most likely be included in a unit test as well. The assessment directly assesses skills practiced during the lesson.

Task Analysis: What knowledge, skills and level of understanding do students need to be successful with this lesson?

- Pre-Assessment Data: Students should be able to pull some information from previous knowledge
 - o Identify what the difference between an ion and isotope is.
 - Read a periodic table and interpret the data it presents

• Important Vocabulary (Literacy) -

Group (previous)	Alkali metals	Halogens	Metalloids
Period (previous)	Alkaline earth metals	Transition metal	Nonmetals
Atomic radius	Cation	Representative elements	Noble gases
Ion (previous)	Anion	Periodic law	Metals
Isotope (previous)	Electronegativity	Ionization energy	Inner transition metals

- Skill Development and Differentiation- There are many points in this lesson where students can be evaluated and teaching methods edited to support all students.
 - o Students who are moving ahead of pace could participate in experiments to chemically test whether a substance is a metal, non-metal or metalloid.
 - Students who need more assistance could create a periodic table that can be broken down (using note cards) that will allow them to divide the elements into their groups, trends, classifications, etc. This could provide students with hands-on practice.
 - The labeling of the periodic table during lecture should help students visualize where specific sections are on the periodic table. Colors and keys should make it easy to identify. The teacher also creating a master copy should help those students with a photographic memory.
 - The PowerPoint is to be used as a tool to assist in delivering information to students. The teacher should break where necessary to allow students to participate in activities and/or handouts to ensure the information is being absorbed.

Instruction Using Inquiry Model: What learning experiences will facilitate student success?

Framing the Learning:

1. Engage – This lesson is embedded in a unit regarding the periodic table. The opening activity taps into skills taught at the very beginning of the year and at the same time introduces the concept of trends within elements. Students will work in groups to build their tables based off information given in the appendix of the text.

Learning Experiences:

- 2. **Explore** One main activity is included in this lesson, the Martian Activity. This activity allows students to apply the concepts learned in the lesson yet keeps it interesting by using a make-believe scenario and treating the assignment as a riddle. It is important to make sure students use the fake element presented to them in the assignment and they do not copy sections of the periodic table thinking this is the answer.
- 3. **Explain** There is a PowerPoint provided with the basic knowledge needed in this lesson. There is also a blank periodic table included for students to label as they work through the lecture. It is helpful for the teacher to label a periodic table along with the students so they understand what they are labeling and why. Students are encouraged to use colors with a key as well as word labels to help them to visualize the parts of the periodic table.
- 4. Elaborate There is one practice handout included that requires students to apply the trend concepts to the periodic table. It is up to the teacher to decide if more practice is needed for students and to guide them in the right direction for assistance. Teachers will need to correct this assignment for accuracy to provide students with accurate feedback and guidance. It is important for the teacher to make sure students not only know the trends but they also know how to apply the trends.
- 5. **Evaluate** There is a Periodic Trends Quiz included in this packet, the information will also be included in a cumulative unit test. The teacher may choose to include smaller formal assessments throughout the lesson as they feel necessary.

Resources:

- Introduction Activity Handout, copies of Appendix B.2 or copies of the textbook for each group of students. Or a supplemental chart with properties of elements such as melting point, boiling point and density.
- Periodic Trends PowerPoint
- Blank Periodic Table, colored pencils/crayons for labeling.
- Martian Activity directions, answer sheet and a periodic table for reference.
- Periodic Trends Handout
- Periodic Trends Quiz

Reflection: Based on data, how do I refine the learning experiences and/or the assessment?

- Analysis of Data This lesson is the closing lesson of this unit, however the concepts will continue in future lessons for things such as covalent bonding. Evidence of mastery will come from the quizzes, assignments and verbal assessments completed by the teacher. Assessment during the lesson will allow the teacher to edit pacing and scaffold as necessary.
- Immediate Implications The teacher can create more practice problems and activities to allow students to practice more. With guidance the student could create a set of flashcards with elements to physically make a periodic table and divide up the sections as well as use them with the teacher to practice the trend patterns. If a student has a strong grasp on the topics they could participate in a lab that chemically tests whether the substances are metals, non-metals or metalloids.
- Future Planning This lesson was developed to scaffold students into a strong understanding of the divisions of the periodic table and the trends of the periodic table. At each stage of the lesson the teacher will evaluate students progress and adjust accordingly. If the final assessment of the lesson requires re-teaching the teacher will edit the pace to accommodate.

(SOL CH.2 d, e, f, h): The student will demonstrate an understanding of the periodic table and the relationship between properties of elements and their electron structure.

Name:

Class Period: _____ Date: _____

Introduction Activity: Trends in Physical Properties

Procedure:

- 1. In your group obtain a large whiteboard and marker.
- 2. Make a table with five columns. In the first column list the metals lithium, sodium, potassium, rubidium and cesium, in that order. Title the other four columns atomic number, melting point, boiling point and density.
- 3. Make a second table for the nonmetal elements fluorine, chlorine, bromine and iodine. Title the other four columns atomic number, melting point, boiling point and density.
- 4. Use table B.2 (in Appendix B of the textbook) to complete each table. Include the appropriate units for each property.

Think About It:

- 1. For the metals, what are the trends for the melting points and boiling points as the atomic number increases.
- 2. Are the trends for melting and boiling points the same for the nonmetals? Explain.
- 3. What is the general trend in densities of the metals with increasing atomic number?
- 4. Why is the range of densities much greater among the nonmetals than among the metals?

Use appendix B.2 from Prentice Hall: Chemsitry © 2005

Table B.2

Element	Symbol	Atomic number	Atomic mass	Melting point (°C)	Boiling point (°C)	Density (g/cm ³) (gases at STP)	Oxidation numbers
Iron	Fe	26	55.847	1535	2750	7.874	+2, +3
Krypton	Kr	36	83.80	-156.6	-152.30	0.003733	12,10
Lanthanum	La	57	138.9055	921	3457	6.145	+3
Lawrencium	La	103	(262)	521	3437	0.145	+3
Lead	Pb	82	207.2	327.502	1740	11.35	+2, +4
Lithium	Li	3	6.941	180.54	1342	0.534	+2, +4
Lutetium	Lu	71	174.967	1663	3395	9.840	+3
Magnesium	Mg	12	24.305	648.8	1107	1.738	+3
1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -	Mn	25	54.9380	1244	1962	7.32	+2 +2, +3, +4, +7
Manganese Meitnerium	Mt	109	(268)	1244		1.32	+2, +3, +4, +1
			() () () () () () () () () ()				10.10
Mendelevium	Md	101	257 200 E0	-		12 55	+2, +3
Mercury	Hg	80	200.59	-38.842	356.58	13.55	+1, +2
Molybdenum	Mo	42	95.94	2617	4612	10.22	+6
Neodymium	Nd	60	144.24	1021	3068	6.90	+3
Neon	Ne	10	20.179	-248.67	-246.048	0.0008999	
Neptunium	Np	93	(237)	640	3902	20.25	+3, +4, +5, +6
Nickel	Ni	28	58.69	1453	2732	8.902	+2, +3
Niobium	Nb	41	92.9064	2468	4742	8.57	+3, +5
Nitrogen	N	7	14.0067	-209.86	-195.8	0.0012506	-3, +3, +5
Nobelium	No	102	(259)	·			+2, +3
Osmium	Os	76	190.2	3045	5027	22.57	+3, +4
Oxygen	0	8	15.9994	-218.4	-182.962	0.001429	-2
Palladium	Pd	46	106.42	1554	2970	12.02	+2, +4
Phosphorus	Р	15	30.97376	44.1	280	1.82	-3, +3, +5
Platinum	Pt	78	195.08	1772	3627	21.45	+2, +4
Plutonium	Pu	94	(244)	641	3232	19.84	+3, +4, +5, +6
Polonium	Po	84	(209)	254	962	9.32	+2, +4
Potassium	К	19	39.0982	63.25	760	0.862	+1
Praseodymium	Pr	59	140.9077	931	3512	6.64	+3
Promethium	Pm	61	(145)	1168	2460	7.22	+3
Protactinium	Pa	91	231.0359	1560	4027	15.37	+4, +5
Radium	Ra	88	(226)	700	1140	5.5	+2
Radon	Rn	86	(222)	-71	-61.8	0.00973	Post-
Rhenium	Re	75	186.207	3180	5627	21.02	+4, +6, +7
Rhodium	Rh	45	102.9055	1966	3727	12.41	+3
Roentgenium	Rg	111	(272)				
Rubidium	Rb	37	85.4678	38.89	686	1.532	+1
Ruthenium	Ru	44	101.07	2310	3900	12.41	+1 +3
Rutherfordium	Rf	104	(261)	2010	3300	12.41	
Samarium	Sm	62	150.36	1077	1791	7.520	+2, +3
	Sm	and the	1 CONTRACTOR OF CONTRACTOR	0080222.008		0.4 (1.4.02.2) (2.0.00.0)	+2, +3
Scandium		21	44.9559	1541	2831	2.989	+3
Seaborgium	Sg	106	(263)		-		2 1 4 1 2
Selenium	Se	34	78.96	217	684.9	4.79	-2, +4, +6
Silicon	Si	14	28.0855	1410	2355	2.33	-4, +2, +4
Silver	Ag	47	107.8682	961.93	2212	10.50	+1

Table B.2

			5 om e Proper	ties of the	Elements		
Element	Symbol	Atomic number	Atomic mass	Melting point (°C)	Boiling point (°C)	Density (g/cm³) (gases at STP)	Oxidation numbers
Actinium	Ac	89	(227)	1050	32:00	10.07	+3
Aluminum	Al	13	26.98154	660.37	2467	2.6989	+3
Americium	Am	95	243	994	2607	13.67	+3, +4, +5, +6
Antimony	Sb	51	121.75	630.74	1587	6.691	-3, +3, +5
Argon	Ar	18	39.948	- 189.2	- 185.7	0.0017837	
Arsenic	As	33	74.9216	817	613	5.73	-3, +3, +5
Astatine	At	85	(210)	302	337	1775	2
Barium	Ba	56	137.33	725	1640	3.5	+2
Berkelium	Bk	97	(247)	986	<u></u>	14.78	
Beryllium	Be	4	9.01218	1278	2970	1.848	+2
Bismuth	Bi	83	208.9804	271.3	1560	9.747	+3, +5
Bohrium	Bh	107	(264)				
Boron	B	5	10.81	2075	3675	2.34	+3
Bromine	Br	35	79.904	-7.2	58.78	3.12	-1, +1, +5
Cadmium	Cd	48	112.41	320.9	765	8.65	+2
Calcium	Ca	20	40.08	839	1484	1.55	+2
Californium	Cf	98	(251)	900		14	
Carbon	C	6	12.011	3550	4827	2.267	-4, +2, +4
Cerium	Ce	58	140.12	799	3426	6.657	+3, +4
Cesium	Cs	55	132.9054	28.40	669.3	1.873	+1
Chlorine	CI	17	35.453	-100.98	-34.6	0.003214	-1, +1, +5, +7
Chromium	Cr	24	51.996	1907	2672	7.18	+2, +3, +6
	Co	24	58.9332	1495	2870	8.9	+2, +3, +6
Cobalt	Cu	29	63.546	1495	2567	8.96	+2, +3
Copper	152.2216	29 96	1104 St 140 24 St 1	1340	200/	13.51	+1, +2
Curium	Cm		(247)			13.51	+3
Darmstadtium	Ds	110	(269)	<u> </u>	-	-	
Dubnium	Db	105	(262)			-	
Dysprosium	Dy	66	162.50	1412	2562	8.550	+3
Einsteinium	Es	99	(252)	_			-
Erbium	Er	68	167.26	159	2863	9.066	+3
Europium	Eu	63	151.96	822	1597	5.243	+2, +3
Fermium	Fm	100	(257)				
Fluorine	F	9	18.9984.03	-219.62	- 188.54	0.00181	-1
Francium	Fr	87	(223)	27	677		+1
Gadolinium	Gd	64	157.25	1313	32.66	7.9004	+3
Gallium	Ga	31	69.72	29.78	22.04	5.904	+3
Germanium	Ge	32	72.59	937.4	2830	5.323	+2, +4
Gold	Au	79	196.9665	1064.43	2856	19.3	+1, +3
Hafnium	Hf	72	178.49	2227	4602	13.31	+4
Hassium	Hs	108	(265)		_		5
Helium	He	2	4.00260	-272.2	-268.934	0.001785	
Holmium	Но	67	164.9304	1474	2695	8.795	+3
Hydrogen	Н	1	1.00794	-259.14	-252.87	0.00008988	-1, +1
Indium	In	49	114.82	156.61	2080	7.31	+1, +3
lodine	1	53	126.9045	113.5	184.35	4.93	-1, +1, +5, +7
Iridium	lr	77	192.22	2410	4130	22.42	+3, +4

N	
ന്	
-	
<u> </u>	
0	
65	

ہ + +3, +4, +5, +6 Oxidation numbers +4, +9 -2, +4, +6 4 +4 +4, +6,-2, +4, +2, +3, +2, +3, ი + +1, +3 +2, +4 +2, 2 + +3 +49+ +26+ ۲ +2 +4 + Density (g/cm³) (gases at STP) 0.005887 6.965 7.133 6.506 4.469 16.654 8.229 I 9.321 0.971 2.63 6.24 11.72 18.95 6.11 2.07 11.50 11.85 4.54 7.31 19.3 Some Properties of the Elements (cont.) Boiling point (°C) 882.9 989.8 444.7 -107.15425 3818 3338 1381 3123 3380 1194 907 4877 1457 4790 1947 2270 3287 5660 4377 I Melting point (°C) 231.968 419.58 97.81 449.5 1132.3 112.8 303.5 -111.9 I 1 769 2996 1545 3410 2172 1356 1750 1660 1890 819 1522 1852 22.98977 88.9059 Atomic 180.9479 50.9415 158.9254 168.9342 238.0289 232.0381 204.383 mass 127.60 87.62 32.06 118.69 183.85 131.29 173.04 65.38 47.88 91.22 I (277) (86) Atomic number 38 16 23 54 70 39 11 73 65 90 69 50 74 112 114 92 3040 43 52 22 81 Symbol Uub Uuq Ц Na Sn Xe Te Tb Th Υb Та Tc Zn Zr 3 Sr F μ ⊃ × S > Ununquadium Technetium Ununbium Strontium Vanadium Zirconium Tantalum Ytterbium Tellurium Tungsten Uranium Element Thallium Titanium Terbium Thorium Thulium Sodium Yttrium Xenon Sulfur Zinc Tin

(SOL CH.2 d. e. f. h): The student will demonstrate an understanding of the periodic table and the relationship between properties of elements and their electron structure.

N		
IN	ame	

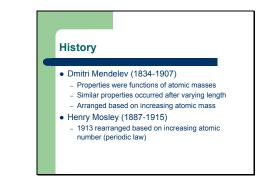
Class Period: Date:

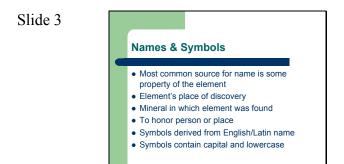
EXPLORE PHASE

Martian Activity

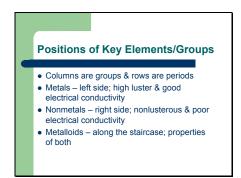
You are a part of a collection of scientists who have been chosen to assist a group of alien scientists. In order to be able to converse scientifically, you must learn their language, and most importantly, you must arrange their elements according to the trends that exist in the periodic table. Below are clues for the alien's elements. So far, the aliens have only discovered elements in groups 1, 2, and 13-18, and periods 1-5. Although the names of the elements are different, they must correspond to our elements if our belief of universal elements holds true. Read each clue carefully, and then place the symbol for that clue's element in the blank periodic table provided.

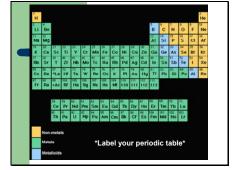

- 1. Livium (Lv): This element is responsible for life. It has 2 electron energy levels and 4 electrons available for bonding in the outermost energy level.
- 2. Computerchipium (Cc): This element is important for its use as a semiconductor in computers.
- 3. Lightium (L): This is the lightest of elements; aliens used to use it in their aircraft until their aircraft caught fire in a horrific accident.
- 4. Breathium(Br): When combined with Lightium (L), it makes the alien's most common liquid whose formula is L2Br.
- 5. Francium (F): A metal found in period 4 group 13.
- 6. Moonium (Mo): An element with an atomic number of 34.
- 7. Explodium (Ex): This element is the most reactive metal on the alien's table.
- 8. Violetium(V): This element is found as part of a compound in bananas. When burned, it has a violet colored flame.
- 9. Sparkium (Sp) and Burnium (Bu) are members of the alkali metal group, along with Violetium(V) and Explodium (Ex). Their reactivity, from least to greatest, is Sp, Bu, V,
- 10. Balloonium (Ba): A noble gas used to fill balloons.
- 11. Toothium (To): This element is added to juices to help build strong bones and teeth.
- 12. Metalloidium (M) and Poisonium (Po): Two metalloids found in period 4. Po is the more massive than M.
- 13. Lowigium (Lo): A period 4 halogen.
- 14. Darkbluium(Dk): Has an atomic mass of 115.
- 15. Hugium (Hu): The element on the alien's periodic table that has the most mass.
- 16. Glucinium (Gl): The element found in period 2, group 2.
- 17. Reactinium (Re): The most reactive non-metal on the periodic table.
- 18. Balloonium (Ba), Signium(Si), Stableium(Sb), Supermanium (Sm), and Hugium (Hu) are all noble gases. They are arranged above from least to most massive.
- 19. Cannium (Cn): This element helps to preserve foods; it is used in can manufacturing.
- 20. Burnium (Bu), Blue-whitium (Bw), Bauxitium (Xi), Computerchipsium (Cc), Bringer-of-lightium (Bl), Stinkium (Sk), Purium (P), and Stableium (Sb) are all found in period 3. Bu has 1 electron in its outer energy level, Bw has 2, Xi has 3, Cc has 4, Bl has 5, Sk has 6, P has 7 and Sb has 8.
- 21. Scottishium (Sc): A metal element found in group 2.
- 22. Infectium (If): This element, mixed with alcohol, is used on cuts.
- 23. Abundantcium(Ab): One of the most abundant gasses in the universe. It has 7 protons, 7 neutrons, and 7 electrons.
- 24. Some additional clues: The number after the symbol indicates the number of electrons in the outer energy level: Notalonium(Na): 5 Earthium (E): 6 Boracium (B): 3

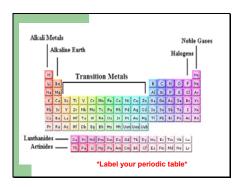

17				
16				
15				
14				
13				
	L	<u> </u>	TRANSITION	ELEMENTS
2				
	7	m	4	ъ

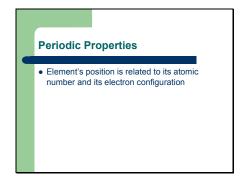

18

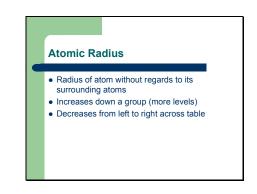
Ч


		MAR	TIAN ACTIVI	TY <mark>KEY</mark>	
18	Ba	IS	Sb	Sm	Η̈́
	17	ſ	d	ΓO	Ŧ
	16	Br	Š	Ø	ш
	15	Ab	BI	Σ	S
	14	Ľ	CC	Ро	C
	13	В	Xi	LL.	ă
				TRANSITION	ELEMENTS
	Ν	ט	Bw	Р Р	X
1		Sp	Bu	>	ŭ
	, ,	7	m	4	Ŋ

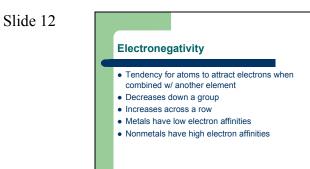


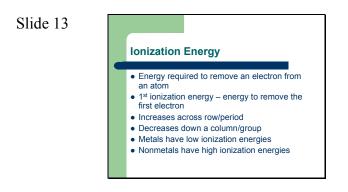


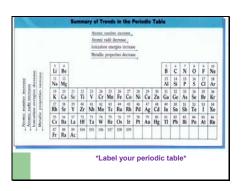



Common Properties Elements w/ 3 or fewer electrons in outer level are considered metals

- Elements w/ 5 or more electrons in outer level are considered nonmetals
- Metalloids have properties of both







			~															1						
2 He 4.003	10	Ne	Nett 20.1797	18	Ar	39,948	36	Ϋ́	83,80	2	Xe	Xeron 131.29	86	Rn	Rador (222)				5	Lu	174.967	103	Lr	Laurencian (262)
	6	Ч	Fluorine 18.9984032	17	Ū	Choine 35.4527	35	Br	79,904	53	Ι	lodine 126.90447	85	At	Autoine (210)				70	Υb	Viterburn 173.04	102	Ν	Nobelium (259)
	8	0	Oxygen 15,9994	16	s	Salfar 32.066	34	Se	78.96	52	Te	Tellarium 127.60	84	P_0	Polonium (209)				69	Tm	Thulium 168.93421	101	Md	Mendelevium (258)
	7	z	Nirogen 14.00674	15	Р	Phosphorus 30.973761	33	As	74.92160	51	Sb	Antimony 121.760	83	Bi	Bismuth 208,98038				68	Er	167.26	100	Fm	Fermium (257)
	9	υ	Carbon 12.0107	14	Si	Silicen 28.0855	32	ğ	72.61	50	Sn	TIN 118.710	82						67	Чo	164.93032	66	Es	Einsteinium (252)
	s.	в	Boron 10.811	13	I	Ahminum 26.581538	31	Ga	G5.723	49	'n	114.818	81	L.	Thilium 204,3833	113			99	Dy				Calibrium (251)
							30	Zn	65.39	48	Cd	Codmium 112.411	80	Нg	Moreary 200.59	112	(277)		65		Terbaun 158.92534		Bk	Behelium (247)
							29	ō	copper 63.546	47	Чg	Slbur 107.8682	79	ΝN	Geld 196.96655	Ξ	(272)		64	РÐ	Gadelinum 157.25	96	Cm	Cuiun (247)
							28	Ż	58.6934	46	Ρd	Pallodium 106.42	78	Pt	Plainere 195.078	011	(269)		63	Eu	151.964	95	Am	Americium (243)
							27	రి	58.933200	45	Rh	Rhoftum 102.90550	77	ŗ	192.217	601	Mt Mainerium (266)		62	Sm	5amanum 150.36	94	Pu	Plutonium (244)
							26	Fe			Ru	Rathenium 101.07	76	ő	Osmium 190.23	108	Hs Itacium (265)		61	Pm	Promethium (145)	93	dN	Neptunium (237)
							25	Mn	Manganos 54,938049	43	Lc	Tochnoturn (98)	75	Re	Rhenium 186.207	107	Bh Bh		60	ΡN				Uranium 238.0289
							24	స	51.9961	42	Mo	Molybdenum 95.94	74	3	Tungan 183.84	901	Sg Seaborgium (263)		59					Protectinium 231.03588
							23	>	50.9415	41		Nebium 92.90638						1	58		Carum 140.116		Ľ	Thorium 232.0381
							22	Έ	1.namun 47.867	4	Zr	Zircontum 91.224	72	Ηſ	Hafnium 178.49	104	Rf Rutherfordium (261)		•			•		
							21	Sc	sommum 44,955910	39	Y	Ytnium 88.90585	57	La	Larchaum 138,9055	89	Ac Activity (227)	1						
	4	Be	Septium 9.012182	12	Mg	Magnesium 24.3050		Ca					_				Ra Radium (226)							
Hydrogen 1.00794	e	E	Lithiun 6.941	11	Na	Sodium 22.989770	19	K	39.0983	37	Rb	Rubidium 85.4678	55	ű	Casium 132.90545	8.7	Fr Francium (223)							
									_			_												

The Periodic Table of the Elements

(SOL CH.2 d, e, f, h): The student will demonstrate an understanding of the periodic table and the relationship between properties of elements and their electron structure.

Name:	
Class Period:	Date:

ELABORATE PHASE

Periodic Trends

Circle the atom in each pair has the larger atomic radius?

- 1. Li or K
- 2. Ca or Ni
- 3. Ga or B
- 4. O or C
- 5. Cl or Br
- 6. Be or Ba
- 7. Si or S
- 8. Fe or Au

Circle the atom in each pair has the larger ionization energy?

- 1. Na or O
- 2. Be or Ba
- 3. Ar or F
- 4. Cu or Ra
- 5. I or Ne
- 6. K or V
- 7. Ca or Fr
- 8. W or Se

Circle the atom in each pair has the smaller electronegativity?

- 1. K or O
- 2. Ba or I
- 3. Al or I
- 4. K or Cs
- 5. Fe or I
- 6. F or S

Periodic Trends **KEY**

Circle the atom in each pair has the larger atomic radius?

- 9. Li or **K**
- 10. Ca or Ni
- 11. **Ga** or B
- 12. O or **C**
- 13. Cl or Br
- 14. Be or Ba
- 15. <mark>Si</mark> or S
- 16. Fe or Au

Circle the atom in each pair has the larger ionization energy?

- 9. Na or **O**
- 10. Be or Ba
- 11. Ar or F
- 12. Cu or Ra
- 13. I or Ne
- 14. K or V
- 15. Ca or Fr
- 16. W or Se

Circle the atom in each pair has the smaller electronegativity?

- 7. **K** or O
- 8. Ba or I
- 9. Al or I
- 10. K or **Cs**
- 11. Fe or I
- 12. F or **S**

(SOL CH.2 d, e, f, h): The student will demonstrate an understanding of the periodic table and the relationship between properties of elements and their electron structure.

Name:

Class Period: Date:

EVALUATE PHASE

Periodic Trends Quiz

1. On the periodic table below label the Alkali Metals, Alkaline Earth Metals, Halogens and Noble Gases.

1 H																	2 He
Hydrogen 1.00794																	Helium 4.003
3	4]										5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
Lithium 6.941	Beryllium 9.012182											Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Neon 20,1797
11	12]										13	14	15	16	17	18
Na	Magnesium											Al	Silicon	P Phosphorus	S Sulfar	Cl	Ar
22.989770	24.3050											26.981538	28.0855	30.973761	32.066	35.4527	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K Potassium	Calcium	Sc	Ti	Vanadium	Cr	Mn Marganese	Fe	Cobult	Ni	Copper	Zn	Gattium	Germanium	As	Selenium	Br	Krypton
39.0983	40.078	44.955910	47.867	50.9415	51.9961	54.938049	55.845	58.933200	58.6934	63.546	65.39	69.723	72.61	74.92160	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb Rubidium	Sr	Y	Zr	Nb	Mo	Tc Technetium	Ru	Rh Rhodium	Pd Palladium	Ag	Cd Cadmium	In	Sn	Sb	Te	I Iodine	Xenon
85.4678	87.62	88.90585	91.224	92.90638	95.94	(98)	101.07	102.90550	106.42	107.8682	112.411	114.818	118.710	121.760	127.60	126.90447	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Barium	Lanthanom	Hafnium	Tantalum	W	Re	Osmium	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn Radon
132.90545	137.327	138.9055	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196.96655	200.59	204.3833	207.2	208.98038	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Free	Ra Radium	Ac	Rf Rutherfordium	Dubnium	Seaborgium	Bh	Hassium	Meitnerium									
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	66 D.:	Ho	Er	Tm	Yb	Lu
				Cerium	Przeodymium	Neodymium	Promethian	Samarium	Europium	Gadelinium	Terbium	Dy Dysprosium	Holmium	Erbium	Thulian	Ynerbium	Lutetium
				140.116 90	140.90765 91	144.24 92	(145) 93	150.36 94	151.964 95	157.25 96	158.92534 97	162.50 98	164.93032 99	167.26 100	168.93421 101	173.04	174.967 103
				Th	\mathbf{Pa}	92 U		94 Pu			Bk	Cf	Es	Fm	Md	No	Lr
				Thorium	Protactinium	Uranium	Np	Plutonium	Am Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
				232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

The Periodic Table of the Elements

- Identify the number of protons, neutrons and electrons in the following:
 a. S²⁻
 - b. Magnesium-26
- 3. Explain the difference between an ion and an isotope.
- 4. Compare and Contrast the placement *and* properties of metals, non-metals and metalloids.
- 5. Identify the following for the two elements F and Fr:
 - a. Highest electronegativity
 - b. Lowest ionization energy
 - c. Largest atomic radius