
Permutations, Combinations and the Binomial
Theorem

October 27, 2011

() Permutations, Combinations and the Binomial Theorem October 27, 2011 1 / 24



Permutation, revisited

Definition
An r-permutation from n distinct objects is an ordered selection of r
objects from the given n objects.

Remark
By the product rule, there are n · (n− 1) · . . . · (n− r + 1) different ways
to orderly select r objects.

Example
There are 40 students in our class. In how many ways can we choose
a class leader, a class organizer and a class treasurer to form the
class committee?

Answer
This task can be performed in 40 · 39 · 38 different ways.
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Permutations and Sorting

One of the most frequent activities of computers in large corporations
is sorting. Needless to say that it is very important to devise sorting
programs that will be as efficient as possible.
In many applications it is not unusual to have millions of records that
need to be sorted.
We shall assume that a sorted sequence is a monotonically increasing
sequence.

Definition
An inversion in a permutation a1a2 . . . an is a pair of entries ai ,aj such
that i < j , and ai > aj

Example (How many inversions are in these permutation?)

1 9 7 11 1 5 4 2 3 6 10 8 12
2 12 8 10 6 3 2 4 5 1 11 7 9
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Remark
A sorted sequence (array) is a sequence with no inversions.
Thus the goal of a sorting procedure is to remove all inversions from
the given sequence.

Question
What is the average number of inversions in an n-permutation?

Answer

1 There are n! distinct permutations.
2 A permutation can have 0 inversions (sorted) or

(n
2

)
inversions or

any number in between.
3 The average number of inversions in a random permutation is the

total number of inversions in all n! permutations divided by n!.
4 But how can we find the total number?
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1 We shall count the total number of inversions in pairs.

2 We pair every permutation a1a2 . . . an−1an with its reverse
anan−1 . . . a2a1.

3 We have n!
2 disjoint pairs.

4 Each pair accounts for
(n

2

)
inversions.

5 So the average number of inversions in an n-permutation is:
1
n!

(n
2

)
· n!

2 = n(n−1)
4

Remark
If we exchange ai and ai+1 we remove 1 inversion.

So on the average, we’ll have to perform n(n−1)
4 such exchanges.

Better sorting programs compare records that are far apart thus
capable of removing more inversions in one exchange.
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Sorting

Let us try to see what is the most efficient execution for sorting 5
objects. The best model for analyzing this problem seems to be the
decision tree model.

The decision tree for this problem (a binary tree) will have to have 5!
leaves.
This means that its depth will have to be at least 7.

Question
Can we design a sorting algorithm that will sort any given 5 objects in
no more than 7 comparisons?

Question
For a fixed integer n what is the smallest number of comparisons a
sorting algorithm needs to execute to sort any input list of n objects?
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1 The decision tree model for analyzing sorting will have to be a tree
with n! leaves.

2 This means that the height of the tree is ≥ dlog n!e.
3

log n! =
n∑

k=1

log k ≤ n log n

4

log n! >
n∑

k> n
2

log k >
1
4

n log n

We do have sorting algorithms that execute about c · n log n
comparisons.
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Enumerating Permutations

In many applications, for instance if we need to generate random
permutations we need to enumerate permutations.

That is we need to find a bijection f : Sn → {0,1, . . . (n!− 1)}.
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Cantor Digits

There are many different representations of integers:
1 In general, given a sequence α = a1,a2, . . .

An α representation of the integer n is:

n =
∑m

i=0 di · ai .
There are restrictions on the coefficients di .
Every integer n has such a representation.
The representation is unique.

2 Examples:
3 Decimal (common) n =

∑m
k=0 ak · 10k 0 ≤ ak ≤ 9

4 Example: 150436 = 6 · 100 + 3 · 101 + 4 · 102 + 5 · 104 + 1 · 105

5 Binary representation: n =
∑m

i=0 di · 2i , di = 0,1.
6 Base b representation: n =

∑m
i=1 di · bi 0 ≤ di < b.

7 Cantor Digits: n =
∑m

k=0 dk · k ! 0 ≤ dk ≤ k .
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Cantor Digits

Example

1 1000 = 1 · 6! + 2 · 5! + 1 · 4! + 2 · 3! + 2 · 2!
2 So the cantor digits of 1000 are 1 2 1 2 2 0.

Remark
For an α-representation to be unique it is sufficient that
an+1 >

∑n
i=0 di · ai for all possible choices of di .

We need to show that :

Theorem
Every integer m has a unique representation:
m =

∑s
k=0 dk · k ! 0 ≤ dk ≤ k.
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Proof.

First recall that
∑s

k=1 k · k ! = (s + 1)!− 1 so by the previous remark
the representation is unique.

We now proceed by induction to prove that every integer has a Cantor
Digits representation.

1 1 = 1 · 1!
2 Assume m =

∑s
k=0 dk · k ! 0 ≤ dk ≤ k .

We need to show that m + 1 =
∑s

k=0 fk · k ! 0 ≤ fk ≤ k .
3 If dk = k ∀k then m = (s + 1)!− 1 and m + 1 = (s + 1)!.
4 Let k be the smallest index for which dk < k (such an index

exists).
5 That means that

m = 1 · 1! + 2 · 2! + . . .+ (k − 1) · (k − 1)! + dk · k ! + . . .

6 m + 1 = (dk + 1) · k ! + . . . .
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Enumerating Permutations

Given an n- permutation π = a1a2 . . . an we asociate with it the integer
f (π) =

∑n−1
k=1 dk · k !.

The coefficients dk are calculated as follows:

Let aj = k + 1. Then dk = |{aim |im > j and (k + 1) = aj > aim}|

In words: dk is the number of entries in the permutation π that are to
the right of k + 1 and are smaller than k + 1.

Example
Let π = 7 5 4 6 1 3 2 8.

d1 = 0, d2 = 1, d3 = 3, d4 = 4,d5 = 3,d6 = 6.
So f (π) = 6 · 6! + 3 · 5! + 4 · 4! + 3 · 3! + 2!
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Example
Let us calculate the 8-permutation number 20,000.

20000 = 2! + 3! + 3 ∗ 4! + 4 ∗ 5! + 6 ∗ 6! + 3 ∗ 7!
(use a simple greedy approach to make this easy calculation).

1 Start with eight ∗ ∗ ∗ ∗ ∗ ∗ ∗∗. Each ∗ will represent one of the
integers 1,2, . . .8.

2 d7 = 3, so 8 has 3 smaller numbers following it.
Place it so that 3 ∗ s follow it: ∗ ∗ ∗ ∗ 8 ∗ ∗∗.

3 Next place 7 so that 6 ∗ s follow it : 7 ∗ ∗ ∗ 8 ∗ ∗∗
4 Place i + 1 so that di ∗ s follow it.
5 place 1 at the last ∗.
6 In our example: f−1(20000) = 7 1 6 5 8 3 4 2.
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Efficient Generation of Permutations and
Combinations

Permutations can be generated either by the lexicographic order or by
the Cantor-Digits enumeration.
There is another method called The Arrow algorithm.

1 Start by placing an arrow pointing to the left over each number in
the n- permutation:

←−
1
←−
2 . . .

←−n .

2 The next permutation is generated by finding the largest entry
whose arrow points to a smaller entry then:

Interchage the two numbers.
Reverse the direction of all arrows on numbers greater this entry.

3 Stop when no arrow above an entry points to a smaller entry.
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Example
Start:
←−
1
←−
2
←−
3

⇒
←−
1
←−
3
←−
2 ⇒

←−
3
←−
1
←−
2 ⇒

−→
3
←−
2
←−
1 ⇒

←−
2
−→
3
←−
1 ⇒

←−
2
←−
1
−→
3

Remark (Generating Combinations)

We wish to generate all r -combinations of an n-set {a1,a2, . . . ,an}.
We shall proceed lexicographically: {a1,a2, . . .ar} will be the first
(“smallest”) and {an−r+1, . . . ,an} be the last (“largest”).

Question
What is the 4-subset of {1,2, . . . ,8} following {3,5,7,8}?
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Generating Combinations

To simplify the notation, we shall assume that our universal set is
{1,2, . . . ,n} and the numbers in the r subsets are sorted.

1 Given an r -subset {a1,a2, . . . ,ar} locate the last index i such that
ai 6= n − r + i .

2 Replace ai with ai + 1 and add the next consecutive integers to
form the next r -subset.

Example

The 4-combination following the combination {3,5,7,10} in
({1,2,...,10}

4

)
is: {3,5,8,9}.
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The Binomial theorem

You probably know a few proofs of the classical binoial theorem:

Theorem

(x + y)n =
n∑

i=0

(
n
i

)
x iyn−i

(n
k

)
are the binomial coefficients. A simple counting argument shows

that the number of ways to select a set of k objects from a set of n
objects is

(n
k

)
= n!

k!(n−k)! .
There are many interesting relations among the binomial coefficieints.
We shall briefly explore them and also see the technique of double
counting used to prove many combinatorial identities. We start with
Pascal’s idenitity: (

n + 1
k

)
=

(
n

k − 1

)
+

(
n
k

)

() Permutations, Combinations and the Binomial TheoremOctober 27, 2011 16 / 24



The Binomial theorem

You probably know a few proofs of the classical binoial theorem:

Theorem

(x + y)n =
n∑

i=0

(
n
i

)
x iyn−i

(n
k

)
are the binomial coefficients. A simple counting argument shows

that the number of ways to select a set of k objects from a set of n
objects is

(n
k

)
= n!

k!(n−k)! .
There are many interesting relations among the binomial coefficieints.
We shall briefly explore them and also see the technique of double
counting used to prove many combinatorial identities. We start with
Pascal’s idenitity: (

n + 1
k

)
=

(
n

k − 1

)
+

(
n
k

)

() Permutations, Combinations and the Binomial TheoremOctober 27, 2011 16 / 24



The Binomial theorem

You probably know a few proofs of the classical binoial theorem:

Theorem

(x + y)n =
n∑

i=0

(
n
i

)
x iyn−i

(n
k

)
are the binomial coefficients. A simple counting argument shows

that the number of ways to select a set of k objects from a set of n
objects is

(n
k

)
= n!

k!(n−k)! .

There are many interesting relations among the binomial coefficieints.
We shall briefly explore them and also see the technique of double
counting used to prove many combinatorial identities. We start with
Pascal’s idenitity: (

n + 1
k

)
=

(
n

k − 1

)
+

(
n
k

)

() Permutations, Combinations and the Binomial TheoremOctober 27, 2011 16 / 24



The Binomial theorem

You probably know a few proofs of the classical binoial theorem:

Theorem

(x + y)n =
n∑

i=0

(
n
i

)
x iyn−i

(n
k

)
are the binomial coefficients. A simple counting argument shows

that the number of ways to select a set of k objects from a set of n
objects is

(n
k

)
= n!

k!(n−k)! .
There are many interesting relations among the binomial coefficieints.
We shall briefly explore them and also see the technique of double
counting used to prove many combinatorial identities.

We start with
Pascal’s idenitity: (

n + 1
k

)
=

(
n

k − 1

)
+

(
n
k

)

() Permutations, Combinations and the Binomial TheoremOctober 27, 2011 16 / 24



The Binomial theorem

You probably know a few proofs of the classical binoial theorem:

Theorem

(x + y)n =
n∑

i=0

(
n
i

)
x iyn−i

(n
k

)
are the binomial coefficients. A simple counting argument shows

that the number of ways to select a set of k objects from a set of n
objects is

(n
k

)
= n!

k!(n−k)! .
There are many interesting relations among the binomial coefficieints.
We shall briefly explore them and also see the technique of double
counting used to prove many combinatorial identities. We start with
Pascal’s idenitity: (

n + 1
k

)
=

(
n

k − 1

)
+

(
n
k

)
() Permutations, Combinations and the Binomial TheoremOctober 27, 2011 16 / 24



Proof.
Here is a simple combinatorial (double counting) proof:

1
(n+1

k

)
is the number of ways to select k object from a set of n + 1

objects.
2
( n

k−1

)
is the number of ways to select k objects such that each

selection includes object number n + 1.
3
(n

k

)
is the number of ways to choose k object that do not include

object number n + 1.

This relation among the binomial coefficient is traditionally
encapsulated in the famous Pascal’s triangle.
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Pascal’s Triangle

Pascal’s Triangle contains many patterns and relations.
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A Sample of Combinatorial Identies

There are literally thousands of combinatorial identities based on the
binomial coefficients. We shall look at a small sample.

1
n∑

i=0

(
n
i

)
= 2n

(or the number of distinct subsets of an n-set is 2n).

2

b n
2 c∑

i=1

(
n
2i

)
=

b n
2 c∑

i=1

(
n

2i − 1

)
(or the number of ditinct subsets of even order is equal to the
number of subset of odd order). Proof: (1− 1)n = 0.

() Permutations, Combinations and the Binomial TheoremOctober 27, 2011 19 / 24



A Sample of Combinatorial Identies

There are literally thousands of combinatorial identities based on the
binomial coefficients. We shall look at a small sample.

1
n∑

i=0

(
n
i

)
= 2n

(or the number of distinct subsets of an n-set is 2n).
2

b n
2 c∑

i=1

(
n
2i

)
=

b n
2 c∑

i=1

(
n

2i − 1

)
(or the number of ditinct subsets of even order is equal to the
number of subset of odd order). Proof: (1− 1)n = 0.

() Permutations, Combinations and the Binomial TheoremOctober 27, 2011 19 / 24



1 (
2n
n

)
=

n∑
i=0

(
n
i

)2

Proof: (
2n
n

)
=

n∑
i=0

(
n
i

)(
n

n − i

)
Both sides count the number of ways to select a team of n
students from a class with n male students and n females.

2 Vandermonde’s Identity:(
n + m

r

)
=

r∑
k=0

(
n
k

)(
m

r − k

)
3

r∑
k=0

(
n + k

r

)
=

(
n + r + 1

r

)
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A tribute to Gauss

Question
An urn contains 100 balls numbered 1,2, . . . ,100. 100 persons draw a
ball, note the number on it and return it to the urn. What is the
probability that no two persons draw the same ball?

Answer

There are 100100 different ways to draw 100 balls. There are only 100!
ways to draw different balls. So the probability that no two persons will
draw the same ball is 100!

100100 . So we need to estimate this number.
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Estimates

1 Simplest estimates:

n! =
n∏

i=1

i ≤
n∏

i=1

n = nn n! =
n∏

i=1

i ≥
n∏

i=1

2 = 2n

2 Slightly better estimates:

n! ≥
n∏

i=n/2

i ≥
n∏

i=n/2

n/2 =
(n

2

) n
2 n! ≤

( n/2∏
i=1

n
2

)( n∏
i=n/2

n
)

=
nn

2
n
2

Remark
So the probability that each person will see a different number is
< 2−50 or just about no chance!

Even though it looks as if the estimates assume that n is even, it is not
difficult to show that they hold for odd n.
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Gauss’ nice estimates

Theorem (Gauss)
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We conclude by mentioning a very famous and beautiful
approximation: Stirling’s Formula.
It uses two of the most famous constants in mathematics: π and e in
one expression involving an approximation of the integer valued
function n!.

n! ∼
√

2πnn+ 1
2 e−n

For a proof of this formula see the file Stirling.pdf.

In many applications, for example in combinatorial probability,
factorials and binomial coefficients are very ubiquitous. Stirling’s
formula provides an excellent approximation using a much easier
expression to manipulate. For instance, how big is 100!?
Using Stirling’s formula we get:

lg 100! ≈ 100 lg(
100
e

) + 1 + lg
√

2π = 157.96 . . .

The actual number of digits of 100! is 158.(2n
n

)
∼ 4n
√

2π
Is another useful approximation.
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