
Perl 6 / Parrot

April 2009

Friday, April 3, 2009

Pieces and Parts

April 2009

Perl 6

Pugs
Rakudo

Machine

Parrot

Friday, April 3, 2009

April 2009

Parrot is a virtual machine designed to efficiently
compile and execute bytecode for dynamic languages.

Parrot is designed with the needs of dynamically typed
languages (such as Perl and Python) in mind, and should be
able to run programs written in these languages more
efficiently than VMs developed with static languages in mind
(JVM, .NET).

Parrot is also designed to provide interoperability between
languages that compile to it. In theory, you will be able to
write a class in Perl, subclass it in Python and then instantiate
and use that subclass in a Tcl program.

Friday, April 3, 2009

Parrot

April 2009

 Submitted by allison on Tue, 03/17/2009 - 21:54.
...

On behalf of the Parrot team, I'm proud to announce
Parrot 1.0.0 "Haru Tatsu."

Friday, April 3, 2009

Four instruction formats

✤ PIR (Parrot Intermediate Representation)

✤ PASM (Parrot Assembly)

✤ PAST (Parrot Abstract Syntax Tree) enables Parrot to accept an
abstract syntax tree style input - useful for those writing compilers.

✤ PBC (Parrot Bytecode) The above forms are automatically converted
inside Parrot to PBC. Like machine code but understood by the
Parrot interpreter. It is not intended to be human-readable or human-
writable, but unlike the other forms execution can start immediately,
without the need for an assembly phase. PBC is platform
independent.

April 2009 http://docs.parrot.org/parrot/latest/html/
Friday, April 3, 2009

http://docs.parrot.org/parrot/latest/html/
http://docs.parrot.org/parrot/latest/html/

Parrot PIR

Parrot Intermediate Representation is designed to be written by
people and generated by compilers. It hides away some low-level
details, such as the way parameters are passed to functions.

April 2009

Friday, April 3, 2009

Parrot PIR Example 1/4

.sub main
 print "hello, world\n"
.end

April 2009

Friday, April 3, 2009

Parrot PIR Example 2/4

.sub main
 set S0, "hello, world\n"
 print S0
.end

Use a string register:

April 2009

Friday, April 3, 2009

Parrot PIR Example 3/4

.sub main
 $S0 = "hello, world\n"
 print $S0
.end

✴ replacing S0 with $S0 delegates the choice of which register
to use to Parrot.
✴ use an = notation instead of writing the set instruction.

April 2009

Friday, April 3, 2009

Parrot PIR Example 4/4

.sub main
 .local string hello
 hello = "hello, world\n"
 print hello
.end

✴ use named registers (later mapped to real numbered registers)
✴.local indicates the register is only needed inside the current subroutine
✴The type can be int (for I registers), float (for N registers), string (for S
registers), pmc (for P registers) or the name of a PMC type

April 2009

Friday, April 3, 2009

PIR Example 5/4
sub factorial
 # Get input parameter.
 .param int n

 # return (n > 1 ? n * factorial(n - 1) : 1)
 .local int result

 if n > 1 goto recurse
 result = 1
 goto return

 recurse:
 $I0 = n - 1
 result = factorial($I0)
 result *= n

 return:
 .return (result)
 .end

.sub main :main
 .local int f, i

 # We'll do factorial 0 to 10.
 i = 0
 loop:
 f = factorial(i)

 print "Factorial of "
 print i
 print " is "
 print f
 print ".\n"

 inc i
 if i <= 10 goto loop
 .end

April 2009

Friday, April 3, 2009

Parrot PASM

Parrot Assembly is a level below PIR - it is still human
readable/writable and can be generated by a compiler,
but the author has to take care of details such as calling
conventions and register allocation.

April 2009

Friday, April 3, 2009

main:
 set I1,0
 ## P9 is used as a stack for temporaries.
 new P9, 'ResizableIntegerArray'
loop:
 print "fact of "
 print I1
 print " is: "
 new P0, 'Integer'
 set P0,I1
 bsr fact
 print P0
 print "\n"
 inc I1
 eq I1,31,done
 branch loop
done:
 end

P0 is the number to compute, and also the return value.
fact:
 lt P0,2,is_one
 ## save I2, because we're gonna trash it.
 push P9,I2
 set I2,P0
 dec P0
 bsr fact
 mul P0,P0,I2
 pop I2,P9
 ret
is_one:
 set P0,1
 ret

PASM example

April 2009

Friday, April 3, 2009

Instruction Set

The Parrot instruction set includes arithmetic and logical operators,
compare and branch/jump (for implementing loops, if...then constructs,
etc), finding and storing global and lexical variables, working with
classes and objects, calling subroutines and methods along with their
parameters, I/O, threads and more.

April 2009

Full list of opcodes at:
http://docs.parrot.org/parrot/latest/html/ops.html

Friday, April 3, 2009

http://docs.parrot.org/parrot/latest/html/ops.html
http://docs.parrot.org/parrot/latest/html/ops.html

Registers and Data Types

The Parrot VM is register based. This means that, like a hardware CPU,
it has a number of fast-access units of storage called registers. There are
4 types of register in Parrot: integers (I), numbers (N), strings (S) and
PMCs (P). There are N of each of these, named I0,I1,..N0.., etc. Integer
registers are the same size as a word on the machine Parrot is running
on and number registers also map to a native floating point type. The
amount of registers needed is determined per subroutine at compile-
time.

April 2009

Friday, April 3, 2009

Polymorphic Container (PMC)

PMC stands for Polymorphic Container. PMCs represent any complex
data structure or type, including aggregate data types (arrays, hash
tables, etc). A PMC can implement its own behavior for arithmetic,
logical and string operations performed on it, allowing for language-
specific behavior to be introduced. PMCs can be built in to the Parrot
executable or dynamically loaded when they are needed.

 src/pmc for Parrot 1.0 contains 81 .pmc files

perldoc <name.pmc> to see documentation

April 2009

Friday, April 3, 2009

Garbage Collection

Parrot provides garbage collection, meaning that Parrot programs
do not need to free memory explicitly; it will be freed when it is no
longer in use (that is, no longer referenced) whenever the garbage
collector runs.

April 2009

Friday, April 3, 2009

Current Active Language Efforts
https://trac.parrot.org/parrot/wiki/Languages

cardinal Ruby 1.9

ecmascript ECMAScript

fun An even happier Joy

jvm Java VM bytecode translator

lua Lua 5.1

matrixy Octave

Perk Java

Pipp PHP

Porcupine Pascal

Rakudo Perl 6 Perl 6

WMLScript WMLScript

April 2009

Friday, April 3, 2009

https://trac.parrot.org/parrot/wiki/Languages
https://trac.parrot.org/parrot/wiki/Languages

Pugs
✤ Pugs is an implementation of Perl 6, written in Haskell. It aims to

implement the full Perl6 specification, as detailed in the Synopses

✤ Autrijus (Audrey) Tang, February 1st, 2005

✤ #perl6 on irc.freenode.net

✤ http://www.pugscode.org and http://dev.pugscode.org/wiki/

✤ download at:
http://www.perlfoundation.org/perl6/index.cgi?download_pugs

April 2009

Friday, April 3, 2009

http://www.pugscode.org
http://www.pugscode.org
http://dev.pugscode.org/wiki/
http://dev.pugscode.org/wiki/
http://www.perlfoundation.org/perl6/index.cgi?download_pugs
http://www.perlfoundation.org/perl6/index.cgi?download_pugs

Pugs

April 2009

 * pugs is the interpreter with an interactive shell.
 * pugscc can compile Perl 6 programs into Haskell code, Perl 5,

JavaScript, or Parrot virtual machine's PIR assembly.

Friday, April 3, 2009

Rakudo
✤ The compiler formerly known as 'perl6'

✤ An implementation of the Perl 6 specification that will run on the
Parrot virtual machine.

✤ Some years ago, Con Wei Sensei introduced a new martial art: "The
Way Of The Camel". Or, in Japanese: "Rakuda-do". This name quickly
became abbreviated to "Rakudo", which happens to mean "paradise"
in Japanese. (from http://use.perl.org/~pmichaud/journal/35400)

✤ http://www.rakudo.org

✤ Very easy way to get parrot.

April 2009

Friday, April 3, 2009

http://www.rakudo.org
http://www.rakudo.org

Perl 6

April 2009

http://www.perlfoundation.org/perl6

Friday, April 3, 2009

http://www.perlfoundation.org/perl6/index.cgi?perl_6
http://www.perlfoundation.org/perl6/index.cgi?perl_6

What is this thing?

✤ "Perl 5 was my rewrite of Perl. I want Perl 6 to be the community's
rewrite of Perl and of the community."
 --Larry Wall, State of the Onion speech
 TPC4 -- July 19, 2000

✤ Any language which passes the Perl 6 specification tests is an
implementation of Perl 6. -- http://www.perlfoundation.org/perl6

Perl 6 FAQ by Jonathan Worthington

April 2009

Friday, April 3, 2009

April 2009

✤ RFCs -- called for starting in Jul, 2000

✤ http://perlcabal.org/syn/

✤ Apocalypses -- analyses and justifications of the RFCs

✤ Exegeses -- explanations of the Apocalypses

✤ Synopses: The real specifications

Roughly correspond to book chapters of Programming Perl

Perl 6

Friday, April 3, 2009

http://www.perlfoundation.org/perl6/index.cgi?
the_long_perl_6_super_feature_list

April 2009

Friday, April 3, 2009

http://www.perlfoundation.org/perl6/index.cgi?the_long_perl_6_super_feature_list
http://www.perlfoundation.org/perl6/index.cgi?the_long_perl_6_super_feature_list
http://www.perlfoundation.org/perl6/index.cgi?the_long_perl_6_super_feature_list
http://www.perlfoundation.org/perl6/index.cgi?the_long_perl_6_super_feature_list

Subroutines, Parameters, and Typing

 * optional static type annotations (gradual typing)
 * proper parameter lists
 * user-defined operators
 * multi dispatch
 * named arguments
 * generics

April 2009

Friday, April 3, 2009

OO

 * declarative classes with strong encapsulation
 * full OO exception handling
 * multi-dispatched methods (aka method overloading)
 * hierarchical construction and destruction
 * distributive method dispatch
 * method delegation
 * many widely useful objects/types
 * custom meta classes, meta object programming

April 2009

Friday, April 3, 2009

Regexes (now Grammars)

 * LL and LR grammars (including a built-in grammar for Perl 6 itself,
which is an overridable and reusable grammar)
 * named regexes
 * overlapping and exhaustive regex matches within a string
 * named captures
 * parse-tree pruning
 * incremental regex matching against input streams

April 2009

Friday, April 3, 2009

Power Features from Functional Languages
and Elsewhere

 * hypothetical variables
 * hyperoperators (i.e. vector processing)
 * function currying
 * junctions (i.e. superpositional values, subroutines, and types)
 * coroutines
 * lazy evaluation (including virtual infinite lists)

April 2009

Friday, April 3, 2009

Things we have in Perl 5 which will just
be better in Perl 6

 * better threading
 * better garbage collection
 * much better foreign function interface
 (cross-language support)
 * full Unicode processing support
 * string processing on various Unicode levels,
 including grapheme level
 * a built-in switch statement

April 2009

Friday, April 3, 2009

Other
 * macros (that are implemented in Perl itself)
 * user-definable operators (from the full Unicode set)
 * active metadata on values, variables, subroutines, and types
 * support for the concurrent use of multiple versions of a module
 * extensive and powerful introspection facilities (including of POD)
 * chained comparisons
 * a universally accessible aliasing mechanism
 * lexical exporting (via a cleaner, declarative syntax)
 * multimorphic equality tests
 * state variables
 * invariant sigils, plus twigils (minimalist symbolic "Hungarian")

April 2009

Friday, April 3, 2009

Concurrency

✤ No user accessible locks

✤ Software Transactional Memory

✤ contend blocks

✤ maybe / defer functions

April 2009

Friday, April 3, 2009

April 2009

my ($x, $y);
 sub c {
 $x ‐= 3; $y += 3;
 $x < 10 or defer;
 }
 sub d {
 $x += 3; $y ‐= 3;
 $y < 10 or defer;
 }

 contend {
 # ...
 maybe { c() } maybe { d() };
 # ...
 }

“contend” means that code executed inside that scope
is guaranteed not to be interrupted in any way.

"defer" restores the state of the
thread at the last checkpoint and
will wait there until an external
event allows it to potentially run
that atomic "contend" section of
code again without having to
defer again.

"maybe" causes a checkpoint to be
made for "defer" for each block in the
"maybe" chain, creating an alternate
execution path to be followed when a
"defer" is done.

Friday, April 3, 2009

Classes in Perl 6
✤ Two ways to declare classes:

✤ Full file is the class:
 class FullFileClassName; # rest of file is class

✤ Block is the class:
 class BlockClassName {
 # class definition
 }

April 2009

This and following slides flagrantly lifted from Moritz Lenz:
http://perlgeek.de/blog-en/perl-5-to-6/05-objects-and-classes.writeback

Friday, April 3, 2009

http://perlgeek.de/blog-en/perl-5-to-6/05-objects-and-classes.writeback
http://perlgeek.de/blog-en/perl-5-to-6/05-objects-and-classes.writeback

class HighClass {
 # these two methods do nothing but return the invocant
 method foo {
 return self;
 }
 method bar($s:) {
 return $s;
 }
}

my HighClass $x .= new; # same as $x = HighClass.new;
$x.foo.bar # same as $x

April 2009

Friday, April 3, 2009

class SomeClass {
 has $!a; # private
 has $.b; # public
 has $.c is rw; # public can modify

 method do_stuff {
 # self can use private name instead of public
 # $!b and $.b are the same thing for self
 return $!a + $!b + $!c;
 }
}

my $x = SomeClass.new;

say $x.a; # ERROR!
say $x.b; # ok

$x.b = 2; # ERROR!
$x.c = 3; # ok

April 2009

Friday, April 3, 2009

class Bar { }
class Foo is Bar { }

my Bar $x = Foo.new(); # every Foo is a Bar

class ArrayHash is Hash is Array {
 ...
}

April 2009

Friday, April 3, 2009

role Paintable {
 has $.colour is rw;
 method paint { ... }
}

class Shape {
 method area { ... }
}

class Rectangle is Shape does Paintable {
 has $.width;
 has $.height;
 method area {
 $!width * $!height;
 }
}

April 2009

Friday, April 3, 2009

Perl 6 and Perl 5 differences

http://perlcabal.org/syn/Differences.html

April 2009

Friday, April 3, 2009

http://perlcabal.org/syn/Differences.html
http://perlcabal.org/syn/Differences.html

my $i;

loop ($i = 0; $i < 31; $i++) {
 my $fac10 = [*] 1 .. $i;
 say $fac10;
 }

Perl 6 example

April 2009

Friday, April 3, 2009

