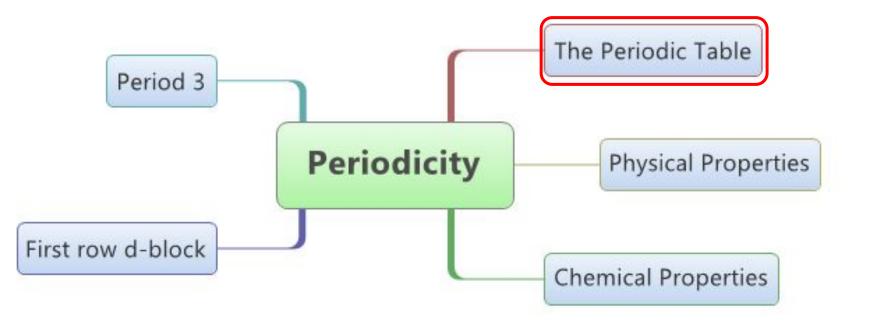
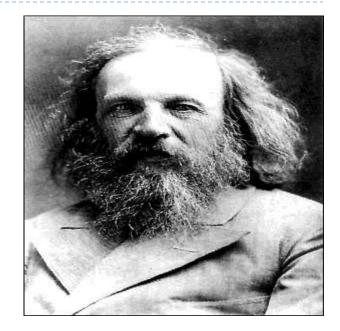
Periodicity


Ms. Peace

Lesson 1

3.1 The Periodic Table

We Are Here



The Development of the Periodic Table

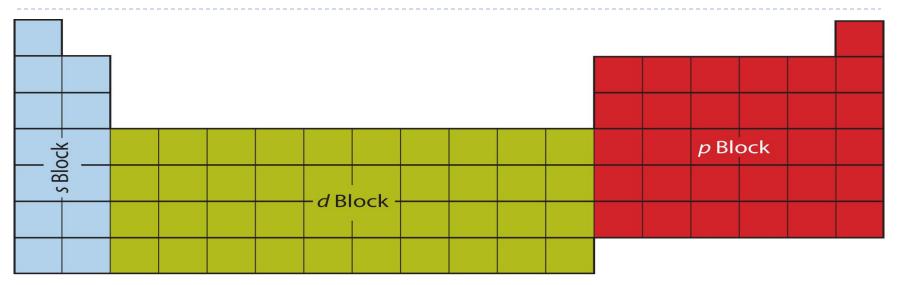
Being Mendeleev

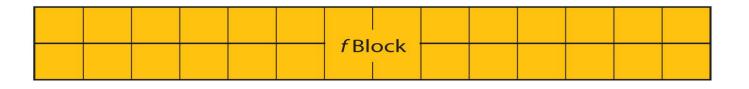
- The first widely accepted periodic table was produced by the Russian chemist Dmitri Mendeleev
- It was a tremendous example of scientists as risk-takers as it was able to make a number of predictions thought unlikely at the time
- Mendeleev claims the arrangement of elements came to him in a dream

Dmitri Mendeleev's Periodic Table The one that started it all off.

D

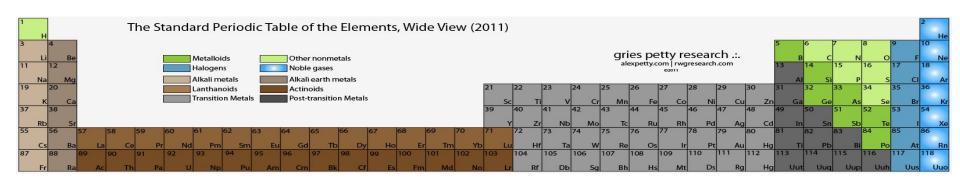
Rehen	Gruppo I. 	Gruppo 11. 	Gruppe III. R*0*	Gruppe 1V. RH ⁴ RO ⁴	Gruppo V. RH ^a R*0 ⁵	Grappe VI. RH ^a RO ^a	Gruppe VII. RH R*0'	Groppo VIII.
1	II=1	-						
2	Li=7	Be=9,4	B==11	C=12	N=14	0=16	F==19	
8	Na=23	Mg == 24	A1=27,8	Si=28	P==31	S=32	Cl== 35,5	
4	K=39	Ca= 40	-==44	Ti=48	V==51	Cr= 52	Mn=55	Fo=56, Co=59, Ni=59, Cu=63.
5	(Cu=63)	Zn=65	-=68	-= 72	As=75	So=78	Br== 80	
6	Rb == 85	Sr==87	?Yt=88	Zr= 90	Nb == 94	Mo=96	-==100	Ru=104, Rh=104, Pd=106, Ag=108.
7	(Ag=108)	Cd=112	In == 113	Sn==118	Sb=122	Te=125	J=127	
8	Cs== 133	Ba=137	?Di=138	?Ce==140	-	-	-	
9	(-)	-	-	-	-	-	-	
10	-	-	?Er=178	?La=180	Ta=182	W=184	-	Os=195, Ir=197, Pt=198, Au=199.
11	(Au=199)	fig=200	T1== 204	Pb= 207	Bi== 208		-	
12	-	-	-	Th=231	-	U=240	-	


The Traditional


D

Based on Mendeleev's work. Easiest to use and display.

	1	2											3	4	5	6	7	0
1	1 H 1.01					Atomic num Elemen												2 He 4.00
2	3 Li 6.94	4 Be 9.01			Re	lative atomic							5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
3	11 Na 22.99	12 Mg 24.31	-										13 Al 26.92	14 Si 28.09	15 P 30.97	16 S 32.06	17 Cl 35.45	18 Ar 39.95
4	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.90	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.71	29 Cu 63.55	30 Zn 65.38	31 Ga 69.74	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.91	36 Kr 83.80
5	37 Rb 85.47	38 Sr 87.62	39 ¥ 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc 98.91	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 I 126.90	54 Xe 131.30
6	55 Cs 132.91	56 Ba 137.33	57 † La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.09	79 Au 196.97	80 Hg 200.59	81 Tl 204.37	82 Pb 207.19	83 Bi 208.98	84 Po 210	85 At 209.99	86 Rn 222.02
7	87 Fr 223.02	88 Ra 226.03	89 ‡ Ac 227.03	104 Rf 260	105 Db 262.11	106 Sg 266.12	107 Bh 264.12	108 Hs 269.13	109 Mt 268.13									
			÷	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm 144.91	62 Sm 150.35	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97	
			#	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np 239.05	94 Pu 239.05	95 Am 243.06	96 Cm 247.07	97 Bk 247.07	98 Cf 252.08	99 Es 254.09	100 Fm 253.09	101 Md 257.10	102 No 255.09	103 Lr 257	


s, p, d, f Blocks

Wide Format Periodic Table

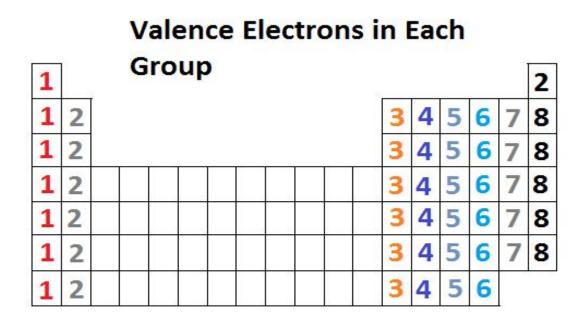
Shows true position of the f-block (lanthanides and actinides)

The Structure of the Periodic Table

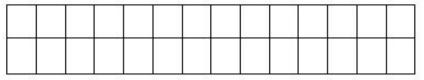
	1	2											3	4	5	6	7	0
1			_		-	Atomic num Elemen							_				2	2 He 4.00
2		4 Be 9.01			Rel	ative atomic							5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
3	GR	12 Mg 24.31										2	13 Al 26.92	14 Si 28.09	15 P 30.97	16 S 32.06	17 Cl 35.45	18 Ar 39.95
4	INC	20 Ca 40.08	21 Sc 44.96	22 Ti 47.90	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.71	29 Cu 63.55	30 Zn 65.38	31 Ga 69.74	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.91	36 Kr 83.80
5	Sd	38 Sr 87.62	39 ¥ 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc 98.91	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 I 126.90	54 Xe 131.30
6									PER		S							
	_	137.33	138.91	178.49	180.95	183.85	186.21	190.23	192.22	195.09	196.97	200.59	204.37	207.19	208.98	210	209.99	221 02
7	221.02	88 Ra 226.03	89 ‡ Ac 227.03	104 Rf 260	105 Db 262.11	106 Sg 266.12	107 Bh 264.12	108 Hs 269.13	109 Mt 268.13									
			÷	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm 144.91	62 Sm 150.35	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97]
			4	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np 239.05	94 Pu 239.05	95 Am 243.06	96 Cm 247.07	97 Bk 247.07	98 Cf 252.08	99 Es 254.09	100 Fm 253.09	101 Md 257.10	102 No 255.09	103 Lr 257	

Groups and Periods

Groups

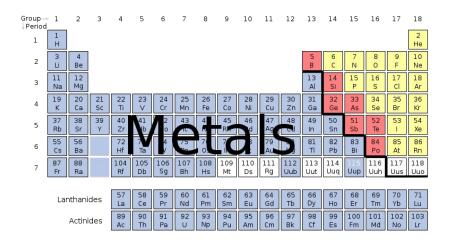

- Elements show similar chemical properties
- Elements show similar trends in their chemical properties

Periods

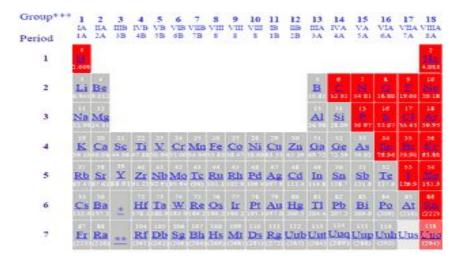

- As you move across periods, changes in the chemical and physical properties that are repeated in the next period
- This is what 'period' and 'periodic' refers to

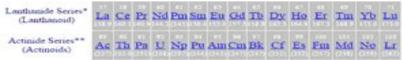
Period Numbers Group -10 11 12 13 15 16 17 18 1 Period 2 1 н He 10 4 2 Be 0 8 0 Ne 12 13 14 15 16 17 18 3 14.0 Mg Al 51 9 5 CI Ar 20 21 22 25 26 27 28 29 30 31 32 33 34 35 36 23 24 4 Ca Sc Ti V Cr Min Fe Co **N**ii Ou Zn Ga Ge Se Br As iKe. 39 43 45 49 50 51 52 53 54 38 40 41 42 44 46 47 48 5 Sr * Ru Rh Pd Cd Sb Te RD Zr ND. Mo TC: Ag In Sn 1 xe 75 77 78 82 83 84 86 55 56 72 73 74 76 79 80 81 85 -6 Ba HI Ta W Re Os ir Pt Au Ha TI Pb Bi Po At Rn 88 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 7 **R**as Rf Db Bh Hs Mt Dis Ra Cn Uut FI Sg Uup LV Uus. Uuo 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanides La Ce Pr Nd Pm Eu Gd Tb DV Ho Er Tm Yb Sm LU 91 92 93 2.0 95 96 97 96 99 100 101 102 103 89 90 Actinides Th Pro 1.1 ND Pu Am Cm Blk CT Es. Fm BACS. No Lr

The period number (n) is the outer energy level that is occupied by electrons


Valence Electrons The valence electrons in an atom can be deduced from its position on the periodic table

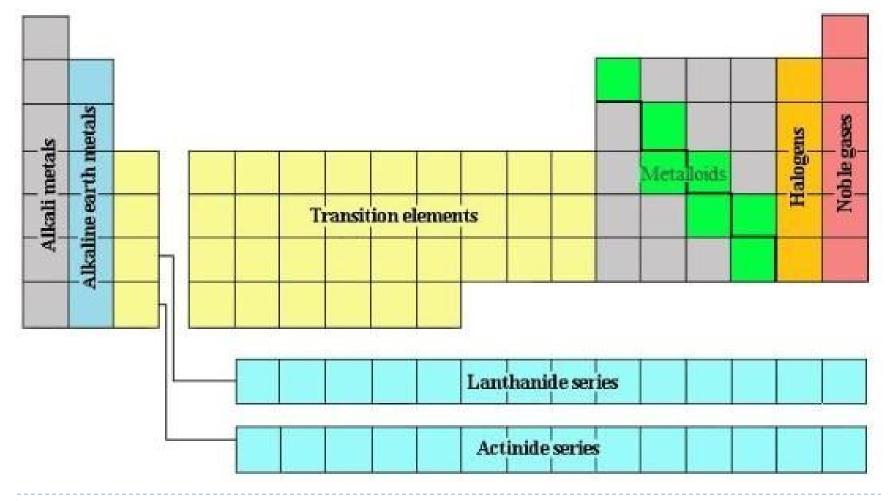
H 2 A METALS METALLOIDS NONMETALS I Be 0 S 4A 5A 6A 7A I I Be 0 S A 5 6A 7A I I Be 0 S S 6A 7A I I I Be 0 S	1A
2A METALS METALLOIDS NONMETALS 3A 4A 5A 6A 7A 4 Is.037 I	
Li Bec Support Bec Support Supp	784; 1.00811] DROGEN
Name Mg 3 4 5 6 7 8 9 10 11 12 All Si P Soft Soft Soft P Soft	138; 6.997] THIUM
Ka signed and the second secon	Va
	K 39.098 TASSIUM
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I In Sno Stop In In Sno In In In Sno In In In Sno In In <th< th=""><th>Rb B5.468 BIDIUM</th></th<>	Rb B5.468 BIDIUM
56 57-71 72 74 74 75 76 75 19,037 78 79 80 80 81 82 83 84 85 84 85 84 85 84 85 84 85 84 85	CS 132.905 ESIUM
88 89-103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	
23.020 226.0254 ACTININE 263.113 262.114 266.122 264.125 269.134 266.139 272.146 272.154 277 284 284 288 292 294	Fr
	223.020 ANCIUM

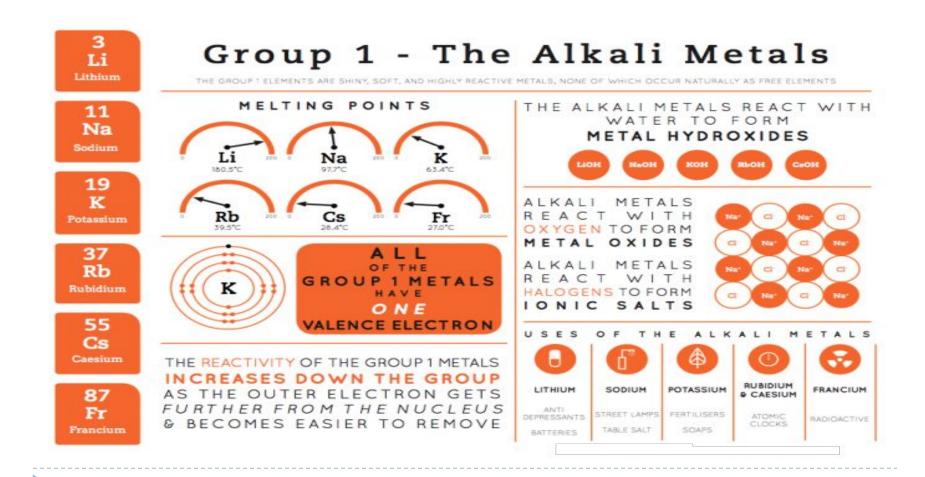



Metals

- Good conductors of heat and electricity
 Malleable-capable of being hammered into thin sheets
 Ductile-capable of
 - Ductile-capable of being drawn into wires
 Lustrous-shiny

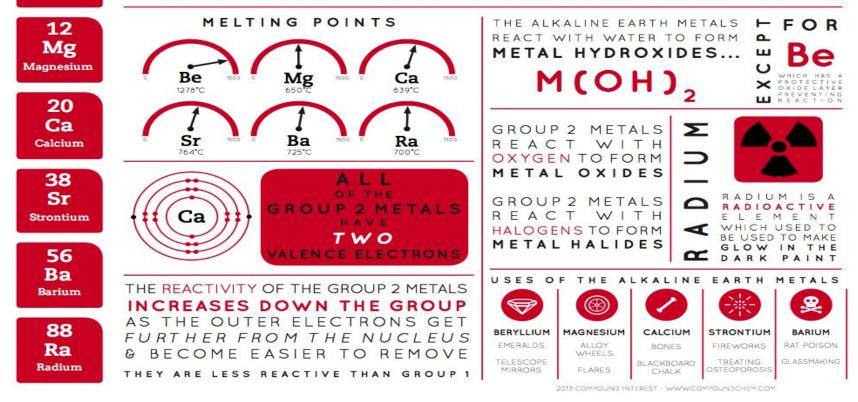
Non-Metals


***Groups are by 3 notation conventions.


 Poor conductors of heat and electricity
 Brittle solids
 Little or no lustor

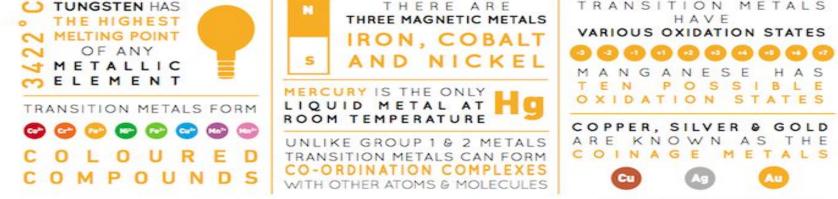
Metalloids

В	С	Ν	0	F		
Boron	Carbon	Nitrogen	Oxygen	Fluorine		
AI	Al Si		S	CI		
Aluminium	Auminium Silicon		Sulfur	Chlorine		
Ga	Ge	As	Se	Br		
Gallium	Germanium	Arsenic	Selenium	Bromine		
In	Sn	Sb	Те	I		
Indium	Tin	Antimony	Tellurium	lodine		
TI	Pb	Bi	Po	At		
Thallium	Lead	Bismuth	Polonium	Astatine		


- Solid at room
 temperature
- Semi-conductors

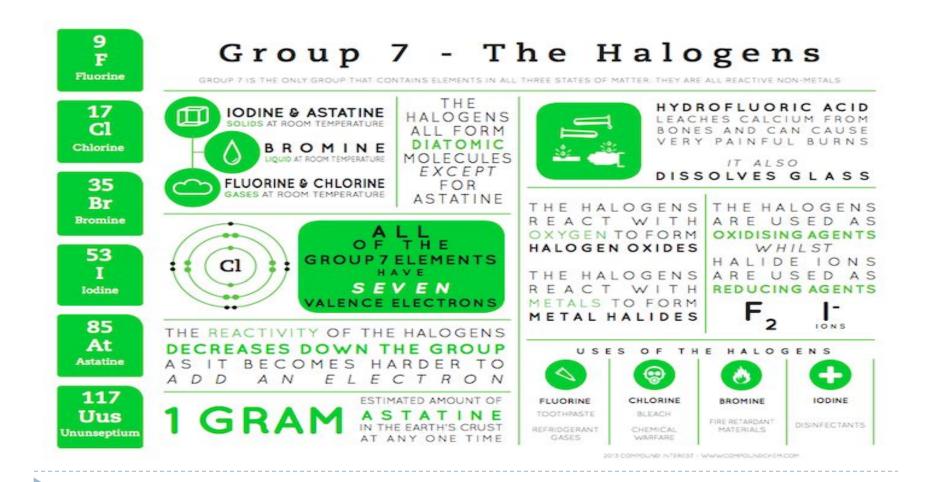
Group 2 - The Alkaline Earth Metals

THE GROUP 2 ELEMENTS ARE SHINY, SILVERY-WHITE, AND SOMEWHAT REACTIVE METALS, SOME OF WHICH OCCUR NATURALLY AS FREE ELEMENTS


4

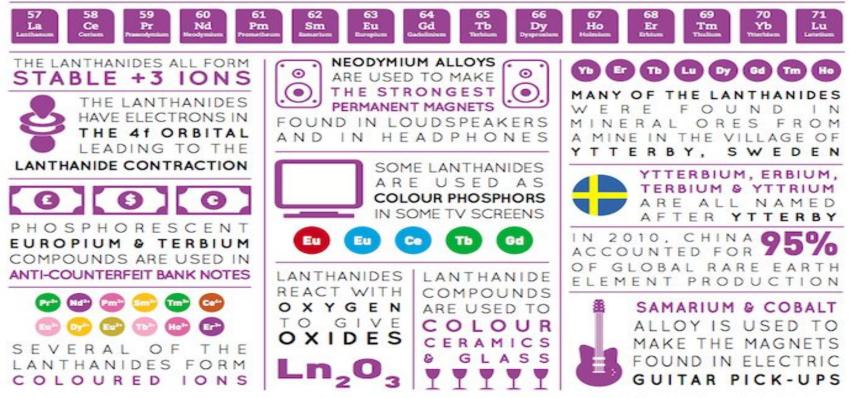
Be Beryllium

The Transition Metals


A LARGE GROUP OF METALS IN THE CENTRE OF THE PERIODIC TABLE, THEY ARE LESS REACTIVE THAN THE GROUP 10 2 METALS; AND HAVE HIGH MELTING POINTS & DENSITIES

Þ

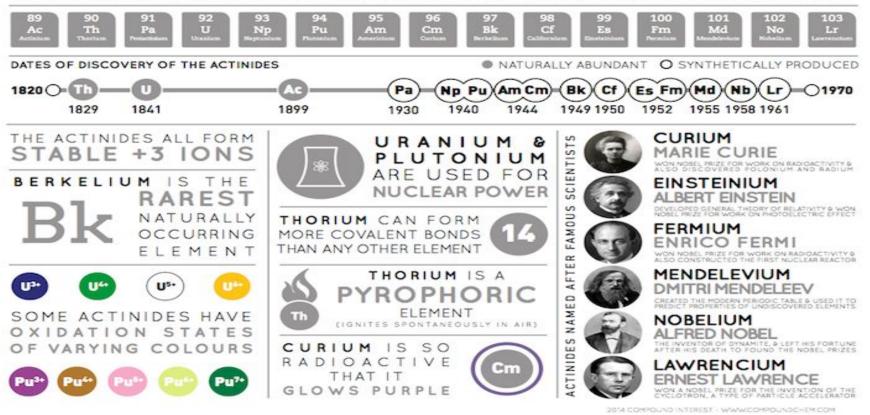
2013 COMPOUND INTEREST - WWW.COMPOUND CHEM.COM



2 He Helium		he Noble Gases DURLESS. MONOATOMIC GASES WITH A VERY LOW CHEMICAL REACTIVITY
10 Ne Neon	BOILING POINTS HELUM ARCON XENON -269°C -186°C -107°C ARE MONOAT	ASES ARE CAUSED BY IONISED NOBLE GASES
18 Ar Argon	NEDN KRYPTON RADON 246°C -152°C -62°C A L L	H He O AND CAN ENTER HOMES THROUGH
36 Kr Krypton	Ar HAVE A FULL OUT ER SH OF ELECTRONS	175% 23% 1% RADIOACTIVE HELIUM IS THE BELOW THE EARTH
54 Xe _{Xenon}	THE GROUP & ELEMENTS VERY UNREACTI AS THEY ALREADY HAV FULL VALENCE ELECTRON SH	E A OF THE NOBLE GASES
86 Rn Radon	-269°C HELIUM HAS LOWEST BOILING OF ALL ELEMEN THE PERIODIC	BALLUUNS STREET

Þ

The Lanthanides

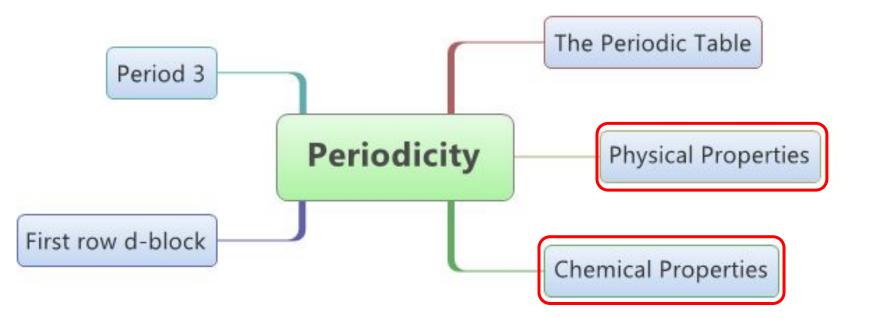

ALSO KNOWN AS THE RARE EARTH ELEMENTS, THE LANTHANIDES ARE SILVER, METALLIC ELEMENTS, AND CAN BE FOUND IN MINERALS IN THE EARTH'S CRUST

2014 COMPOUND INTEREST - WWW.COMPOUNDCHEM.COM

The Actinides

THE ACTINIDES ARE DENSE, RADIOACTIVE METALS, MANY OF WHICH ARE UNSTABLE, AND THE MAJORITY OF WHICH ARE MADE SYNTHETICALLY

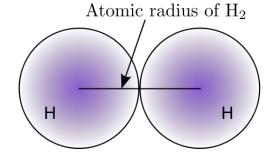
Element Poster


- You will each pick one different element and create a poster
- Things to include:
 - Name and symbol
 - Period # and group # on periodic table
 - Is it a metal, metalloid, or nonmetal
 - Number of valence electrons
 - Name of the group it is in
 - The block it is in
 - Electron configuration
 - 3 fun facts

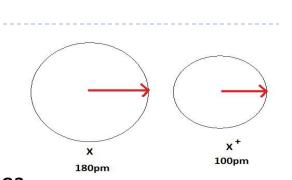
Lesson 2

3.2 Periodic Trends

We Are Here

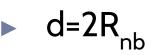


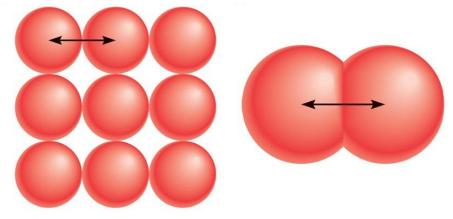
Atomic Radius


- This is the 'size' of an atom
- The radius is the distance from the center of the circle to a point on the circumference
- The position of an electron is not fixed so we cannot
 x
 100pm
 measure the radius of an atom in the same way we measure the radius of an atom in the same way we measure the radius of an atom in the same way we measure the radius of a circle
- In a diatomic molecule, the distance between the two nuclei is given by d, and the bonding atomic radius, R_b

Mair

- $R_b = \frac{1}{2} d$
- The bonding atomic radius is often referred to as the covalent radius





Atomic Radius

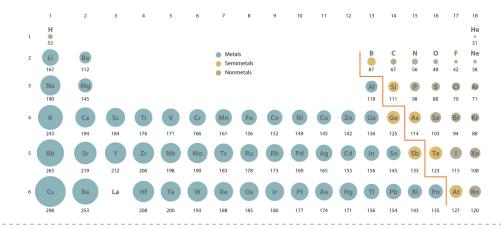
- For non-bonding atomic radius, two atoms collide with one another with little penetration.
- The atoms touch each other but will not be chemically bonded.

metallic radius

covalent radius

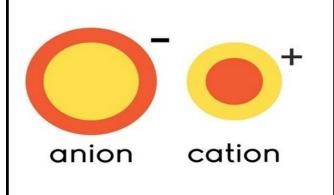
Atomic Radius

Section 9 of your data booklet provides data for the covalent atomic radii of the elements


			Ato	mic	Radi	ius											
1			31						27	0							18
н																	He
37	2		See. 1		0.000		2			_	1.1	13	14	15	16	17	31
	Be		pic	ome	ters	(pm)						в	C	N	0	F	Ne
152	112											85	77	75	73	72	71
va 🛛	Mg											AI	SI	P	S	CI	Ar
186	160	3	4	5	6	7	8	9	10	11	12	143	118	110	103	100	98
٢	Ca	SC	T	V	Cr	Mn	Fe	CO	NI	Cu	Zn	Ga	Ge	As	Se	Br	Kr
227	197	162	147	134	128	127	126	125	124	128	134	135	122	120	119	114	112
RD .	Sr	Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
248	215	180	160	146	139	136	134	134	137	144	151	167	140	140	142	133	131
)s	Ba	La	HI	та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	BI	Po	At	Rn
265	222	187	159	146	139	137	135	136	138	144	151	170	146	150	168	140	140
Fr 👘	Ra	AC	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	113	Uuq	115	116	117	118
270	220																

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

©1998-2003 Synergy Creations™


Atomic Radius Trend

- Atomic radius decreases from left to right across a period due to the increasing effective nuclear charge, Z_{eff}.
- Z_{eff} pulls the valence electrons closer to the nucleus reducing the atomic radius
- Atomic radius increases down a group from top to bottom due to the addition of new energy levels that are located further away from the nucleus and more shielding from the nucleus

Ionic Radius

- Cation- positively charged ion
- Anion- negatively charged ion
- The radii of cations and anions vary from the neutral atom from which they are formed

Ionic Radius

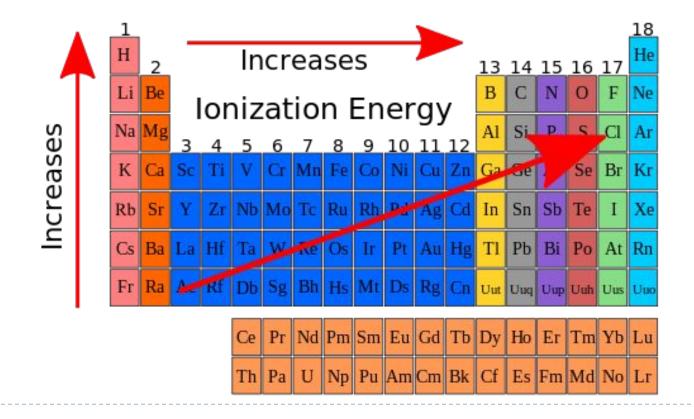
The radii of cations are smaller than those of their parent ions because there are less electrons
 The radii of anions are larger than those of their parent ions due to the gain of electrons

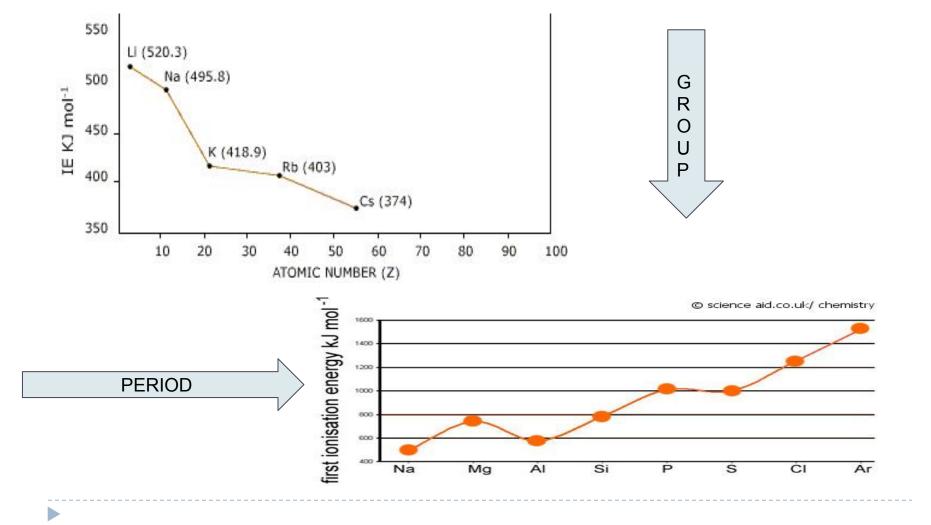
Ionic Radius

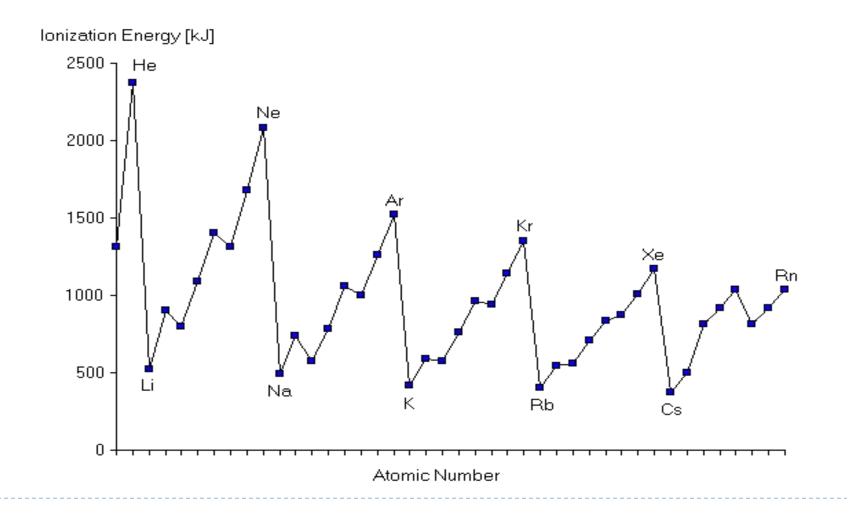
Na is larger than Na⁺ because the former has one extra shell of electrons

> Na: 1s²2s²2p⁶3s¹ Na⁺: 1s²2s²2p⁶

- This also has to deal with the electron cloud that is formed and the electrons repelling from each other
- There are more protons than electrons so the valence electrons are more strongly attracted to the nucleus


Ionization Energy


Minimum energy required to remove an electron from a neutral gaseous atom in its ground state


 $X(g) \rightarrow X^{+}(g) + e^{-}$

- The second ionization energy relates to the removal of an additional electron, etc.
- Ionization energy values are always positive because there is an input of energy in order to remove an electron
- Section 8 of the Data booklet provides ionization energy values

Ionization Energy

Þ

Ionization Energy

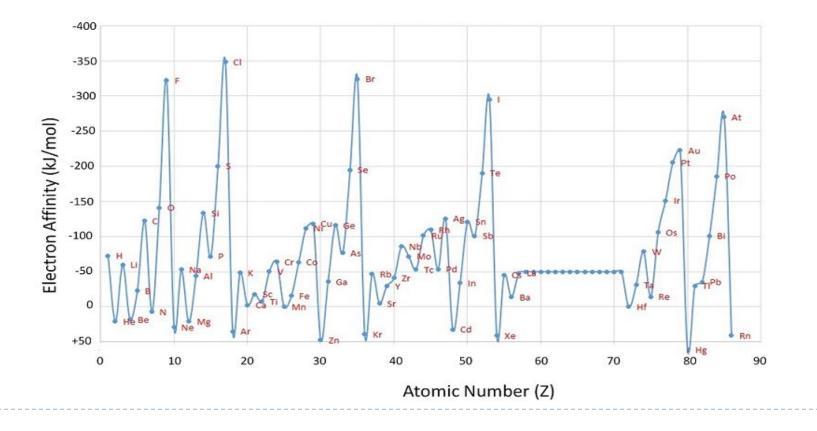
Across a period from left to right:

- As the effective nuclear charge, Z_{eff}, increases from left to right across a period the valence electrons are pulled closer to the nucleus, so the attraction between the electrons and the nucleus increases becoming more difficult to remove an electron
- Atomic radii decrease across a period because the distance between the valence electrons and the nucleus decreases, it becomes more difficult to remove an electron from an atom

Ionization Energy

Down a group from top to bottom:

- Atomic radii increase down a group, making it easier to remove an electron from the atom
- The shielding effect of the core electrons increases faster than the nuclear charge, weakening the attractive force between the nucleus and the outer electrons in the atom


The energy that is released (E_{initial}-E_{final}) when 1 mole of electrons is attached to 1 mol of neutral atoms or molecules in the gas phase

- The negative sign indicates that energy is released during the process
- The more negative the E_{ea} value, the greater the attraction of the ion for the electron
- Some E_{ea} value may be positive, such as noble gases

Electron Affinities (kJ/mol)

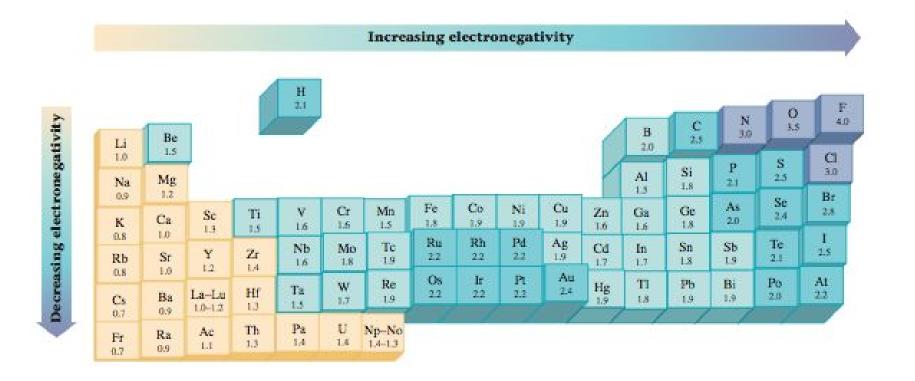
1A							8A
H -73	2A	3A	4A	5A	6A	7A	He >0
Li -60	Be >0	B -27	C -122	$\mathbf{N} > 0$	O -141	F -328	Ne >0
Na	Mg	Al	Si	Р	S	Cl	Ar >0
-53	>0	-43	−134	-72	-200	-349	
K	Ca	Ga	Ge	As	Se	Br	Kr >0
-48	-2	-30	-119	-78	-195	-325	
Rb	Sr	In	Sn	Sb	Te	I	Xe
-47	-5	-30	-107	-103	-190	-295	>0

Copyright © 2008 Pearson Prentice Hall, Inc.

 Trends in electron affinity are not as well highlighted as other observed trends

 Across a period from left to right E_{ea} values become more negative, with some exceptions

 Halogens have the most negative E_{ea} value since gaining an electron for these elements gives them a stable noble gas configuration


 In alkali metals, values of E_{ea} generally become less negative going down the group

The patterns for electron affinity vary by group and do not show clear trends down a group

Electronegativity

- The relative attraction that an atom has for the shared pair of electrons in a covalent bond
- In 1932 Linus Pauling proposed the concept of electronegativity
- Section 8 of the Data booklet is the Pauling scale, X_n
- Fluorine is the most electronegative element on the periodic table and has a value of 4.0

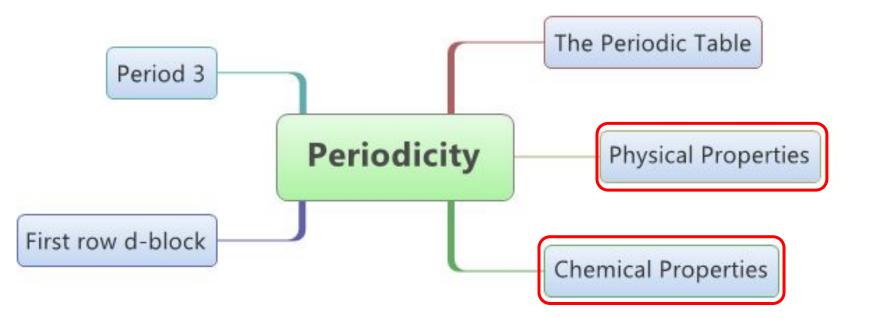
Electronegativity

Electronegativity

Across a period from left to right electronegativity values increase because the effective nuclear charge and atomic radius both increase

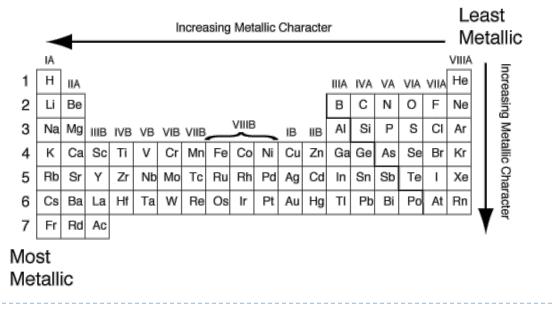
Down a group from top to bottom electronegativity values decrease because atomic radii increases, and the nuclear charge increases but its effect is shielded by the core electrons

Melting Point


- The melting point is the amount of energy required to break a bond(s) to change the solid phase of a substance to a liquid.
- Bonding and structure are factors that affect the melting point of elements
 - Melting points are varied and do not generally form a distinguishable trend across the periodic table.
 - The non-metal carbon possesses the highest boiling point of all the elements.

Lesson 3

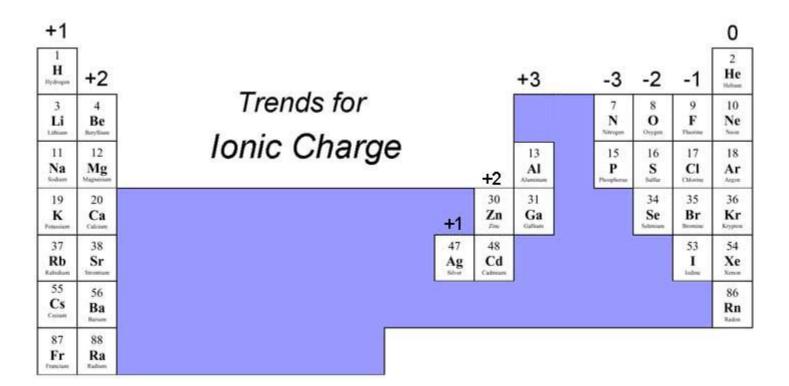
3.2 Periodic Trends


We Are Here

Main

Metallic and Non-metallic Character

 Metallic character decreases across a period and increases down a group



Metallic and Non-metallic Character

 Metals have low ionization energy values-they have a tendency to lose electrons during chemical reactions
 They tend to be oxidized

 Non-metals have high electron affinities-they have a tendency to gain electrons during chemical reactions
 They tend to be reduced

Metallic and Non-metallic Character

An oxide is formed from the combination of an element with oxygen

> Na⁺ combines with O²⁻ to form Na₂O Ca²⁺ combines with O²⁻ to form CaO Al³⁺ combines with O²⁻ to form Al₂O₃

Metal oxides are basic and react with water to form metal hydroxides

 $\begin{array}{ll} \text{CaO(s)} + \text{H}_2\text{O(l)} \rightarrow \text{Ca(OH)}_2(\text{aq}) & \text{calcium hydroxide} \\ \text{Na}_2\text{O(s)} + \text{H}_2\text{O(l)} \rightarrow 2\text{Na(OH)}(\text{aq}) & \text{sodium hydroxide} \end{array}$

Non-metal oxides are acidic and react with water to form acidic solutions

$$\begin{array}{ll} & \text{CO}_2(\textbf{g}) + \text{H}_2\text{O}(\textbf{l}) \rightarrow \text{H}_2\text{CO}_3(\textbf{aq}) & \text{carbonic acid} \\ & \text{SO}_3(\textbf{l}) + \text{H}_2\text{O}(\textbf{l}) \rightarrow \text{H}_2\text{SO}_4(\textbf{aq}) & \text{sulfuric acid} \\ & \text{SO}_2(\textbf{l}) + \text{H}_2\text{O}(\textbf{l}) \rightarrow \text{H}_2\text{SO}_3(\textbf{aq}) & \text{sulfurous acid} \\ & \text{P}_4\text{O}_{10}(\textbf{s}) + 6\text{H}_2\text{O}(\textbf{l}) \rightarrow 4\text{H}_3\text{PO}_4(\textbf{aq}) & \text{phosphoric acid} \end{array}$$

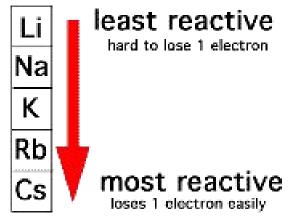
SiO₂ does not dissolve in water, however it is classified as an acidic oxide because it can react with sodium hydroxide to form sodium silicate and water

 $SiO_2(s) + 2NaOH(aq) \rightarrow Na_2SiO_3(aq) + H_2O(l)$

- Al₂O₃ is classified as an amphoteric oxide-it can react as both an acid and as a base
 - As an acid:

$$Al_2O_3(s) + 2NaOH(aq) + 3H_2O(l) \rightarrow 2NaAl(OH)_4(aq)$$

As a base:


$$Al_2O_3(s) + 6HCl(aq) \rightarrow 2AlCl_3(aq) + 3H_2O(l)$$

Trends in period 3

Þ

Formulas of Oxide	Na ₂ O(s)	MgO(s)	Al ₂ O ₃ (s)	SiO ₂ (s)	P ₄ O ₁₀ (s)	SO ₃ (l) and SO ₂ (g)
Nature of Oxide	Basic	Basic	Amphoteric	Acidic	Acidic	Acidic

- Group 1 metals react with water to form a metal hydroxide, MOH(aq)
- This reaction gives an alkaline solution and hydrogen gas

Main

Group 1 Metal	Reaction with Water	Description
Li	2Li(s) + 2H ₂ O(l) \rightarrow 2LiOH(aq) + H ₂ (g)	Lithium reacts slowly and floats on water. Bubbling observed.
Na	$2Na(s) + 2H_2O(l) \rightarrow 2NaOH(aq) + H_2(g)$	Sodium reacts vigorously. Heat is evolved and sodium melts.
К	2K(s) + 2H ₂ O(l) → 2KOH(aq) + H ₂ (g)	Potassium reacts more vigorously. The reaction is violent. It evolves enough heat to ignite hydrogen, so it bursts into flames instantly.
Rb	$2\text{Rb(s)} + 2\text{H}_2\text{O(l)} \rightarrow 2\text{RbOH(aq)} + \text{H}_2(\text{g})$	Both rubidium and caesium react explosively with water.
Cs	$2Cs(s) + 2H_2O(l) \rightarrow 2CsOH(aq) + H_2(g)$	

Lithium in Water

Sodium in Water

Reactivity

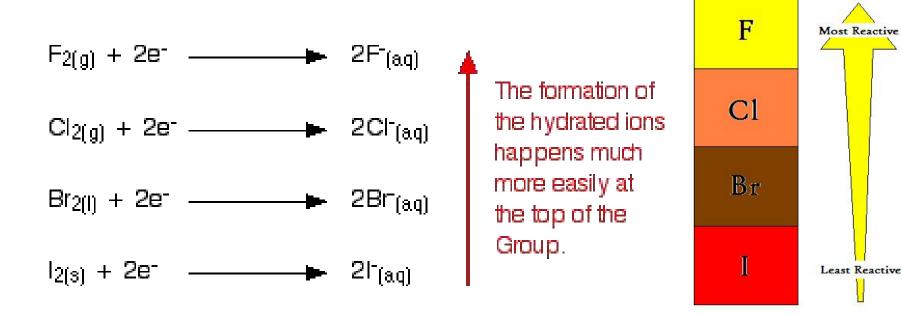
Halogens in general are highly reactive, although reactivity decreases going down the group with the most reactive element being fluorine

The decrease in reactivity is due to the increase in atomic radius down a group, making it less easy to gain an electron

- Halogens, X₂, react with alkali metals M(s) to form ionic alkali metal halide salts MX(s).
- In the ionic compound, MX(s), the cation is M⁺ and the anion is X⁻

$$2M(s) + X_2(g) \rightarrow 2MX(s)$$

$$2Na(s) + Cl_2(g) \rightarrow 2NaCl(s)$$

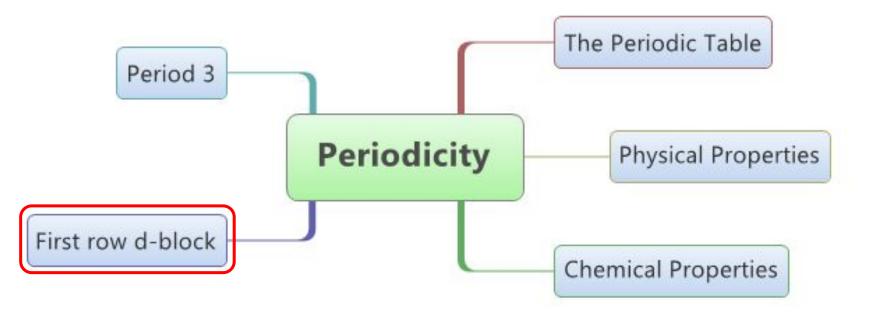

A solution of a more reactive halogen, X₂(aq), will react with a solution of halide ions, X⁻(aq), formed by a less reactive halogen

$$Cl_2(aq) + 2KBr(aq) \rightarrow 2KCl(aq) + Br_2(aq)$$

Chlorine has a stronger attraction for an electron than bromine.

Chlorine forms the chloride anion more readily than bromide

Going down group 17 the ability to gain an electron decreases


X ₂ (aq)	Cl⁻(aq)	Br⁻(aq)	l⁻(aq)
Cl ₂ (aq)	No reaction	Cl₂(aq) + 2Br⁻(aq) → 2Cl⁻(aq) + Br₂(aq) Observation: yellow/orange solution due to the formation of Br₂(aq)	Cl ₂ (aq) + 2I ⁻ (aq) → 2Cl ⁻ (aq) + I ₂ (aq) Observation: dark red/brown solution due to the formation of I ₂ (aq)
Br ₂ (aq)	No reaction	No reaction	Br ₂ (aq) + 2I ⁻ (aq) → 2Br ⁻ (aq) + I ₂ (aq) Observation: dark red/brown solution due to the formation of I ₂ (aq)
l ₂ (aq)	No reaction	No reaction	No reaction

Lesson 4

13.1 The Periodic Table-Transition Metals

We Are Here

Main

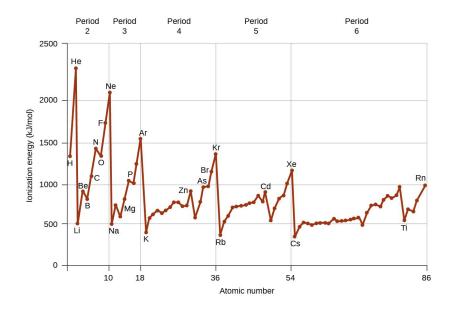
Transition Metals

- A transition metal is an element that has an atom with an incomplete d-sublevel
- The f-block elements are sometimes described as the inner transition elements
- The elements of group 12, Zn, Cd, Hg, and Cn, are not classified as transition metals because all four elements have full d-sublevels containing ten d-electrons

Transition Metals

Zn

 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰


 Zn⁺²

 1s²2s²2p⁶3s²3p⁶3d¹⁰

Zn still has a full sublevel

Characteristics of Transition Elements

There is a gradual increase in the first IE across the period at a rate that is much lower compared to that of the main-group elements

Characteristics of Transition Elements

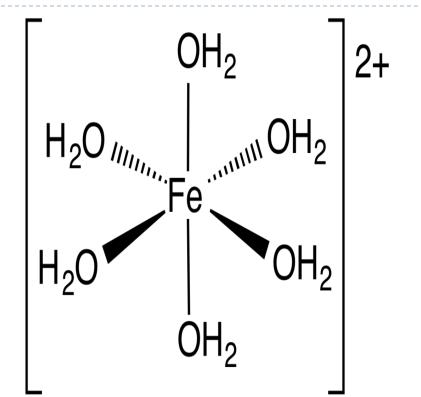
- They have variable oxidation states
- Compounds of transition elements and their ions are often colored
- Transition metals form complexes with ligands
- Transition metals are often catalysts
- Magnetic properties of transition metals depend on their oxidation states and coordination number

Variable Oxidation States

- In contrast to an alkali metal, where the oxidation state is always +1 in its ion and compounds, transition metals are often found with different oxidation states
- The range of different oxidation states for the first-row d-block elements can be found in section 14 of the data booklet
- Transition elements show an oxidation state of +2 when the 4s-electrons are removed

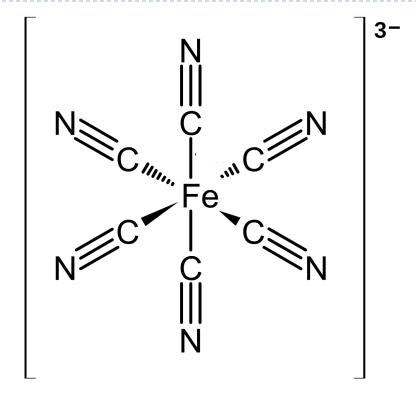
14. Common oxidation numbers of the 3d ions

Sc	Ti	v	Cr	Mn	Fe	Со	Ni	Cu	Zn
								+1	
	+2	+2	+2	+2	+2	+2	+2	+2	+2
+3	+3	+3	+3	+3	+3	+3			
	+4	+4		+4					
		+5							
			+6	+6					
				+7					


Oxidation States of Transition Metals

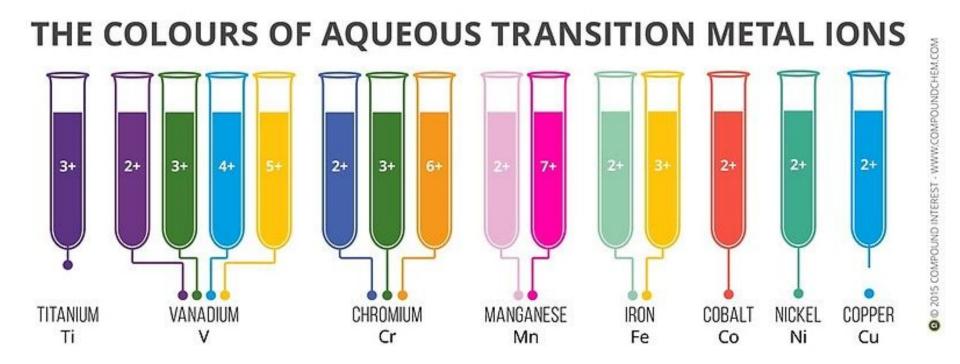
+2 + 4(0) = +2 $\int \int \int /$ $[Cu(NH_3)_4]^{2+}$

+3 + 4(0) + 2(-1) = +1 $\downarrow \qquad \downarrow \qquad \checkmark$ $Cr(H_2O)_4Cl_2$


Oxidation States of Transition Metals

- Water is a neutral molecule
- The charge on the complex ion is +2
- The oxidation state of Fe is +2

Oxidation State of Transition Metals


- CN has a charge of -1
 There are 6 CN with a -1 charge
 - ► 6 x -1 = -6
- The charge of the complex ion is -3
 The oxidation state of Fe is +3

Colored Compounds of Transition Metals

Transition Metal Compound	Color		
KMnO ₄	Burgundy (purple)		
[Mn(H ₂ O) ₆] ²⁺	Almost colorless; slight pink tint		
K ₂ Cr ₂ O ₇	Orange		
[Cr(H ₂ O) ₆] ³⁺	Green		
CuSO ₄ □ 5H ₂ O	Blue		
[NH ₄] ₂ [Fe(H ₂ O) ₆][SO ₄] ₂	Pale Green		

Colored Compounds of Transition Metals

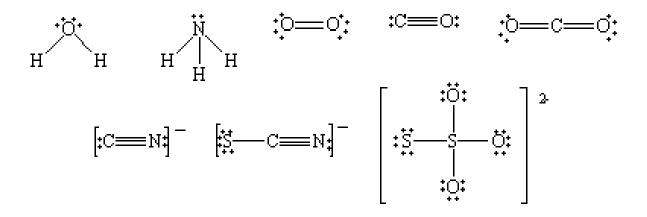

Complexes of Transition Metals

Compounds that contain transition elements and in which the central metal ion is bonded to a group of molecules or ions are transitional metal complexes

A ligand is an atom, molecule, or ion that contains a lone pair of electrons (non-bonding) that coordinates, through coordinate bonding aka covalent bonding, to a central transition metal ion to form a complex

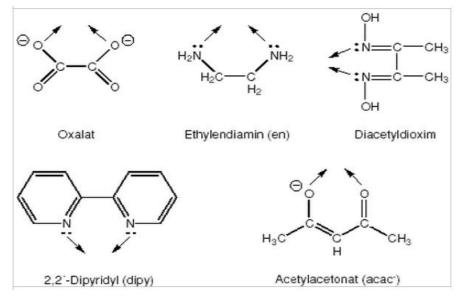
Coordinate Bonding

Þ


Classification of Ligands

- The number of coordinate bonds formed by one ligand with a metal ion depends on the number of donor centers (atoms with lone electron pairs) in the ligand
- Monodentate ligands-able to form only one coordinate bond with a metal ion
- Polydentate ligands (chelate ligands)-can form two or more bonds

Monodentate Ligands

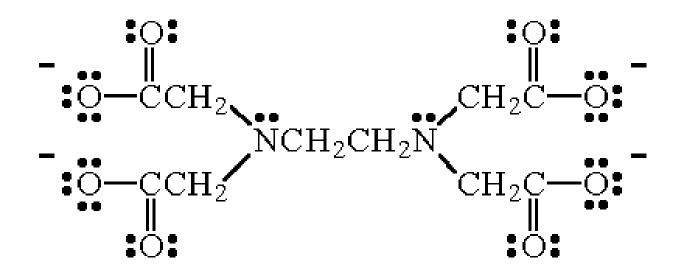

Contain a single donor atom and have one lone pair contributing to the coordinate bond in a complex

 $: \breve{F}: \overset{\circ}{:} \vdots \overset{\circ}{:} \overset{\circ}{:$

Polydentate (Chelate) Ligands

Ligands which have two or more donor atoms that form coordinate bonds with a transition metal center

Geometry of Complex Ions


Coordination numbers and shapes of some complex ions

Coordination Number	Shape		Examples
2	Linear		[CuCl ₂] ⁻ , [Ag(NH ₃) ₂] ⁺ , [AuCl ₂] ⁻
4	Square planar	-	$ [Ni(CN)_4]^{2-}, [PdCl_4]^{2-}, [Pt(NH_3)_4]^{2+}, [Cu(NH_3)_4]^{2+} $
4	Tetrahedral	4	$[Cu(CN)_4]^{3-}, [Zn(NH_3)_4]^{2+}, [CdCl_4]^{2-}, [MnCl_4]^{2-}$
6	Octahedral	-	$\begin{array}{l} [\text{Ti}(\text{H}_2\text{O})_6]^{3+}, [\text{V}(\text{CN})_6]^{4-}, \\ [\text{Cr}(\text{NH}_3)_4\text{Cl}_2]^+, [\text{Mn}(\text{H}_2\text{O})_6]^{2+}, \\ [\text{FeCl}_6]^{3-}, [\text{Co}(\text{en})_3]^{3+} \end{array}$

College of Chemistry and Chemical Engineering

Ethylenediaminetetraacetate (EDTA)⁴⁻

 Polydentate ligand that can form up to 6 coordinate bonds; hexadentate ligand

(EDTA)⁴⁻ Uses

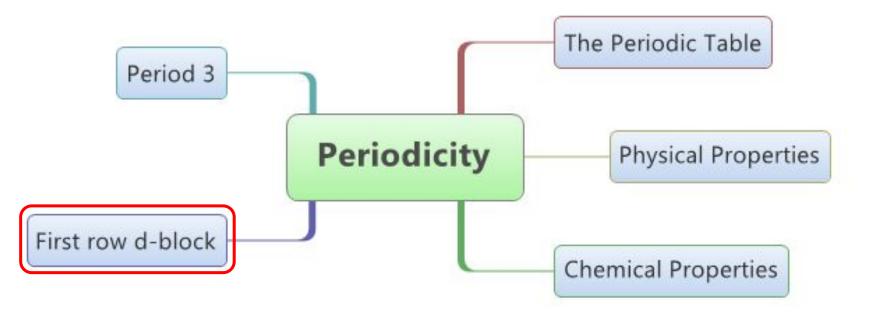
- Removal of heavy metals
 - Used to treat lead poisoning
- Chelation Therapy
 - Used in heart by-pass surgery
- Water Softening
 - Ensures that no free calcium or magnesium ions remain
 - Used in shampoos for the same reason

(EDTA)⁴⁻ Uses

Food Preservation

- EDTA replaces metal ions that cause rancidity, bad odor, taste, smell, in foods
- Restorative Sculpture
 - Bonds with copper to become soluble and easy to remove

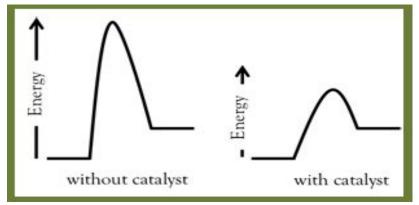
Cosmetics


Used as a preservative

Lesson 5

13.1 The Periodic Table-Transition Metals

We Are Here



Catalyst

- A catalyst is a substance that speeds up a chemical reaction, but is not consumed by the reaction
- A catalyst can be recovered chemically unchanged at the end of the reaction it has been used to speed up,

Mair

or catalyze.

Transition Metals as Catalysts

- Haber Process: Main industrial procedure for the production of ammonia
 N₂(g) + 3H₂(g) ≈ 2NH₃(g)
 - Catalyst: Fe(s)
- Decomposition of hydrogen peroxide
 2H₂O₂(aq) → 2H₂O(l) + O₂(g)
 Catalyst: MnO₂(s)

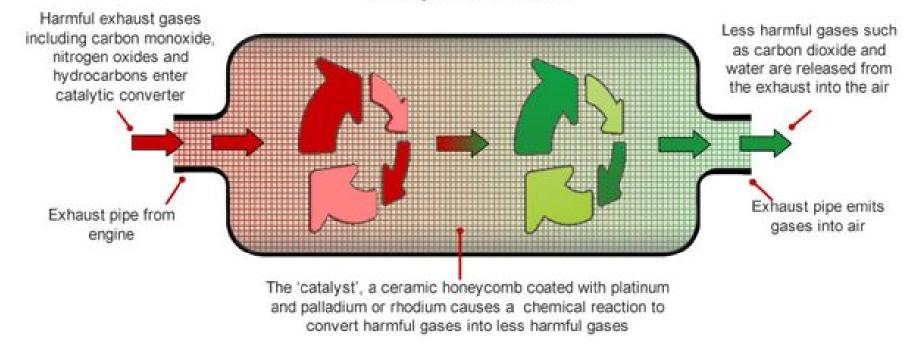
Transition Metals as Catalysts

- Hydrogenation of Alkenes: Addition of two hydrogens across a double bond
 - $H_2C = CH_2(g) + H_2(g) \rightarrow CH_3CH_3(g)$
 - Catalyst: Ni(s), Pd(s), Pt(s)
- Hydrogenation of Oils: Unsaturated oils can be turned into saturated oils and hardened
 - ▶ RCH = CHR' + $H_2(g) \rightarrow RCH_2CH_2R'$
 - Catalyst: Ni(s)

Hydrogenation of Oils

- Used for cooking purposes
- Disadvantages of hydrogenation
 - Unsaturated oils are healthier for the heart
 - Difficulties metabolizing and can accumulate in the fatty tissues of the body
 - Increase cholesterol

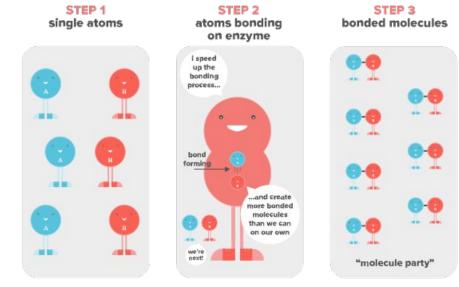
In a running car engine, gaseous nitrogen and oxygen react under high temperature conditions (1500°C) to form nitrogen monoxide
 N₂(g) + O₂(g) → 2NO(g)


When NO(g) is released into the atmosphere, it combines with O₂(g) to form NO₂(g)
 2NO(g) + O₂(g) → 2NO₂(g)

 Nitrogen dioxide is a secondary pollutant that is primarily responsible for the brown color of smog
 Nitrogen dioxide is toxic and can result in respiratory problems

- Carbon monoxide, CO(g), is a highly toxic, odorless, and colorless gas that is emitted from the exhaust of cars
- Most modern cars have catalytic converters that reduce NO(g) and NO₂(g) to N₂(g) while oxidizing CO(g) and unburned hydrocarbons to CO₂(g) and H₂O(g)

Catalytic Converter


Catalysts in Green Chemistry

Green chemistry is the design, development, and implementation of chemical products and processes to reduce or eliminate the use and generation of substances hazardous to human health and the environment

Biological Catalysts

- An enzyme is a biological catalyst
- Enzyme catalyst reactions occur in cells and involve

transition metals

Catalysts

Homogeneous Catalyst

One that is in the same phase or physical state as the substances involved in the reaction that it is catalysing

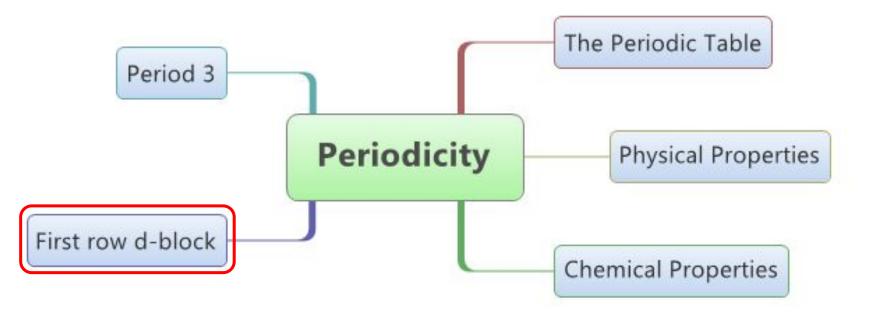
Heterogeneous Catalyst

- One that is in a different phase to the substances involved in the reaction that is catalysing
- Industrial catalysts that involve transition metals are usually heterogeneous catalyst

Magnetic Properties of Transition Metals

Paramagnetic Materials

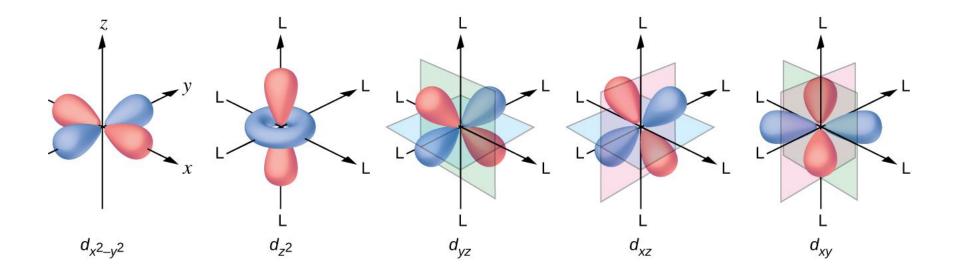
- Contain unpaired electrons that behave as tiny magnets and are attracted by an external magnetic field
- Diamagentic Materials:
 - Do not contain unpaired electrons and therefore are repelled by magnetic fields


Magnetic Properties of Transition Metals

Lesson 6

13.2 Colored Complexes

We Are Here



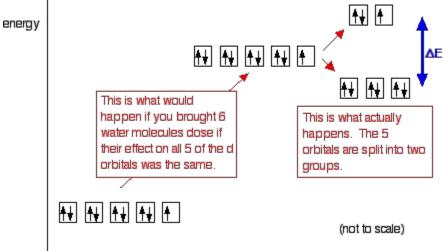
D-Orbitals

When ligands bond to the central metal ion, there is repulsion between the electrons in the ligand and the electrons in the d sublevel of the metal ion

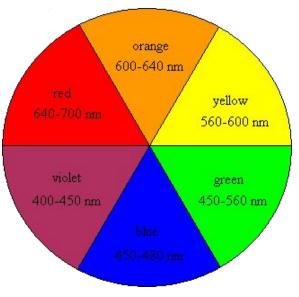
This repulsion causes the five d orbitals to to split into two different sets; two with higher energy and three with lower energy

D-Orbitals

D-Orbitals


The energy difference between the two sets of the d orbitals corresponds to the wavelengths of visible light

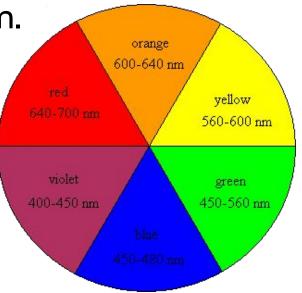
Main


D-Orbitals

Ions of transition metals have incomplete d sublevels
 Electrons can transition from the lower set to the higher set of d orbitals

Color of Transition Metal Complexes

For the color that is being absorbed, the opposite or complementary color is being transmitted



Main

D

Example

- In [Cu(H₂O)₆]²⁺, the energy, ΔE, required to promote an electron to the higher set of d-orbitals corresponds to a wavelength of 650-700 nm.
 Red is being absorbed
- Green is being transmitted

Color of Transition Metal Complexes

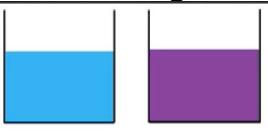
Any factor that changes the difference in energy between the two sets of d-orbitals will change the wavelength of light that is absorbed when the electron transitions from the lower to higher set, and therefore the color of the complex ion Factors That Affect the Color of Complex Ions

Identity of the metal ion

Oxidation state of the metal ion

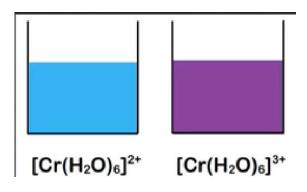
Nature of the ligands

 Geometry of the complex ion (octahedral, tetrahedral,linear)


Identity of the Metal Ion

- The identity of the metal can influence the extent of splitting
- The change in energy, ΔE, increases descending a group with the metal ion the same oxidation state

Group 9 Complex	ΔE, cm ⁻¹
[Co(NH ₃) ₆] ³⁺	22900
[Rh(NH ₃) ₆] ³⁺	34100
[lr(NH ₃) ₆] ³⁺	41100



The oxidation state of Cr changes from +2 to +3

- As the oxidation state of the metal increases, the amount of splitting in the d orbital also increases
- A change in oxidation state of Cr ion changes from +2 to +3 increases the difference in energy between the two sets of d orbitals

 The blue color indicates that orange is being absorbed, purple color indicates that yellow is being absorbed.
 As the energy difference between the two sets of d orbitals

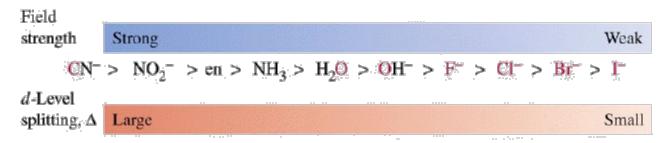
Nature of the Ligand

Ligands may have different charge densities

Ammonia had a greater charge density than water

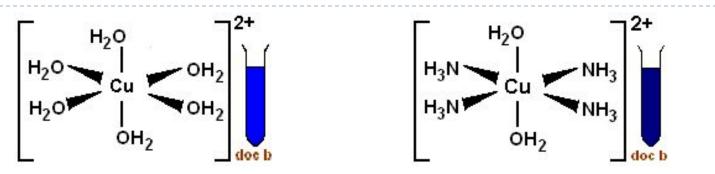
The splitting caused by ammonia will be greater than that of water

Geometry of Complex Ions

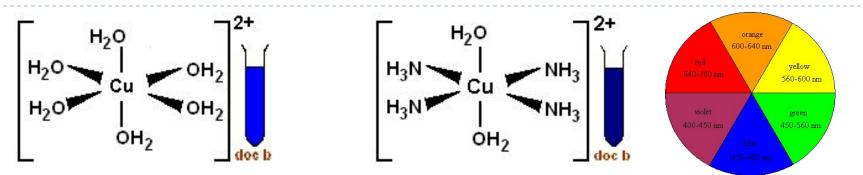

Coordination numbers and shapes of some complex ions

Coordination Number	Shape		Examples
2	Linear		[CuCl ₂] ⁻ , [Ag(NH ₃) ₂] ⁺ , [AuCl ₂] ⁻
4	Square planar	-	$[Ni(CN)_4]^{2-}$, $[PdCl_4]^{2-}$, $[Pt(NH_3)_4]^{2+}$, $[Cu(NH_3)_4]^{2+}$
4	Tetrahedral	4	$[Cu(CN)_4]^{3-}, [Zn(NH_3)_4]^{2+}, [CdCl_4]^{2-}, [MnCl_4]^{2-}$
6	Octahedral	-	$\begin{split} & [\text{Ti}(\text{H}_2\text{O})_6]^{3+}, [\text{V}(\text{CN})_6]^{4-}, \\ & [\text{Cr}(\text{NH}_3)_4\text{Cl}_2]^+, [\text{Mn}(\text{H}_2\text{O})_6]^{2+}, \\ & [\text{FeCl}_6]^{3-}, [\text{Co}(\text{en})_3]^{3+} \end{split}$

College of Chemistry and Chemical Engineering


Spectrochemical Series

The spectrochemical series arranges ligands in order of their ability to split d orbitals in an octahedral complex


The greater the splitting, the greater the energy difference between the two sets of d orbitals

Spectrochemical Series

NH₃ produces the greatest splitting and the largest difference in energy between the two sets of d orbitals
 More energy is absorbed by the electron transitions from the lower to upper set of d orbitals, decreasing the wavelength of light absorbed

Spectrochemical Series

- [Cu(H₂O)₆]²⁺: red/orange is absorbed, blue/green light is transmitted
- [Cu(NH₃)₄(H₂O)₂]²⁺: yellow is absorbed, violet is transmitted
- Yellow light has a shorter wavelength, higher energy than red/orange

Main