Permutations and Combinations. The Pigeonhole Principle.

Get it together, team

In how many ways a chain of command (a linear hierarchical order) can be established for all 7 crew members?

Get it together, team

In how many ways a chain of command (a linear hierarchical order) can be established for all 7 crew members?

$$
7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=5040
$$

More Problems

Permutations
(a) In how many ways a chain of command (a linear hierarchical order) can be established for all 7 crew members?

$$
(7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=5040)
$$

(b) If you are already the captain and the \#1 by default?
(c) In how many ways 7 individual tasks can be distributed among 7 crew members?

More Problems

Permutations
Combinations
The Pigeonhole
(d) What if there are 100 tasks and each person gets exactly one?
(e) Still 100 tasks, but all must be assigned to at least someone?

(f) What if there are only 2 tasks?
(g) Two tasks, but both should have at least one person assigned doing it?

Factorial function

$$
\begin{aligned}
& 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=3628800 \\
& \quad=10!\quad \text { in a convenient factorial notation. }
\end{aligned}
$$

This function is called factorial and denoted by $n!$:

$$
\begin{aligned}
& n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot n \\
& \ldots \\
& 3!=1 \cdot 2 \cdot 3 \\
& 2!=1 \cdot 2 \\
& 1!=1 \\
& \\
& \quad \text { and by convention, } \\
& 0!=1
\end{aligned}
$$

Permutations

Permutations

Def. A permutation of a set of distinct objects is an ordered arrangement of these objects.

The number of permutations of n objects is

$$
P(n)=n!
$$

So, for example, given 6 pictures of cats, there are $6!=720$ ways to arrange them in a row.

Permutations

Permutations
Combinations
The Pigeonhole
There are 15 different magazines on a table.

You read three of them. In how many ways it was possible to do?

Permutations

Permutations
Combinations
The Pigeonhole
There are 15 different magazines on a table.

You read three of them. In how many ways it was possible to do?

$$
15 \cdot 14 \cdot 13=2730 .
$$

Permutations

Permutations
Combinations
The Pigeonhole
Principle

An arrangement of 3 objects out of n is called a 3-permutation.
Def. An ordered arrangement of r elements from a set of n is called an r-permutation.

$$
P(n, r)=\underbrace{n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot(n-r+1)}_{\text {product of } r \text { numbers }}
$$

Permutations

Permutations
Combinations
The Pigeonhole
Principle

An arrangement of 3 objects out of n is called a 3-permutation.
Def. An ordered arrangement of r elements from a set of n is called an r-permutation.

$$
P(n, r)=\underbrace{n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot(n-r+1)}_{\text {product of } r \text { numbers }}=\frac{n!}{(n-r)!}
$$

Permutations

Let's prove the last formula.
The number of r-permutations of the set of n elements:

$$
P(n, r)=\underbrace{n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot(n-r+1)}_{\text {product of } r \text { numbers }}
$$

Multiply and divide by $(n-r) \cdot(n-r-1) \cdot \ldots \cdot 2 \cdot 1$,

$$
P(n, r)=\frac{n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 2 \cdot 1}{(n-r) \cdot(n-r-1) \cdot \ldots \cdot 2 \cdot 1}=\frac{n!}{(n-r)!}
$$

Permutations

Permutations
Combinations
The Pigeonhole
Principle

Three sport teams of four want to take a group photo.

In how may ways can they stand in a row so that all members of the same team are standing together?

Have to open the door?

Permutations
Combinations
The Pigeonhole
Principle

We must find the correct sequence to open the door:

Up to 10 buttons must be pressed in the right order.

But each button, at most once.
How many lock combinations do we have to try?

Have to open the door?

$$
\begin{aligned}
& 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1+ \\
& 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2+ \\
& 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3+ \\
& 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4+ \\
& 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5+ \\
& 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6+ \\
& 10 \cdot 9 \cdot 8 \cdot 7+ \\
& 10 \cdot 9 \cdot 8+ \\
& 10 \cdot 9+ \\
& 10+ \\
& 1
\end{aligned}
$$

Which is
$P(10,10)+P(10,9)+P(10,8)+P(10,7)+P(10,6)+P(10,5)+$ $P(10,4)+P(10,3)+P(10,2)+P(10,1)+P(10,0)=9864101$.
If one attempt takes 1 second, it is more than 114 days of trying.

Another problem

Permutations
Combinations
The Pigeonhole
Principle

There are 4 paintings in a collection. In how many ways can we hang 3 of them on a wall?

Another problem

There are 4 paintings in a collection. In how many ways can we hang 3 of them on a wall?

Combinations

We can compute the number of 3-permutations of 4 objects, which is $P(4,3)=4 \cdot 3 \cdot 2=24$.

$a b c$	$a c b$	$b a c$	$b c a$	$c a b$	$c b a$	$\{a, b, c\}$
$a b d$	$a d b$	$b a d$	$b d a$	$d a b$	$d b a$	$\{a, b, d\}$
$a c d$	$a c b$	$c a d$	$c d a$	$d a c$	$d c a$	$\{a, c, d\}$
$b c d$	$b c b$	$c b d$	$c d b$	$d b c$	$d c b$	$\{b, c, d\}$

Observe that there are 4 ways to pick a set of 3 paintings, and each of them can be arranged in $3!=6$ many ways, and $4 \cdot 3!=24$ too.

Another problem

$$
P(4,3)=24=4 \cdot 3!
$$

When we arrange r objects out of n :

$$
P(n, r)=\frac{n!}{(n-r)!}
$$

But also,

$$
P(n, r)=X \cdot r!
$$

Where X is the number of ways to choose r objects out of n without assigning any order to them. This is exactly what we did when we were selecting 3 paintings.

Combinations

$$
\begin{gathered}
P(n, r)=\frac{n!}{(n-r)!} \\
P(n, r)=X \cdot r!
\end{gathered}
$$

X is the number of ways to choose r objects out of n without assigning any order to them.

Knowing this X can be useful. Can we find a formula for it?

Combinations

$$
\begin{gathered}
P(n, r)=\frac{n!}{(n-r)!} \\
P(n, r)=X \cdot r!
\end{gathered}
$$

X is the number of ways to choose r objects out of n without assigning any order to them.

Knowing this X can be useful. Can we find a formula for it?

$$
X=\frac{n!}{(n-r)!r!}
$$

It is the number of so-called r-combinations.

Combinations

$$
\begin{gathered}
P(n, r)=\frac{n!}{(n-r)!} \\
P(n, r)=X \cdot r!
\end{gathered}
$$

X is the number of ways to choose r objects out of n without assigning any order to them.

Knowing this X can be useful. Can we find a formula for it?

$$
X=\frac{n!}{(n-r)!r!}
$$

It is the number of so-called r-combinations.
Def. An r-combinations is an unordered selection of r objects from a set of n objects.

We write

$$
C(n, r)=\binom{n}{r}=\frac{n!}{(n-r)!r!}
$$

Combinations

The number of r-combinations:

$$
\binom{n}{r}=\frac{n!}{(n-r)!r!} \quad \text { (Note that }\binom{n}{r} \text { reads as " } n \text { choose } r \text { "). }
$$

An r-combination is a selection of r objects without specifying the order in which the objects are chosen.

Exercise:

There are three paintings, you'd like to buy some of them.
In how many ways one painting can be chosen? Two? Three?

Combinations

In how many ways a team of 6 can be selected from a group of 12 students?

Combinations

In how many ways a team of 6 can be selected from a group of 12 students?

$$
\binom{12}{6}=
$$

Combinations

In how many ways a team of 6 can be selected from a group of 12 students?

$$
\begin{aligned}
\binom{12}{6} & =\frac{12!}{(12-6)!6!}=\frac{12!}{6!\cdot 6!}=\frac{7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12}{6!} \\
& =\frac{7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}=\frac{7 \cdot 11 \cdot 12}{1}=924 .
\end{aligned}
$$

Example with cards

Count the number of ways 5 cards can be dealt from the deck of 52 if their order does not matter.

Example with cards

Count the number of ways 5 cards can be dealt from the deck of 52 if their order does not matter.

$$
\binom{52}{5}=\frac{52!}{(52-5)!5!}=\frac{52!}{47!5!}=\frac{48 \cdot 49 \cdot 50 \cdot 51 \cdot 52}{5!}=2598960 .
$$

Example with cards

Count the number of ways 5 cards can be dealt from the deck of 52 if their order does not matter.

$$
\binom{52}{5}=\frac{52!}{(52-5)!5!}=\frac{52!}{47!5!}=\frac{48 \cdot 49 \cdot 50 \cdot 51 \cdot 52}{5!}=2598960 .
$$

More examples:

$$
\binom{52}{2}=\frac{51 \cdot 52}{2}=1326 . \quad\binom{52}{1}=52 .
$$

Combinations

Let's try to prove that for $1 \leq k \leq n$:

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

Summary

Given a set with n elements.
The number of permutations of the elements the set:

$$
P(n)=n!=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 1
$$

The number of r-permutations of the set:

$$
P(n, r)=\frac{n!}{(n-r)!}=\underbrace{n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot(n-r+1)}_{\text {product of } r \text { numbers }}
$$

The number of unordered r-combinations (" n choose r "):

$$
\binom{n}{r}=\frac{P(n, r)}{P(r)}=\frac{n!}{(n-r)!r!}
$$

Solve

Problem 1.

How many permutations of the letters ABCDEFG contain
(a) the string BCD?
(b) the strings GCD and AB ?
(c) the strings BAC and CED?

Solve

Problem 2.

Suppose that a department contains 10 men and 15 women. How many ways are there to form a committee with six members if it must have the same number of men and women?

Problem 3.

How many bit strings contain exactly 8 zeros and 10 ones?
Problem 4.
How many bit strings contain exactly 8 zeros and 10 ones if every zero must be immediately followed by a one?

Solve: "Knights of the Round Table"

Permutations
Combinations
The Pigeonhole Principle

Def. A circular permutation of n people is their seating around a circular table, where seatings are considered to be the same if they can be obtained from each other by rotating the table.

Def. Similarly, a circular r-permutation of n people is a seating of r of these n people around a circular table, where, again, the seatings that can be obtained by rotation are considered to be the same.

Problem 5.

In how many ways can King Arthur seat n different knights at his round table?

Problem 6.
Count the number of circular r-permutations of n people.

"Knights of the Round Table"

Problem 5. In how many ways can King Arthur seat n different knights at his round table?

Answer: Because n normal permutations result in a single circular permutation, $\frac{n!}{n}=(n-1)$!
Problem 6.
Count the number of circular r-permutations of n people.
Answer: r normal r-permutations result in one circular r permutation, so we get $\frac{n!}{(n-r)!r}$. Transform this formula:

$$
\frac{n!}{(n-r)!r}=\frac{n!}{(n-r)!r!} \cdot \frac{r!}{r}=\binom{n}{r} \cdot \frac{r!}{r}
$$

So, equivalently, we first choose r knights out of n, and then count their circular permutations.

A typical situation

Permutations
Combinations
The Pigeonhole
Principle

A drawer in a dark room contains red socks, green socks, and blue socks. How many socks must you withdraw to be sure that you have a matching pair?

A typical situation

Permutations
Combinations
The Pigeonhole
Principle

A drawer in a dark room contains red socks, green socks, and blue socks. How many socks must you withdraw to be sure that you have a matching pair?

Four is enough.

The Pigeonhole Principle

Permutations
Combinations
The Pigeonhole
Principle

If you have 10 pigeons in 9 boxes, at least one box contains two birds.

The pigeonhole principle. If k is a positive integer and $k+1$ or more objects are placed into k boxes, then there is at least one box containing two or more of the objects.

The Pigeonhole Principle

Permutations
Combinations
The Pigeonhole
Principle

There are 7 colleges in a city.
What is the minimum number of students to be invited for a survey to make sure that at least two are from the same college?

The Pigeonhole Principle

Permutations
Combinations
The Pigeonhole
Principle

There are 7 colleges in a city.
What is the minimum number of students to be invited for a survey to make sure that at least two are from the same college?

$$
7+1=8 \text { students. }
$$

Generalized Pigeonhole Principle

The ceiling function:

$$
\lceil x\rceil=\text { the smallest integer not less that that } x
$$

So, for example,

$$
\begin{aligned}
\lceil 2.0\rceil & =2 \\
\lceil 0.5\rceil & =1 \\
\lceil-3.5\rceil & =-3
\end{aligned}
$$

The Generalized Pigeonhole Principle.

If N objects are placed into k boxes, then there is at least one box containing at least $\lceil N / k\rceil$ objects.

Generalized Pigeonhole Principle

The Generalized Pigeonhole Principle.
If N objects are placed into k boxes, then there is at least one box containing at least $\lceil N / k\rceil$ objects.

Example: How many cards must be selected from a standard deck of 52 cards to guarantee that at least three cards of the same suit are chosen?

Generalized Pigeonhole Principle

The Generalized Pigeonhole Principle.

Permutations
Combinations
The Pigeonhole
Principle

If N objects are placed into k boxes, then there is at least one box containing at least $\lceil N / k\rceil$ objects.

Example: How many cards must be selected from a standard deck of 52 cards to guarantee that at least three cards of the same suit are chosen?
"Birds" are cards. "Boxes" are suits, $k=4$.
How many cards, N, should we take to guarantee that at least three of them fall in the same "box" (suit):

$$
\left\lceil\frac{N}{k}\right\rceil=\left\lceil\frac{N}{4}\right\rceil \geq 3>2 .
$$

Solve

Permutations
Combinations
The Pigeonhole
Principle

Assume that in a group of six people, each pair of individuals consists of two friends or two enemies. Show that there are either three mutual friends or three mutual enemies in the group.

