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1
Introduction

Machine learning encompasses a broad range of problems ranging from de-
tecting objects in images, finding documents relevant to a given query, or pre-
dicting the next element in a sequence, among countless others. Traditional
approaches to these problems operate by collecting large, labeled datasets for
training, uncovering informative features, and mining complex patterns that
explain the association between features and labels. Typically, labels are re-
garded as an underlying ‘truth’ that should be predicted as accurately as pos-
sible.

Increasingly, though, there is a need to apply machine learning in settings
where the ‘correct’ outcome is subjective, or otherwise depends on the context
and characteristics of individual users. As we browse online for movies to
watch, products to buy, or romantic partners to connect with, we are likely
engaging with these new forms of personalized machine learning: Results are
tailored to us specifically, based on the types of movies, products, or partners
that we specifically are likely to engage with.

Much like traditional machine learning algorithms, personalized machine
learning algorithms are at their heart essentially forms of pattern discovery.
That is, predictions are made for you by analyzing the behavior of people simi-
lar to you. A recommendation such as ‘people who liked this also liked’ is per-
haps the most simple example of this type of personalized pattern discovery:1

based on the contextual attribute of a user liking a particular item, recommen-
dations are extracted based on users who share this common preference. At
the other end of the spectrum are complex deep learning approaches that learn
‘black box’ representations of users in order to make predictions, though these
too at their heart rely on the intuition that ‘similar’ users (in terms of some
complex representation) will have similar interaction patterns.

1 Though strictly speaking maybe not one that we’d call ‘machine learning.’

1



2 Introduction

1.1 Purpose of This Book

We seek to introduce Personalized Machine Learning by exploring a family of
approaches used to solve the above problems, and construct a narrative around
the common methods and design principles involved. We show that even in
applications as diverse as song recommendation, heart-rate profiling, or fash-
ion design, there is a common set of techniques around which personalized
machine learning systems are built.

By introducing this underlying set of principles, the book is intended is to
teach readers how modern machine learning techniques can be improved by
incorporating ideas from personalization and user modeling, and to guide read-
ers in building machine learning systems where accurately modeling the users
involved is key to success.

There is currently an abundance of models, datasets, and applications that
seek to capture human dynamics or interactions. Examples pervade in diverse
areas including web mining, recommender systems, fashion, dialog, and per-
sonalized health, among others. As such, there is an emerging set of techniques
that are used to capture the dynamics of ‘users’ in each of these settings. This
book is designed to act as a reference point to explain these techniques, and
explore their common elements. As a starting point, we will begin the book
(chaps. 2 and 3) with a primer of machine learning (and especially supervised
learning) that will bring readers up-to-speed on the basic techniques required
later. Although this introductory material is likely familiar to many readers,
we have a particular focus on user-oriented datasets, and show that even with
‘standard’ machine learning techniques, there is considerable scope for build-
ing personalized systems through careful feature engineering strategies that
capture relevant user characteristics.

Following this, our main introduction to personalized machine learning will
be to explore recommender systems (chaps. 4 and 5). Recommendation tech-
nology has traditionally relied on personalization and user modeling, whether
through simple similarity functions among users (‘people like you also bought’
etc.) or through more modern approaches involving temporal pattern mining
or neural networks.

More recently, the need to account for personalization and to model users
has spread into a variety of new areas of machine learning. Following our study
of recommender systems, exploring personalization and user modeling in these
new areas—and giving readers the tools they need to design personalized ap-
proaches in new settings—is the main goal of this book.
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1.2 For Learners: What is Covered, and What Isn’t

Although this book is primarily intended as a guide to the specific topics of per-
sonalization, recommendation, and user modeling (etc.), it should also serve
as a relatively gentle introduction to the topic of machine learning in general.
Topics such as web mining and recommender systems serve as an ideal start-
ing point for learners seeking a more ‘application oriented’ view of machine
learning compared to what is typically covered in introductory machine learn-
ing texts.

Throughout the book, we focus on building examples on top of large, real-
world datasets, and exploring techniques that are practical to implement in
projects and exercises. Our particular focus guides us toward (and away from)
certain topics, as we describe below.

Regressors, classifiers, and the learning pipeline We give a detailed intro-
duction of the end-to-end machine learning process in Chapters 2 and 3, which
(while condensed) should be suitable for learners with no background in ma-
chine learning. When introducing basic machine learning concepts in Chap-
ters 2 and 3, we limit ourselves to linear regression and linear classification
(logistic regression), since these serve as building blocks for the methods we
develop later. Consequently, we ignore dozens of alternative regression and
classification methods that are often the core of standard machine learning
texts (though we briefly discuss the merits of alternatives in Section 3.2).

User representations and dimensionality reduction Many of the techniques
we explore when learning user representations are essentially forms of man-
ifold learning (or dimensionality reduction), and borrow ideas from related
topics such as matrix factorization (sec. 5.1). While readers should have some
basic familiarity with linear algebra, we carefully avoid a linear algebra-heavy
presentation of ‘traditional’ dimensionality reduction techniques: in terms of
actual implementation these have little in common with the methods we de-
velop (though we discuss the connection to e.g. the singular value decomposi-
tion in Section 5.1).

Deep learning Any discussion of ‘modern’ machine learning approaches ne-
cessitates a fairly broad discussion of deep learning. For example we discuss
multilayer perceptron-based recommendation in Section 5.5.2, sequence mod-
els based on recurrent neural networks in Chapter 7, and models of visual
preferences based on convolutional neural networks in Chapter 9. However
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in doing so we are merely scratching the surface of deep learning-based per-
sonalization, and will largely refer readers elsewhere for in-depth discussion
of specific architectures, or for a first-principles presentation of deep learning
methods.

Offline versus online learning We largely limit ourselves to traditional of-
fline, supervised learning problems, i.e., uncovering patterns and making pre-
dictions from historical collections of training data. Generally we prefer this
setting since it allows us focus on methods that we can develop on top of
real-world, publicly available datasets. Of course, in practice, when deploying
predictive models, data may be obtained in a streaming setting and updates
must be made in real time. This type of training regime is known as online
learning, which we briefly cover in Section 5.7; we also avoid discussion of
(e.g.) reinforcement learning algorithms, though mention their use briefly in
settings such as conversational recommendation (e.g. sec. 8.4.4).

Bias, consequences, and user considerations By design, our study of per-
sonalization is largely confined to machine learning approaches. That is, we
are generally concerned with building predictive systems that can estimate—
as accurately as possible—how a particular user will respond to a given stimu-
lus. By doing so, we can estimate preferences, predict future activities, retrieve
relevant items, etc.

Of course, we are mindful of the dangers associated with ‘black-box’ ap-
proaches to machine learning, and want to avoid the pitfalls of blindly opti-
mizing model accuracy, such as filter bubbles, unwanted biases, or simply a
degraded user experience. In Chapter 10 we discuss these issues, as well as
potential approaches to address them.

Again our discussion is mostly limited to machine learning solutions, i.e., we
investigate algorithmic approaches to correct for biases, increase recommen-
dation diversity, etc. We note that algorithmic solutions are only part of the
picture, and that while having better algorithms is critical, it is also critical that
those algorithms are appropriately used. Our presentation is complementary to
a large body of work that explores personalization from the perspective of hu-
man computer interaction, or user interface design, where the primary concern
is maximizing the quality of the user experience (ease of finding information,
satisfaction, long-term engagement, etc.).

Implementation and libraries All code examples are presented in Python.
While we assume a working familiarity with data processing, matrix libraries
(etc.), further links on our online resources page (sec. 1.4) will help users with
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less familiarity. When discussing deep learning approaches, and more gener-
ally when fitting complex models, we base our implementations on Tensorflow,
though these examples can easily be interchanged with alternate libraries (Py-
Torch, Theano, etc.).

While we focus on implementation, we largely avoid ‘systems building’
aspects of personalized machine learning, such as concerns around deploying
machine learning models on distributed servers (etc.), though we discuss high-
level libraries and implementation best-practices throughout the book.

1.3 For Instructors: Course and Content Outline

This book is inspired by my own experience teaching classes on recommender
systems and web mining at UC San Diego. Courses on these topics have proved
extremely popular, and are often chosen as learners’ first exposure to machine
learning.

One reason this topic acts as a good first contact with the machine learning
curriculum is that it has a somewhat lower bar for entry than many machine
learning courses, including (for example) courses on deep learning, or even
many ‘introductory’ machine learning classes. Partly this is due to the material
being less dependent on deep and complex theory, and partly it is due to the
ability to quickly build working solutions that are fairly representative of the
state-of-the-art, rather than mere proofs-of-concept. As such, a focus of this
book is to quickly build working solutions, and covering a wide breadth of ap-
proaches, rather than diving too deep into the theory behind any one approach.
This approach can be useful in helping learners to understand the practical
considerations behind building predictive systems based on user data, and is
complementary to the more theoretical treatment given in most introductory
texts.

Another feature that has made this material popular among learners is the
ability to work quickly with large, real-world datasets. The ability to work
with collections of user data from Amazon, Google, Steam (etc.), on applica-
tions that are representative of real use-cases, has proved immensely valuable
for students building their project portfolios or preparing for interviews. As
such, each chapter is paired with project suggestions, each of which would be
suitable as a major class project. These projects aim to synthesize the material
from each chapter, with more focus on system building considerations, design
choices, and thorough model evaluation.
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1.3.1 Course Plan and Overview

The content in this text is aimed at developing a quarter- or semester-long
course, for students with some background in linear algebra, probability, and
data processing. After revising basic material in Chapters 2 and 3, Chapters 4
and 5 cover the core material upon which the remainder of the book builds.
Chapters 6 to 9 are somewhat more orthogonal, such that components can be
selected and combined as time or student background allows. A final chapter
on bias, fairness, and the consequences of personalization (chap. 10) provides
an opportunity to revisit earlier material through a new lens.

Each chapter is paired with homework and a project. Again the focus on
these components is mainly on developing practical implementations, work-
ing with real data, and understanding the design choices involved, rather than
testing theoretical concepts. Below we briefly summarize the material from
each chapter:

Machine Learning Primer (chaps. 2 and 3) 2-3 weeks. Introduces the foun-
dational concepts of machine learning, feature design, and evaluation, via a se-
lection of datasets that capture user interactions. Exercises range from simple
data manipulation to building a working machine learning pipeline (training,
validation, etc.). Exercises are mainly concerned with feature design, includ-
ing projects (Projects 1 and 2) that involve experimenting with activity data
involving temporal and geographical dynamics.

Recommender Systems (chaps. 4 and 5) 2-3 weeks. Introduces the core set
of techniques used for recommendation. Traditional heuristics are presented
in Chapter 4 followed by machine learning approaches in Chapter 5. Recom-
mender systems are used to develop the concept of a user manifold which is
used throughout the following chapters to capture variation among users in
several settings (sec. 1.7). Exercises are mainly focused on the basics of build-
ing practical recommendation approaches, and projects (Projects 3 and 4) are
concerned with building an end-to-end recommendation pipeline for a book
recommendation scenario.

Content and Structure in Recommender Systems (chap. 6) 1 week. Ex-
plores how to incorporate features (i.e., side information) into personaliza-
tion (mostly recommendation) approaches, and explores personalization in set-
tings with additional structure, such as socially-aware recommendation and
settings involving price dynamics. A particular focus is given to leveraging
side-information in cold-start scenarios, where interaction histories are not yet
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available (sec. 6.2). Some of these content-aware approaches (such as fac-
torization machines) are revisited later in the book when developing more
complex models based on (e.g.) temporal or sequential dynamics. A project
(Project 5) consists of developing recommender systems for use in cold-start
settings.

Temporal and Sequential Models (chap. 7) 1-2 weeks. We revise some of
the basic approaches to temporal and sequential modeling, such as autore-
gression and Markov chains, and later develop more complex personalized
approaches based on recurrent neural networks. The Netflix Prize (sec. 7.2.2)
is presented as a case study to explore the basic design principles of tempo-
ral modeling. A project (Project 6) compares various approaches to temporal
recommendation.

Personalized Models of Text (chap. 8) 1 week. After revising some of the
basic predictive models of text (such as bag-of-words representations), we ex-
plore how text can be used to understand the dimensions of preferences. We
revisit sequential modeling by exploring techniques that borrow from natural
language to model interaction sequences. We also visit methods for text gen-
eration, which can be personalized in settings ranging from conversation to
justification of machine predictions. A project (Project 7) consists of building
personalized systems for document retrieval.

Personalized Models of Visual Data (chap. 9) 1 week. Explores applications
involving visual data, ranging from personalized image search, to applications
in fashion and design. A project (Project 8) consists of building visually-aware
recommendation systems for applications in fashion.

The Consequences of Personalized Machine Learning (chap. 10) 1 week.
The final chapter explores the consequences and pitfalls of developing person-
alized machine learning systems. Examples include filter bubbles, extremifi-
cation, and issues of bias and fairness. The chapter has a significant focus on
applied case-studies, and allows us to revisit several of the topics from previ-
ous chapters through a new lens. A project (Project 9) consists of improving
recommendation approaches in terms of gender parity and other fairness ob-
jectives.
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1.4 Online Resources

To help readers with exercises, projects, and to collect resources including
datasets and additional reading materials, an online supplement is available to
augment the material covered here with working code and examples:

https://cseweb.ucsd.edu/˜jmcauley/pml/

The online supplement includes:

• Code examples covering the material in each chapter. These cover complete
worked examples from which the code samples presented in each chapter
are drawn. Additional code samples are included that correspond to various
figures and examples presented throughout the book.

• Solutions to all exercises from each chapter.
• Links to datasets used in the book (as well as various other personalization

datasets), including small, processed datasets useful to complete the exer-
cises.

• Links to additional reading, mostly focused on introductory material useful
to learners less familiar with some of the background material described in
Section 1.2.

1.5 About the Author

Figure 1.1: The Author.

I have been a Professor at UC San Diego
since 2014, following postgraduate train-
ing at Stanford University, and undergradu-
ate and graduate training in Australia. Per-
sonalized Machine Learning is the main
theme of my research lab at UCSD. Our
lab’s research has pioneered the use of im-
ages and text in recommendation settings
(e.g. McAuley et al. (2015); McAuley and
Leskovec (2013a)), with applications in-
cluding fashion design, personalized ques-
tion answering, and interactive dialog sys-
tems. Our lab has also studied personaliza-
tion outside of typical recommendation set-
tings, such as developing personalized mod-
els of heart-rate profiles (Ni et al., 2019b), and systems for generating person-
alized recipes (Majumder et al., 2019).

https://cseweb.ucsd.edu/~jmcauley/pml/
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Our lab regularly collaborates with industry to develop state-of-the-art sys-
tems for personalized machine learning. We’ve worked on problems includ-
ing visually-aware recommendation with Adobe and Pinterest, understanding
user budgets and personalized price dynamics with Etsy and Microsoft, and
question-answering and dialog systems with Microsoft and Amazon. We’ll ex-
plore several of these approaches through case-studies throughout the book.

1.6 Personalization in Everyday Life

Other than introducing the techniques underlying personalized machine learn-
ing systems, one of our goals in this book is to explore the wide range of
practical applications where personalization is applied, to explore the history
of the topic, and eventually to explore the associated risks and consequences.

Personalized machine learning is increasingly becoming pervasive to the
point that most of us are likely to interact with personalized machine learn-
ing systems every day. Systems that generate playlists based on our listening
habits, mark e-mails as ‘important,’ suggest products or advertisements based
on our recent activities, rank our newsfeeds, or suggest new connections on
social media, all personalize their predictions or outputs in some way. Tech-
niques range from simple heuristics (e.g. we’re likely to become friends with
somebody if we already share mutual friends), to complex algorithms that ac-
count for temporal patterns, or incorporate natural language and visual signals.

Below we’ll study a few common (and less common) scenarios in which
personalization plays a key role, many of which will form the basis of case-
studies throughout this book.

1.6.1 Recommendation

Many of the examples we cover in this book will relate to recommender sys-
tems, and more broadly to modeling users’ interactions with data collected
from the web. Part of the reason for this focus is opportunistic: user interaction
datasets are widely available, allowing us to build models on top of real data.

Pedagogically, recommender systems are also appealing as an introduction
to personalized machine learning as they allow us to quickly implement work-
ing systems that are close to the state-of-the-art. As we’ll see, even widely-
deployed systems turn out to be surprisingly straightforward, relying on simple
heuristics and standard data structures (sec. 4.5).

Ultimately though, our main reason for studying recommender systems is
because they are a fundamental tool for modeling interactions between users
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and items. The basic techniques developed when building recommender sys-
tems can be applied in a variety of other situations where we want to predict
how a user will respond to some stimulus. Many of the settings we describe
later build on this general theme.

Recommender systems represent perhaps the purest settings where variation
among individuals captures a large fraction of the variability in a dataset. To
build recommender systems we must understand the underlying preferences
of users and properties of items that explain why an item might be purchased
by one user and not another. Users might vary due to subjective preferences,
budgets, or demographic factors; both users and items might change over time
due to social, temporal, or contextual factors (etc.).

Building on the techniques we develop for recommendation, we argue that
there are countless settings where capturing variation among individuals is key
to making meaningful predictions. In settings like personalized health, users
may vary in terms of their physical characteristics, medical histories, or risk
factors; or in settings involving natural language (or dialog) users may vary in
terms of their writing styles, personalities, or their specific context.

Below we describe a few such examples, partly to highlight the wide range
of settings where personalization is critical, but also to demonstrate the com-
mon set of ideas involved in modeling them.

1.6.2 Personalized Health

Beyond ‘obvious’ applications in electronic commerce or social media, per-
sonalization is increasingly playing a role in high-stakes and socially-important
problems. Personalized health is a key emerging domain for personalization:
like recommendation, problems in health have the key characteristic that pre-
dictions are highly contextual, and exhibit significant variation among indi-
viduals. Critically, when estimating symptoms, responses to medication, or
heart-rate profiles, it would be impossible to make useful predictions without
personalization.

Estimating what symptoms a patient will exhibit on their next hospital visit
is a canonical task in personalized health, with applications in (e.g.) preventa-
tive treatment. This task closely resembles the settings we explore when de-
veloping recommender systems, given the goal to estimate patients’ interac-
tions with certain stimuli (symptoms) over time (Yang et al., 2014). As such,
techniques for such tasks borrow ideas from recommender systems, especially
temporal and sequential recommendation, as we develop in Chapter 7.

Beyond estimating patient symptoms, personalized machine learning tech-
niques can be adapted to related tasks ranging from estimating the duration
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of surgical procedures (Ng et al., 2017), modeling the progression of heart-
rate sequences in response to physical stimuli (Ni et al., 2019b), or estimating
the distribution kinetics of drugs (such as anesthetics) (Ingrande et al., 2020).
Modeling such problems requires understanding the characteristics of patients
or physicians (and the interactions between them). Techniques range from sim-
ple regression (e.g. to predict surgery duration) to recurrent neural networks
(e.g. to forecast heart-rate profiles).

Many problems in personalized health also depend upon natural language
data, for example modeling the characteristics of clinical notes, or generating
reports based on radiology images (Ni et al., 2020). Such applications build on
techniques for personalized natural language processing and generation, as we
develop in Chapter 8.

The techniques above span the different ‘types’ of personalized learning
systems (see sec. 1.7): some systems leverage traditional machine learning
techniques, in which ‘personalization’ merely means extracting features that
capture the relevant properties about users (or patients, physicians, etc.); others
use complex deep-learning approaches, in which the underlying dimensions
that capture patterns in behavior are harder to interpret.

1.6.3 Computational Social Science

Often the goal of modeling user data is not merely to predict future events
or interactions, but to understand the underlying dynamics at play. Using ma-
chine learning and data-driven approaches to understand the underlying dy-
namics of human behavior from large datasets is one of main goals of compu-
tational social science.

Likewise, for many of the models we develop, our goals are as much about
building more accurate predictors as they are about understanding social or be-
havioral dynamics. When we develop regressors to predict content success on
reddit (sec. 2.6.1), our main goal is to disentangle what factors lead to success,
such as community dynamics, titles, submission times, etc. Or, when building
recommender systems our goals are to understand and interpret the underly-
ing preference dimensions that guide users’ decisions, and what causes those
preferences to change over time, including how users acquire tastes, develop
nostalgia for old items, or simply respond to changes in a user interface.

Finally, as we begin to explore the ethical consequences of personalization
(which we introduce in Section 1.8), we’ll underline the point that accurate
prediction is rarely a desirable goal in and of itself. In Chapter 10 we’ll ex-
amine the long-term effects on users who interact with personalized systems:
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this includes studying what factors drive users to extreme content, and how to
algorithmically mitigate such undesirable outcomes.

1.6.4 Language Generation, Personalized Dialog, and Interactive
Agents

Finally, given the new modalities via which people interact with predictive
systems, there are new demands for personalization.

For example, personalization is critical in a broad range of settings involv-
ing natural language. User-generated language data exhibits substantial vari-
ability due to differences in writing style, subjectivity, etc. When dealing with
such data, non-personalized models may struggle with this nuance. For ex-
ample, automated systems for dialog, whether in task-oriented settings or for
open-domain ‘chit-chat,’ can benefit from personalization, in order to generate
responses that are more personalized or empathetic to the tone or context of
individual users (Majumder et al., 2020).

We’ll see several instances of personalized language modeling throughout
the book: language models are increasingly important to explain or interpret
machine predictions (sec. 8.4.3), to facilitate new modalities of interaction with
predictive systems (such as conversation, Section 8.4.4), and to develop new
kinds of assistive tools, e.g. to help users respond to e-mail (sec. 8.5).

1.7 Techniques for Personalization

As mentioned in Section 1.1, one of the goals of this book is to establish a
common narrative around the tools and techniques used to design personal-
ized machine learning systems. Although we’ve shown that such systems are
applied in domains as diverse as online commerce to personalized health, we
find that the techniques used to implement these models follow a few common
paradigms.

1.7.1 User Representations as Manifolds

One of the main ideas we’ll revisit throughout this book—and which allows us
to adapt ideas from recommender systems to other types of machine learning—
is that of a user manifold. That is, most of the personalized methods we’ll
explore will involve representations of users that describe the common patterns
of variation in their activities and interactions.

In the case of recommender systems, this ‘user manifold’ will be a vector
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Figure 1.2 The basic idea behind recommender systems, and various other types
of personalized machine learning, is to represent users by low-dimensional man-
ifolds that describe the patterns of variance among their interactions. In a recom-
mendation setting, a low-dimensional user vector might describe my preferences
while a low dimensional item vector describes an item’s properties; compatible
users and items have vectors that point in the same direction (chap. 5).

that describes the principal dimensions that explain variance among user pref-
erences (fig. 1.2). For example, we might discover that the principal dimen-
sions that explain variance in preferences in a movie recommendation setting
center around certain genres, actors, or special effects. Throughout the book,
we’ll revisit the idea of user manifolds, as a general-purpose means of captur-
ing common patterns of variation among users. Some examples include:

• In Chapter 5, we’ll use low-dimensional user representations to describe the
dimensions of preferences and activities, which can be used to recommend
items that users are likely to interact with.

• In Chapter 8, user representations can describe the topics users tend to dis-
cuss (e.g. when writing reviews), or individual characteristics of their writ-
ing styles.

• In Chapter 9, user representations will describe the visual dimensions that
users are interested in, allowing us to rank, recommend, or generate images
in a personalized way.

• Throughout various case studies, user representations will capture character-
istics ranging from dietary preferences (sec. 8.4.2), fitness profiles (sec. 7.8),
social trust (sec. 6.4.1), or fashion choices (sec. 9.3).
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1.7.2 Contextual Personalization and Model-Based
Personalization

Although this book will predominantly cover methods that explicitly model
user terms (as above), we will also cover a variety of models that deliberately
avoid doing so.

Starting with simple approaches such as ‘people who bought X also bought
Y,’ many classical approaches for (e.g.) recommendation leverage user data,
but do not include explicit parameters (i.e., a ‘model’) associated with a user.
However, such models are still personalized, in the sense that different pre-
dictions will be made for each individual based on how they interact with
the system. Simple machine learning techniques, such as those we develop in
Chapters 2 and 3, where users are represented by a few carefully-engineered
features, also follow this paradigm.

We’ll distinguish between these two classes of approach using the terms
model-based and contextual personalization. Model-based approaches learn
an explicit set of parameters associated with each user, such as the ‘user man-
ifolds’ described above (and in fig. 1.2); these models are typically intended
to capture the predominant patterns of variation among users in a system, usu-
ally in terms of a low-dimensional vector. In contrast, contextual (also some-
times called ‘memory-based,’ as in Chapter 5) approaches extract features
from users’ histories of recent interactions.

There are several settings in which contextual personalization may be prefer-
able to explicitly modeling a user. When developing simple recommender sys-
tems in Chapter 4, and even more trivial personalized models in Chapters 2
and 3, we see that personalization can often be achieved with simple heuris-
tics, or hand-crafted features or similarity measures. Such approaches may be
desirable for a number of reasons: simple models may be more interpretable
(and therefore preferable to expose to a user compared to ‘black-box’ predic-
tions); or, we may lack adequate training data to learn complex representations
from scratch.

1.8 The Ethics and Consequences of Personalization

Along with the increasing ubiquity of personalized machine learning systems,
there is a growing awareness of the risks associated with personalization. Some
of these issues have reached mainstream awareness, such as the idea that per-
sonalized recommendations can trap users in ‘filter bubbles,’ while other is-
sues are considerably more subtle. For instance, considering the specific case
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of recommender systems, a naively-implemented model can introduce issues
including:

Filter bubbles Roughly speaking, recommendation algorithms rely on identi-
fying specific item characteristics that are preferred by each user, and rec-
ommending items that most closely represent those characteristics. With-
out care, even a user with broad interests may be recommended only a
narrow set of items that closely mimic their prior interactions.

Extremification Likewise, a system that identifies features that a user is inter-
ested in may identify items that are most representative of those features,
e.g. a user who likes action movies may be recommended movies with a
lot of action; in contexts such as social media and news recommendation
this can lead to users being exposed to increasingly extreme content (the
relationship between this and the previous issue is explained in Chap-
ter 10).

Concentration Similar to the previous phenomenon, a user who has diverse
interests may receive recommendations that only follow their most pre-
dominant interest (sec. 10.2). In aggregate, this may lead to to a small set
of items being over-represented among all users’ recommendations.

Bias Given that recommenders (and many other personalized models) ulti-
mately work by identifying common patterns of user behavior, users in
the ‘long-tail’ whose preferences don’t follow the predominant trends
may receive sub-par recommendations.

Along with a rising awareness of these issues has come a set of techniques
designed to mitigate them. These techniques borrow ideas from the broader
field of fair and unbiased machine learning, whereby learning algorithms are
adapted so as not to propagate (or not to exacerbate) biases in training data,
though the fairness goals are often quite different. Diversification techniques
can be used to ensure that predictions or recommendations balance relevance
with novelty, diversity, or serendipity; related techniques seek to better ‘cali-
brate’ personalized machine learning systems by ensuring that predicted out-
puts are balanced in terms of categories, features, or the distribution over rec-
ommended items (sec. 10.3). Such techniques can mitigate filter bubbles by
ensuring that model outputs aren’t highly concentrated around a few items,
and more qualitatively can increase the overall novelty or ‘interestingness’ of
model outputs. Other techniques follow more directly from fair and unbiased
machine learning, ensuring that the performance of personalized models is not
degraded for users belonging to underrepresented groups, or who have niche
preferences (sec. 10.7).





PART ONE

MACHINE LEARNING PRIMER





2
Regression and Feature Engineering

In this chapter, we’ll cover the fundamental principles of machine learning
(and in particular supervised learning), that will serve as a foundation for the
remaining material in this book.

In the following we’ll cover essential building blocks including:

• Strategies for feature extraction and transformation, including real-valued
and categorical data, and temporal signals (sec. 2.3).

• The general strategy of associating probabilities with model outcomes, and
more broadly the relationship between fitting a model and likelihood maxi-
mization (sec. 2.2.3).

• Gradient-based approaches to model fitting (sec. 2.5), and (in chap. 3) their
implementation via high-level languages such as Tensorflow (sec. 3.4.4).

• How to deal with outliers, imbalanced datasets, and general strategies for
model evaluation (sec. 2.2).

Although we’ll only briefly touch upon personalization in this chapter, our
examples will focus on the same types of user-oriented data that we’ll visit
in later chapters. In particular, we’ll focus on datasets covering topics such as
recommendation, sentiment, and predictive tasks involving (e.g.) demographic
characteristics.

As such, the view we’ll take on ‘personalization’ in this chapter will consist
of extracting features from user data in order to make predictions using tradi-
tional machine learning frameworks. Later, we’ll draw a distinction between
this type of method—where we extract features about users—and methods
where we explicitly model each user. This will drive our discussion of con-
textual versus model-based personalization (as we introduced in Section 1.7),
though we’ll discuss this distinction more precisely in Chapters 4 and 5. How-
ever, as we’ll see in this chapter (and in various examples throughout the book),
even traditional machine learning techniques, paired with appropriate feature

19



20 Regression and Feature Engineering

extraction strategies, can lead to surprisingly effective models for personalized
prediction.

Supervised learning
All of the techniques presented in this chapter—and most of the personaliza-
tion techniques we’ll explore throughout this book—are forms of supervised
learning. Supervised learning techniques assume that our prediction tasks (or
our datasets) can be separated into two components:

labels (denoted y) that we would like to predict, and;
features (denoted X) which we believe will help us to predict those labels.1

For example, given a sentiment analysis task (chap. 8), our data might be (the
text of) reviews from Amazon or Yelp, and our labels would be the ratings
associated with those reviews.

Given this distinction between features and labels in a dataset, the goal of a
supervised learning algorithm is to infer the underlying function

f (x)→ y (2.1)

that explains the relationship between the features and the labels. Usually, this
function will be parameterized by model parameters θ, i.e.,

fθ(x)→ y. (2.2)

For example, in this chapter θ might describe which features are positively or
negatively correlated (or uncorrelated) with the labels; later θmight capture the
preferences of a particular user in a recommender system (chap. 5). Figure 2.1
explains how this type of supervised approach relates to other types of learning.

Throughout this chapter, we will assume that we are given labels in the form
of a vector y, and features in the form of a matrix X, so that each yi is the label
associated with the ith observation, and xi is a vector of features associated
with that observation.

The two categories of supervised learning we’ll cover in this and the next
chapter include:

• Regression, in which our goal is to predict real-valued labels y as closely
as possible (sec. 2.1). When building personalized models in later chapters,
such targets may include ratings, sentiment, the number of votes a social
media post receives, or a patient’s heart-rate.

1 Generally we’ll use X when referring to a feature matrix, versus x or xi to refer to a vector of
features associated with a single observation.
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Figure 2.1 Supervised, unsupervised, and semi-supervised learning.

Supervised Learning approaches are those that seek to directly learn the relation-
ship between the observed data X and the labels y. Nearly all of the models in this
book are forms of supervised learning, starting with regression and classification
in this chapter, and continuing into later chapters as we build models to predict
user activities.

In contrast, unsupervised learning approaches seek to find patterns in the data
X, but are not specifically concerned with predicting any label; examples include
techniques for clustering and dimensionality reduction.

Finally, semi-supervised learning approaches are somewhere in between, usually
leveraging large datasets of unlabeled data to improve the performance of super-
vised models with a small number of labels.

• Classification, in which y is an element of a discrete set (chap. 3). In later
chapters these will correspond to outcomes such as whether a user clicks on
or purchases an item. We’ll also see how such approaches can be adapted to
learn rankings over items (sec. 3.3.3).

2.1 Linear Regression

Perhaps the simplest association we could assume between our features X and
our labels y would be a linear relationship, i.e., that the relationship between
X and y is defined as

y = Xθ. (2.3)

Using our notation from Equation (2.2):

fθ(X) = Xθ, (2.4)

or equivalently for a single observation xi (a row of X)

fθ(x) = xi · θ =
∑

k

xikθi. (2.5)

Here θ is our set of model parameters: a vector of unknowns which describe
which features are relevant to predicting the labels.

Ignoring strict notation for now, a trivial example might consist of predicting
a review’s rating as a function of its length. To do so, let’s consider a small
dataset of 100 (length, rating) pairs from Goodreads Fantasy novels (Wan and
McAuley, 2018). Figure 2.2 plots the relationship between review length (in
characters) and the rating.

From Figure 2.2, there appears to be a (rough) association between ratings
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Figure 2.2: Ratings compared to
review length (in characters), based
on 100 reviews of fantasy novels
from Goodreads.

and review length, i.e., more positive reviews tend to be longer. A very simple
model might attempt to describe that relationship with a line, i.e.,

rating ' θ0 + θ1 × (review length). (2.6)

Note that the above is just the standard equation for a line (y = mx + b), where
θ1 is a slope and θ0 is an intercept.

If we can identify a line that approximately describes this relationship, we
can use it to estimate a rating from a given review, even though we may never
have seen a review of some specific length before. In this sense, the line is
a simple model of the data, as it allows us to predict labels from previously
unseen features. To do so we formalize the problem of finding a line of best fit.

Specifically, we are interested in identifying the values of θ0 and θ1 that most
closely match the trend in Figure 2.2. To solve for θ = [θ0, θ1], we can write
out the problem as a system of equations in matrix form:

y ' X · θ, (2.7)

where y is our vector of observed ratings and X is our matrix of observed
features (in this case the reviews’ lengths).2 For the first few samples of our

2 We write y ' X · θ in Equation (2.7) since the equation is an approximation (i.e., we cannot
precisely solve for θ); however we will typically write y = X · θ when defining model
equations.
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Figure 2.3 Why is there a column of ‘1’s in the feature matrix?

The first column of the feature matrix X in Equation (2.8), and in most feature
matrices throughout this chapter, is a column of ones. To explain why we always
have this feature, it is useful to expand the inner product [1, length] ·[θ0, θ1] (e.g. as
in eq. (2.8)) to confirm that it expands to the equation for a line θ0 + θ1 × length.
Without the constant term in our feature matrix, we would be implicitly assuming
that the fitted line passes through (0, 0).

Goodreads data we have:

5
5
5
4
3
5
...

︸︷︷︸
y

'



1 2086
1 1521
1 1519
1 1791
1 1762
1 470

...

︸           ︷︷           ︸
X

·

[
θ0

θ1

]
︸ ︷︷ ︸

θ

. (2.8)

It is useful to compare Equations (2.6) and (2.8) to understand how the ma-
trix expression above expands to include the slope (θ1 × (review length)) and
intercept (θ0) terms. We explain this construction more precisely in Figure 2.3.

We would like to solve Equation (2.8) for θ. Naively, we might attempt to
multiply both sides of the equation y = X · θ by X−1; however the inverse is not
well-defined, since X is not a square matrix.

To obtain a square matrix, we (left) multiply both sides by XT :

XT y ' XT Xθ, (2.9)

resulting in a square (in this case 2×2) matrix XT X. We can now multiply both
sides by the inverse of this matrix:

(XT X)−1XT y ' (XT X)−1(XT X)θ, or simply θ = (XT X)−1XT y. (2.10)

The quantity (XT X)−1XT is known as the pseudoinverse of X.
Computing θ = (XT X)−1XT y for our 100 ratings from Goodreads yields

θ =

[
3.983

1.193 × 10−4

]
, (2.11)

corresponding to the line

rating = 3.983 + 1.193 × 10−4(review length). (2.12)
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Figure 2.4: Line of best fit be-
tween ratings and review length
(Goodreads).

This line reflects a positive (albeit slight) trend between review length and
ratings: for every additional character in a review, our estimate of the rating
increases very slightly (by 1.193×10−4 points). This line of best fit is depicted
in Figure 2.4.

More complex models The above reasoning generalizes to fitting more com-
plex models than a simple line, for example we could imagine that a rating
could be related to both the length of the review and the number of comments
the review received:

rating = θ0 + θ1 × (review length) + θ2 × (n comments). (2.13)

The above process—finding a line of best fit that best approximates the rela-
tionship between our observed features X and labels y—describes the basic
concept of linear regression.

Adding more dimensions Just as Equation (2.6) corresponds to fitting a line
in two dimensions, Equation (2.13) now corresponds to fitting a plane in three.
But ultimately the procedure for fitting this model remains the same. We sim-
ply have an additional column in our feature matrix:

X =



1 2086 1
1 1521 1
1 1519 5
1 1791 1
1 1762 0

...


. (2.14)

Solving θ = (XT X)−1XT y yields

θ =


3.954

7.243 × 10−5

0.108


intercept
slope for length
slope for number of comments

. (2.15)
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Interestingly, when we add this additional parameter θ2, the values of θ1 and
θ0 are different from those of the model we previously fit (compare Equa-
tions (2.11) and (2.15)). Critically, the slope associated with the length term
(θ1) is reduced in our new model. We discuss how to interpret these parame-
ters in Section 2.4.

2.1.1 Regression in sklearn

Various libraries support the basic machine learning techniques described in
this chapter, and indeed they can be implemented relatively straightforwardly
via standard linear algebra operations. Here we describe the implementation
in scikit-learn, though other implementations follow similar interfaces. Once
again note that detailed versions of all code examples are included in the online
supplement (sec. 1.4).

First we load our dataset; here we read our sample (in this case a toy dataset
of 100 reviews) in json format,3 which results in a list of 100 dictionaries:

1 data = []
2 for l in open('fantasy_100.json'): # 100 reviews of fantasy

novels from Goodreads
3 d = json.loads(l)
4 data.append(d)

Next we extract labels and features from the dataset. In this case we train
a predictor to estimate ratings as a function of review length, as in Equa-
tion (2.6):

5 ratings = [d['rating'] for d in data] # The output we want
to predict

6 lengths = [len(d['review_text']) for d in data] # The
feature used for prediction

To regress on this data we must first construct our matrix of features X and
our vector of labels y; note the inclusion of a constant feature in our feature
matrix:4

7 X = numpy.matrix([[1,l] for l in lengths])
8 y = numpy.matrix(ratings).T

From here regressing is simply a matter of passing our features and labels to
the appropriate model from sklearn. Having done so we extract the coefficients
θ:

3 Json is a structured data format, made up of key-value pairs (where values can in turn be lists
or other json objects). See https://www.json.org/.

4 Although in practice this can be excluded and θ0 can be fit by the library by setting
fit intercept=True; here we include it manually.

https://www.json.org/
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9 model = sklearn.linear_model.LinearRegression(fit_intercept=
False)

10 model.fit(X,y)
11 theta = model.coef_

Finally, we confirm manually that the pseudoinverse from Equation (2.10)
yields the same result:

12 numpy.linalg.inv(X.T*X)*X.T*y

In both cases we find that θ = (3.983, 1.193 × 10−4), as in Figure 2.4.

2.2 Evaluating Regression Models

When developing the linear models above, we were somewhat imprecise about
what is meant by a ‘line of best fit’ (or generally a model of best fit). Indeed,
the pseudoinverse is not a ‘solution’ to the system of equations given in Equa-
tion (2.8), but is merely an approximation (naturally, the line of best fit does
not pass through all points exactly).

Here, we would like to be more precise about what it means for a model to
be ‘good.’ This is a key issue when fitting and evaluating any machine learn-
ing model: one needs a way of quantifying how closely a model fits the given
data. Given a desired measure of success, we can compare alternative mod-
els against this measure, and design optimization schemes that optimize the
desired measure directly.

2.2.1 The Mean Squared Error

A commonly used evaluation criterion when evaluating regression algorithms
is called the Mean Squared Error, or MSE. The Mean Squared Error between
a model fθ(X) and a set of labels y is defined as

MSE(y, fθ(X)) =
1
|y|

|y|∑
i=1

( fθ(xi) − yi)2, (2.16)

in other words, the average squared difference between the model’s predictions
and the labels. Often reported is also the Root Mean Squared Error (RMSE),
i.e.,

√
MSE(y, fθ(X)); the RMSE is sometimes preferable as it is consistent in

scale with the original labels.
With some effort, it can be shown that the linear model fθ(X) that minimizes

the MSE compared to the labels y is given by using the pseudoinverse as in
Equation (2.10). We leave this as an exercise (Exercise 2.6).
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2.2.2 Why the Mean Squared Error?

Although the Mean Squared Error has a convenient relationship with the pseu-
doinverse, it may otherwise seem a somewhat arbitrary choice of error mea-
sure. For instance, it may seem more obvious at first to compute an error mea-
sure such as the Mean Absolute Error (or MAE):

MAE(y, fθ(X)) =
1
|y|

|y|∑
i=1

| fθ(xi) − yi| (2.17)

Or, why not count the number of times the model is wrong by more than one
star? For that matter, why not measure the mean cubed error?

To defend the Mean Squared Error as a reasonable choice, we need to char-
acterize what types of errors are more ‘likely’ than others. Essentially, the
Mean Squared Error assigns very small penalties to small errors, and very large
penalties to large errors. This is in contrast to, say, the Mean Absolute Error,
which assigns penalties precisely in proportion to how large the error is. What
the Mean Squared Error therefore seems to be assuming is that small errors are
common and large errors are particularly uncommon.

What we are talking about informally above is a notion of how errors are
distributed under some model. Formally, we say that the labels are equal to
our model’s predictions, plus some error:

y = fθ(X)︸︷︷︸
prediction

+ ε︸︷︷︸
error

, (2.18)

and that our error follows some probability distribution. Our argument above
said that small errors are common and large errors are very rare. This suggests
that errors may be distributed following a bell curve, which we could capture
with a Gaussian (or ‘Normal’) distribution:

ε ∼ N(0, σ2). (2.19)

The density function for a (zero mean) Gaussian distribution is given by

f ′(x′) =
1

σ
√

2π
e−

1
2

(
x′
σ

)2

(2.20)

(we use the notation f ′ and x′ to avoid confusion with f and x elsewhere). So,
the probability density for an error of size yi − fθ(x) is given by

1

σ
√

2π
e−

1
2

( y− fθ (x)
σ

)2

. (2.21)

This density function is depicted in Figure 2.5.
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2.2.3 Maximum Likelihood Estimation of Model Parameters

Having defined the density function above, we can now reason more formally
about about what it means for a particular model to be a ‘good’ fit to the data.
In other words, we would like to ask how likely a particular model is in terms
of a given error distribution.

Specifically, the density function in Equation (2.21) gives us a means of
assigning a probability (or likelihood) to a particular set of labels y, given
features X and a model θ, under some particular error distribution (in this case
a Gaussian):

Lθ(y|X) =

|y|∏
i=1

1

σ
√

2π
e−

1
2

( yi− fθ (xi )
σ

)2

. (2.22)

Essentially, we want to choose θ so as to maximize this likelihood. Intuitively
our goal is to choose a value of θ that is consistent with this error distribution,
i.e., a model that makes many small errors and few large ones.

Precisely, we would like to find arg maxθ Lθ(y|X). This procedure (finding a
model θ that maximizes the likelihood under some error distribution) is known
as Maximum Likelihood Estimation. We solve by taking logarithms and re-
moving irrelevant terms (π, σ):

arg max
θ
Lθ(y|X) = arg max

θ
`θ(y|X) (2.23)

= arg max
θ

log
|y|∏

i=1

1

σ
√

2π
e−

1
2

( yi− fθ (xi )
σ

)2

(2.24)

= arg max
θ

∑
i

log e−
1
2

( yi− fθ (xi )
σ

)2

(2.25)

= arg max
θ
−

∑
i

(yi − fθ(xi))2 (2.26)

= arg min
θ

∑
i

(yi − fθ(xi))2 (2.27)

= arg min
θ

1
|y|

∑
i

(yi − fθ(xi))2. (2.28)

Note crucially in the above equation that the maximum likelihood solution for
θ under our Gaussian error model is precisely the Mean Squared Error. This
demonstrates the relationship between the Mean Squared Error and Maximum
Likelihood Estimation (which we summarize in Figure 2.6).

The above arguments may seem like just a mathematical curiosity, and in-
deed in practice we will often minimize the Mean Squared Error without scru-
tinizing the decision to do so. But this relationship between error functions and
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Figure 2.6 The MSE and the MLE.

The argument we made in Section 2.2.2 explained our motivation behind the
choice of the Mean Squared Error (MSE): by choosing the MSE as our error met-
ric, we are implicitly assuming that our model’s errors follow a Gaussian distribu-
tion. This assumption is explained by the fact that minimizing the MSE maximizes
the likelihood of the observed errors under a Gaussian error model.

probabilities will come up regularly when we develop models for classification
(chap. 3), recommender systems (chap. 5), and sequence mining (chap. 7). To
summarize a few key points:

(i) When we optimize a certain error criterion, we are often making implicit
assumptions about how errors are distributed.

(ii) Sometimes, a model will poorly fit a dataset because these assumptions are
violated. Understanding the underlying assumptions gives us a chance to
diagnose problems and attempt to correct them (sec. 2.2.5).

(iii) In many of the models we fit later (including when we develop classifiers
in Chapter 3), we will use this style of probabilistic language, i.e., we will
talk about some observed data having high likelihood under some model.
Fitting such models will use this same strategy of selecting a model which
maximizes the corresponding likelihood.

2.2.4 The R2 Coefficient

Having motivated our choice of the Mean Squared Error at some length, it is
worth asking how low the MSE should be before we consider our model to be
‘good enough’?

This quantity turns out not to be well-defined: the Mean Squared Error will
depend on the scale and variability of our data, and the difficulty of our task.
For example, predicted ratings on a 5-point scale would likely have lower
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MSEs than predicted ratings on a 100-point scale; on the other hand, this
might not be the case if ratings on a 100-point scale were highly concentrated
(e.g. nearly all ratings were in the 92-95 range). Finally, the MSE in either set-
ting could be higher simply due to a lack of available features that allow us to
predict ratings accurately.

As such, we would like a calibrated measurement of model error. As we just
argued, the MSE is related to the variance of the data: this relationship is easy
to see as follows:

ȳ =
1
|y|

∑
i

yi (2.29)

var(y) =
1
|y|

∑
i

(yi − ȳ)2 (2.30)

MSE(y, fθ(X)) =
1
|y|

∑
i

(yi − f (xi))2 (2.31)

In other words, the Mean Squared Error would be equal to the variance if we
had a trivial predictor that always estimated f (xi) = ȳ.5 Thus the variance
might be used as a way of normalizing the Mean Squared Error:

FVU(y, fθ(X)) =
MSE( f , fθ(X))

var(y)
(2.32)

This quantity, known as the Fraction of Variance Unexplained essentially mea-
sures the extent to which the model explains variability in the data, as com-
pared to a predictor which always predicts the mean (i.e., one which explains
no variability at all).

This quantity will now take a value between 0 and 1: 0 being a perfect clas-
sifier (MSE of zero), and 1 being a trivial classifier.6

Often, one reports the R2 coefficient, which is simply 1 minus the FVU:

R2 = 1 −
MSE(y, fθ(X))

var(y)
, (2.33)

which now takes a value of 1 for a perfect predictor, and 0 for a trivial predictor.
The name ‘R2’ comes from a different way of deriving the same quantity, in
terms of the correlation between the predictions and the labels.7

5 Note that this is the best we could do if using a trivial predictor of the form f (xi) = θ0
(Exercise 2.3).

6 The FVU could be greater than 1, if our classifier were worse than a trivial one.
7 We omit this alternate derivation for now, but revisit the idea of correlation briefly in

Section 4.3.4.
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2.2.5 What to do if Errors Aren’t Normally Distributed?

Our arguments above characterized the relationship between the Mean Squared
Error and the normal (Gaussian) distribution. In summary, the MSE is a rea-
sonable choice so long as our model errors are expected to be centered around
zero, and not to have large outliers.

But what can we do if these assumptions do not hold? First, we consider how
to validate the assumptions in the first place. Recall that our basic assumption
asserts that the residuals

ri = yi − fθ(xi) (2.34)

follow a normal distribution. To begin with, a simple plot may reveal whether
the residuals follow the desired overall trend.

Figure 2.7 (left) shows a histogram of residuals ri for a simple prediction
task, in which we estimate review lengths as a function of user gender (covered
later in Section 2.3.2). Although the plot has a slight bell shape, it deviates from
the normal distribution in several key ways, for instance:

• The residuals do not appear to be centered around zero. In fact the average
residual is zero,8 though the largest bins in the histogram are somewhat
below zero.

• The are some large outliers (i.e., extremely long reviews whose length was
underpredicted).

• There are no small outliers, and there is almost no ‘left tail,’ i.e., the model
never significantly overpredicts.

Although the histogram in Figure 2.7 allows us to quickly assess whether
the residuals follow a normal distribution, this can be visualized more pre-
cisely by comparing the theoretical quantiles of a normal distribution to the
observed residuals, as in Figure 2.7, right.9 The plot essentially compares the
(sorted) residuals to those we would expect if we were to sample the same
number of values from a normal distribution: if our residuals followed a nor-
mal distribution, plotting these quantities against each other would result in a
straight line. Again, the plot basically reveals that there is an unusual outlier,
and that residuals are missing the left tail (i.e., overpredictions) that would be
expected. Note that this same type of diagnostic tool can be used to compare
our residuals against any hypothetical distribution in the same way.

8 In fact, the average residual of this type of linear regression model is always zero (see
Exercise 2.7).

9 This type of diagnostic plot can be generated easily with a library function, e.g. this one was
generated with scipy.stats.probplot.
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Figure 2.7 Histogram of observed residuals (left), and residuals compared to the-
oretical quantiles under a normal distribution.

While the above is merely a diagnostic for determining whether the resid-
uals followed a normal distribution, the more difficult question is how these
discrepancies can be corrected. Some general guidelines are as follows:

Remove outliers The normal distribution (and thus the MSE) is especially
sensitive to outliers due to how it penalizes large errors. To the extent that
extremely long reviews do not conform to the usual behavior of the data,
we could simply discard them before training.

Choose an error model less sensitive to outliers The Mean Absolute Error
(for example) assigns a smaller penalty to large mispredictions, so outliers
will have a smaller effect on the model.

Choose a skewed distribution In this example we are predicting a length,
which by definition is bounded below (at length zero) but not above. Thus
there will be a long-tail of underpredictions, but not large overpredictions.
We might account for this by modeling the data using a skewed probabil-
ity distribution (such as a Gamma distribution).

Fit a better model Note that the diagnostic in Figure 2.7 is a function of the
errors, rather than the original data. Thus, for example, if we had a fea-
ture that allowed us to correctly predict the length of the unusually long
review, the errors may become more consistent with a normal distribution.

Again, the Mean Squared Error is generally a safe and reasonable choice,
and can be used without too much scrutiny. Nevertheless it is useful to have
a sense of its underlying assumptions so that one can detect when they have
been violated.
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2.3 Feature Engineering

Along with the simple linear function relating features to labels as in Equa-
tion (2.3) come significant limitations in terms of what kinds of relationships
can be modeled with linear regression techniques. When modeling asymptotic,
periodic, or other non-linear relationships between features and labels, it is not
yet clear how this can be accomplished given the limitations of this type of
model.

As we shall see, complex relationships can be handled within the framework
of linear models, so long as we exercise care by appropriately transforming our
features (and labels). In practice, the success or failure of our models will often
depend on carefully processing our data to help the model uncover the most
salient relationships. This process of feature engineering proves critical even
when developing deep learning models based on images or text: in spite of the
vague promise of learning complex non-linear relationships automatically, ex-
tracting meaningful signals from data is often a matter of careful engineering,
rather than selecting a more complex model.

2.3.1 Simple Feature Transformations

The first model we fit in Equation (2.6) revealed a positive association between
review length and ratings. However, fitting the data with a line (fig. 2.4) does
not seem to fit the data very accurately. Fitting the data with a line seems limit-
ing, given that the trend may be better captured by a polynomial or asymptotic
function (since the rating cannot grow above five stars).

Naively, we might think that this is a fundamental limitation of linear mod-
els. Note however that the assumption of linearity in θ (eq. (2.3)) does not
prevent us from fitting (for example) a polynomial function. The polynomial
equation

rating = θ0 + θ1 × (review length) + θ2 × (review length)2 (2.35)

is linear in θ, even though we have transformed the input features in X.
This idea can be applied straightforwardly to fit polynomial functions, as

shown in Figure 2.8.10

10 Actually, these curves were generated using the feature length
1000 , as the matrix inverse (XT X)−1

becomes numerically unstable given large values of (length)3.
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polynomials of best fit.

2.3.2 Binary and Categorical Features: One-Hot Encodings

So far we have dealt with regression problems where we have both real-valued
inputs (features X), and real-valued outputs (labels y). What can we do in cases
where features are binary or categorical?

As an example, let’s consider whether the length of a user’s review can be
predicted by (or more simply, is related to) their gender. To do so, we’ll look at
a different dataset (of a few hundred beer reviews from McAuley et al. (2012))
that includes the gender of its users.

That is, we’d like a model of the form:

length = θ0 + θ1 × gender. (2.36)

Obviously, gender (represented in this dataset as a string) is not a numerical
quantity, so we need some appropriate encoding of the gender variable.

For the moment, let’s treat gender as a binary variable. We’ll relax this as-
sumption in a moment to allow for a non-binary gender variable (and allow for
the possibility that the gender is missing, as it can be in this dataset), but for
the moment let’s encode the gender variable as:

Male = 0; Female = 1. (2.37)

Alternately, this is just a binary indicator specifying whether this user is fe-
male. This encoding, although only one of a few we might have used, allows
us to fit a linear model and estimate the values of θ0 and θ1. The model we fit
(after removing users who did not specify a gender) is

length (in words) = 127.07 + 8.76 × (user is female). (2.38)

With a little thought, we can interpret the model parameters as indicating that,
on average, females write slightly longer reviews (by 8.76 words) compared to
males. Note that 127.07 is not the population average, but rather the average
for males (whose gender feature is zero).
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versus review length
(beer data). Visual-
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fit (left) and a bar
plot (right).
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Figure 2.10:
Categorical features
with a naive sequen-
tial encoding (left),
and a one-hot encod-
ing (right).

A scatter plot of the data (i.e., the encoded gender attribute and the review
lengths), as well as the line of best fit above is depicted in Figure 2.9. Note that
although we have fit the data with a line (fig. 2.9, left), the actual feature values
only occupy two points (0 and 1); thus the fit is perhaps better represented with
a bar plot (fig. 2.9, right).

Categorical features
In practice, the gender attribute may assume more than binary labels in some
datasets. To accommodate this, we might naively imagine extending our en-
coding from Equation (2.37) to include additional values:

Male = 0;
Female = 1;
Other = 2;
Not specified = 3;
etc.

(2.39)

Again we fit the same model as in Equation (2.36). Doing so we might obtain
a fitted model like the one in Figure 2.10 (left).

Note that the model fit in Figure 2.10 (left) implicitly makes some dubious
assumptions. For example, because the model is linear, it assumes that the
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difference between ‘male’ and ‘female’ lengths is the same as the difference
between ‘female’ and ‘other’ lengths.11

This assumption is not supported by the data, and in fact would be different
if we simply reordered our indices in Equation (2.39). Rather, we would like
to associate different predictions to members of each group, as in Figure 2.10
(right). This can be achieved via a different encoding:

Male = [0, 0, 0]
Female = [0, 0, 1]
Other = [0, 1, 0]
Not specified = [1, 0, 0]
etc.

(2.40)

We can quickly confirm that the model would make predictions as follows:

Male: y = θ0

Female: y = θ0 + θ1

Other y = θ0 + θ2

Not specified y = θ0 + θ3

etc.

(2.41)

That is, θ0 is the prediction for males, θ1 is the difference between females and
males, etc. Note that we now have four parameters to estimate four values, as
opposed to two parameters as in Equation (2.39). As such, the model has suf-
ficient flexibility to make different estimates for each group, as in Figure 2.10
(right).

This type of encoding, in which we have a separate feature dimension for
each category, is called a one-hot encoding.

Note that to represent four categories in Equation (2.40) we only used three-
dimensional features (or in general, for N categories, we could use an (N − 1)-
dimensional encoding). Possibly this seems slightly confusing compared to
using a four-dimensional feature vector (e.g. Male = [0, 0, 0, 1], etc.). Two
reasons for using an (N − 1) dimensional feature vector are as follows:

(i) Using a four-dimensional encoding is not necessary; together with θ0, the
representation in Equation (2.40) uses four parameters to predict four values,
so adding an additional dimension would add no more expressive power to
the model and would be redundant.

(ii) Doing so could possibly be harmful. While adding redundant features seems
harmless, in practice doing so means the system in Equation (2.7) would no
longer have a unique solution, as the matrix XT X would be uninvertable.

11 That is, males receive the prediction θ0; females receive θ0 + θ1; other receives θ0 + 2θ1, etc.
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Similarly, a multi-hot encoding can be used in cases where an instance can
belong to multiple categories simultaneously, for example for an ‘ethnicity’
feature, a user may associate with multiple ethnic groups (note that this is
equivalent to a concatenation of several binary features).

2.3.3 Missing Features

Often datasets will have features that are missing, for example the underlying
data used for the example in Section 2.3.2 consisted of a gender attribute that
many users may leave unspecified.

When dealing with binary or categorical features we dealt with these miss-
ing values quite straightforwardly—we simply treated ‘missing’ as an addi-
tional category.

But if a continuous feature, such as a user’s age or income, were missing, we
must think harder about how to handle it. Trivially, we might simply discard
instances with missing features, though this strategy will harm model perfor-
mance if it means discarding a substantial fraction of our data.

Alternately we might replace the missing entries by the average (or mode)
value for that feature; this strategy is known as feature imputation. This may be
more effective than discarding the feature, but may also introduce some bias,
as (for example) users who choose to leave a feature unspecified may be quite
different from the average or mode.

To avoid the above issues, we would like a strategy that uses features when
they are available, but makes separate predictions for those users when they are
not. This can be achieved via the following strategy: for any feature x which is
sometimes missing, replace it by two features x′ and x′′ as follows:

x′ =

{
1 if feature is missing
0 otherwise

, x′′ =

{
0 if feature is missing
x otherwise

.

(2.42)
Following this parameters can be fit within a model as usual:

y = θ0 + θ1x′ + θ2x′′. (2.43)

The above representation may seem somewhat arbitrary, but makes sense once
we expand the expression for missing and non-missing features. E.g. when a
feature is available predictions are made according to

y = θ0 + θ2x, (2.44)

whereas when a feature is missing predictions are made according to

y = θ0 + θ1. (2.45)
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Figure 2.11: Ratings as a function
of the weekday, and line of best fit.

This achieves the desired effect: when the feature is available we predict as
normal, and when the feature is unavailable we predict using a learned value
(θ1). Note that this strategy is very similar to feature imputation, but rather than
using a heuristic imputation strategy, the model will directly learn what is the
best prediction to impute.

2.3.4 Temporal Features

Temporal features may make excellent predictors in various settings. Out-
comes such as ratings, clicks, purchases (etc.) are often influenced by factors
such as the day of the week, the season, or long-term trends that span several
years.

Let’s explore an example in which we try to predict the rating of a book on
Goodreads based on the day of the week that it was entered. Average ratings
for each weekday12 are shown in Figure 2.11.

As before, we might try to describe this relationship using a line, i.e., to fit
a model of the form

rating = θ0 + θ1 × (day of week). (2.46)

For this equation to make sense, we need to map the day of the week to a
numeric quantity. A trivial encoding might assign numbers sequentially, e.g.

Sunday = 1; Monday = 2; Tuesday = 3; etc. (2.47)

Fitting Equation (2.46) using this representation yields the line of best fit de-
picted in Figure 2.11, which reveals a slight upward trend as the days of the
week progress.

The linear trend in Figure 2.11 seems a fairly poor fit to the data; we might
think about fitting a more complex function (like a polynomial) to better cap-
ture the observed data. But consider that our model is essentially periodic:
12 Again based on a small sample of reviews from the Fantasy genre.



2.3 Feature Engineering 39

S M T W T F S S M T W T F S
Day of week

3.0

3.2

3.4

3.6

3.8

4.0
R

at
in

g
Rating vs. day of week (2 weeks)

best fit

Figure 2.12: If we
consider that our
weekly measure-
ments are periodic,
we realize that fitting
periodic data with a
linear trend seems
unrealistic.

Sunday (represented by a 1) follows Saturday (represented by a 7), though we
could just as easily have represented Wednesday as 1 and Tuesday as 7. These
choices seem arbitrary, but impact our model in unexpected ways.

The above point is perhaps clearer if we visualize our model’s predictions
over a period of two weeks, as in Figure 2.12: an encoding of the form in
Equation (2.47) corresponds to an unrealistic ‘sawtooth’ pattern that repeats
every week.

It might be tempting to model such data using a periodic function, e.g.

rating = θ0 + θ1 × sin((day + θ2) ×
2π
7

). (2.48)

Note however that this type of model is not linear (due to θ2) and cannot be
fit using the methods we’ve seen so far; furthermore such a formulation is still
quite restrictive and contains possibly unrealistic assumptions.

More straightforwardly, we can again use a one-hot encoding, as we did for
gender in Equation (2.40) to encode the day of the week:

Sunday = [0, 0, 0, 0, 0, 0]
Monday = [0, 0, 0, 0, 0, 1]
Tuesday = [0, 0, 0, 0, 1, 0]
etc.

(2.49)

Such a model can straightforwardly capture periodic trends (essentially corre-
sponding to a ‘step function,’ much as we see in Figure 2.12). One could also
combine several such encodings (e.g. for the hour of day, the month, etc.) to
capture periodic patterns at different scales.

We’ll revisit the critical role of temporal dynamics (and explore more com-
plex temporal representations) in Chapter 7.
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Figure 2.13 Number of upvotes versus submission number on reddit. The left plot
shows the original data (with averaged upvote counts), the right plot shows the
logarithm of the number of upvotes. Lines of best fit for both plots are included.

2.3.5 Transformation of Output Variables

Finally, just as we saw how to transform features in Section 2.3.1, we can also
transform our output variables.

For example, let’s consider fitting a model to determine whether resubmitted
posts on reddit (Lakkaraju et al., 2013) receive lower numbers of upvotes, i.e.,

upvotes = θ0 + θ1 × (submission number) (2.50)

(where the ‘submission number’ is ‘1’ for an original submission, ‘2’ for the
first resubmission, etc.). This model, along with the observations on which it
is based, are shown in Figure 2.13 (left).

Although the line of best fit indicates a slight downward trend, it does not
appear to correspond closely to the overall shape of the data. Eye-balling the
data in Figure 2.13, we might hypothesize that the data follows an exponen-
tially decreasing trend, e.g. every time you resubmit a post, you can expect to
receive half as many upvotes.

Again, one might assume that this type of trend is something that cannot
be captured by a linear model. But in fact we can possibly address this by
transforming the output variable y. For example, consider fitting

log2(upvotes) = θ′0 + θ′1(submission number). (2.51)

Now, a unit change in the prediction corresponds to a post receiving twice
as many upvotes. While this is still a linear model, the model corresponds to
fitting

upvotes = 2θ
′
0+θ′1(submission number). (2.52)

The transformed data and line of best fit are shown in Figure 2.13 (right).



2.4 Interpreting the Parameters of Linear Models 41

Figure 2.14 Interpreting the parameters of linear models.

Given a linear model y = Xθ we should interpret a parameter θk as follows:

For every unit change in xik, our prediction of the output yi would increase
by θk, if all other feature values remain fixed

It is important to note that we are talking about the model’s prediction (rather than
an actual change in the label), which could change if different features were in-
cluded. And we must include the condition that other features remain constant,
without which we would fail to account for the potential correlations among dif-
ferent features.

Arguably, this second line better captures the overall trend, and does not
have the same issues with outliers. If we transform the fitted values from Equa-
tion (2.51) back to their original scale via Equation (2.52), the transformed val-
ues actually have a Mean Squared Error about 10% lower than the model from
Equation (2.50), indicating that the transformed data more closely follows a
linear trend compared to the untransformed data.

2.4 Interpreting the Parameters of Linear Models

When analyzing the linear models developed so far, we have already talked
about interpreting their parameters in terms of general trends, correlation, dif-
ferences between groups, etc.

While is tempting to casually interpret the meaning of various features, we
must be careful and precise when doing so.

First, we should be precise about the interpretation of our slope and inter-
cept terms. For example, when we modeled ratings as a function of review
length (eq. (2.12)), we stated that under our model, ratings increased fraction-
ally (1.193 × 10−4) for every character of a review.

This interpretation makes sense given a model containing only a single fea-
tures, but as soon as we incorporate multiple features we must be more careful.
Consider e.g. the model from Equation (2.15), in which we included both the
length and number of comments as predictors. We could no longer state that
under this model, the rating increases (by 7.243 × 10−5) for every character in
the review. Precisely, we must interpret the parameters as follows: Our predic-
tion of the rating increases by 7.243 × 10−5 for every character in the review,
assuming the other features remain unchanged. This definition is stated pre-
cisely in Figure 2.14.

Critically, features like review length and number of comments may be
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highly correlated (e.g. we may rarely see longer reviews without also seeing
more comments). For example, when incorporating features based on polyno-
mial functions (as in eq. (2.35)), or when dealing with one-hot encodings (as
in eq. (2.39)), a feature cannot change without the other features changing.

Second, we should be clear when interpreting parameters that we are talking
about predictions under a particular model rather than actual changes in the
label yi. These predictions can change as we include additional features; a
feature that had previously been predictive may become less so in the presence
of another (as we saw in Equation (2.15)). Likewise, we should be careful
not to conclude that (e.g.) length is not related to the output variable, simply
because another correlated feature has a stronger relationship.

Finally, we should be careful not to make statements about the causal effect
of features on the output variable. Our line of best fit does not state that long
reviews ‘cause’ positive opinions any more than it states that positive opinions
cause long reviews.

2.5 Fitting Models with Gradient Descent

So far, when solving regression problems, we looked for closed form solutions.
That is, we set up a system of equations (eq. (2.3)) in X, y, and θ, and attempted
to solve them for θ (albeit approximately via the pseudoinverse).

As we begin to fit more complex models (including in Chapter 3), a closed-
form solution may no longer be available.

Gradient descent is an approach to search for the minimum value of a func-
tion, by iteratively finding better solutions based on an initial starting point.
The process (depicted in Figure 2.15) operates as follows:

(i) Start with an initial guess for θ;
(ii) Compute the derivative ∂

∂θ
f (θ). Here f (θ) is the MSE (or whatever criterion

we are optimizing) under our model θ.
(iii) Update our estimate of θ B θ − α · f ′(θ);
(iv) Repeat Steps (ii) and (iii) until convergence.

During each iteration, the process now follows the path of steepest descent,
and will gradually arrive at a minimum of the function fθ.13

The above is a simple description of the procedure that omits many de-
tails. In practice, we will largely rely on high-level libraries to implement

13 Assuming the function is ‘well-behaved,’ e.g. the objective is bounded below, and the function
is differentiable everywhere; though these are rarely issues when dealing with simple models
and error functions like the MSE.
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demonstration.

gradient-based methods (sec. 3.4.4). Briefly, to implement such techniques
‘from scratch,’ some of the main issues include:

• Given the starting point in Figure 2.15, the algorithm would only achieve
a local rather than a global optimum. To address this we could investigate
ways to come up with a better initial ‘guess’ of θ, or investigate variants of
gradient descent that are less susceptible to local minima.

• The step size α (step (iii) above) must be chosen carefully. If α is too small,
the procedure will converge very slowly; if α is too large, the procedure
may ‘overshoot’ the minimum value and obtain a worse solution during the
next iteration. Again, other than carefully tuning this parameter, we could
investigate optimization methods not dependent on choosing this rate (see
e.g. quasi-Newton methods such as L-BFGS (Liu and Nocedal, 1989)).

• ‘Convergence’ as defined in Step (iv) is not well-defined. We might define
convergence in terms of the change in θ (or fθ(X)) during two successive it-
erations, or alternately we may terminate the algorithm once we stop making
progress on held-out (validation) data (see sec. 3.4.2).

2.5.1 Linear Regression via Gradient Descent

To solidify the ideas above, let’s consider the specific example of minimizing
the Mean Squared Error of a linear model, i.e.,

1
|y|

|y|∑
i=1

(xi · θ − yi)2. (2.53)

The derivative f ′(θ) can be computed as follows:

∂ f
∂θk

=
1
|y|

|y|∑
i=1

2xik(xi · θ − yi). (2.54)
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Note that the above is a partial derivative in θk, which must be computed for
each feature dimension k = {1 . . .K}.14

2.6 Non-linear Regression

So far, we have limited our discussion to models of the form y = Xθ, mostly
because these offered us a convenient (closed form) solution to finding lines of
best fit in terms of θ.

However, this type of model has several limitations that we might wish to
overcome, such as:

• We cannot incorporate simple constraints on our parameters, such as that
a certain parameter should be positive, or that one parameter is larger than
another (which might be based on domain knowledge of a certain problem).

• Although we can manually engineer non-linear transforms of our features
(as we did in Section 2.3.1), we cannot have the model learn these non-
linear relationships automatically.

• The model cannot learn complex interactions among features, for example
that length is correlated with ratings, but only if the user is female.15

The above goals can potentially be realized if we are allowed to transform
model parameters: for instance, we could ensure that a particular parameter
was always positive by fitting

θk = log(1 + eθ
′
k ) (2.55)

(this is known as a ‘softplus’ function; note that this function smoothly maps
θ′k ∈ R to θk ∈ (0,∞)); or if we wanted one feature to be larger than another
(e.g. θk > θ j) we could simply add the positive quantity above to another
feature:

θk = θ j + log(1 + eθ
′
k ). (2.56)

Roughly speaking, fitting these types of non-linear models (and especially
models that deal with complex combinations of parameters) is the basic goal
of deep learning. We will see various examples of non-linear models in later
chapters, including models based on deep learning (e.g. secs. 7.6 and 9.4). In

14 The derivative of Equation (2.54) is more obvious after expanding xi · θ =
∑K

k=1 xikθk .
15 To be precise, the linear model does consider relationships among features in the limited sense

that parameters for one feature will change in the presence of other correlated features
(Section 2.4); and, the model could capture relationships between (e.g.) gender and length if
we were to manually engineer a feature describing this relationship. Our point here is about
whether the model can learn these relationships automatically.
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Chapter 3 (sec. 3.4.4) we present the basic approach used to fit these types of
models using high-level optimization libraries.

2.6.1 Case Study: Image Popularity on Reddit

Lakkaraju et al. (2013) used regression algorithms to estimate the success of
content (e.g. number of upvotes) on reddit. Other than building an accurate
predictor, their main goal is to understand and disentangle which features are
most influential in determining content popularity.

Presumably, one of the biggest predictors of success is the quality of the
content itself. Predicting whether a submission is of high quality (e.g. whether
an image is funny or aesthetically attractive) is presumably incredibly chal-
lenging. To control for this high-variance factor of content quality, Lakkaraju
et al. (2013) study resubmissions, i.e., content (images) that has been submitted
multiple times. This way, if one submission is more successful than another (of
the same image), the difference in success cannot be attributed to the content
itself, and must arise due to other factors such as the title of the submission or
the community it was submitted to.

Having controlled for the effect of the content itself, the goal is then to dis-
tinguish between features that capture the specific dynamics of reddit itself,
versus those that arise due to the choice of title (i.e., how the content is ‘mar-
keted’). Various features are extracted that model reddit’s community dynam-
ics, such as the following:

• One of the largest predictors of successful content is simply whether it has
been submitted before (as we saw in Figure 2.13, which is based on the same
dataset); this is captured via an exponentially decaying function.

• However, the above effect might be mitigated if enough time has passed
between resubmissions (by when the original submission is forgotten, or the
community has enough new users); this is captured using a feature based on
the inverse of the time delta between submissions.

• Resubmissions might still be successful if they are resubmitted to largely
non-overlapping communities (subreddits).

• Submission success may correlate with the time of day. For example, sub-
missions may be most successful during the highest-traffic times of day,
or alternately they may be more successful if submitted when there is less
competition.

Whereas community effects are somewhat reddit-specific, measuring the ef-
fect of a particular choice of title can potentially be of broader interest. Un-
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derstanding the characteristics of successful titles can have implications when
marketing content (such as an advertising campaign) to a new market.

Several features can be extracted to capture the dynamics of a submission’s
title, including:

• Titles should differ from those previously used by submissions of the same
content.

• Titles should align with the expectations of the community the content is
submitted to. Interestingly, Lakkaraju et al. (2013) find that there is a ‘sweet
spot,’ in the sense that titles should roughly follow the linguistic style of
previous successful submissions in the same community, but should not be
too similar, to the point that they are not novel compared to previous sub-
missions (we’ll discuss text similarity measures more in Chapter 8).

• Successful titles might have other features, in terms of length, sentiment,
linguistic style, etc.

Ultimately, all of the above features are combined into a regression model
that estimates the score (number of upvotes minus number of downvotes) that
a particular submission will receive.

Due to the way that features are combined, the model is not linear in the
parameters, so optimization proceeds by gradient descent (as in sec. 2.5). The
method is evaluated in terms of the R2 coefficient (sec. 2.2.4), with experiments
revealing that community and textual features both play a key role in predic-
tion. Finally, it is shown that the method can be used ‘in the wild’ to predict
the success of actual reddit submissions.

Exercises

2.1 Using the GoodReads data (see e.g. Section 2.1), train a simple predictor
that estimates ratings from review length, i.e.,

star rating = θ0 + θ1 × (review length in characters).

Compute the values θ0 and θ1, and the Mean Squared Error of your pre-
dictor.

2.2 Re-train your predictor so as to include a second feature based on the
number of comments, i.e.,

star rating = θ0 + θ1 × (length) + θ2 × (number of comments).

Compute the coefficients and MSE of the new model. Briefly explain
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why the coefficient θ1 in this model is different from the one from Exer-
cise 2.1.

2.3 Show that θ0 = ȳ is the best possible solution for a trivial predictor
(i.e., y = θ0) in terms of the Mean Squared Error (hint: write down the
MSE of this trivial predictor and take its derivative).

2.4 Repeat Exercise 2.3, but this time show that the best trivial predictor
in terms of the Mean Absolute Error (eq. (2.17)) is given by taking the
median value of y.

2.5 In Equations (2.23) to (2.28) we motivated the choice of the MSE by
explaining its relationship to a Gaussian error model. Likewise, show
that minimizing the MAE is equivalent to maximizing the likelihood if
errors follow a Laplace distribution (the Laplace distribution has proba-
bility density function 1

2b exp
(
−
|x−µ|

b

)
).

2.6 In Equation (2.10) we saw how to compute a line of best fit via the
pseudoinverse, θ = (XT X)−1XT y; show that the parameters that minimize
the Mean Squared Error are found by taking the pseudoinverse, i.e., that
arg minθ

1
|y|

∑|y|
i=1(xi · θ − yi)2 = (XT X)−1XT y (that is, find the stationary

point where ∂MSE
∂θ

= 0).
2.7 When minimizing the Mean Squared Error with a linear model as in

Exercise 2.6, show that the residuals ri = (yi − xi · θ) have average r̄ = 0.

Project 1: Taxicab Tip Prediction (Part 1)

Throughout the chapter, we’ve seen various strategies for dealing with features
of different types. For our first project, we’ll look into building a prediction
pipeline to estimate tip amounts from taxicab trips. For this project you might
make use of publicly-available data such as the NYC Taxi and Limousine Com-
mission Trip Record Data.16

This project is mostly intended to introduce the end-to-end approach of ex-
ploring a new dataset, extracting meaningful information from it, and compar-
ing alternative models. We break this down into the following parts:

(i) First, conduct exploratory analysis of the data. Just as we have done through-
out the chapter, plot the relationship between the output (tip amount), and
various features that you think might be related to this outcome.

(ii) Based on the above analysis, consider what features might be useful for

16 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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prediction. Consider, for example, features associated with the time of the
trip, the start and end location, and the duration/distance of the trip.

(iii) How should the above features be represented or transformed? For example,
how can the timestamp be represented to capture variation at the level of
time of day, day of week, or even the time of year (sec. 2.3.4); how might you
represent the start and end locations? Are there any useful derived features
that are useful for prediction, e.g. speed = distance/duration?

(iv) Is it useful to transform the output variable (sec. 2.3.5)? For example, rather
than predicting the tip amount, it may make more sense to predict the tip
percentage.

We’ll revisit and extend this project in Chapter 3 (Project 2) once we have
further developed the learning pipeline, in order to more rigorously investigate
and compare our modeling decisions.



3
Classification and the Learning Pipeline

So far, we have considered supervised learning tasks in which the output vari-
able y is a real number, i.e., y ∈ R. Often, we will deal with problems with
binary or categorical output variables, for example we might be interested in
problems such as:

• Will a user click on a product or advertisement? (binary outcome)
• What category of object does an image contain? (multiclass)
• What product is a user most likely to purchase next? (multiclass)
• Which of two products would a user prefer? (binary)

In this chapter we’ll explore how to design classification algorithms for tasks
like those above, and in particular explore a classifier that extends the ideas
behind regression from Chapter 2 to classification problems.

Logistic Regression sets up classification using a probabilistic framework,
by transforming the predictions X · θ that we used when building regressors
into probabilities associated with observing a particular label y. By associating
a probability with a particular label, and thereby to all of the labels in a dataset,
we can again develop prediction frameworks that are differentiable and can be
optimized using gradient-based approaches, much as we saw in Section 2.5.

Ultimately logistic regression is just one of dozens of classification schemes;
we describe it here rather than alternatives (such as Support Vector Machines
(Cortes and Vapnik, 1995), or Random Forest Classifiers (Ho, 1995)) mainly
because logistic regression more closely matches the approaches we will de-
velop in later chapters. This same type of modeling approach will be used
throughout this book, when building Recommender Systems in Chapter 5, or
generating fashionable outfits in Chapter 9, among others. We’ll briefly discuss
the merits of alternative classification approaches in Section 3.2.

After exploring classification techniques in Section 3.1, we’ll explore eval-

49
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uation strategies for classification models in Section 3.3, much as we did for
regression models in Chapter 2.

Finally, we’ll explore the idea of the learning pipeline. Having developed
techniques for regression (chap. 2), classification, and evaluation strategies for
both, in Section 3.4 we will explore how to compare models, how to ensure
that our results are significant, and how to ensure that our models generalize
well to unseen data. This type of end-to-end strategy for model training will be
used whenever we train supervised learning models throughout the remainder
of the book.

3.1 Logistic Regression

When developing regular linear regressors in Chapter 2, we wanted a model fθ
whose estimates fθ(xi) were as close as possible to the (real-valued) labels yi.
When adapting a linear regression algorithm to classification, we might instead
seek models that associate positive values of xi · θ with positive labels (yi = 1),
and negative values of xi · θ with negative labels (yi = 0).

If we could do so, we could write down the accuracy associated with a
particular model:

1
|y|

|y|∑
i=1

δ(yi = 0)δ(xi · θ ≤ 0)︸                    ︷︷                    ︸
label is negative and prediction is negative

+

label is positive and prediction is positive︷                    ︸︸                    ︷
δ(yi = 1)δ(xi · θ > 0) (3.1)

(here δ is an indicator function that returns 1 if the argument is true, 0 other-
wise). The equation above, in spite of slightly confusing notation, is merely
counting the number of times we correctly predict a positive score for a posi-
tively labeled instance, and a negative (or zero) score for a negatively labeled
instance.

We now simply desire from our classifier θ that it maximizes the accuracy
measured by Equation (3.1). Unfortunately, directly optimizing Equation (3.1)
for θ is NP-hard (see e.g. Nguyen and Sanner (2013)). To get a sense for why
it is difficult, consider that the function in Equation (3.1) is essentially a step
function (fig. 3.1, left), i.e., it is flat (derivative zero) almost everywhere; it is
therefore not amenable to techniques like gradient ascent as we saw in Sec-
tion 2.5.

So, to optimize the accuracy approximately, we would like a function that is
similar to Equation (3.1), but is more straightforward to optimize.

Logistic Regression achieves this goal by converting the outputs of a linear
function xi · θ to probabilities via a smooth function. Our intuition is that large
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values of xi · θ should correspond to high probabilities, and small (i.e., large
negative) values of xi · θ should correspond to low probabilities.

This goal can be achieved via the sigmoid function:

σ(x) =
1

1 + e−x . (3.2)

This function, depicted in Figure 3.1, maps a real value to the interval (0, 1),
and passes through 0.5 when x = 0. Thus it can be interpreted as a probability:

pθ(yi = 1|xi) = σ(xi · θ) =
1

1 + e−xi·θ
(3.3)

Now, as a smooth surrogate for the expression in Equation (3.1), we can instead
optimize

Lθ(y|X) =
∏
yi=1

pθ(yi = 1|xi) ×
∏
yi=0

(1 − pθ(yi = 0|xi)) (3.4)

=
∏
yi=1

1
1 + e−xi·θ

×
∏
yi=0

e−xi·θ

1 + e−xi·θ
. (3.5)

The above expression is a likelihood function, much like we saw in Equa-
tion (2.22). Intuitively, for this expression to be maximized we want positive
instances (yi = 1) to be associated with high probabilities, and negative in-
stances (yi = 0) to be associated with low probabilities.

3.1.1 Fitting the Logistic Regressor

Our goal is to maximize the above function, i.e., to find arg maxθ Lθ(y|X). Short
of a closed form solution, our approach is to take the logarithm `θ(y|X) (since
arg maxθ Lθ(y|X) = arg maxθ log(Lθ(y|X))), to compute its gradient, and opti-
mize via gradient ascent (as in sec. 2.5). We compute the gradient below as
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follows:

`θ(y|X) =
∑
yi=1

log
(

1
1 + e−xi·θ

)
+

∑
y1=0

log
(

e−xi·θ

1 + e−XI ·θ

)
(3.6)

=
∑

i

− log(1 + e−xi·θ) +
∑
yi=0

−xi · θ (3.7)

∂`

∂θk
=

∑
i

xik
e−xi·θ

1 + e−xi·θ
−

∑
yi=0

xik (3.8)

=
∑

i

xik (1 − σ(xi · θ)) −
∑
yi=0

xik. (3.9)

Note carefully that the summation indices change between Equations (3.6)
and (3.7), since both terms in Equation (3.6) have the same denominator.

3.1.2 Summary

Our development of logistic regression above is representative of the overall
approach we’ll take later when developing models that estimate interactions,
clicks, purchases, etc.:

• Rather than estimating an outcome directly, we associate a probability with
each outcome. Associating a probability with the outcome allows us to re-
place discrete (e.g. yi ∈ {0, 1}) outcomes with a continuous function ( f (x) ∈
(0, 1)); this is accomplished via a transformation (such as the sigmoid func-
tion) which maps a real-valued output into the desired range.

• The model should associate positive (1) labels with high probabilities, and
negative labels (0) with low probabilities. Likewise we can associate a prob-
ability to the entire dataset by taking a product of probabilities (or a sum of
log-probabilities, as in Equation (3.6)).

• Ultimately the procedures above allow us to associate the quality of a model
(parameterized by θ) with a continuous function whose value we should try
to maximize; we optimize the model via gradient ascent.

3.2 Other Classification Techniques

In our introduction to classification, we have only discussed a single classi-
fication technique: Logistic Regression. Our choice to explore this particular
technique was largely a practical one: the idea of associating a probability with



3.2 Other Classification Techniques 53

a particular outcome (as in eq. (3.5)) and estimating that probability via a dif-
ferentiable function (to facilitate gradient ascent) will appear repeatedly as we
develop more and more complex models.

However the technique we’ve explored is only one class of approach to build
classifiers. The specific choice to map binary labels to continuous probabili-
ties via a smooth function has hidden assumptions and limitations, meaning
that logistic regression is not the ideal classifier for every situation. Below we
present a few alternatives, largely as further reading and to highlight specific
situations where logistic regression may not be the preferable choice.

Support Vector Machines While logistic regressors optimize a probability
associated with a set of observed labels, they do not explicitly minimize
the number of mistakes made by the classifier. Support Vector Machines
(SVMs) (Cortes and Vapnik, 1995) replace the sigmoid function in Fig-
ure 3.1 with an expression that assigns zero cost to correctly classified
examples,1 and a positive cost2 to incorrectly classified examples (in pro-
portion to the confidence of the prediction x · θ). This distinction is fairly
subtle: while every sample will influence the optimal value of θ for a lo-
gistic regressor, the solution found by an SVM is entirely determined by
a few samples closest to the classification boundary, or those that are mis-
labeled. Conceptually it is appealing for a classifier to focus on the most
‘difficult’ samples in this way, though note that in many cases (and no-
tably when building recommender systems) our goal is to optimize rank-
ing performance rather than classification accuracy (as we’ll discuss in
Section 3.3.3), such that giving special attention to the most ambiguous
examples is not necessarily desirable.

Decision Trees Decision trees classify instances based on a sequence of bi-
nary decisions, each of which deals with a specific feature. Each node of
the tree separates the data based on such a decision, with leaf nodes being
responsible for determining an outcome. Decision trees straightforwardly
facilitate learning non-linear classifiers that capture complex interactions
among features, e.g. we can straightforwardly learn that a low price is
associated with a positive review for young people, while a high price
is associated with a positive review for older people: such an association
is difficult for a linear classifier to learn if neither the ‘age’ nor ‘price’
feature is individually correlated with the outcome. Extensions such as
random forests (Ho, 1995) (an ensemble of decision trees) remain popu-
lar forms of classification.

1 More precisely, correctly classified by some margin.
2 Which is no longer interpretable as a probability.
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Multilayer Perceptrons So far, we have focused on linear classifiers, which
assume a simple relationship between between features and predictions.
Although we argued in Section 2.3 that such limitations can be overcome
by careful feature engineering, ideally we might like to learn such fea-
ture transformations automatically. Uncovering such complex relation-
ships among features, and automatically learning non-linear feature trans-
formations is one of the main goals of deep learning. We’ll revisit such
approaches as we develop more complex models throughout the book.

We exclude SVMs and decision trees from the remainder of this book mostly
because they have little in common methodologically with the approaches we
build in later chapters. We briefly introduce multilayer perceptrons in Sec-
tion 5.5.2 when describing their use within deep learning-based recommenda-
tion techniques. As we try to reiterate throughout the book, multilayer percep-
trons and various other state-of-the-art models are simply architectural choices
that offer alternate ways to optimize the same objectives that we approach
through simpler models. Having introduced the overall objectives, and the fun-
damentals of gradient based optimization approaches, adapting them to alter-
nate architectures is (relatively) straightforward.

3.3 Evaluating Classification Models

So far, when developing classifiers, we have focused on maximizing the align-
ment between the labels and the model’s outputs. E.g. in the case of logistic
regression, we want the predicted probability pθ(yi = 1|xi) to be as close as
possible to the label yi. Implicitly, when doing so, we are trying to maximize
the model’s accuracy:

accuracy(y, fθ(X)) =
1
|y|

|y|∑
i=1

δ( fθ(xi) = yi), (3.10)

where δ is an indicator function, and fθ(xi) is the binarized output of the model
(e.g. in the case of logistic regression, fθ(xi) = δ(xi · θ > 0)).3 Equivalently we
are minimizing the error, i.e.,

error(y, fθ(X)) = 1 − accuracy(y, fθ(X)). (3.11)

To motivate the difficulty of properly evaluating classifiers, consider the fol-
lowing classification task. We saw in Figure 2.9 that there was a slight rela-

3 Note that this is equivalent to the expression in Equation (3.1).
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tionship between gender and review length; now, let’s see if we can develop a
simple classifier that attempts to predict gender based on review length:

1 X = [[1, len(d['review/text'])] for d in data]
2 y = [d['user/gender'] == 'Female' for d in data]
3
4 mod = sklearn.linear_model.LogisticRegression()
5 mod.fit(X,y)
6 predictions = mod.predict(X) # Binary vector of predictions
7 correct = predictions == y # Binary vector indicating which

predictions were correct
8 accuracy = sum(correct) / len(correct)

Surprisingly, the classifier produced by this code is 98.5% accurate. This
result might seem implausible, but turns out to be a limitation of the error
measure itself. Counting the number of negative labels in the dataset reveals
that the data is 98.5% male (i.e., 98.5% negative labels). Not only does this
reveal that the accuracy is unlikely to be an informative metric in this case, but
it reveals that our goal of optimizing the accuracy caused us to learn a trivial
classifier—the model simply predicts zero everywhere.

The above example demonstrates the problem with naively computing (or
optimizing) model accuracy. Several situations where we might need more
nuanced evaluation measures include:

• Datasets whose labels are highly imbalanced, such as the example above.
• Situations where different types of errors have different associated costs.

E.g. failing to detect dangerous luggage in an airport is a more severe mis-
take than an erroneous positive identification.

• When we use classifiers for search or retrieval (as we will often do when
developing recommender systems), we often care about the ability of the
model to confidently identify a few positive instances (e.g. those surfaced
on a results page), and are not interested in its overall accuracy.

Below we will develop error measures designed to handle each of these
scenarios.

3.3.1 Balanced Metrics for Classification

The basic issue with the example presented above was that we allowed one of
the two labels to dominate the classifier’s objective. Although in some cases
we may justifiably want a classifier that focuses more on the dominant label,
in the example above we would likely prefer a solution that had reasonable
accuracy per class.

To achieve this we need evaluation metrics that consider the two classes
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(positive and negative, or female and male in our example) separately. To do
so, we consider each of the four possible outcomes in terms of our prediction
and label:

TP = True Positives = |{i | yi ∧ fθ(xi)}| (3.12)

FP = False Positives = |{i | ¬yi ∧ fθ(xi)}| (3.13)

TN = True Negatives = |{i | ¬yi ∧ ¬ fθ(xi)}| (3.14)

FN = False Negatives = |{i | yi ∧ ¬ fθ(xi)}|. (3.15)

From these, we can define errors (or accuracies) that consider each of the two
classes in isolation:4

TPR = True Positive Rate =
|true positives|
|labeled positive|

=
TP

TP + FN
(3.16)

FPR = False Positive Rate =
|false positives|
|labeled negative|

=
FP

FP + TN
(3.17)

TNR = True Negative Rate =
|true negatives|
|labeled negative|

=
TN

TN + FP
(3.18)

FNR = False Negative Rate =
|false negatives|
|labeled positive|

=
FN

FN + TP
. (3.19)

Note that it is trivial to optimize any one of these criteria in isolation (e.g. we
can achieve a True Positive Rate of 1.0 simply by always predicting positive).
As such, we would normally optimize a criterion which considers both positive
and negative labels together. One such measure is the Balanced Error Rate,
which simply takes the average of the False Positive and False Negative rates:

BER(y, fθ(X)) =
1
2

(FPR + FNR) = 1 −
1
2

(TPR + TNR). (3.20)

In our motivating example, this now attributes half of the error to the ‘Female’
(positive) class and half of the error to the ‘Male’ (negative) class.

Note that an appealing quality of the Balanced Error Rate is that (unlike the
accuracy) it can no longer be minimized via trivial solutions: always predicting
‘True,’ or always predicting ‘False,’ or predicting at random, will all result in
a BER of 0.5.

3.3.2 Optimizing the Balanced Error Rate

Having argued that the Balanced Error Rate may be preferable to the accuracy
if we wish to avoid trivial solutions, we next ask how to train a classifier to
avoid producing trivial solutions in the first place.
4 Various other terms exist for these expressions, e.g. the terms sensitivity, recall, hit rate, and

true positive rate are largely interchangeable.
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Intuitively, the degenerate solutions we saw in Section 3.3 (i.e., a classifier
which predicted zero everywhere) arose due to an imbalance in our training
data (i.e., a high ratio of positive or negative labels). Trivially, we might correct
this by re-sampling our training data: i.e., sampling either a fraction of our
negative instances, or sampling negative instances (with replacement) until we
have an equal number of positive and negative instances.

While the above is a common and reasonably effective strategy, the same
goal can be achieved more directly simply by weighting the positive and neg-
ative instances. Note that in our objective for logistic regression:∑

yi=1

log
(

1
1 + e−xi·θ

)
+

∑
y1=0

log
(

e−xi·θ

1 + e−XI ·θ

)
, (3.21)

the two summations (over yi = 1 and yi = 0) essentially reward the model for
correctly predicting positive instances and negative instances. The issue with
the above objective is that one of the two terms can dominate the expression in
the event that positive or negative instances are over-represented in our dataset.

To address this, we can normalize the two expressions by the number of
samples in the positive and negative classes:

|y|
2|{i | yi = 1}|

∑
yi=1

log
(

1
1 + e−xi·θ

)
+

|y|
2|{i | yi = 0}|

∑
y1=0

log
(

e−xi·θ

1 + e−XI ·θ

)
. (3.22)

By doing so the left- and right-hand expressions have equal importance, such
that all positively labeled instances have the same importance as all negative
instances; in other words the two expressions (after normalization) roughly
correspond to the True Positive Rate and True Negative Rate, as in Equa-
tion (3.20). Note that in addition to normalizing by the number of samples,
both sides are multiplied by |y|

2 ; this is not strictly necessary but is done by
convention such that the total ‘weight’ of all instances is still |y|.

The above can be accomplished with the class weight=’balanced’ op-
tion in sklearn as follows:

1 X = [[1, len(d['review/text'])] for d in data]
2 y = [d['user/gender'] == 'Female' for d in data]
3
4 mod = sklearn.linear_model.LogisticRegression(class_weight='

balanced')
5 mod.fit(X,y)

Note that the same idea can be applied to problems including more than two
categories, and that one can choose different weighting schemes, e.g. to assign
any desired relative importance to true positives versus true negatives (e.g. in
the baggage-handling scenario we mentioned above).
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3.3.3 Using and Evaluating Classifiers for Ranking

Often, the goal of training a classifier is not merely to generate exhaustive sets
of ‘true’ and ‘false’ instances. For example, if we wanted to identify relevant
webpages in response to a query, or to recommend items that a user is likely
to purchase, in practice it may not matter whether we can identify all rele-
vant webpages or products; rather, we might care more about whether we can
surface some relevant items among the first page of results returned to a user.

Note that the type of classifiers we’ve developed so far can straightforwardly
be used for ranking. That is, in addition to outputting a predicted label (δ(xi·θ >

0) in the case of logistic regression), they can also output confidence scores
(i.e., xi · θ, or pθ(yi = 1|xi)). Thus, in the context of finding relevant webpages
or products above, our goal might be to maximize the number of relevant items
returned among the few most confident predictions. Furthermore, we might be
interested in how the model’s accuracy changes as a function of confidence;
e.g. even if the model’s accuracy is low overall, is it accurate for the top 1%,
5%, or 10% of most confident predictions?

Precision and recall
Precision and Recall assess the quality of a set of retrieved results in terms of
two related objectives. Informally, precision measures the rate at which those
items ‘retrieved’ by the model (i.e., those predicted to have a positive label by
the classifier) are in fact labeled positively; recall measures what fraction of
all positively-labeled items our classifier predicted as having a positive label.
For example, in a spam filtering setting (where positively-labeled items are
spam e-mails), precision would measure how often e-mails marked as spam
are in fact spam, whereas recall would measure what fraction of all spam was
filtered.

Formally precision and recall are defined as follows:

Precision =
|{relevant items} ∩ {retrieved items}|

|{retrieved items}|
(3.23)

Recall =
|{relevant items} ∩ {retrieved items}|

|{relevant items}|
(3.24)

Alternately it is easy to verify that these expressions can be rewritten in
terms of the number of true-positives, false-positives, and false-negatives, as
in Equations (3.12) to (3.15):

Precision =
TP

TP + FP
(3.25)

Recall =
TP

TP + FN
(3.26)
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Finally we briefly show how these quantities can be computed for a given
predictor (such as the one from the beginning of this section):

1 predictions = mod.predict(X) # binary vector of predictions
2
3 numerator = sum([(a and b) for (a,b) in zip(predictions ,y)])
4 nRetrieved = sum(predictions)
5 nRelevant = sum(y)
6
7 precision = numerator / nRetrieved
8 recall = numerator / nRelevant

Fβ score
Note that neither precision nor recall are particularly meaningful if reported
in isolation. For instance, it is trivial to achieve a recall of 1.0 simply by us-
ing a classifier that returns ‘true’ for every item (in which case, all relevant
documents are returned); such a classifier would of course have low precision.
Likewise, a precision close to 1.0 can often be achieved by returning ‘true’
only for a few items about which we are extremely confident; such a classifier
would have low recall.

As such, to evaluate a classifier in terms of precision and recall, we likely
want a metric that considers both, or otherwise to place additional constraints
on our classifier (as we see below).

The Fβ score achieves this by taking a weighted average of the two quanti-
ties:

Fβ = (1 + β2) ·
precision · recall

β2precision + recall
. (3.27)

In the case of β = 1 (which is normally called simply the ‘F-score’), Equa-
tion (3.27) simply computes the harmonic mean of precision and recall, which
is low if either of precision or recall are low.

Otherwise, if β , 1, the Fβ score reflects a situation where one cares about
recall over precision by a factor of β.5

There are several situations where one might care about recall more than
precision, or vice versa. For instance, considering the motivating examples
from the start of this section, in a baggage-handling scenario we would likely
care primarily about recall, and would be willing to sacrifice precision to
achieve it; or, in a search or recommendation setting, we may be happy to
retrieve only a few items, so long as some are relevant (i.e., high precision but
low recall).

5 Without going into detail, this motivation leads to the specific formulation in Equation (3.27)
(Van Rijsbergen, 1979).
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Precision and Recall @ K
One of our motivating examples when defining precision and recall considered
cases where we may only have a fixed budget of results that can be returned
to a user. In particular, we might be interested in evaluating the precision and
recall when our classifier returns only its K most confident predictions. To do
so, we begin by sorting the labels yi according to their associated confidence
scores (i.e., xi · θ):

confidence xi · θ: · · · 0.49 0.42 0.38 0.16 0.02 -0.02 -0.05 -0.05 -0.08 -0.10 · · ·
label yi: · · · True True True True False True False False True True · · ·

(3.28)
Such tuples of confidence scores and labels can be generated as follows (in this
case for a logistic regressor as in Section 3.3):6

1 confidences = mod.decision_function(X) # real vector of
confidences

2
3 sortedByConfidence = list(zip(confidences ,y))
4 sortedByConfidence.sort(reverse=True) # sorted as in

Equation 3.28

Note that when evaluating our model’s K most confident predictions, we
are no longer interested in whether the actual scores are greater or less than
zero (i.e., whether the classifier would output ‘true’ or ‘false’): we are only
interested in the labels among the top-K predictions.

The Precision @ K and Recall @ K now simply measure the precision and
recall for a classifier which returns only the K most confident predictions. That
is, precision@K measures what fraction of the top-K predictions are actually
labeled ‘true’; recall@K measures the fraction of all relevant documents that
are returned among the top K. The main difference to note (compared to the
definitions in Equations (3.23) and (3.24)) is that the number of ‘retrieved’
documents is always K; that is, the ‘retrieved’ documents are always the K
most confident, whether or not the classifier actually predicts a positive label
(i.e., xi · θ > 0).

Unlike precision and recall, precision@K and recall@K can be reported in
isolation as they cannot be optimized by trivial solutions. Precision@10, for
example, is an effective measure of a classifier’s ability to return reasonable
results among a page of 10 retrieved items.

ROC and precision/recall curves
Another holistic measure of a classifier’s performance is to report the relation-
ship between precision and recall, or between true and false positives.
6 Strictly, we might adjust this sort to avoid sorting based on the labels if there are many ties in

confidence scores.
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Figure 3.2 Examples of Receiver-Operating Characteristic (left) and Precision
Recall (right) curves.

For example, the relationship between the number of True Positives and
False Positives is known as the Receiver Operating Characteristic (ROC). It is
so named because of its use in evaluating the performance of radar receiver op-
erators: as an operator’s threshold for detection decreases, both their true posi-
tive and false positive rates (TPR and FPR) will simultaneously increase; thus
we might evaluate a classifier by evaluating the TPR and FPR as we change
the classifier’s detection threshold.

The precision recall curve is developed following a similar line of reason-
ing: as we lower a classifier’s detection threshold, the precision will decrease
while the recall increases; thus we might evaluate a classifier by examining the
relationship between precision and recall as the threshold changes.

To generate these curves, we sort the predictions of our classifier by con-
fidence (much as we did in Equation (3.28)), which corresponds to gradually
considering lower thresholds; at each step, we compute the precision and recall
(i.e., we compute the precision and recall@K for each value of K). Together
these values form the precision recall curve:

1 for k in range(1,len(sortedByConfidence)+1):
2 retrievedLabels = [x[1] for x in sortedByConfidence[:k]]
3 precisionK = sum(retrievedLabels) / len(retrievedLabels)
4 recallK = sum(retrievedLabels) / sum(y)
5 xPlot.append(recallK)
6 yPlot.append(precisionK)

Plotting these x and y coordinates results in the plot in Figure 3.2 (right); the
ROC curve can be generated similarly.

We revisit evaluation techniques based on ranking in Section 5.4, when we
explore evaluation strategies for recommender systems.
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3.4 The Learning Pipeline

By now we have covered many of the individual components that go into build-
ing a predictive model: model fitting (for regression models in Section 2.1 and
classification models in Section 3.1), feature engineering (sec. 2.3), and eval-
uation (secs. 2.2 and 3.3). Bringing these components together still requires
filling in some additional details. How can we know whether our model will
work well when deployed (i.e., on new data), and what steps can be taken to
ensure this? How can we decide between various alternatives in terms of fea-
ture design, and meaningfully compare those alternatives against each other?
Collectively these steps are part of the pipeline of machine learning.

3.4.1 Generalization, Overfitting and Underfitting

So far, when discussing model evaluation in Section 3.3 (and earlier in Sec-
tion 2.2), we’ve considered training a model to predict labels y from a dataset
X; we’ve then evaluated the model by comparing the predictions f (xi) to the
labels yi. Critically, we’re using the same data to train the model as we’re using
to evaluate it.

The risk in doing so is that our model may not generalize well to new data.
For example, when fitting a model relating review length to ratings (as in
figs. 2.4 and 2.8), we considered fitting the data with linear, quadratic, and
cubic functions. Increasing the degree of the polynomial would continue to
lower the errors of the predictor; alternately, we could have modeled review
length using a one-hot encoding (so that there was a different predicted value
for every length). Such models could fit the data very closely (in terms of their
MSE), but it is unclear whether they would capture meaningful trends in the
data or simply ‘memorize’ it.

To consider an extreme case, imagine fitting a vector y using only random
features. The code below fits a vector of 50 observations using 1, 10, 25, and
50 random features, and then prints the R2 coefficient of each model:

1 y = numpy.random.rand(50)
2 mod = linear_model.LinearRegression()
3 for n in [1,10,25,50]:
4 X = numpy.random.rand(50,n)
5 mod.fit(X,y)
6 print(mod.score(X,y))

Here, the R2 coefficients take values of 0.07, 0.25, 0.35, and 1.0—once we
include 50 random features, we can fit the data perfectly. Of course, given
that our features were random, this ‘fit’ is not meaningful, and the model has
merely discovered random correlations between the observed data and labels.
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The arguments above point to two issues that need to be addressed when
training a model:

(i) We should not evaluate a model on the same data that was used to train it.
Rather we should use a held-out dataset (i.e., a test set).

(ii) Features that improve performance on the training data will not necessarily
improve performance on the held-out data.

Evaluating a model on held-out data gives us a sense of how well we can
expect that model to work ‘in the wild.’ This held-out data, known as a test set,
measures how well our model can be expected to generalize to new data.

Overfitting
Fundamentally, if our model works well on training data but not on held-out
data, it must mean that certain characteristics of the training data are not repre-
sentative of the held-out data. This could occur for various reasons. One pos-
sibility is that our held-out data is drawn from a different distribution than the
training data. For instance, if we had withheld sales data from the most recent
month, and trained on data from the previous eleven, the most recent month
of observations may follow a different trend, or occur during a different sea-
son, etc. In principle, one might address the above simply by ensuring that the
training and test sets are (non-overlapping) random samples of the data, such
that both the training and test data will be drawn from the same distribution.7

Even if the training and held out data are independently drawn samples from
the same distribution, we may still observe significantly degraded performance
on our held-out data. In such cases we are said to be overfitting.

A trivial demonstration of overfitting is shown in Figure 3.3. Here we show
a dataset that follows a line, subject to some random perturbation. While a
high-degree polynomial can fit the data very closely, we would not expect this
complex function to generalize well to new data. We are said to have overfit
when we fit a model that is highly accurate on the training data, but that does
not generalize well.

Note that we expect any model to perform somewhat worse when applied to
new data compared to its training performance: in fact this is one of our ‘the-
orems’ about model performance that we present in Section 3.4.2. Rather our
goal when tuning a model (or selecting among model alternatives) is to min-
imize this gap, typically by sacrificing training accuracy in order to improve
generalization performance.

7 Though if our goal is to forecast next month’s sales, using the most recent data as our held out
sample may be the most appropriate decision.
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stration. A high-degree polyno-
mial fits the observed data accu-
rately, but is unlikely to general-
ize well.

Underfitting
Just as we overfit by fitting a model whose good performance on a training
set does not generalize to a held-out set, we underfit when our model is in-
sufficiently complex to capture the underlying dynamics in a dataset. Again,
this can occur for a variety of reasons. If we select too simple a model, e.g. a
linear function to capture the data in Figure 2.8 (which doesn’t seem to follow
a linear trend), no choice of parameters will lead to good training or held-out
performance.

3.4.2 Model Complexity and Regularization

So far we have talked vaguely about what it means for a model to be ‘too
complex’ (or too simple) and suggested that we should choose a model that
is complex enough to fit the data, but simple enough not to overfit. This idea
is often referred to as Occam’s Razor, a philosophical principle which states
that among several alternate hypotheses that explain some phenomenon, one
should favor the simplest.

However for these notions to be useful we must be precise about what it
means for a model to be ‘complex.’ We would like to define complexity in
terms of the parameters θ, such that given a fixed set of features and labels, we
could select the ‘simplest’ θ that adequately explains (or models) the data.

We’ll discuss two candidate notions of ‘simplicity’ as follows:

(i) A simple model is one that includes only a few terms, i.e., in which only a
few values θk are non-zero.

(ii) A simple model is one in which all terms are about equally important,
i.e., one in which particularly large values of θk are rare.
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These two potential notions of ‘complexity’ are captured by the following ex-
pressions:

Ω1(θ) = ‖θ‖1 =
∑

k

|θk |, (3.29)

Ω2(θ) = ‖θ‖22 =
∑

k

θ2
k (3.30)

i.e., the sum of absolute values and the sum of squares, also called the `1 and
(squared) `2 norms of θ. We state without proof that these expressions penalize
models that have many non-zero parameters (eq. (3.29)) or large parameters
(eq. (3.30)), though we further characterize their behavior later.

Regularization
In order to fit a model which simultaneously explains the data but is not overly
complex (corresponding to our goal above), we write down a new objective
that combines our original accuracy objective with one of the complexity ex-
pressions above (in this case the squared `2 norm). For a regression model we
add the regularizer to the expression from Equation (2.16):

1
|y|

|y|∑
i=1

(xi · θ − yi)2

︸                 ︷︷                 ︸
accuracy

+λ
∑

k

θ2
k︸︷︷︸

model complexity ‖θ‖22

. (3.31)

For a classification model, we subtract the regularizer, since we seek to max-
imize accuracy rather than minimizing error (so we maximize −λ‖θ‖22 rather
than minimizing λ‖θ‖22):∑

i

− log(1 + e−xi·θ) +
∑
yi=0

−xi · θ − λ‖θ‖
2
2. (3.32)

This procedure—where we add a penalty term to control model complexity—
is known as regularization; the parameter λ, which controls the extent to which
complexity is penalized, is termed a regularization parameter.

Note that we can straightforwardly adapt the derivatives (from eqs. (2.54)
and (3.9)) to include the regularization term, λ‖θ‖22 by noting that ∂

∂θk
λ‖θ‖22 =

2λθk.

Hyperparameters
Our regularization parameter λ in Equation (3.31) is said to be a model hyper-
parameter. Hyperparameters are model parameters whose values control the
model and influence other parameters (in this case λ controls the fitted values
of θ). More complex models may have several tunable hyperparameters that
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control various model components. Note that generally we cannot fit hyper-
parameters in the same way that we fit model parameters (e.g. if we used our
training set to choose λ in Equation (3.31), we would always choose a model
that simply ignored model complexity in favor of accuracy). As such we need
a separate strategy to tune model hyperparameters, which we explore when we
introduce validation sets below.

Note that generally speaking the term θ0, i.e., the offset term, should not be
included in the regularizer, i.e., our regularizer should be

∑K
k=1 θ

2
k or

∑K
k=1 |θk |.

That is, our underlying assumption that few parameters are non-zero, or that
parameters are small, should not apply to the offset term. If we were to include
the offset term when regularizing, we would generally select a model which
made systematically smaller (in magnitude) predictions.

Fitting the regularized model (regression)
When introducing linear models in Section 2.1 we noted that the system in
Equation (2.7) has a simple closed-form solution based on the pseudoinverse
(eq. (2.10)). Briefly we note that this solution can be fairly straightforwardly
modified to fit the regularized model as follows:

θ = (XT X + λI)−1XT y (3.33)

(where I is the identity matrix). Generally, as we develop more complex mod-
els, we’ll move away from closed-form solutions, though this specific solution
proves useful when fitting certain types of recommender systems in Chapter 5
(sec. 5.7).

Validation sets
We now require a protocol for choosing the best value of the trade-off param-
eter λ in Equation (3.31). If we were to select λ based on the accuracy on the
training set, we would always select λ = 0; ideally, we want to choose the value
of λ that will result in the best performance on the held-out test set. However
we should be careful not to use the test set to compare alternative models: the
test set is supposed to represent true held-out performance, and strictly speak-
ing test performance should only be examined after we have selected our best
model.

As such, we need a third data partition which can be used to select among
alternative models. This validation set in some sense mimics the test set, in
that it is not used to fit the model, but is used to give us an estimate of what we
expect the test performance to be under a certain model.

A typical pipeline will consist of three partitions of our data, whose roles
are summarized as follows:
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Dataset {X; y}

Training Set

Estimate θ

Validation Set

Choose λ

Test Set

Evaluation only

Figure 3.4 Basic roles of training, validation, and test sets.

• The training set is used to optimize the parameters of a specific model. In
the type of models we fit in this book, this usually refers to the parameters
that can be fit via gradient ascent/descent (i.e., θ in this chapter).

• The validation set is used to select among model alternatives. ‘Alternatives’
may simply mean different values of λ in Equations (3.31) and (3.32), but
could also mean different feature representation strategies, etc. We discuss
a few alternative uses below. Typically we select the model with the highest
accuracy/lowest error on the validation set.

• The test set is used to evaluate held-out model performance; ideally it should
not be used to make any modeling decisions, but should only be used to re-
port performance.

The core use of our validation set is to estimate model hyperparameters
such as λ above. Beyond regularization coefficients, ‘hyperparameters’ more
broadly refer to any tunable model components that do not get optimized dur-
ing the training phase. For example, when building models from text in Chap-
ter 8, the number of words in our dictionary (from which we build features)
would be an example of a hyperparameter, and could be chosen using our val-
idation set to select the model that will generalize the best.

The relationship between training, validation, and test sets is shown in Fig-
ure 3.4, and some overall guidelines for building a validation set are shown in
Figure 3.5.

Why does the `1 norm induce sparsity?
We stated briefly when introducing Equations (3.29) and (3.30) that an `1 regu-
larizer will encourage a sparse parameter vector θ, while an `2 regularizer will
result in a more balanced parameter distribution. Without formally proving this
result, it is instructive to consider some simple geometric intuition as to why
this should be the case. Figure 3.6 demonstrates (for a simple two-parameter
model) why the `1 norm induces sparsity (i.e., few non-zero parameters) while
the `2 norm results in a more uniform parameter distribution. Models with
equivalent `1 norm lie along diamond-shaped contours (fig. 3.6, left) whereas
models with equivalent `2 norm lie on a circle (fig. 3.6, right). Models with an
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Figure 3.5 Guidelines for building training, validation, and tests sets.

• Training, validation, and test sets should (generally speaking) be non-
overlapping, random samples of a dataset. Some exceptions apply, for example
when fitting temporal models in Chapter 7, we might build a test set out of the
most recent observations in order to get a sense of how well a model would
work now rather than how well it would work on average.

• The size of our training set may be driven by modeling as well as practical
concerns. Our training set should be large enough that we can reasonably expect
to fit our model on the data (as a guideline, we might hope to have an order
of magnitude more training examples than model parameters); likewise if we
have a simple model with just a few parameters we need not train on millions
of observations.

• Likewise the size of our validation and test sets should be large enough that we
can be reasonably confident of our results. We briefly touch upon measuring
significance in Section 3.5.1.
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Figure 3.6 Demonstration of the regularization effect of the `1 (left) versus `2

norms. Dashed lines indicate models with equivalent norms (`1 or `2); solid lines
indicate models with equivalent Mean Squared Errors. The selected model in ei-
ther condition is circled.

equivalent MSE lie along an ellipse. When balancing the error and the regular-
izer as in Equation (3.31), the best model will correspond to the point where
the boundaries intersect. In the case of the `1 norm these curves intersect on
on one of the vertices of the diamond; for the `2 norm they do not; the former
case corresponds to a model with only a few non-zero parameters. For a more
rigorous explanation of this phenomenon see e.g. Friedman et al. (2001).
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Figure 3.7 Example train, validation, and test curves, demonstrating the relation-
ships between each type of error.

‘Theorems’ regarding training, testing, and validation sets
To solidify the roles of training, validation, and test sets, below we outline
some theorems guiding the relationships among these sets, as the regulariza-
tion hyperparameter λ changes.

Note that these are ‘theorems’ in the sense that they will be true in general,
but only in the limit given large enough datasets, and assuming our training,
validation, and test sets are drawn from the same distribution (etc.). As such,
these theorems should mostly be regarded as guidelines to ‘sanity check’ the
correctness of your model pipeline:

• The training error increases as λ increases; typically it will asymptote to
some value, e.g. a linear model might asymptote to the error of a trivial
predictor (i.e., the variance of the label).

• The validation and test errors will be at least as high as the training error;
intuitively, the algorithm will not work better on ‘unseen’ data than it did on
training data.

• When λ is too small, a too-complex model achieves low training error, but
high validation/test errors. In this case, the model is said to be overfitting.

• When λ is too large, a too-simple model has high training, validation, and
test error. In this case, the model is said to be underfitting.

• Generally, there should be a ‘sweet spot’ between under- and over-fitting,
which is determined using our validation set. This point (marked in Fig-
ure 3.7 with an ‘x’) corresponds to the model we expect to yield the best
generalization performance on the test set.
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3.4.3 Guidelines for Model Pipelines

Having introduced the conceptual details of a model pipeline, it is worth fin-
ishing with some practical advice on how to combine the various pieces and
how to set the various tunable components of a model pipeline:

• If you do not see a ‘sweet spot’ between under- and over-fitting (as in the
theorems above), it could mean that you have not adequately explored the
range of regularization coefficients. For example, if you observe monoton-
ically increasing validation errors, it may mean you have not considered
sufficiently small values of λ. Alternately, given (e.g.) a simple linear model
with only a few parameters, it may simply mean that your model is not ca-
pable of fitting (or overfitting to) a particular dataset.

• Regularization parameters such as λ do not have an absolute scale, and will
vary depending on factors ranging from the model’s tendency to overfit,
to the specific scale of the features X and labels y. As a rough guideline,
it is useful to consider setting λ by considering several different orders of
magnitude (as we do in Section 3.5), before honing in on a narrower range
of values.

• When implementing iterative models (such as approaches based on gradient
descent, as in Section 2.5), the validation set can be used as a condition to
cease further iteration. That is, we need not train models until convergence:
if we are making no further improvements on the validation set (say, for a
predetermined number of iterations), there is little reason to continue opti-
mizing our model on the training set. Ideally, the model parameters θ might
be chosen from whichever iteration yields the best validation performance.

3.4.4 Regression and Classification in Tensorflow

Below we describe an implementation of (regularized) linear regression in Ten-
sorflow,8 forming the basis of the the overall pipeline we’ll use to develop
more complex models in later chapters. Although widely associated with deep
learning, Tensorflow can more simply be thought of as a general-purpose li-
brary for gradient-based optimization. Tensorflow computes derivatives sym-
bolically, meaning that the programmer must only specify the objective to be
optimized (e.g. eq. (3.31)), without having to compute gradients. This makes
it easy to quickly experiment with model variants, even for models including
complex transformations of model parameters.

We first setup our observed variables (X and y) as Tensorflow data constants:

8 https://www.tensorflow.org/

https://www.tensorflow.org/
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1 X = tf.constant(X, dtype=tf.float32)
2 y = tf.constant(y, dtype=tf.float32)

Next we setup our model. Mostly this simply consists of defining the basic
model components in terms of Tensorflow primitives:

3 class regressionModel(tf.keras.Model):
4 # Initialize with number of parameters and

regularization strength
5 def __init__(self, M, lamb):
6 super(regressionModel , self).__init__()
7 self.theta = tf.Variable(tf.constant([0.0]*M, shape

=[M,1], dtype=tf.float32))
8 self.lamb = lamb
9

10 # Prediction (for a matrix of instances) (eq. 2.7)
11 def predict(self, X):
12 return tf.matmul(X, self.theta)
13
14 # Mean Squared Error (eq. 2.16)
15 def MSE(self, X, y):
16 return tf.reduce_mean((tf.matmul(X, self.theta) - y)

**2)
17
18 # Regularizer (eq. 3.30)
19 def reg(self):
20 return self.lamb * tf.reduce_sum(self.theta**2)
21
22 # Loss (eq. 3.31)
23 def call(self, X, y):
24 return self.MSE(X, y) + self.reg()

Next we define an optimizer to use (in this case the Adam optimizer from
Kingma and Ba (2014)), and create an instance of our model. Here we create
a model with regularization strength λ = 1:

25 optimizer = tf.keras.optimizers.Adam(0.01)
26 model = regressionModel(len(X[0]), 1)

Finally we run 1,000 iterations of gradient descent. Gradients are computed
automatically for the objective defined in call() with respect to the model’s
variables (θ):

27 for iteration in range(1000):
28 with tf.GradientTape() as tape:
29 loss = model(X,y)
30 gradients = tape.gradient(loss, model.

trainable_variables)
31 optimizer.apply_gradients(zip(gradients , model.

trainable_variables))

Again, although the above code implements a simple model (which we
could already compute in closed form), the value of Tensorflow is that we can
easily adapt our model to handle different objectives, including complex, non-
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linear transformations. For instance, we can easily replace our `2 regularizer
above with an `1 regularizer:

32 def reg1(self):
33 return self.lamb * tf.reduce_sum(tf.abs(self.theta))

Finally we note that Tensorflow is but one of many popular libraries (see
e.g. Theano, PyTorch, MXNet, etc.), though all implement the same basic
functionality, in terms of performing gradient-based optimization on top of
user-defined objectives.

Classification
Classification objectives can be built similarly. Given a vector of binary labels
yi ∈ {0, 1}, our prediction function is replaced by σ(X · θ), and our objective is
replaced by that of Equation (3.7) (along with a negative sign, so that we can
still minimize the objective):

1 # Probability (for a matrix of instances)
2 def predict(self, X):
3 return tf.math.sigmoid(tf.matmul(X, self.theta))
4
5 # Objective as in Equation 3.6
6 def obj(self, X, y):
7 pred = self.predict(X)
8 pos = y*tf.math.log(pred)
9 neg = (1.0 - y)*tf.math.log(1.0 - pred)

10 return -tf.reduce_mean(pos + neg)

In practice one rarely writes out such functions ‘longhand,’ as standard ob-
jectives are available as Tensorflow operations (e.g. the above is equivalent to
a binary cross-entropy loss, tf.keras.losses.BinaryCrossentropy()).

3.5 Implementing the Learning Pipeline

Below we briefly show how to practically apply the process from Section 3.4
to select a model based on training, validation, and test samples.

The actual features for this model are based on a sentiment analysis (re-
gression) task from Chapter 8, in which we predict ratings based on words in a
review; for the sake of demonstrating a model pipeline it is useful to consider a
problem with high-dimensional features, such that the model is prone to over-
fitting if not carefully regularized (in this case, we consider 1,000-dimensional
features on a dataset with only 5,000 samples).

First, we randomly shuffle the dataset and split it into non-overlapping train-
ing, validation, and test samples:
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1 random.shuffle(data)
2 X = [feature(d) for d in data]
3 y = [d['review/overall'] for d in data]
4 Ntrain,Nvalid,Ntest = 4000,500,500
5 Xtrain,ytrain = X[:Ntrain],y[:Ntrain]
6 Xvalid,yvalid = X[Ntrain:Ntrain+Nvalid],y[Ntrain:Ntrain+

Nvalid]
7 Xtest,ytest = X[Ntrain+Nvalid:],y[Ntrain+Nvalid:]

Next, we consider regularization coefficients λ ranging from λ = 10−3 to
λ = 104. For each value, we train a model on the training set and evaluate
its accuracy on the validation set; during each step, we keep track of the best-
performing model in terms of its validation accuracy. The Ridge model below
implements regularized linear regression, as in Equation (3.31):

8 bestModel = None
9 bestVal = None

10 for l in [0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000]:
11 model = sklearn.linear_model.Ridge(l)
12 model.fit(Xtrain, ytrain)
13 predictValid = model.predict(Xvalid)
14 MSEvalid = sum((yvalid - predictValid)**2)/len(yvalid)
15 print('l = ' + str(l) + ', validation MSE = ' + str(

MSEvalid))
16 if bestVal == None or MSEvalid < bestVal:
17 bestVal = MSEvalid
18 bestModel = model

Finally, we evaluate the best-performing model (in terms of validation per-
formance) on the test set. Note that this is the first and only time we use the
test set:

19 predictTest = bestModel.predict(Xtest)
20 MSEtest = sum((ytest - predictTest)**2)/len(ytest)

Figure 3.8 shows the training, validation, and test performance found during
the above steps; note the similarity to the hypothetical curves in Figure 3.7.

3.5.1 Significance Testing

Although not our focus in this chapter, it is worth briefly exploring how we can
explicitly measure whether the performance of one model is ‘better’ than an-
other, in terms of a formal statistical framework. So far, we have compared (re-
gression) models in terms of their Mean Squared Errors though as we explored
in Section 2.2.2, the Mean Squared Error was chosen based on an underlying
assumption that model errors follow a Gaussian distribution.

Significance testing refers to the overall process of determining whether a
statistical measurement would have been likely to have occurred due to chance
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Figure 3.8: Training, validation,
and test error on a real pipeline.

alone (under the assumptions of some particular model). For example, if an
established restaurant on Yelp has a rating of 4.3 stars based on 50 reviews,
and a new restaurant has a rating of 4.5 stars based on four reviews, would you
conclude that the new restaurant is better rated? Or would you conclude that
the higher initial rating is likely to have occurred due to chance? Significance
tests allow us to formalize these questions.

Formally, a p-value measures the probability that a result as (or more) ex-
treme than the one we actually observed could have occurred due to chance
(under some statistical model). E.g. if we assume that users’ ratings follow a
Gaussian distribution, with what probability would the ratings of two restau-
rants deviate by (at least) 0.2 stars? In the case of this specific measurement,
this probability would depend on (a) the magnitude of the difference between
the two averages; (b) the size of the two samples (e.g. a difference of 0.2 stars
might be significant of both restaurants had 50 ratings, but not if they had four);
and (c) the variance of the two samples (e.g. if the two samples had highly
concentrated ratings we might more quickly conclude that the difference was
significant).9

When making comparisons between models, we will typically use a p-value
to measure whether one model has residuals (y − fθ(x)) that are closer to zero
than another (i.e., we are testing whether one model’s predictions are closer
to the labels than the other’s). To do so we are measuring the difference in
variance between two samples.

We will compute this quantity via an F-test. Other tests could also be used
to compare the performance of two models, such as a likelihood ratio test,
each of which has different underlying assumptions. Below we’ll compare the
performance of two models for estimating a rating, using our beer review data

9 This specific probability would be measured via a t-test.
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as in Section 2.3.2:

model 1: rating = θ0 (3.34)

compared to model 2: rating = θ0 + θ1 × (ABV) (3.35)

One of the assumptions of this particular test is that one of the two models
has a subset of the parameters of the other. As such we are really measuring
whether the additional parameters significantly improve the model’s perfor-
mance (i.e., whether adding a term based on the ABV improves the perfor-
mance of a model including only θ0).

First we generate features and labels for the two models (assuming the data
has already been read, shuffled, etc.):

1 X1 = [[1] for d in data]
2 X2 = [[1, d['beer/ABV']] for d in data]
3 y = [d['review/overall'] for d in data]

Next we fit the two models (on half of the data), and compute their residuals
(on the other half):

4 model1 = sklearn.linear_model.LinearRegression(fit_intercept
=False)

5 model1.fit(X0[:250], y[:250])
6 residuals1 = model1.predict(X1[250:]) - y[250:]
7 model2 = sklearn.linear_model.LinearRegression(fit_intercept

=False)
8 model2.fit(X2[:250], y[:250])
9 residuals2 = model2.predict(X2[250:]) - y[250:]

The actual F statistic depends on the sum of squared residuals, the number
of parameters in each model, and the size of the sample:

10 rss1 = sum([r**2 for r in residuals1]) # sum of squared
residuals

11 rss2 = sum([r**2 for r in residuals2])
12 k1,k2 = 1,2 # Number of parameters of each model
13 n = len(residuals1) # Number of samples

Finally we compute the F statistic and estimate the associated p-value using
a method from scipy:

14 F = ((rss1 - rss2) / (k2 - k1)) / (rss2 / (n-k2))
15 1 - scipy.stats.f.cdf(F,k2-k1,n-k2)

A p-value close to zero would indicate that the result (that ABV improves
predictive performance) is statistically significant.10

Note that this is just one example of a significance test, that works for a par-

10 One can experiment with other features or a smaller test set to see how these influence the
estimated p-value.
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ticular situation (albeit a fairly common one); in different situations alternative
tests may be required, see e.g. Wasserman (2013) for a more comprehensive
presentation.

In spite of the importance of rigorously demonstrating the significance of
claimed model improvements, we will mostly avoid further discussing signifi-
cance testing throughout the remainder of this book. Generally speaking, these
types of tests are designed for small-sample contexts (e.g. surveys or clini-
cal trials, etc.); on the types of large datasets we consider, even small differ-
ences between models will tend to yield extremely small (highly significant)
p-values.

Exercises

3.1 In this exercise we’ll use the style of a beer (using the same data we’ve
studied since e.g. Section 2.3.2) to predict its ABV (alcohol by volume).
Construct a one-hot encoding of the beer style, for those categories that
appear in more than 1,000 reviews. You can build a mapping of cate-
gories to feature indices as follows:

1 categoryCounts = defaultdict(int)
2 for d in data:
3 categoryCounts[d['beer/style']] += 1
4
5 categories = [c for c in categoryCounts if

categoryCounts[c] > 1000]
6 catID = dict(zip(list(categories),range(len(categories)

)))

Train a logistic regressor using this one-hot encoding to predict whether
beers have an ABV greater than 5 percent (i.e., d[’beer/ABV’] > 5).
Report the True Positive, True Negative, and Balanced Error Rates of the
classifier (see sec. 3.3).

3.2 The performance of the classifier above may be unsatisfactory due to the
data being highly imbalanced (as in sec. 3.3.1). Implement a balanced
version of the classifier using the class weight=’balanced’ option
in sklearn. Report the same metrics as above for the balanced classifier.

3.3 Generate precision and recall curves for the classifier you trained above.

3.4 Implement a complete learning and regularization pipeline with your
balanced model. Split your data into 50%/25%/25% train/validation/test
fractions. Consider values C in the range {10−6, 10−5, 10−4, 10−3}. Com-
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pute the train and validation BER for each value of C, and the BER for
the classifier that performs best on the validation set.11

3.5 Naively, to build a classifier we might simply train a regressor by treating
labels as real-valued quantities (e.g. predicting -1/+1). Perform a simple
experiment to demonstrate that this naive model does not work as well as
logistic regression. That is, select a dataset (such as the one you used in
Exercise 3.1), a few features, a label to predict, and an appropriate clas-
sifier evaluation metric, to show that the naive classifier is outperformed
by logistic regression.

Project 2: Taxicab Tip Prediction (Part 2)

Below we’ll revisit Project 1 to (a) consider classification techniques; and (b)
more rigorously evaluate our models using a learning pipeline. Using the same
data from Project 1, extend your project via the following steps:

(i) Carefully build a complete model pipeline. That is, split your data into train,
validation, and test portions, and build a pipeline so that all models are
trained on the training set and comparisons among models are performed
on the validation set (similar to Exercise 3.4). Consider different ways to
split the data, e.g. is it better to split the data randomly, or is it better to
withhold the most recent observations for testing for the sake of selecting
the model most capable of forecasting future trends?

(ii) Rather than modeling the task as a regression problem, you could cast the
problem as classification by estimating whether a tip will be above or below
the median; this may be less sensitive to outliers. Consider the advantages
and disadvantages of various formulations as well as what evaluation met-
rics you might use.

(iii) Some of the features we used in Project 1 are potentially quite high di-
mensional, e.g. if we encode timestamps using one-hot encodings for each
possible day of the year, our model might be highly effective at capturing
single-day trends (such as major holidays), but could also be prone to over-
fitting. Use your pipeline to select the best feature representation among
alternatives (e.g. different levels of granularity for your temporal features,
or otherwise), and to incorporate a regularizer into your model.

11 C plays a similar role to λ in Equation (3.32), though inverts the relationship between
accuracy and complexity, i.e., small λ is equivalent to large C. See documentation in
sklearn.linear model.LogisticRegression.
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4
Introduction to Recommender Systems

In Chapters 2 and 3, when revising regression and classification, our only
means of providing personalized predictions was to extract features associ-
ated with user characteristics (e.g. age, location, gender). The success of such
models largely depends on our ability to extract features that adequately ex-
plain the variation in the labels we are trying to predict. While effective in a
number of regression or classification scenarios, when modeling interactions
in recommendation scenarios, it is less clear what features are predictive of
users’ actions, and less likely that those features could be collected in the first
place. Consider for example:

• What features would be useful to predict what movies a user would be likely
to watch? ‘Obvious’ features such as user demographics may explain only a
small fraction of the variation in interactions and preferences.

• How would you identify the types of features that would be useful for an
obscure or unusual domain? For example what features would you collect
to recommend baby toys, toaster ovens, or temporary tattoos?

• Are such features likely to be available? In practice, we will often know
little about a user, other than their interaction history.

• How can we make predictions in settings where no features are available?

Recommender systems are a fundamental tool to try and make predictions
in such scenarios. At their core, recommender systems are concerned with un-
derstanding interactions between users and items. Roughly speaking, recom-
mender systems operate by finding common patterns and relationships among
users and items, so that recommendations for a user can be harvested from
others who have similar interaction patterns.

In this chapter we explore approaches based on simple similarity heuristics.
Our basic goal is to identify which items and which users are similar to each
other. Approaches range from simple heuristics like set overlap (sec. 4.3.2), to
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more complex approaches based on random walks (sec. 4.4). As we’ll discover,
even simple heuristics can be surprisingly effective, and in practice drive high-
profile industrial recommender systems, as we explore in our case study on
Amazon recommendations (sec. 4.5).

Critically, the models we develop in this chapter are quite different from
those we’ve seen so far, largely eschewing explicit features in favor of tech-
niques more closely related to pattern mining. Note also that for the moment
we will not use machine learning to build recommenders: we use this chapter
to explore the overall problem setting and pipeline, before exploring machine
learning (or so-called ‘model-based’) approaches in Chapter 5.

4.1 Basic Setup and Problem Definition

The typical modality of the data we are trying to model might consist of se-
quences of historical interactions between users and items, for example, we
might have a collection of movie ratings such as:

(Julian, The Godfather, 4, Jan 4 2019)
(Julian, Pulp Fiction, 3, Jan 6 2019)
(Laura, Seven Samurai, 5, Jan 8 2019)
(Laura, The Godfather, 4, Jan 11 2019)

...

(4.1)

which might further be anonymized in terms of user IDs, item IDs, and se-
quential timestamps:1

(264, 547, 4, 1546588800)
(264, 82, 3, 1546761600)
(3473, 231, 5, 1546934400)
(3473, 547, 4, 1547193600)

...

(4.2)

Such a format is ubiquitous across many popular recommendation datasets and
tasks, including (for example) the popular Netflix Prize dataset (sec. 7.2.2).
Such data may include ‘side information,’ such as reviews, demographic in-
formation about the users, or metadata about the movies, but often it may not.
In fact, in the simplest form it may not even include ratings or timestamps.

1 The timestamp shown here is known as the unix time, representing the number of seconds
since January 1970 (in UTC); such a representation is often useful as it allows straightforward
comparison between timestamps.
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Thus in essence the data we are trying to work with simply describes inter-
actions among users and content. Such interactions could describe clicks, pur-
chases, ratings, likes (etc.). In other settings the interactions could describe so-
cial connections among users, ‘interactions’ among compatible clothing items
(sec. 9.3), among countless other possibilities.

Given interaction data such as that above, we would now like to ask ques-
tions such as:

• How will Laura rate Pulp Fiction?
• Given that Laura liked the The Godfather, what other movies will she like?
• What movie is Laura likely to rate next?

Answering these questions seems difficult, as we seemingly know very little
about the users and items involved. However we do know, for instance, that
both Laura and Julian (or users 3473 and 264) recently watched The Godfather,
and gave it similar ratings; from this we could begin to reason that they may
exhibit similar preferences with regard to other movies also.

Reasoning about these types of questions, and modeling these types of in-
teractions, are the main goals of recommender systems.

How is recommendation different from regression or classification?
In Chapters 2 and 3, we saw several techniques that seem like they could al-
ready be used to predict outcomes like ratings and purchases. For example,
predicting a rating (e.g. of a movie) seems like a traditional regression task,
and we can imagine various user and movie features that might be associated
with ratings. As such, naively we might try to extract user and movie features
and fit a linear model of the form

rating(user,movie) = 〈φ(user,movie)︸            ︷︷            ︸
user and movie features

, θ〉. (4.3)

User features might include attributes like the user’s age, gender, location,
or other demographic features that might be associated with rating patterns;
movie features could capture the length, MPAA rating, budget, or presence of
certain actors (etc.). Assuming user and movie features can be collected inde-
pendently, and since the model is linear, this could be rewritten as

rating(user,movie) = 〈φ(u)(user)︸     ︷︷     ︸
user features

,

user parameters︷︸︸︷
θ(u) 〉 + 〈φ(i)(movie)︸       ︷︷       ︸

movie (item) features

,

movie parameters︷︸︸︷
θ(i) 〉. (4.4)

When written this way, we can see that the prediction of the rating is the sum
of two independent predictions: one for the user (say f (u)) and one for the item
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Figure 4.1 Recommender systems compared to other types of machine learning.

The main distinguishing feature of recommender systems compared to other types
of machine learning is their goal of explicitly modeling interactions between users
and consumed items based on historical patterns. This feature allows the models
to understand which items are compatible with which users, and thus to make
different recommendations to each user in a personalized way.

(say f (i)). If we were to make recommendations based on these predictions,
for example by recommending whichever unseen movie a user would give the
highest rating to, i.e.,

arg max
i∈unseen movies

f (u) + f (i), (4.5)

our recommendation for every user would simply be whichever movie had
the highest predicted rating f (i). In other words, every user would simply be
recommended movies which had features associated with high ratings.

Critically, such a model could not personalize its recommendations to indi-
vidual users. Even if the model achieved a reasonable Mean Squared Error in
terms of predicting ratings, it would not be an effective recommender system.

To overcome this limitation, a model must in some fashion capture interac-
tions between users and items, e.g. how compatible is a user with a particular
movie. Explicitly modeling interactions between users and items is the main
goal of recommender systems and is the main characteristic that differentiates
them from other types of machine learning (fig. 4.1).

4.2 Representations for Interaction Data

There are several ways we could represent the interaction data described above.
Formally, we might simply describe the dataset as a set of tuples (u, i, r, t), or
ru,i,t ∈ R indicating that a user u entered the rating r for item i at time t.

But conceptually it is easier to think about these data in terms of sets or ma-
trices. Set representations will be useful when establishing similarity between
users in terms of sets of items they have consumed (or likewise similarity be-
tween items in terms of sets of users who have consumed them); matrix rep-
resentations will be useful when developing models based on the concept of
matrix factorization (or dimensionality reduction).
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Activities as sets For our simplest recommendation models, we can describe
users in terms of the sets of items they have interacted with, e.g. for a user u:

Iu = set of items consumed by u; (4.6)

likewise, we can describe items in terms of the sets of users who have inter-
acted with them:

Ui = set of users who consumed item i. (4.7)

Activities as matrices Alternately, we can represent datasets of user/item in-
teractions via matrices. Interaction matrices could describe which items a user
has interacted with (C), or could augment our previous representations to cap-
ture real-valued interaction signals such as ratings (R):

R =


5 · · 2 3
· 4 1 · ·

· 5 5 3 ·

5 · 4 · 4
1 1 · 4 5

︸                        ︷︷                        ︸
items

C =


1 · · 1 1
· 1 1 · ·

· 1 1 1 ·

1 · 1 · 1
1 1 · 1 1

︸                        ︷︷                        ︸
items


users. (4.8)

Each row of R represents a single user, and each column represents a single
item. A particular entry Ru,i indicates the rating the user u gave to item i. Note
that the vast majority of entries in such a matrix would typically be missing
(most users do not rate most items); indeed, the missing entries are exactly the
quantities that we would like to predict.2

Naturally, the set and matrix representations can be written in terms of each
other, for example, our set representation is equivalent to:

Iu = {i | Ru,i , 0} (4.9)

Ui = {u | Ru,i , 0}. (4.10)

Both our set and matrix representations of interactions may seem limited—
neither conveys the timestamps associated with the ratings (or any other side-
information), and the set-based representation doesn’t even encode users’ rat-
ings. Nevertheless they are useful for reasoning about the basic principles be-
hind recommender systems, which will become the building blocks behind
more sophisticated approaches.

2 It should be carefully noted that our matrix representation is largely conceptual: it is rarely
feasible to enumerate a complete interaction matrix, which could have millions of rows (users)
and columns (items). In practice we’ll represent interaction matrices using sparse data
structures mapping user/item pairs to observed values.
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Figure 4.2 Memory-based and model-based recommender systems.

The approaches we study in Section 4.3 make recommendations by writing down
similarity functions that take as input user and item interaction histories. There
is no model (i.e., no parameters) associated with each user or item; the original
data is used as an input to the similarity functions. Such systems are referred to
as memory-based (or neighborhood-based) recommenders. In contrast, the tech-
niques we’ll develop in Chapter 5 learn representations of each user and item,
such that the original data generally isn’t used directly when making predictions
at test time. Such systems are referred to as model-based recommenders.

4.3 Memory-based Approaches to Recommendation

Perhaps the simplest (and most ubiquitous) approaches to recommendation
are based on some notion of ‘similarity’ among items. That is, an item is rec-
ommended to a user because it is similar to one that they they have recently
clicked, liked, or consumed.

‘People who viewed X also viewed Y’ (or ‘people who bought X also bought
Y,’ etc.) features are familiar examples of such similarity-based recommenders.
Items are recommended to a user on the basis of how similar they are to an item
the user is currently browsing.

For such a recommender to be effective depends on choosing an appropriate
similarity function. The similarity function that guides such models might be
based on click or purchase data (as we see in Section 4.5); but even then, by
what metric should we consider patterns of clicks to be ‘similar’? Should we
count the number of users who have clicked on both items? Or do we need
some kind of normalization? Or should we consider temporal recency?

Appropriately designing such similarity functions, and recommending on
the basis of such similarity, is the task of so-called memory-based recom-
mender systems. Such systems are said to be ‘memory’-based since they make
predictions directly from data (rather than from the parameters of a model de-
rived from data). Most of the approaches we’ll see below are alternatively titled
neighborhood-based recommender systems, in which items are recommended
due to being in the neighborhood of (i.e., similar to) other items.3 We summa-
rize this distinction in Figure 4.2, which we discuss further when presenting
model-based approaches in Chapter 5.

3 Alternately various types of recommender systems are also termed collaborative filtering,
though we generally avoid the term. Such models are ‘collaborative’ in the sense that the
predictions of one user or item are based on those of others.
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4.3.1 Defining a Similarity Function

Defining a similarity-based item-to-item recommender essentially requires that
we define a similarity function among items:

Sim(i, j), (4.11)

and then given a query item i, recommend a set of items j that maximize the
given similarity.

Let’s consider a small toy example, with four items, and sets of users (or
rather user IDs) who have consumed each:

U1 = {1, 3, 4, 8, 12, 15, 17, 24, 35, 39, 41, 43}
U2 = {2, 3, 4, 5, 9, 12, 13, 16, 19, 24, 27, 31}
U3 = {4, 5, 9, 12}
U4 = {4, 9}

(4.12)

(recall that in our notation U1 represents the set of users who have bought item
1). Naively, we might assume that an item-to-item recommender (e.g. ‘people
who bought X also bought Y’) is simply counting the number of users who
purchased both items in common. In our set notation this would be:

Sim(i, j) = |Ui ∩ U j|. (4.13)

Computing some similarities under this model we would find:

Sim(1, 2) = 4; Sim(2, 3) = 4; Sim(3, 4) = 2; etc., (4.14)

i.e., we would rate items 1 and 2, or items 2 and 3, as being more similar than
items 3 and 4.

We should examine whether these relative scores seem reasonable. Items
1 and 2 are popular items, which most users did not purchase in common;
whereas items 3 has half of its users in common with item 4. If we were
to build recommenders on this basis, we might recommend (for example) a
popular album as being highly similar to a popular pair of jeans, simply on the
basis that they have many users in common. In general, such a system would
tend to identify popular items (such as items 1 and 2 in Equation (4.12)) as
being similar. ‘Niche’ items with fewer associated purchases (such as items 3
and 4 in in Equation (4.12)) would rarely be recommended.

In most cases, this is not the outcome we want; such a system would make
generic recommendations of popular items, that likely would not seem specific
to the context of a given query item.

This toy example is intended to demonstrate that ‘similarity’ is not some-
thing easy to define, and that different definitions have implicit assumptions
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Ui U j Ui U j

Figure 4.3: The similarity be-
tween two items i and j can be
computed in terms of the inter-
section (left) and union (right)
between the sets of users Ui

and U j who have consumed
each.

with non-obvious consequences. Presumably, we should improve our similar-
ity function so that it has some appropriate normalization to account for item
popularity, as we will see below.

4.3.2 Jaccard Similarity

Our first attempt at correcting the above issues is to normalize similarity scores
in a way that considers the popularity of each item. The Jaccard Similarity, or
‘intersection over union,’ does so by computing

Jaccard(i, j) =
|Ui ∩ U j|

|Ui ∪ U j|
. (4.15)

This similarity function is perhaps best visualized by a Venn diagram such as
that in Figure 4.3.4 The Jaccard similarity takes a value between 0 (when Ui

and U j do not overlap at all, and thus have no intersection) and 1 (when the
intersection is equal to the union, i.e., the items were consumed by exactly the
same set of users).

To demonstrate the Jaccard similarity in action, let’s consider computing the
similarity among items in terms of past purchases from Amazon.com. We’ll
consider Amazon’s publicly-available dataset of around 900,000 reviews from
the Musical Instrument category.5

We first build some data structures to store the sets of items consumed by
each user (or the sets of users who have consumed each item), i.e., Iu and Ui:

1 usersPerItem = defaultdict(set)
2 itemsPerUser = defaultdict(set)
3
4 for d in dataset:
5 user, item = d['customer_id'], d['product_id']
6 usersPerItem[item].add(user)
7 itemsPerUser[user].add(item)

4 Or more generally, for any two sets A and B we have Jaccard(A, B) =
|A∩B|
|A∪B| .

5 Available from https://s3.amazonaws.com/amazon-reviews-pds/tsv/index.txt

https://s3.amazonaws.com/amazon-reviews-pds/tsv/index.txt
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We can also implement the Jaccard similarity straightforwardly:

8 def Jaccard(s1, s2):
9 numerator = len(s1.intersection(s2))

10 denominator = len(s1.union(s2))
11 return numerator / denominator

Now, recommendation consists of finding the items with the highest Jaccard
similarity compared to some given query (i.e., ‘people who bought X also
bought Y’):

12 def mostSimilar(i, K): # Query item i, and number of results
K to return

13 similarities = []
14 users = usersPerItem[i] # Users who have purchased i
15 for j in usersPerItem: # Compute similarity against each

item
16 if j == i: continue
17 sim = Jaccard(users, usersPerItem[j])
18 similarities.append((sim,j))
19 similarities.sort(reverse=True) # Sort to find the most

similar
20 return similarities[:K]

Finally, let’s examine some recommendations, e.g. of the ‘AudioQuest LP
record clean brush’ (product ID B0006VMBHI). The 5 most similar items (i.e.,
mostSimilar(’B0006VMBHI’, 5)) are:

Shure SFG-2 Stylus Tracking Force Gauge
Shure M97xE High-Performance Magnetic Phono Cartridge
ART Pro Audio DJPRE II Phono Turntable Preamplifier
Signstek [...] Long-Playing LP Turntable Stylus Force Scale Gauge Tester
Audio Technica AT120E/T Standard Mount Phono Cartridge

All of the recommended items are also related to record players (which make
up only a fraction of items in the category), which seem semantically reason-
able given the query.

Using just a few lines of code, and using a (reasonably large) real-world
dataset, we have implemented our first recommender system. Our solution is
simple (and our implementation is fairly inefficient6), but nevertheless quickly
produced reasonable recommendations. These simple types of similarity-based
recommendations drive many of the most high-profile recommender systems
on the web, as we study in Section 4.5.

6 In particular it is not necessary to iterate over all items; rather one can quickly compute a
candidate set of only those items that could potentially have a non-zero Jaccard coefficient;
see Exercise 4.1
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i1

i2

i3

u1

u2

θ

Figure 4.4: The Cosine
Similarity is defined in
terms of the angle between
two vectors, here describ-
ing users u1 and u2.

4.3.3 Cosine Similarity

The Jaccard similarity captures our intuition about what items ought to be
similar to each other, but is only defined if interactions are represented as sets.
We would like more nuanced similarity measures for data where feedback is
associated with each interaction; for example we might not regard two users
as ‘similar’ if both had watched the Harry Potter movies, in the event that one
of them liked the series and the other disliked it.

The Cosine Similarity achieves this by representing users’ (or items’) inter-
action histories in terms of vectors rather than sets. An example is shown in
Figure 4.4 in which we have three items (i1, i2, and i3) and two users (u1 and
u2) who have each interacted with two of them.

In our previous (set) representation we would write Iu1 = {i2, i3} and Iu2 =

{i1, i3} to describe the sets of items that u1 and u2 have interacted with. In
vector representation we could simply describe u1 and u2 in terms of vectors
describing which items they interacted with. Such vectors are equivalent to
rows of our interaction matrix R (eq. (4.8)), i.e., Ru1 = (0, 1, 1) and Ru2 =

(1, 0, 1).
The Cosine Similarity (in this case between two users u1 and u2) is now

defined in terms of the angle between the vectors u1 and u2. Recall that the
angle between two vectors a and b is defined as:

θ = Cos−1
(

a · b
|a| · |b|

)
; or Cos(θ) =

a · b
|a| · |b|

. (4.16)

The angle θ measures the extent to which the two vectors point in the same
direction; in the case of interaction data, the angle will range between 0° (if
the two users have interacted with exactly the same items) and 90° (if the
interaction vectors are orthogonal, i.e., if the users have interacted with non-
overlapping sets of items). The actual cosine similarity is the cosine of this
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θ

Figure 4.5: The Cosine
Similarity for two users
who rated the same items,
but with opposite senti-
ment polarity.

angle, e.g. between two users u and v:7

Cosine Similarity(u, v) =
Ru · Rv

|Ru| · |Rv|
. (4.17)

For (binary) interaction data the cosine of the angle is now between 1 (when the
angle is zero, and the interactions are identical) and 0 (when the interactions
are orthogonal).

It is instructive to compare Equations (4.15) and (4.17). In the case of bi-
nary interaction data, both expressions take values of 1 when the interactions
are identical, and 0 when the interactions are non-overlapping. For binary in-
teractions the numerator Ru · Rv in Equation (4.17) is equivalent to |Iu ∩ Iv|, as
in Equation (4.15). The two differ only in their denominators, both of which
are essentially forms of normalization based on the size of the sets Iu and Iv

(and both denominators will take the same value when Iu and Iv are equal).
Of course the cosine similarity is more interesting once we consider numer-

ical interactions, i.e., interactions associated with feedback, rather than just
binary (0/1) data. For example, consider data where each interaction is asso-
ciated with a ‘thumbs-up’ or ‘thumbs-down’ rating. We might represent this
via an interaction matrix R such that Ru,i ∈ {−1, 0, 1} (where −1/1 indicates
thumbs-down/thumbs-up, and 0 indicates an item the user hasn’t interacted
with).

In this case, the Jaccard similarity would not be well-defined. But the cosine
similarity can still be computed on rows (or columns) of R. An example is
shown in Figure 4.5. Here, user u1 has interacted with two items (i2 and i3),
and liked both; u2 has interacted with the same items, but disliked both. The
two user vectors now point in opposite directions, i.e., they have an angle of
180° and a cosine similarity of -1.

With some effort we can adapt our code above for the Jaccard similarity

7 Or it can be straightforwardly defined for item similarity by interchanging users and items.
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to implement the cosine similarity. Here we use an auxiliary data structure
(ratingDict) that retrieves ratings for a given user/item pair:

1 def Cosine(i1, i2):
2 # Between two items
3 inter = usersPerItem[i1].intersection(usersPerItem[i2])
4 numer = sum([ratingDict[(u,i1)]*ratingDict[(u,i2)] for u

in inter])
5 norm1 = sum([ratingDict[(u,i1)]**2 for u in usersPerItem

[i1]])
6 norm2 = sum([ratingDict[(u,i2)]**2 for u in usersPerItem

[i2]])
7 denom = math.sqrt(norm1) * math.sqrt(norm2)
8 if denom == 0: return 0 # If one of the two items has no

ratings
9 return numer / denom

Doing so (for the same query item), the top recommendation remains the
same (Shure SFG-2 Stylus Tracking Force Gauge). Among the next few rec-
ommendations, there are many ties (i.e., identical cosine similarities); upon
inspection these turn out to be items with only a single (overlapping) interac-
tion. In this case such items are preferred by the cosine similarity (and not the
Jaccard) since the denominator grows quickly for items with many associated
interactions (whereas the union term in Equation (4.15) grows more slowly,
assuming many of the interactions overlap).

Which similarity metric is ‘better’? In the above example the Jaccard sim-
ilarity seemed to work ‘better’ than the cosine similarity, but our argument
about the difference between the two is somewhat imprecise. Note that this
argument largely applies to this specific dataset (or even the specific query
item we chose). Ultimately, these similarity measures are essentially heuris-
tics; whether one is ‘better’ than another depends on our own assumptions and
intuition about what similarity ought to mean. This is in contrast to the machine
learning approaches we saw in previous chapters in which we had a specific
objective (i.e., a measure of success) that we were trying to optimize. We’ll
revisit this question when we examine model-based recommender systems in
Chapter 5.

4.3.4 Pearson Similarity

We motivated the Jaccard similarity by considering binary interaction data
(i.e., sets), and the cosine similarity by considering polarized interactions like
‘thumbs-up’s and ‘thumbs-down’s.

Consider how these similarity measurements would operate on numerical
feedback scores such as star ratings (as in eq. (4.8)). Take the users represented
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Figure 4.6: Pearson
Similarity. Two users
have rating vectors
that point roughly in
the same direction
(left); after subtract-
ing the average from
each, they point in
opposite directions
(right).

in Figure 4.6 (left) as an example. Here two users have rated the same items
(i2 and i3); user u1 rated them 3 and 5 stars (respectively); user u2 rated them 5
and 3.

According to the Jaccard similarity (based only on interactions), we would
consider the two users to be identical (Jaccard similarity of 1); according to the
cosine similarity, we would regard them as being very similar, since the angle
between the two vectors is small. However one could argue that these users
are polar opposites of each other: if we consider 5 stars to be a positive rating
and 3 stars to be a negative rating, then these two users indeed have opposite
opinion polarity.

Our definition of the cosine similarity does not account for this interpre-
tation, essentially because it depends on the interactions already having ex-
plicitly positive or negative polarity. To correct this we might appropriately
normalize our ratings: if we subtract the average for each user (4 stars for both
u1 and u2), we find that their ratings are each 1 star above or below their per-
sonal average. After doing so, the example becomes very similar to the one
from Section 4.3.3 (see fig. 4.6, right).

The above is essentially the idea captured by the Pearson Similarity. The
Pearson Correlation Coefficient is a classical measurement for assessing the
relationship between two variables, i.e., whether they trend in the same direc-
tion, regardless of scale and constant differences between them. The Pearson
Correlation between two vectors x and y is defined as

Pearson Correlation(x, y) =

∑|x|
i=1(xi − x̄)(yi − ȳ)√∑|x|

i=1(xi − x̄)2
√∑|y|

i=1(yi − ȳ)2
. (4.18)

Compare this definition to that of the cosine similarity in Equation (4.17): the
only difference is that from each measurement we subtract the mean (x̄ or ȳ) of
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Figure 4.7 Summary of similarity measures.

Our comparison of the Jaccard, Cosine, and Pearson similarities can be summa-
rized as follows:

• The Jaccard Similarity computes the similarity between sets. The basic idea is
to find items that have been purchased (or interacted with) in common by many
users (or users who have purchased many items in common); the set union
is used to normalize the quantity, so that the measure does not overly favor
popular items (or highly active users).

• The Cosine Similarity instead represents interactions as vectors (basically, rows
or columns of our interaction matrix R). Similarity is then computed in terms
of the angle between vectors for two items (or users). This definition allows
similarity to be computed for numerical interaction data, especially if a polarity
(i.e., positive or negative) is associated with each interaction.

• Finally, the Pearson Similarity was motivated by the idea that numerical feed-
back may need to be properly calibrated in order to associate a polarity to each
score. For instance, a rating of ‘3.5’ might be positive for one user but negative
for another. The Pearson similarity calibrates this polarity simply by subtract-
ing the average for each user (or item); after this calibration the definition is
similar to that of the cosine similarity.

the corresponding vector. We summarize the relationship between the Jaccard,
Cosine, and Pearson similarities in Figure 4.7.

When applying this concept to rating data, we should be careful not to regard
unobserved ratings (i.e., missing values of Ru,i in Equation (4.8)) as zeros—
doing so would distort our estimate of the user mean. Thus we might define
the similarity between two users u and v (or similarly, items) only in terms of
items they have both interacted with:

Pearson Similarity(u, v) =

∑
i∈Iu∩Iv

(Ru,i − R̄u)(Rv,i − R̄v)√∑
i∈Iu∩Iv

(Ru,i − R̄u)2
√∑

i∈Iu∩Iv
(Rv,i − R̄v)2

.

(4.19)
Our choice to define the Pearson similarity by considering only shared items
is somewhat arbitrary; we could instead have considered all items rated by
each user in the denominator. Using our definition (which appears in e.g. Sar-
war et al. (2001)), we regard users as maximally similar if they have rated
shared items in the same way; if we considered all items rated by each user in
the denominator, we would regard users as less similar if they had also rated
some different items. Remember that these similarity functions are merely
heuristics—neither option should be considered more ‘correct,’ but rather we
should choose the definition that suits our intuition (or generates the most sat-
isfactory results) in a particular situation.
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Our code for the cosine similarity above can easily be adapted to implement
the Pearson similarity (noting the details above). Here we have an additional
data structure (itemAverages) recording the mean rating for each item:

1 def Pearson(i1, i2):
2 # Between two items
3 iBar1,iBar2 = itemAverages[i1], itemAverages[i2]
4 inter = usersPerItem[i1].intersection(usersPerItem[i2])
5 numer = 0
6 denom1 = 0
7 denom2 = 0
8 for u in inter:
9 numer += (ratingDict[(u,i1)] - iBar1)*(ratingDict[(u

,i2)] - iBar2)
10 for u in inter: # Alternately could sum over

usersPerItem[i1]/[i2]
11 denom1 += (ratingDict[(u,i1)] - iBar1)**2
12 denom2 += (ratingDict[(u,i2)] - iBar2)**2
13 denom = math.sqrt(denom1) * math.sqrt(denom2)
14 if denom == 0: return 0
15 return numer / denom

Fitting the Pearson similarity given the query item from Section 4.3.2 does
not produce particularly satisfactory results; using Ui ∩U j in the denominator
of Equation (4.19) results in many items with a similarity of 1.0 (usually just
due to a single overlapping interaction); using Ui and U j separately in the de-
nominator of Equation (4.19) generates more meaningful results, though they
come from a broad category of items that do not seem closely related.

Possibly these results are unsatisfactory simply because ratings of (e.g.) a
record cleaning brush are not due to factors that meaningfully transfer to other
items. One likely purchases a record cleaning brush for its utility, rather than
because of their personal preference toward such items. If variability in rat-
ings is primarily due to build quality, or effectiveness (for example), then the
Pearson similarity might identify other items with ‘similar’ build quality or
effectiveness, but those may not be semantically similar items. In this particu-
lar example, the Jaccard similarity—which defines similarity in terms of what
was purchased—seems more appropriate than the Pearson similarity, which
defines similarity in terms of preferences.

Again though, possibly this measure is simply not suitable for this dataset or
this query item. Let’s try again on another dataset, this time from the Amazon
Video Games category. Given the query One Piece: Pirate Warriors, the five
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most similar items in terms of Pearson similarity8 are:

Full Metal Alchemist: The Broken Angel
Monster Rancher 4
FINAL FANTASY X X-2 HD Remaster
BlazBlue: Continuum Shift EXTEND Limited Edition
Killzone 3 (etc.)

These recommendations look more reasonable. In addition to being for similar
platforms (e.g. PlayStation) most are reasonably similar in terms of genre and
style (e.g. Japanese, based on anime, etc.). Seemingly, in this setting features
like style and genre better explain variation in ratings, making the Pearson
similarity more effective.

Finally, these similarity measures needn’t be used directly for recommen-
dations as we have done here (i.e., simply retrieving the most similar item
given a query). In practice they might be subroutines that guide more com-
plex algorithms. For example, to recommend items to a user we might first
find similar users, and recommend items that many of those users liked, rather
than simply relying on item-to-item similarity directly (see e.g. Section 4.5 and
Exercise 4.3).

4.3.5 Using Similarity Measurements for Rating Prediction

In Chapter 5, we’ll contrast the similarity-based recommendation approaches
above with machine learning (or ‘model-based’) approaches which directly
seek to predict ratings (or interactions) as accurately as possible.

However these two goals (measuring similarity versus predicting ratings)
are not at odds with each other, and indeed one can use a measure of similarity
as a means of predicting ratings.

The essence of such an approach is that the rating a user will give to an item
can be estimated from ratings that user has given to similar items (again, for
some appropriate definition of ‘similarity’). One such definition (from Sarwar
et al. (2001)) predicts the rating as a weighted sum of other items the user has
rated:

r(u, i) =

∑
j∈Iu\{i} Ru, j · Sim(i, j)∑

j∈Iu\{i} Sim(i, j)
, (4.20)

where Sim(i, j) could be any item-to-item similarity function such as those
above. Note here that r(u, i) is a prediction whereas Ru,i is a historical rating.

The intuition behind the above equation is simply that the most similar items

8 Again using Ui and U j separately in the denominator
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should be the most relevant when predicting future ratings, so the user’s past
ratings of those items are given the highest weights. Again though this is just
a heuristic for predicting ratings and could be defined differently. For example
we could write the same definition in terms of user similarity:

r(u, i) =

∑
v∈Ui\{u} Rv,i · Sim(u, v)∑

v∈Ui\{u} Sim(u, v)
, (4.21)

or, we, could possibly improve performance by weighting deviations from the
average rating, rather than ratings directly:

r(u, i) = R̄i +

∑
j∈Iu\{i}(Ru, j − R̄ j) · Sim(i, j)∑

j∈Iu\{i} Sim(i, j)
, (4.22)

Using our video game data from Section 4.3.4, and following the prediction
function from Equation (4.22) (with the Jaccard Similarity as our similarity
function), the Mean Squared Error of predicted ratings compared to the true
labels is 1.786, compared to 1.838 when always predicting the mean.

Code to implement the rating prediction model of Equation (4.22) is in-
cluded below. Here we use the Jaccard similarity, though any item-to-item
similarity metric could be used in its place. Note that for the sake of evaluat-
ing such algorithms, we must be careful to exclude the query item (i) from all
summations:9

1 def predictRating(user,item):
2 ratings = [] # Collect ratings over which to average
3 sims = [] # and similarity scores
4 for d in reviewsPerUser[user]:
5 j = d['product_id']
6 if j == item: continue # Skip the query item
7 ratings.append(d['star_rating'] - itemAverages[j])
8 sims.append(Jaccard(usersPerItem[item],usersPerItem[

j]))
9 if (sum(sims) > 0):

10 weightedRatings = [(x*y) for x,y in zip(ratings,sims
)]

11 return itemAverages[item] + sum(weightedRatings) /
sum(sims)

12 else:
13 # User hasn ' t rated any similar items
14 return ratingMean

9 Strictly, our auxiliary data structures that store average ratings should also be adjusted to
exclude the query interaction.



98 Introduction to Recommender Systems

1

users:

2

3

4

5

6

1

items:

2

3

4

5

6

Figure 4.8: User interac-
tions can be represented
as a bipartite graph con-
necting users and items.
Recommendations can be
made by simulating ran-
dom walks on the graph,
such that ‘nearby’ items
are considered similar.

4.4 Random Walk Methods

So far we have developed recommender systems in which user interaction data
was represented as sets or matrices. Based on these two types of representa-
tions methods based on set (sec. 4.3.2) and vector (sec. 4.3.3) similarity arose
naturally.

A third possible representation of user interaction data is to treat interactions
as a bipartite graph (fig. 4.8). Here users and items are each a set of nodes, and
edges between users and items represent user interactions (where edges may
be weighted by a rating or interaction frequency).

Based on this representation, Random Walk-based methods assess the relat-
edness or ‘closeness’ of nodes by simulating a walker that traverses the graph
by randomly following its edges. Specifically, random walk-based methods at-
tempt to assess the strength of a relationship between two nodes x and y by
assessing the probability that a random walk starting on node x will terminate
on node y.

Relation to PageRank Note that the above closely resembles algorithms like
PageRank or HITS (Brin and Page, 1998; Kleinberg, 1999). These algorithms
also model random walks on graph data; there the goal is to compute a station-
ary distribution π, where πx represents the probability that a walker will visit
node x at any given step. This is computed by defining the relation

π(t) = π(t−1)P (4.23)

(where P is a matrix of transition probabilities) and computing π = limt→∞ π
(t).

The above can be computed by power iteration (i.e., iteratively computing the
relation from Equation (4.23)), which will converge to the principal eigen-
vector of P (Brin and Page, 1998). PageRank includes an addition detail, a
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damping factor d, which simulates the ‘click-through probability’ that a ran-
dom walker will terminate (and randomly restart) their walk at any step. With-
out this term, the stationary probability πi would become dominated by ‘sink’
pages (i.e., with no outgoing links). See Brin and Page (1998) for a full de-
scription.

When using the above approach in the context PageRank or HITS, we gen-
erally treat πx as an overall measure of the ‘quality’ or ‘authoritativeness’ of a
page. In a recommendation setting, we might instead be interested in transition
probabilities, i.e., the probability that a random walker will visit item j having
started from item i.

To do so, we start with a transition probability p( j|i) between nodes; this
represents the probability that a walker currently at node i will visit node j
during the next step (we give a few examples of such transition probabili-
ties below). These probabilities can be aggregated into a transition matrix P
(where Pi, j = p( j|i)). These first-order probabilities represent the probability
that a random walker at node i would visit j in the next step; to compute the
probability that the walker will eventually visit j on some step, we can take
powers of the transition matrix P:

P∗ =

∞∑
n=1

(dP)n

|(dP)n|
. (4.24)

Here d is again a damping factor. The damping factor prevents the probabil-
ity from becoming saturated by the walker eventually transitioning to popular
items (Yildirim and Krishnamoorthy, 2008).

Representative papers include Li et al. (2009), which most closely follows
the setting (and notation) above. They use this type of paradigm for the setting
of grocery recommendations. They start by defining transition probabilities
between users and items (on a bipartite graph similar to that in Figure 4.8):

p(i|u) =
f (u, i)

(
∑

j f (u, j))α1
; p(u|i) =

f (u, i)
(
∑

v f (v, i))α2
. (4.25)

Here f (u, i) measures the historical purchase frequency between the user u and
the item i; α1 and α2 penalize users or products associated with many trans-
actions. The transition probability between items (p( j|i)) can then be found by
summing over all users:

p( j|i) =

|U |∑
u=1

p( j|u)p(u|i). (4.26)

Li et al. (2009) compare similarity functions like that of Equation (4.24) with
traditional item-to-item similarity functions like those in Section 4.3.
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Others adopt similar approaches, albeit with different ways of defining tran-
sition probabilities between items; Liu and Yang (2008) define transition prob-
abilities between items in terms of the ratings those items have received.

Note that the idea behind random walk-based methods is quite general;
above we describe only the simplest setting where (bipartite) graphs are de-
fined in terms of user and item similarities. Other approaches based on this
paradigm establish more complex graph structures to uncover different types of
relationships among users, items, or other features. For example authors from
organizations may publish papers in venues (essentially a ‘four-partite’ graph)
(Dong et al., 2017b); or richer item relationships could be defined in terms of
which items were co-purchased in the same basket (in addition to user-to-item
relationships) (Wan et al., 2018). Ultimately graph-based representations give
us a straightforward means to incorporate several types of relationships via
a common framework. We study a specific instance that models interactions
within sessions in Section 7.3.2.

4.5 Case Study: Amazon.com Recommendations

In a 2003 paper (Linden et al., 2003), researchers described the techniques
underlying Amazon’s recommendation technology. The paper described sys-
tems that recommend related items, e.g. ‘Customers who bought items in your
shopping card also bought.’

The first recommendation method the paper describes is based on the Co-
sine Similarity (sec. 4.3.3). Interestingly, cosine similarity is defined between
users, rather than between items as we did in Section 4.3.2; the goal is then to
recommend items that have previously been purchased by similar customers.
The paper discusses the issues of scaling this type of similarity computation
to the large number of Amazon users, and discusses an alternative strategy to
cluster users based on a user-to-user similarity metric; similar customers to a
given user can then be found by determining the user’s cluster membership
(which is cast as a classification problem).

Although Linden et al. (2003) go into little detail about the specifics of
what is implemented by Amazon, their work does stress the key point that
real-world, large-scale recommenders need not be based on complex models.
Rather, primary considerations include building models that are simple but
scale well.

Following Linden et al. (2003), a follow-up paper was published describ-
ing more modern recommendation techniques on Amazon (Smith and Linden,
2017). The paper starts by describing minor modifications to the algorithms
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described above. For instance, they describe an item-to-item based approach
which is more reminiscent of that in Section 4.3.2, and describe how most of
the computation for this type of problem can be done offline. Smith and Lin-
den (2017) also stress the importance of choosing a good similarity heuristic,
and discuss some strategies for doing so. Finally, Smith and Linden (2017)
discuss the importance of considering temporal factors when designing rec-
ommenders, which is our main focus in Chapter 7.

Exercises

4.1 These exercises could be completed using any dataset with users, items,
and ratings (including the same dataset used in Project 3, below). The
Jaccard similarity-based recommender we implemented in Section 4.3.2
proved an effective recommender, though our implementation was ineffi-
cient. The main source of inefficiency was due to iteration over all items.
A more efficient implementation might first build smaller a candidate set
of items, by noting that only those items with at least one user in com-
mon with the query could potentially have non-zero Jaccard similarity.
This candidate set can be built by taking all users who have purchased
the query i, and taking the union over other items they have purchased
(other than i), i.e.,

⋃
u∈Ui

Iu \ {i}. After modifying our implementation
from Section 4.3.2 to use this candidate set, confirm that it produces
identical recommendations, and compare its running time to the naive
implementation.

4.2 Although we discuss evaluation in detail in Chapter 5, in this exercise
we’ll build a simple quality measure for similarity-based recommenders.
Specifically, an item-to-item recommender might be considered ‘useful’
if it tends to rate items i and j that are both purchased by u as being more
similar than two items not purchased by the same user. For each user,
randomly sample two of their interactions i and j, and a third interac-
tion k ∈ I \ Iu not purchased by u. Measure how often the system rates
Sim(i, j) ≥ Sim(i, k). Compute this measure for the Jaccard, Cosine, and
Pearson similarities (or other variants) to measure which is best suited to
a particular dataset.10

4.3 The code we developed in Section 4.3.2 (and in Exercise 4.1) is so far
just an item-to-item recommender, and does not produce recommenda-

10 Also consider the most effective way to handle ties; ties could either be counted as a failure of
the algorithm, or could be counted separately from successes or failures.
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tions based on the user’s history. However it could be adapted to do so
in several ways, e.g.:

• Recommend an item i based on the average similarity compared to all
items j from the user’s history;

• Rather than averaging over all items from the user’s history, average
over only the last K, or otherwise weight the average by recency;

• Select an item consumed by a highly similar user;
• etc.

Explore alternatives such as those above to determine which is best at
recommending users’ future interactions based on their history. For the
sake of evaluation, it is useful if variants associate a score r(u, i) with
each candidate recommendation; e.g. the score could be the average co-
sine similarity between i and items j in u’s history; or the score could
be the Jaccard similarity between u and the most similar user v who has
consumed i. Methods may then be compared using a similar approach
to Exercise 4.2: i.e., does the method tend to assign higher scores to
(withheld) items the user interacted with compared to randomly chosen
items.11

4.4 Implement rating prediction models following the formulas in Equa-
tions (4.20) to (4.22). Compare the three in terms of their Mean Squared
Error (using either the entire dataset or a random sample).

Project 3: A Recommender System for Books (Part 1)

In this project we’ll build recommender systems to make recommendations
related to book reviews from Goodreads (which we studied a little in Chap-
ter 2). Here, we’ll build simple similarity-based recommenders, before contin-
uing this project with more complex recommendation approaches in Chapter 5
(Project 4). We’ll also use this project to set up an evaluation pipeline for this
type of task (though we discuss evaluation strategies for recommender systems
in more detail in Chapter 5).

While this project could be completed using any dataset that includes users,

11 When withholding an interaction for evaluation, be careful to ensure the interaction is also
withheld from any auxiliary data structures you’ve built. If using a sparse dataset, it is likely
that many candidates will have scores of zero; you might consider using a denser dataset, or
revisiting the exercise once we develop more sophisticated evaluation techniques in
Section 5.4.
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items, and ratings, we suggest using a small subset of Goodreads data (e.g. re-
views from the Poetry or Comic Book categories) for the sake of quickly bench-
marking alternative methods.

(i) First, implement simple item-to-item recommendation strategies, as in Ex-
ercise 4.3 (you may follow a similar evaluation strategy as in that exercise).

(ii) Although the approaches explored in this chapter were largely not based on
machine learning, there is no reason why we couldn’t train a classifier to
predict (or rank) books that a user is likely to read. We’ll explore more com-
plex methods for this setting in Chapter 5, but for the moment let’s see how
far we can get by trying to extract some simple features to describe user/item
interactions. Start by building a training set consisting of all pairs (u, i) of
books i that user u has read; next build an (equally-sized) set of negative
pairs (u, j) of books the user hasn’t read (e.g. by sampling randomly). Now,
we want to build a feature vector φ(u, i) that can be used to predict whether
a user u has read book i or not. To build a useful recommender system, we
must include features that describe interactions between the user and the
book. Examples of features you might use could include:

• The popularity of the book (e.g. the number of times item i appears in the
training set, or its average rating);

• The Jaccard similarity (or any other similarity measure) between i and the
most similar book the user u has read (i.e., max j∈Iu Sim(i, j));

• Likewise, the similarity between the user u and the most similar user who
has read i;

• Any other similarity measures, user, or item features.

Your classifier can be evaluated using standard accuracy or ranking met-
rics (though we further discuss evaluation in this setting in Section 5.4).
Compare this classification-based approach to methods like those from Ex-
ercise 4.3.12

(iii) Finally, consider using the data to predict ratings, as in Exercise 4.4. We’ll
compare these predictions to model-based approaches in Project 4.

12 If implemented properly, the classification approach should perform better since other
similarity measures are used as features by the classifier; in essence our classifier is
implementing a simple form of ensembling.



5
Model-based Approaches to Recommendation

So far when developing recommender systems in Chapter 4 we have avoided
any discussion of machine learning. Although the types of ‘memory-based’
recommender systems (see fig. 4.2) we’ve developed so far can be used to
make predictions (either by estimating the next item or predicting a rating as
in Section 4.3.5), they were in some sense not optimized to do so. That is,
we used heuristics to rank items and predict ratings. This is in contrast to the
approaches we developed in Chapters 2 and 3 where we were concerned with
objectives to be optimized (involving an accuracy or error term), in terms of
several model parameters.

In this chapter, we develop model-based approaches to recommendation,
which adapt the regression and classification approaches from Chapters 2 and 3
to problems of estimating interactions between users and items. That is, we are
concerned with fitting models that take a user u and item i as inputs in order to
estimate an interaction label y (such as a purchase, click, or rating):

f (u, i)→ y. (5.1)

Superficially, solving such a prediction task seems no different than the regres-
sion or classification scenarios we’ve already developed: naively we might
imagine collecting some appropriate user or item features and applying the
techniques we’ve already developed. However as we began to discuss in Chap-
ter 4 (sec. 4.1), certain characteristics of this setting render traditional regres-
sion and classification approaches ineffective, and demand that we explore new
approaches specifically designed to capture the dynamics of interaction data.
Specifically:

• Most of the techniques we’ll develop in this chapter discard features alto-
gether, and make predictions purely on the basis of historical interactions.

104
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This owes partly to the difficulty of collecting useful features, and also to
the complex semantics that underlie people’s preferences and behavior.

• As such, rather than having parameters associated with features as we did in
Chapters 2 and 3, the models we’ll develop here have parameters associated
with individual users (or items). This shall be our introduction to the idea of
model-based personalization, as we discussed in Section 1.7.2.

• To model users (and items) we’ll introduce the concept of latent spaces
in Section 5.1, whereby we automatically discover hidden dimensions that
explain the variation in people’s opinions—without necessarily knowing ex-
actly what the dimensions correspond to.

Our discussion of recommender systems will form the basis of many of
the models we develop throughout the remainder of this book. Although in
this chapter we’ll build predictive models based purely on interaction histo-
ries, later we’ll show how similar models can be extended by incorporating
features (chap. 6) and temporal information (chap. 7). Later, as we further de-
velop personalized models of text (chap. 8) and images (chap. 9) this same
notion of modeling users via latent spaces will appear repeatedly.

In contrast to ‘memory-based’ recommendation approaches, model-based
approaches seek to learn parameterized representations of users and items, so
that recommendations can be made in terms of the learned parameters. Model-
based approaches are typically cast in terms of supervised learning, so that the
goal is to predict ratings, purchases, clicks (etc.) as accurately as possible. We
summarize the differences between these two classes of approach in Figure 5.1.

The Netflix Prize
In 2006, Netflix released a dataset of 100,000,000 movie ratings (across 17,770
movies and around 480,000 users). Their dataset took exactly the form de-
scribed in Section 4.1, i.e., it consisted purely of (user, item, rating, timestamp)
tuples. Associated with the dataset was a competition (Bennett et al., 2007) to
reduce the RMSE (on a test set of withheld ratings) by 10% compared to Net-
flix’s existing solution. The first team to do so would win a $1,000,000 prize.

The competition’s history is itself interesting. Early leaders joined forces
to develop ensemble approaches, and the winning teams were nearly tied in a
nail-biting finish. The competition also led to a broader discussion around the
value of such high-profile competitions, as well as the question of whether nar-
rowly reducing a Mean Squared Error actually improves recommendations. It
also led to a lawsuit against Netflix following de-anonymization of the compe-
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Figure 5.1 Memory-based versus model-based approaches.

There are a variety of reasons why one might choose a model-based or memory-
based approach. We summarize a few of the advantages and disadvantages as
follows:

Training and Inference Complexity Model-based approaches often require
(expensive) offline training; on the other hand, once trained, recommendations can
potentially be retrieved quickly, e.g. by retrieving a nearest neighbor or a maxi-
mum inner product in parameter space (sec. 5.6). In contrast, memory-based ap-
proaches, while requiring no training, may depend on computationally-intensive
heuristics.
Interpretability Often, simple recommendations may be preferable simply be-
cause they are easy to explain to a user. In contrast, machine learning-based rec-
ommendations may make users uncomfortable due to their ‘black box’ nature
(we explore notions of explainability and interpretability a little further in Sec-
tion 8.4.3).
Accuracy Model-based systems are appealing because they directly optimize a
desired error measure. On the other hand, error measures that are tractable may
not be those that relate meaningfully to user satisfaction, and may distract from
qualitative improvements.

tition data (Narayanan and Shmatikov, 2006).1 Finally there is the question of
whether the complex models that achieved the best competition performance—
which have many complex, interacting, and carefully-tuned components, and
are expensive to train—can really be deployed.

Other than the specifics of the prize itself, the dataset and high-profile com-
petition spawned a great deal of research on recommender systems in gen-
eral, especially the specific setting of rating prediction. In particular, winning
approaches were model-based solutions based on matrix factorization, as we
begin to develop below.

5.1 Matrix Factorization

The basic assumption made by model-based recommenders is that there is
some underlying low-dimensional structure among the interactions we are try-
ing to predict. Put differently, model-based recommender systems are essen-
tially a form of dimensionality reduction.

In simple terms, we assume that users’ opinions, or the properties of the
items they consume, can be efficiently summarized. Do you tend to like action
movies (and is this an action movie)? Do you tend to enjoy movies with a
1 This too is an interesting story, as the competition data, with anonymized user and item IDs, at

first glance appears to be sufficiently anonymized.
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high budget, certain actors, or a long runtime? To the extent that purchases,
clicks, or ratings can be explained by such factors, the goal of model-based
recommendation is to discover them.

Considering data of the form in Section 4.1, this seems a difficult process:
we have no knowledge of the necessary features that would be needed to dis-
cover these important factors (i.e., we don’t know which movies are action
movies, which movies have a long runtime, etc.). But surprisingly one can still
uncover these underlying dimensions without them. As a motivating example,
consider the interaction (e.g. click) data depicted below:

R =


1 · 1 · ·

1 1 1 · ·

· 1 1 · ·

· · · 1 1
· · · 1 ·


u1

u2

u3

u4

u5

i1 i2 i3 i4 i5

(5.2)

The matrix appears to decompose roughly into two ‘blocks’: if we wrote

γu1 = [1, 0]
γu2 = [1, 0]
γu3 = [1, 0]
γu4 = [0, 1]
γu5 = [0, 1]

;

γi1 = [1, 0]
γi2 = [1, 0]
γi3 = [1, 0]
γi4 = [0, 1]
γi5 = [0, 1]

, (5.3)

then we could (approximately) summarize the matrix R in Equation (5.2) by
writing Ru,i = γu · γi. The two blocks in R might conceivably correspond
to some feature in the data, e.g. male and female users who buy men’s and
women’s clothing. If so, the values in Equation (5.3) would correspond to gen-
ders for users and items. Note critically though that we discovered these factors
simply because they summarized the structure of the matrix, rather than need-
ing to rely on observed features.

Matrix Factorization follows this same idea, again by looking for underlying
structure that explains observed interactions.

Essentially, our goal is to describe a (partially observed) matrix in terms of
lower-dimensional factors, i.e., R

︸         ︷︷         ︸
|U |×|I|

=

 γU

︸  ︷︷  ︸
|U |×K

×
[

γT
I

]︸          ︷︷          ︸
K×|I|

. (5.4)

That is, we are assuming that the matrix R, of dimension |U | × |I| (the number
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γ·,1

γ·,2

γ·,3
γu

γi

Figure 5.2: Representation
of a user u and item i in a
latent factor model.

of users times the number of items), can be approximated by a ‘tall’ matrix γU

and a ‘wide’ matrix γI . Now, a single entry Ru,i can be estimated by taking the
corresponding row of γU and column of γI :

Ru,i = γu · γi, (5.5)

as in our motivating example above. γu ∈ R
K is now a latent vector that de-

scribes a user, and γi ∈ R
K describes an item.

Examples of such vectors are depicted in Figure 5.2. Intuitively, γu might be
thought of as describing the ‘preferences’ of the user u, whereas γi describes
the ‘properties’ of item i. Then, the user u will like (e.g. give a high rating to
or interact with) the item i if their preferences are compatible with the item’s
properties (i.e., they have a high inner product). The latent dimensions, γ·,1,
γ·,2 (etc.) now describe those latent factors that best explain variability in R.
For example, if such a model were trained on the Netflix dataset they might
measure the extent to which a movie is a comedy or a romance, or the quality
of its special effects. Again though, these factors are latent and are discovered
purely so as to maximally explain the observed interactions; models based on
the principle of matrix factorization are commonly referred to as latent factor
models.

Relationship to the Singular Value Decomposition
Briefly, we note that the factorization described in Equation (5.4) is closely
related to the Singular Value Decomposition (SVD). Under the Singular Value
Decomposition, a matrix M is decomposed as

M = UΣVT , (5.6)

where U and V are left and right singular values of M (eigenvectors of MMT

and MT M), and Σ is a diagonal matrix of eigenvectors of MMT (or MT M).
Critically, the best possible rank K approximation of M (in terms of the MSE)
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is found by taking the top K eigenvectors/eigenvalues in U, Σ and V (Eckart-
Young theorem). While this appears to give us a recipe for choosing the best
possible γu and γi in Equation (5.5), the Singular Value Decomposition is de-
fined only for fully observed matrices, rather than partially observed interac-
tions as in R. Even if this could be addressed (e.g. via a data imputation strat-
egy on the missing values), it would not be practical to compute the SVD on
a matrix that could potentially have millions of rows and columns. As such,
in practice we won’t compute eigenvectors and eigenvalues, and will instead
resort to gradient-based approaches, as described below. Nevertheless, the re-
lationship to the SVD gives us a hint as to the type of factors γu and γi are
likely to correspond to.

5.1.1 Fitting the Latent Factor Model

So far we have described the intuition behind modeling interactions in terms
of latent user and item factors, but have not yet described how to fit a model
based on this principle. That is, we would like to choose γU and γI so as to
fit the interaction data most closely, e.g. by minimizing some loss such as the
Mean Squared Error, following the setting of the Netflix Prize above:

arg min
γ

1
|R|

∑
(u,i)∈R

( f (u, i) − Ru,i)2, (5.7)

where f (u, i) is our prediction function f (u, i) = γu · γi.
As mentioned when discussing the SVD above, we seek a solution based

on gradient descent. When minimizing the Mean Squared Error, the solution
is similar to the one we saw in Section 2.5. Note that as usual we should be
careful to split interactions (u, i) ∈ R into training, validation, and test sets, and
to include a regularizer to avoid overfitting, as we describe below.

User and item biases
Before describing the gradient-descent-based solution to fitting models like
those in Equation (5.7), we first suggest some steps to augment the model that
will improve prediction accuracy.

Although a simple solution of the form r(u, i) = γu · γi seems to capture the
types of interactions we want, it is difficult to regularize. Consider adding a
simple `2 regularizer such as

Ω(γ) =

|U |∑
u=1

K∑
k=1

γ2
u,k +

|I|∑
i=1

K∑
k=1

γ2
i,k. (5.8)

This regularizer (for large λ) will encourage the parameters to be close to zero;
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as such the predictions γu · γi will also be pushed toward zero, and the system
will systematically underpredict ratings.

There are several ways this could be avoided. Trivially, we might simply
subtract the mean (R̄) from all ratings before training so that they are centered
around zero. Alternately, recall as in Section 3.4.2 that we were careful to
exclude the intercept term θ0 from our regularizer. Although our current model
lacks such an intercept term, we can straightforwardly add one:

r(u, i) = α + γu · γi. (5.9)

Note that we would still regularize as in Equation (5.8).
Although the offset term α corrects the problem of systematically underpre-

dicting ratings, it retains a similar issue at the level of individual users or items.
Again, the regularizer pushes γu and γi toward zero, and therefore pushes pre-
dictions toward α. But individual users or items may tend to systematically
give much higher (or lower) ratings than α, meaning that our regularizer again
encourages us to systematically under (or over) predict.

Again we correct for this by adding additional bias terms, this time at the
level of individual users or items:

r(u, i) = α + βu + βi + γu · γi. (5.10)

βu now encodes the extent to which user u’s ratings trend higher or lower than
α, and βi encodes the extent to which item i tends to receive higher or lower
ratings than α.2

Adding these bias terms introduces an additional |U | + |I| parameters to
the model. Whether these terms should be included in the regularizer Ω is
arguable: on the one hand they are similar to offset terms, which we would
normally not regularize (for the same reason we do not regularize α); on the
other hand, failing to regularize them may lead to overfitting. In practice, the
terms may simply be included in the regularizer:

Ω(β, γ) =

|U |∑
u=1

β2
u +

K∑
k=1

γ2
u,k

 +

|I|∑
i=1

β2
i +

K∑
k=1

γ2
i,k

 . (5.11)

Alternately one could regularize β and γ with different strengths (since we
generally expect β to have larger values):

λ1Ω(β) + λ2Ω(γ) = λ1

 |U |∑
u=1

β2
u +

|I|∑
i=1

β2
i

 + λ2

 |U |∑
u=1

K∑
k=1

γ2
u,k +

|I|∑
i=1

K∑
k=1

γ2
i,k

 ,
(5.12)

2 Note that we are careful not to refer to α as an ‘average’ rating, and indeed in general once we
fit the model α , R̄, just as the offset θ0 is not the average ȳ in a linear regression model.
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though doing so is difficult as it results in multiple regularization constants to
tune.

Gradient update equations
Under this new model of Equation (5.10), the objective we wish to minimize
(on a training set of interactions T ) is

obj(α; β; γ|T ) =
1
|T |

∑
(u,i)∈T

(r(u, i) − Ru,i)2 + λΩ(β, γ) (5.13)

=
1
|T |

∑
(u,i)∈T

(α + βi + βu + γi · γu − Ru,i)2 + λΩ(β, γ). (5.14)

Assuming the regularizer takes the form given in Equation (5.11), the partial
derivatives (for α, βu, and γu,k) are given by:

∂obj
∂α

=
1
|T |

∑
(u,i)∈T

2(r(u, i) − Ru,i) (5.15)

∂obj
∂βu

=
1
|T |

∑
i∈Iu

2(r(u, i) − Ru,i) + 2λβu (5.16)

∂obj
∂γu,k

=
1
|T |

∑
i∈Iu

2γi,k(r(u, i) − Ru,i) + 2λγu,k. (5.17)

Note the change of summation in the last two terms: the derivative for user u
is based only on items Iu that they consumed (in the training set). Derivatives
for βi and γu,k can be computed similarly.

Other considerations for gradient descent When we first introduced gradi-
ent descent in Section 2.5, we noted some potential issues in terms of local
minima, learning rates etc. It is worth revisiting some of those issues in light
of the more complex model we are fitting here:

• The problem in Equation (5.14) is certainly non-convex and has many local
minima.3 Surprisingly though, this problem is not prone to ‘spurious’ local
optima, and if carefully implemented should converge to a global optimum
(Ge et al., 2016).

• Nevertheless the problem is sensitive to initialization. For example if mul-
tiple columns of γU and γI are initialized to the same value, they will have
identical gradients and will remain in ‘lock step’ during successive itera-
tions. This can normally be avoided simply by random initialization.

3 The proof can roughly be sketched as follows. The objective is smooth, and given any global
optimum γU , γI , any permutation applied to both (i.e., γUπ and γIπ) will result in an
equivalent local optimum.
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• Rather than computing the full gradient (as in eqs. (5.15) to (5.17)), alternate
approaches such as stochastic gradient descent, or alternating least squares,
may converge faster or require less memory.4 See e.g. Bottou (2010); Yu
et al. (2012).

5.1.2 What Happened to User or Item Features?

It is interesting to briefly consider that between our regression models in Chap-
ter 2 and the model-based recommender systems we developed above, we have
gone from models that completely depend on features to models that com-
pletely avoid them.

This can come as a surprise when first exploring recommender systems:
obviously, features such a movie’s budget or its genre ought to be predictive of
users’ preferences toward it. However, to the extent that a feature is predictive,
it will already be captured by γu or γi. These parameters will capture whatever
dimensions maximally explain variance in interactions, without any need to
explicitly measure that feature.

As such, one might argue that if we observe enough interactions, γu and γi

will capture whatever user and item characteristics are useful. We’ll revisit this
argument in later chapters and explore various exceptions, e.g. what can we do
if we don’t have sufficient interaction data (e.g. for new users or items, as in
Section 6.2), or what should we do if user preferences or item properties aren’t
stationary over time (chap. 7).

5.2 Implicit Feedback and Ranking Models

So far, our discussion of (model-based) recommender systems has focused on
predicting real-valued outcomes such as ratings, using objectives based on the
Mean Squared Error. That is, we have described model-based recommendation
in terms of regression approaches.

Just as we developed separate approaches for neighborhood-based recom-
mendation when considering click, purchase, or rating data (sec. 4.3), here we
consider how our regression-based approaches should be adapted to handle
binary outcomes (such as clicks and purchases).

Naively, we might imagine that we could adapt our regression-based ap-
proaches to handle binary outcomes in much the same way we that devel-

4 Alternating Least Squares notes that the optimization problem in Equation (5.14) has a closed
form if either γU or γI is fixed; optimization proceeds by alternately fixing one term and
optimizing the other.



5.2 Implicit Feedback and Ranking Models 113

oped logistic regression in Chapter 3. That is, we could pass the model output
(eq. (5.10)) through a sigmoid function, such that positive interactions are as-
sociated with high probabilities, and negative interactions are associated with
low probabilities.

However, when dealing with click or purchase data, we should consider that
items which haven’t been clicked or purchased are not necessarily negative
interactions—in fact items that haven’t been clicked or purchased are exactly
the ones we intend to recommend.

Several techniques have been proposed to handle recommendation in this
context. Often this setting is referred to as one-class recommendation, as only
the ‘positive’ class (clicks, purchases, listens, etc.) is observed. The setting is
also referred to as implicit feedback recommendation, given that the signals
(whether or not to buy something) only implicitly measure whether we like or
dislike an item.

5.2.1 Instance Re-weighting Schemes

One category of methods for dealing with implicit feedback data attempts to
reweight instances as having various ‘confidences’ of being positive or nega-
tive.

Hu et al. (2008) consider cases where positive instances are associated with
‘confidence’ measures ru,i, which could measure e.g. the number of times a
user listened to a song or watched a particular program. Negative instances still
have ru,i = 0, such that the model essentially assumes that negative instances
are necessarily associated with low confidence, whereas confidence may vary
substantially among positive instances.

Ultimately, the goal is still to predict a binary outcome pu,i, and the model
is trained to predict

pu,i =

{
1 if ru,i > 0
0 otherwise

. (5.18)

The form of the predictor is similar to that of Equation (5.14), i.e., latent user
and item factors are used to predict pu,i using a (regularized) Mean Squared
Error. The main difference is that the MSE is weighted according to the confi-
dence of each observation:5

arg min
γ

∑
(u,i)∈T

cu,i(pu,i − γu · γi)2 + λΩ(γ), (5.19)

5 For brevity we will sometimes omit the normalization 1
|T |

from our training objective. In
practice this term is optional as it simply scales the objective by a constant.
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where cu,i is a weighting function associated with each observation, which
ultimately is a monotone transform of ru,i, e.g.

cu,i = 1 + αru,i; or cu,i = 1 + α log(1 + ru,i/ε), (5.20)

where α and ε are tunable hyperparameters. Note that the transform cu,i en-
sures that negative instances have small but non-zero weight, whereas positive
instances receive increasingly higher weight according to their associated con-
fidence.

Pan et al. (2008) approach the problem in a similar way, also fitting a func-
tion of the form in Equation (5.19), though their weighting scheme is applied
to negative instances. Several schemes are proposed, two of which are as fol-
lows:

cu,i = α × |Iu|; or cu,i = α(m − |Ui|). (5.21)

The first (which they call ‘user oriented’ weighting) suggests that a negative in-
stance should be weighted higher if the corresponding user has interacted with
many items; the second assumes that a negative instance should be weighted
higher if the corresponding item has few associated interactions.

Although the schemes above are ultimately simple heuristics for reweighting
the model we developed in Equation (5.14), experiments in Hu et al. (2008)
and Pan et al. (2008) show that these scheme outperforms models that try to
predict pu,i (or ru,i) directly.

5.2.2 Bayesian Personalized Ranking

While the above reweighting schemes demonstrate the importance of treat-
ing ‘negative’ and ‘positive’ feedback carefully in implicit-feedback settings,
they ultimately optimize regression objectives, and therefore still seek to as-
sign ‘negative’ scores to unseen instances.

A potential objection to such an approach is that the unseen instances are
exactly the ones we want to recommend, and thus we should not encourage a
model to assign them a negative score. A weaker assumption might state that
while unseen instances should have lower scores than positive instances, they
need not have negative scores. That is, items which we know a user likes are
‘more positive’ than unseen items, but unseen items could still have positive
scores.

Rendle et al. (2012) built models based on the above principle by borrow-
ing ideas from ranking. Recall from Section 3.3.3 that the above principle is
similar to our goal when adapting classifiers for ranking: while positive (or rel-
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Figure 5.3 Pointwise versus pairwise recommendation.

The type of predictor we develop in Equation (5.25)—which compares two sam-
ples i and j, rather than assigning a score to a single sample—is known as a pair-
wise predictor.

Pointwise predictors estimate a score or label associated with a particular sample i.
All of the regression and classification models from Chapters 2 and 3 are examples
of pointwise predictors, as are our latent factor models from Section 5.1.

Pairwise predictors compare two samples i and j. Such predictors are often prefer-
able when training ranking functions (since they act as proxies for objectives like
the AUC, as in Equation (5.26)). They are often used in implicit feedback settings,
where neither sample has a ‘negative’ label, but we can still assume that positive
instances should rank higher. We’ll also use such predictors in cases where out-
comes are associated with pairs of samples, such as when generating compatible
outfits in Chapter 9.

evant) items should appear near the top of a ranked list, we are not concerned
with their actual (positive or negative) scores.

Likewise, the principle behind their method, Bayesian Personalized Ranking
(BPR), is that we should generate ranked lists of items such that positive items
appear first. This is achieved by training a predictor xu,i, j that assigns a score
based on which of the two items (i or j) is preferred (i.e., ranked higher) by u:

xu,i, j > 0→ u prefers i (5.22)

xu,i, j ≤ 0→ u prefers j. (5.23)

Now, if we know that i is a positive and j is a negative (or unseen) item for user
u, then a good model should tend to output positive values of xu,i, j. This type
of prediction strategy (which compares two samples, rather than assigning a
score to a single sample) is known as a pairwise model (fig. 5.3).

xu,i, j could be any predictor, though the most straightforward option is to
define it in terms of difference between predictions, e.g.:

xu,i, j = xu,i︸︷︷︸
u’s preference toward i

− xu, j︸︷︷︸
u’s preference toward j

. (5.24)

Compatibility xu,i could be defined via a latent factor model, similar to that of
Equation (5.10):6

xu,i, j = xu,i − xu, j = γu · γi − γu · γ j. (5.25)

Again, note that our goal is not that γu · γi should be positive for the positive

6 The implementation of BPR in Rendle et al. (2012) does not include bias terms βi or β j,
though they can straightforwardly be included in Equation (5.25).
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item, nor that γu · γ j should be negative for the unseen item, only that the dif-
ference is positive, i.e., that the positive item has a higher compatibility score.

We can now define our objective in terms of whether the model correctly
outputs positive values xu,i, j given a positive item i and an unseen item j. Ide-
ally, we would like to count how often the model is able to correctly rank
positive items higher than unseen items. For a specific user u we have:

AUC(u) =
1

|Iu||I \ Iu|

∑
i∈Iu︸︷︷︸

positive items for user u

∑
j∈I\Iu︸︷︷︸
unseen items for user u

δ(xu,i, j > 0). (5.26)

The name ‘AUC’ stands for ‘Area Under the ROC Curve’ (as this measure is
equivalent to computing the area under the ROC curve as we introduced in
Section 3.3.3). For an entire dataset we average the above across all users:

AUC =
1
|U |

AUC(u) (5.27)

Note that this quantity takes a value between 0 and 1, where an AUC of 1
means that the model always ranks positive items higher than unseen items; an
AUC of 0.5 means that the model is no better than random.

Optimizing the above presents two issues. First, it is not feasible to consider
all (u, i, j) triples; to address this one can randomly sample a fixed number of
unseen items j per positive item i.7

Second, the objective in Equation (5.26) is a step function, whose derivative
is zero almost everywhere. This is much the same issue we encountered when
developing logistic regression in Section 3.1; as such we can take the same
approach by replacing the step function δ(xu,i, j) with a differentiable surrogate
such as the sigmoid function (see fig. 3.1). Using the sigmoid function allows
us to interpret σ(xu,i, j) as a probability:

p(u prefers i over j) = σ(xu,i, j). (5.28)

From this point, optimization proceeds in much the same way as we developed
logistic regression: we use σ(xu,i, j) to define a (log-)probability of a model
given a training set, and subtract a regularizer:

obj(BPR) = `(γ;T ) − λΩ(γ) (5.29)

=
∑

(u,i, j)∈T

logσ(γu · γi − γu · γ j) − λΩ(γ). (5.30)

Assuming an `2 regularizer Ω(γ) = ‖γ‖22, we can compute the derivative, for

7 Furthermore, the sampled items could change during each iteration of training.
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example with respect to γu,k:

∂obj
∂γu,k

=
∂

∂γu,k

∑
(u,i, j)∈T

logσ(γu · γi − γu · γ j) − λ‖γ‖22 (5.31)

=
∂

∂γu,k

∑
(u,i, j)∈T

− log(1 + eγu·γ j−γu·γi ) − λ‖γ‖22 (5.32)

=
∑

(i, j)∈Iu

(γi,k − γ j,k)(1 − σ(γu · γi − γu · γ j)) − 2λγu,k (5.33)

(we abuse notation slightly so that (i, j) ∈ Iu includes both positive and unseen
items sampled from a user’s history). Derivatives of other terms can be com-
puted similarly. In practice, it is often preferable to use libraries that compute
such derivatives automatically, as we explore in Section 5.8.3.

5.3 ‘User-free’ Model-based Approaches

At the beginning of this chapter, we drew a distinction between memory-based
versus model-based recommenders. Roughly, memory-based approaches make
recommendations using algorithms that operate on histories associated with
users and items; model-based approaches generally distill these histories into
low-dimensional user and item representations.

In practice, this distinction is not always so clear. Below we study two mod-
els that learn item representations but eschew user representations. At infer-
ence time, predictions are made in terms of parameters associated with items
in the user’s history, though users themselves are not associated with any pa-
rameters as such.

Such models may be preferable for a few reasons. First, avoiding user terms
and directly making use of their interaction history can make models easier
to deploy: the model does not have to be updated as new user interactions
are observed. Second, this approach can be preferable when user interactions
are sparse, meaning that we can fit complex item representations but cannot
reliably fit parameters like γu. Third, when we explore sequential settings in
Chapter 7, there may be important information in the user’s history (such as
the order in which items are consumed) which is not captured by user repre-
sentations.

We briefly explore a few such methods below, which we summarize in Ta-
ble 5.1.
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Table 5.1 Summary of user-free recommendation models. References: Ning
and Karypis (2011); Kabbur et al. (2013).

Ref. Method Description

NK11 Sparse Linear Methods
(SLIM)

Each user is associated with a linear model
weighting their interactions over past items;
sparsity-inducing regularizers are used to deal
with the large number of model parameters
(sec. 5.3.1).

K13 Factored Item Similarity
Models (FISM)

Replaces the user term in a latent factor model
with a second term that represents the user
by averaging over item representations from
their history (sec. 5.3.2).

5.3.1 Sparse Linear Methods (SLIM)

A direct way to avoid including an explicit user term (i.e., γu) is to describe
all of a user’s interactions in terms of a binary feature vector enumerating
which items they have interacted with (i.e., a vector of length |I|). To predict
the score associated with an item i, we can then train a linear model (again
with |I| parameters), much as we did in Chapter 2:

f (u, i) = Ru ·Wi. (5.34)

Here Ru is a (sparse) vector describing all of a user’s interactions, i.e., equiva-
lent to a row of the interaction matrix R from Equation (4.8).

Fitting such a model naively is not straightforward, given the high dimen-
sional feature and parameter vectors involved. Ning and Karypis (2011) at-
tempt to fit this type of model by exploiting the specific sparsity structure of
the vector Ru, noting that Equation (5.34) can be rewritten in terms of just the
items Iu that the user has interacted with:

f (u, i) =
∑
j∈Iu

Ru, jWi, j. (5.35)

Here W is an |I|× |I| parameter matrix which essentially measures item-to-item
compatibilities (or similarities).

Conceptually, Equation (5.35) is similar to the simple heuristic we devel-
oped in Section 4.3.5, in which we predicted a rating using a weighted average
of previous ratings, where the weighting function was determined by an item-
to-item similarity measure (such as the cosine similarity). Essentially, SLIM
follows the same reasoning, but replaces the heuristic item-to-item similarities
from Section 4.3.5 with a learned matrix W.

The main challenge in fitting W is that it has dimension |I| × |I|. Were W a
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dense matrix (i.e., every item interacts with every item) training and inference
would be expensive; this is circumvented by using a regularization approach
which ensures that W is sparse.8 Sparsity is achieved via a regularization strat-
egy which includes both an `2 and `1 regularizer:

arg min
W

‖R − RWT ‖22 + λΩ2(W) + λ′Ω1(W)

s.t. Wi, j ≥ 0; Wi,i = 0.
(5.36)

Note that ‖R−RWT ‖22 is merely a matrix shorthand for the predictions made for
all interactions (u, i) following Equation (5.35). The first constraint in Equa-
tion (5.36) ensures that all terms in the weighting function are positive; the
second constraint (Wi,i = 0) ensures that each item i’s rating is predicted only
based on interactions with other items j. Ω1 is an `1 regularizer (i.e., Ω1(W) =∑

i, j |Wi, j|); as we discussed in Section 3.4.2, `1 regularization leads to sparsity
of the matrix W.

Ning and Karypis (2011) discuss various merits of the above approach. No-
tably the rapid inference time (i.e., the rate at which recommendations can be
made) compared to standard recommendation approaches, and also the long-
tail performance of the approach. For the latter, compared to (e.g.) latent fac-
tor approaches—whose representations tend to favor whichever types of items
predominate in the data, but fail to capture the dynamics of rarer items—SLIM
maintains (relatively) good performance even for tail items.

5.3.2 Factored Item Similarity Models (FISM)

Factored Item Similarity Models (Kabbur et al., 2013) attempt to replace the
user term γu in a latent factor model (eq. (5.10)) with a term that aggregates
item representations from a user’s history. Specifically, the user term in Equa-
tion (5.10) is replaced with an average over item terms for all items consumed
by that user:

f (u, i) = α + βu + βi +
1

|Iu \ {i}|

∑
j∈Iu\{i}

γ′j · γi (5.37)

(recall that Iu is the set of items consumed by user u, and we exclude the query
item i during model training). Note that the item term γi is separate from the

8 Though in practice experiments are conducted with moderate item vocabularies
(e.g. |I| ' 50000), and various computational tricks are used to allow for parallelization and
efficient inference.
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term used to average user actions γ′j, i.e., the model learns two sets of latent
factors per item.9

Spiritually, the average 1
|Iu |

∑
j γ
′
j fulfils the same role as γu, by summarizing

the dimensions that are compatible with a particular user.
Kabbur et al. (2013) consider variants of Equation (5.37) for both rating

prediction and ranking problems (i.e., to optimize the MSE as in Section 5.1.1
or the AUC as in Section 5.2.2).

Kabbur et al. (2013) argue that the above approach is particularly useful in
sparse datasets (presumably, datasets where users have few associated inter-
actions, while items have several). That is, a traditional latent factor model as
in Equation (5.10) would struggle to meaningfully fit γu for a user who has
only a few interactions; whereas if item histories are denser, a reasonable es-
timate of user preferences can be made by averaging over item terms. Indeed,
experiments in Kabbur et al. (2013) show that the settings in which FISM are
effective are closely related to dataset sparsity.

5.3.3 Other User-free Apporaches

Although we have only presented two examples of user-free models above,
we will revisit user-free approaches throughout the book as we develop more
complex models based on deep learning (sec. 5.5.3), sequences (sec. 7.7), and
text (sec. 8.2.1). We briefly preview a few examples here just to give a sense
of the overall approaches.

AutoRec In Section 5.5.3 we discuss AutoRec (specifically AutoRec-U), an
autoencoder-based recommendation model (Sedhain et al., 2015). Spiritually,
this model is similar to FISM, in the sense that an explicit user term is replaced
by a function that aggregates (representations of) all items from a user’s his-
tory; the main difference being that the autoencoder framework allows for the
inclusion of various non-linear operations.

Item2vec (Barkan and Koenigstein, 2016) is an adaptation of word2vec, a
natural language model that learns representations that describe semantic rela-
tions among words (sec. 8.2). Just as word2vec discovers which words appear
in the same context in a sentence (essentially ‘synonyms’), item2vec learns
item representations γi that are capable of predicting which items occur in the
same context in an interaction sequence.

9 Strictly speaking, FISM is not ‘user-free’ in the sense that it includes a bias term βu; however
including this term requires only a single parameter per user, or could be excluded.
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Sequential models Many of the neural network-based sequential models we
discuss in Section 7.7 are also user-free. Like item2vec, such models also
borrow ideas from natural language processing, generally treating items (or
item representations) as a sequence of ‘tokens’ in order to predict which token
comes next. As such there is no user representation, and the user is represented
implicitly via some latent state of the model.

5.4 Evaluating Recommender Systems

So far, when developing models to predict ratings as in Section 5.1, we have
done so by optimizing objectives based on a sum of squared errors (or equiv-
alently, a Mean Squared Error). Recall that in Section 2.2.2, we discussed the
motivation behind the Mean Squared Error, as well as some potential pitfalls
when using it.

In the case of recommender systems, we must be aware of the same pit-
falls, but also some different ones. Critically, since the system is likely used
to provide ranked lists of items to the user, actual prediction of ratings may
not be critical so long as desirable items appear near the top of the ranking.
Consider, for example, some potential problems with the Mean Squared Error
in a recommendation context:

• Using the MSE, mispredicting a 5-star rating as 4-stars incurs a smaller
penalty than mispredicting 3-stars as 1-star. Arguably, the latter should have
a smaller penalty, as it concerns an item which should never have been rec-
ommended anyway.

• Similarly, mispredicting ratings of 3 and 3.5 as 4 and 4.5 (respectively)
would incur a larger penalty than mispredicting them as 3.5 and 3. How-
ever the former preserves the ordering of the two items, whereas the latter
does not.

• As we saw in Section 2.2.2, the MSE corresponds to an implicit assumption
that errors are normally distributed; critically this assumes that outliers are
extremely rare and should be penalized accordingly. In practice, outliers
may be common, or alternately errors could be bimodal (or otherwise violate
our model assumptions).

• Bellogin et al. (2011) noted the issue of ‘popularity bias,’ whereby strong
performance on popular items can mask performance issues for less-popular
ones.10

10 Though this is not an issue with the MSE specifically, but rather a general problem of
evaluation in imbalanced datasets.
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Ultimately, such problems raise the question of whether reductions in Mean
Squared Error actually correspond to increased utility of a recommender sys-
tem. Interestingly, it is reported in Koren (2009) that a carefully implemented
model with temporally-evolving bias terms (which we discuss in Section 7.2.2)
outperformed Netflix’s previous solution (Cinematch) in terms of the RMSE.
Critically, a system without any interaction terms (e.g. γu or γi) can do lit-
tle more than recommend popular items over time; as such their experiment
suggests that the system with a better MSE is not necessarily the better recom-
mender.

Some of the above issues suggest the use of alternative regression metrics,
such as the Mean Absolute Error, which (for example) is less sensitive to out-
liers, as we argued in Section 2.2.5. Others suggest that perhaps a recom-
mender system should be evaluated less like a regression problem and more
like a ranking problem. That is, so long as items matching a user’s interests
have the highest predicted scores, the precise accuracy of our predictions is
unimportant.

Arguably, such problems with the Mean Squared Error are driving research
toward settings that rely on implicit feedback (clicks, purchases, etc.) rather
than ratings; alternately, these settings may be preferable simply because such
data is more available than explicit feedback (few users rate items, but every
user clicks on them). More crudely, optimizing clicks or purchases may simply
correspond more closely to business goals compared to identifying highly-
rated items.

We already saw in Section 5.2.2 one technique to train recommender sys-
tems to optimize a ranking loss based on implicit feedback, namely the AUC.
Conceptually, the AUC reflects our ability to guess which of two items is ‘rel-
evant:’ an AUC of 1 means that we always select the correct item, whereas an
AUC of 0.5 means our guesses are no better than random.

However, the AUC is but one choice of ranking loss, and was primarily cho-
sen for its convenience when formulating the optimization problem in Equa-
tion (5.30). As in Section 3.3.3, when considering cases where recommenda-
tions are surfaced to a user via an interface, we may be particularly interested
in how the recommender system performs among the top K ranked items.

Below we present a few alternative evaluation functions to measure recom-
mendation performance, most of which are focused on achieving high accu-
racy among the top-ranked items.
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5.4.1 Precision and Recall @ K

When we evaluated classifiers in Section 3.3, we motivated the precision and
recall@K as useful metrics in the context of evaluating user interfaces, where
we have a fixed budget (K) of results that can be returned. Likewise, when
recommending items, we might consider whether relevant items (e.g. those
that a user eventually interacts with) are given a high ranking.

For convenience, when evaluating recommenders in this setting, it is useful
to define a variable ranku(i) that specifies in what position an item i was ranked
for a particular user u. That is, given a compatibility function f (u, i), and a set
of N items that can potentially be recommended (potentially excluding e.g. in-
teractions that already appeared in the training set), then ranku(i) ∈ {1 . . .N} is
defined such that

ranku(i) < ranku( j)⇔ f (u, i) > f (u, j) (5.38)

ranku(i) = ranku( j)⇔ i = j. (5.39)

Now, given a test set of observed interactions Iu we define the precision@K
(for a particular user u) as

precision@K(u) =
|{i ∈ Iu | ranku(i) ≤ K}|

K
. (5.40)

As in Equation (3.23), the numerator is the number of relevant items that were
retrieved, while the denominator is the number of retrieved items. Now to com-
pute the precision@K we simply average over all users:

precision@K =
1
|U |

∑
u∈U

precision@K(u). (5.41)

Likewise the recall@K is defined similarly:

recall@K =
1
|U |

∑
u∈U

|{i ∈ Iu | ranku(i) ≤ K}|
|Iu|

(5.42)

5.4.2 Mean Reciprocal Rank

The Mean Reciprocal Rank (MRR) is another metric to assess whether a rec-
ommender system (or any classifier) ranks positive items highly; unlike the
precision and recall@K this expression does not depend on a particular size of
the returned set of items, but rather rewards methods for ranking relevant items
near the top of the list.

Traditionally, in search settings, the Mean Reciprocal Rank is defined in
terms of the first relevant item among a ranked list of retrieved results, though
in recommendation settings the metric is typically used by building a test set
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that consists of only a single relevant item per user, iu. Then, the Mean Re-
ciprocal Rank is defined in terms of the inverse (reciprocal) of the rank of the
relevant item:

MRR =
1
|U |

∑
u∈U

1
ranku(iu)

. (5.43)

A score of 1 means the relevant item is always ranked in the first position; a
value of 1/n would mean items are on average ranked in the nth position.

5.4.3 Cumulative Gain and NDCG

The Cumulative Gain (and its variants) aim to measure ranking performance
in a setting that resembles a user browsing a page of search results: relevant
results should be among the top K results, and ideally should be close to the top
of the ranked list. The Cumulative Gain (here for a particular user u) simply
counts the number of relevant items among the top K results:

Cumulative Gain@K =
∑

i∈{i|ranku(i)≤K}

yu,i, (5.44)

where yu,i is either a binary label (e.g. whether an item was purchased) or a
relevance score (such as a rating). That is, the Cumulative Gain will be high if
there are many relevant items (or highly rated items) among the top K results.

Ideally, relevant results should appear closer to the top of the list; the Dis-
counted Cumulative Gain (DCG) accomplishes this by discounting the reward
for items in lower ranks:

DCG@K =
∑

i∈{i|ranku(i)≤K}

yu,i

log2(ranku(i) + 1)
. (5.45)

This expression is often normalized by comparison against an idealized rank-
ing function to obtain the Normalized Discounted Cumulative Gain (NDCG):

NDCG@K =
DCG@K
IDCG@K

(5.46)

where IDCG@K is the ‘ideal’ discounted cumulative gain, i.e., the discounted
cumulative gain that would have been achieved via an optimal ranking func-
tion rankopt

u (i) (i.e., where labels yu,i are sorted in decreasing order of rele-
vance). This normalization, and the specific choice of logarithmic scaling in
Equation (5.45) are theoretically justified in Wang et al. (2013).
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5.4.4 Evaluation Metrics Beyond Model Accuracy

Finally, it should be noted that there are several other qualities we might desire
from a recommender system beyond its immediate utility to users (i.e., its abil-
ity to predict the next action). For example, we might be interested in expos-
ing users to diverse viewpoints, ensuring that recommendations aren’t biased
against certain groups, that users don’t get pushed toward ‘extreme’ content,
etc. We’ll revisit these issues in Chapter 10, when we consider the broader
consequences and ethics of personalized machine learning. Several are backed
by user studies aimed at determining the qualitatively desirable features of rec-
ommender systems.

5.5 Deep Learning for Recommendation

Increasingly, state-of-the-art recommendation models are based on deep learn-
ing approaches. In principle, the appeal of deep learning-based recommenders
is that they can capture complex, non-linear relationships among users and
items, beyond what is possible with the simple aggregation functions such as
those in Equation (5.10). Later, deep learning-based approaches will allow us
to uncover complex sequential patterns (chap. 7), or incorporate complex fea-
tures from text (chap. 8) and images (chap. 9). For the moment, we explore a
few of the main approaches to model interaction data in ‘traditional’ settings,
though revisit deep learning-based models repeatedly in future chapters.

5.5.1 Why the Inner Product?

To motivate the potential of deep learning for recommendation, it is worth
briefly revisiting our specific choice of the objective in Section 5.1, in which
we computed compatibility between users and items via an inner product, i.e.,

Compatibility(u, i) = γu · γi. (5.47)

This seemed a reasonable enough choice, and was motivated by a connection to
matrix factorization and the Singular Value Decomposition. However it should
be carefully noted that this is only one choice of compatibility function, and is
by no means sacred. For instance, consider measuring compatibility between
representations via a (squared) distance function:

Compatibility(u, i) = ‖γu − γi‖
2
2. (5.48)

Figure 5.4 shows recommendations that might be generated under these two
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Figure 5.4 User vectors γu in latent space, and candidate items to be recom-
mended. Highly compatible items appear in the highlighted region under inner
product (left) and Euclidean (right) compatibility models.

compatibility conditions. Conceptually, these recommendations have quite dif-
ferent semantics: roughly, inner product-based compatibility (eq. (5.47)) im-
plies that a user who likes action movies should be recommended movies with
a lot of action, whereas a distance-based compatibility suggests that users
who like action movies should be recommended other movies with a similar
amount of action.

Neither compatibility function is ‘better,’ and either could be preferable un-
der certain conditions. Ideally, deep learning-based recommenders could give
models the flexibility to determine the right compatibility functions for a par-
ticular scenario.

Zhang et al. (2019) discuss various potential benefits and limitations of
deep learning-based recommender systems. Arguably, the main benefit of deep
learning-based models is the ability to uncover complex, non-linear relation-
ships between user and item representations. For example, later we’ll study
various settings (e.g. sec. 7.5.3) where the Euclidean distance may be prefer-
able to the inner product when comparing representations. In principle, deep
learning approaches could learn more flexible aggregation functions, reducing
the need for manual engineering.

Zhang et al. (2019) suggest other appealing properties of deep learning-
based recommenders, including the effectiveness of deep learning when deal-
ing with structured data such as sequences, images, or text, and the ubiquity of
high-level libraries that facilitate straightforward implementation. We revisit
these topics throughout the book.

Conversely, there is some question as to whether deep learning-based rec-
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ommender systems over-promise in terms of their perceived value, or whether
‘traditional’ recommender systems might still deliver better results if carefully
tuned. We discuss these questions in Section 5.5.5.

5.5.2 Multilayer Perceptron-based Recommendation

Multilayer perceptrons (MLPs) are a staple of artificial neural networks, offer-
ing a straightforward way to learn non-linear transformations and interactions
among features.

Roughly speaking, a ‘layer’ of a multilayer perceptron transforms a vector
of input variables to a (possibly lower dimensional) vector of output variables;
typically the output variables are related to the input variables via a linear
transformation followed by a non-linear activation, e.g.:

f (x) = σ(Mx). (5.49)

Here x is a vector of input variables, f (x) is a vector of output variables, and
M is a learned matrix, such that each term in Mx is a weighted combination of
the original features in x. The sigmoid function (or some other non-linear ac-
tivation) is applied elementwise, in this case transforming the output variables
to lie in the range (0, 1).

While the above is just one layer of a multilayer perceptron, several such
layers can be ‘stacked’ in order for the network to learn complex non-linear
functions. Eventually, the final layer predicts some desired output, e.g. a re-
gression or classification objective. For example, the final layer might simply
take a weighted combination of features from the previous layer:

f (x) = σ(θ · x), (5.50)

i.e., similar to the output of a logistic regressor (for a classification task).
We depict a multilayer perceptron in Figure 5.5. Note that a trivial linear

model of the form y = Xθ would be depicted by a similar figure in which the
inputs were connected directly to the output.

Ultimately, multilayer perceptrons handle similar modalities of data and
problems to those we saw in Chapters 2 and 3, i.e., feature vectors as inputs
and regression or classification targets as outputs; the main difference com-
pared to our earlier models is simply their ability to learn complex non-linear
transformations and relations among features.

Neural Collaborative Filtering
He et al. (2017b) attempted to apply the benefits of multilayer perceptrons
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Figure 5.5 Representation of a multilayer perceptron with L layers. Here for sim-
plicity each layer has the same number (m) of units, and we have only a single
output y (so that the inputs and outputs are similar to the regression and classifi-
cation problems we studied in Chapters 2 and 3).

to latent factor recommender systems. The essential idea is fairly straightfor-
ward: rather than combining user and item latent factors via an inner product
(as in eq. (5.10)), γu and γi are combined via a multilayer perceptron to pre-
dict the model output (note that both the latent factors and the MLP param-
eters are learned simultaneously). As we discussed in Section 5.5.1 the inner
product function is only one possible choice when combining user and item
preferences and other choices (such as a Euclidean distance) may be more ap-
propriate in other settings; conceptually, the promise of a solution based on
a multilayer perceptron is that one can be agnostic to these choices with the
expectation that the model will learn the correct aggregation function auto-
matically. While He et al. (2017b) showed this method to be effective in some
settings, there has recently been some question as to the value of this type of
technique: while MLPs can in principle learn quite general functions, in prac-
tice specific functions (like the inner product) are not easily recoverable by
such models, meaning that simpler models may still outperform these more
complex approaches. We discuss this issue further in Section 5.5.5.

5.5.3 Autoencoder-based Recommendation

Roughly speaking, the role of an autoencoder is to learn a low-dimensional
representation of some input data that preserves the ability to reconstruct the
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Figure 5.6: Autoencoder. gi and fi
are shorthand for g(x)i and f (g(x))i

respectively. Either of the encod-
ing or decoding operations could
include multiple layers.

original (high-dimensional) data from the low-dimensional representation. The
basic principle of an autoencoder is depicted in Figure 5.6. Here an input vec-
tor x is projected into a lower-dimensional space via a function g(x) (following
an approach similar to that of a multilayer perceptron above), which may in-
clude several layers. The low-dimensional representation is then mapped back
into the original space via f (g(x)); the goal is that f (g(x)) should match the
original data x as closely as possible. In this way g(x) acts as a ‘bottleneck,’
forcing the model to learn a compressed representation that succinctly cap-
tures the meaningful information in x. Several variants of autoencoders exist,
for instance denoising autoencoders partially corrupt the input in order to learn
representations that are robust to noise; sparse autoencoders attempt to learn
compressed representations that are sparse, etc.

Zhang et al. (2019, 2020) survey various ways that autoencoders can be used
in the specific context of recommendation, including methods that use autoen-
coders as a component in complex recommendation frameworks, autoencoders
that model sequential dynamics (as in chap. 7, see e.g. Sachdeva et al. (2019)),
etc. Below we explore a single approach that is representative of the general
setup.

AutoRec
Sedhain et al. (2015) adapt the principle of autoencoders to recommendation
problems. In their setting the data to be encoded is a vector of ratings for an
item i, or equivalently a column of an interaction matrix R·,i. Since R·,i is only
partially observed (rather than a dense vector as in a traditional autoencoder),
the compressed representation is only responsible for (and gradient updates are
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only applied to) the observed entries Ru,i. At inference time the compressed
representation can then be used to estimate the entries for unobserved pairs.
Sedhain et al. (2015) term this version of the model AutoRec-I, since an autoen-
coder is used to learn compressed item representations; alternately, AutoRec-U
consists of the same approach applied to user vectors Ru,·.

Note that AutoRec-U lacks any user parameters (and likewise AutoRec-I
lacks item parameters). As such it is a form of user-free personalization (like
those from Section 5.3), that personalizes predictions using a model that ag-
gregates data from the entire user history rather than ‘memorizing’ user prefer-
ences via an explicit parameter.11 We further explore such notions of user-free
personalization when exploring methods based on sequences in Section 7.7.

5.5.4 Convolutional and Recurrent Networks

Finally, Zhang et al. (2019) survey various recommender systems based on
recurrent networks and convolutional neural networks. Recurrent networks are
typically chosen as a way of exploring sequential dynamics in user activities;
we explore this type of approach in Chapter 7, including deep learning based
approaches in Section 7.7. Convolutional neural networks are often used as a
means of incorporating representations of rich content (such as images) into
recommender systems; we explore this type of approach in Chapter 9.

Zhang et al. (2019) also discuss potential limitations of deep learning-based
approaches, including the challenges involved in interpreting the predictions
of deep learning systems, and the difficulty of tuning hyperparameters in sys-
tems with many complex, interacting parts. They also highlight the potential
lack of interpretability of deep learning-based models (though this is to some
extent a challenge with any model based on latent representations), as well
as the ‘data hungriness’ of deep learning approaches. The latter issue arises
whenever fitting models with a large number of parameters, and indeed is also
a problem when fitting traditional latent factor models as in Section 5.1.1. On
the one hand, this may narrow the conditions under which deep learning-based
approaches are effective, e.g. they may underperform in cold-start situations
(sec. 6.2) where few interactions are available per user or per item. On the
other hand, deep learning approaches may extend the modalities of data that
can be incorporated into recommendation approaches (including in cold-start
settings), for instance by leveraging text or image data; we explore such ap-
proaches in Chapters 8 and 9.

11 Note that AutoRec-U (and not AutoRec-I) is what we term the ‘user-free’ version: its input is
a set of items a user has interacted with; as such a user is described in terms of an aggregation
of item representations in a user’s history, which is spiritually similar to FISM (sec. 5.3.2).
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We summarize the methods from this section in Chapter 6 (table 6.1), af-
ter presenting additional deep learning-based recommenders that make use of
content and structure.

5.5.5 How Effective are Deep Learning-Based Recommenders?

In spite of the proliferation of deep learning-based approaches to recommen-
dation, their benefit over simpler, more traditional forms of recommendation
is perhaps questionable. Dacrema et al. (2019) conducted a thorough evalua-
tion of several of the predominant deep learning-based recommender systems
(including several of the approaches discussed above), and found that deep
learning approaches were often outperformed by simpler methods, so long as
those methods were carefully tuned. Most of the models for recommendation
we’ve seen so far involve many tunable factors (e.g. number of factors, regu-
larization schemes, and details of the specific training approaches), as well as
choices in terms of dataset selection, pre-processing, etc. that can favor cer-
tain models over others. Although the evaluation in Dacrema et al. (2019) was
limited to a few specific (but popular) approaches, it raised broader issues of
evaluation and benchmarking in recommender systems. Some general points
raised include the difficulty in reproducing reported results (while releasing
research code is common practice, releasing exact hyperparameter settings or
tuning strategies is not), and the proliferation of datasets, metrics, and evalua-
tion protocols that make fair comparison difficult.

Rendle et al. (2020) explored the same issue, focusing on the comparison
of inner product-based recommendation versus solutions based on multilayer
perceptrons. They reiterate the main point from Dacrema et al. (2019) that sim-
pler methods remain competitive so long as they’re carefully tuned. They also
argue that in spite of the hope that multilayer perceptrons can learn complex,
non-linear relationships, that in practice even simple functions (like the inner
product) are difficult for such models to reproduce.

Finally, both Dacrema et al. (2019) and Rendle et al. (2020) discuss issues of
computational complexity, and whether the marginal benefits of deep learning-
based approaches justify the substantial added complexity. Rendle et al. (2020)
argue that simpler models may be preferable in production environments, espe-
cially when considering the efficiency of item retrieval (as we discuss below).

Note that the above criticisms are not an indictment of deep learning-based
approaches in general, but only with respect to their ability to model specific
types of interaction data (essentially the same settings discussed in this chap-
ter). In later chapters we’ll explore the use of deep learning-based approaches
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in a variety of other settings, in order to model sequence, text, and image data,
with goals ranging from cold-start performance to interpretability.

5.6 Retrieval

Briefly, it is worth discussing one of the fundamental considerations when
deploying a recommender system, namely, how to efficiently retrieve items.
Naively, having defined a compatibility function f (u, i) between a user and an
item (as in eq. (5.1)), our goal might be to rank (unseen) items according to
their compatibility, i.e.,

rec(u) = arg max
i∈I\Iu

f (u, i). (5.51)

Presumably, recommendations must be made rapidly, for use in interactive set-
tings. Given a large vocabulary of items, this procedure is likely to be pro-
hibitively expensive if we were to attempt to enumerate scores for all items
i ∈ I; as such it is worth thinking about what types of relevance functions
f (u, i) admit efficient solutions to Equation (5.51).12

Euclidean distance Perhaps the most straightforward function for efficient
retrieval is a Euclidean distance function, i.e.,

f (u, i) = ‖γu − γi‖. (5.52)

In this case, retrieval can be done efficiently (i.e., O(log(|I|)) on average) using
traditional data structures such as a KD-tree. A KD-tree (Bentley, 1975) is a
data structure that represents K-dimensional points (in this case γi for each
item) in such a way as to allow efficient retrieval given a query (γu); such
data structures predate recommender systems and have classical applications
in nearest-neighbor retrieval for classification (for example).

Inner product and cosine similarity Bachrach et al. (2014) showed that the
same types of data structure can be adapted for other types of relevance func-
tion. Fundamentally, they showed that both inner product and cosine similarity-
based relevance functions can be related to nearest neighbor search (as above)

12 The setting of Equation (5.51) is admittedly oversimplified; computing such a ranking is
likely one piece in a more complex pipeline.
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via appropriate transformations:

arg min
i
‖γu − γi‖ nearest neighbor (NN) (5.53)

arg max
i

γu · γi maximum inner product (MIP) (5.54)

arg max
i

γu · γi

‖γu‖‖γi‖
maximum cosine similarity (MCS). (5.55)

Doing so allows the same data structures that facilitate nearest-neighbor search
to be used for recommenders based on inner products (as in sec. 5.1) or cosine
similarity (as in sec. 4.3.3).

Approximate search and Jaccard similarity In practice, efficient retrieval
may be accomplished via approximation schemes, such as techniques based
on locality-sensitive hashing (whereby ‘similar’ items are hashed to the same
bucket). Versions of locality-sensitive hashing can be used to retrieve simi-
lar items based on similarity functions including Euclidean distance (Indyk
and Motwani, 1998), Jaccard (Broder, 1997), and Cosine similarity (Charikar,
2002). Bachrach et al. (2014) compare exact techniques for retrieval (as de-
scribed above) to these types of hashing-based approximations, as well as other
exact techniques for recommendation (Koenigstein et al., 2012). Search tech-
niques like those above are implemented in libraries such as FAISS.13

5.7 Online Updates

Our presentation of recommender systems has so far assumed we have access
to historical interaction data from which we can train a model to make predic-
tions. That is, we’ve assumed we can train the model offline. In practice, when
deploying such a system, we may continually collect new interactions (as well
as new items and new users). Given the complexity of model training, it is nat-
urally impractical to retrain the model ‘from scratch’ for every new interaction,
item, or user. Although our focus in this book is not on model deployment, be-
low we outline some of the general strategies for dealing with new interactions
in an online setting.

Regressing on γu or γi Most straightforwardly, we can update some parame-
ters of a model without retraining the entire model. In particular, note that the
model of Equation (5.5) (and its variants) is what is termed bilinear in γu and

13 https://github.com/facebookresearch/faiss

https://github.com/facebookresearch/faiss
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γi: if either of γu or γi is fixed (i.e., treated as a constant), fitting the remaining
part of the model becomes equivalent to linear regression (and can be solved
as in Equation (2.10) or Equation (3.33)). Doing so allows us to take a fitted
model and include new user or item terms based on a few observations (or
likewise, to update γu or γi for existing users and items without updating the
entire model). This specific approach only applies to a limited class of models
for which individual parameters can be updated in closed form, though alter-
nately one can use gradient-based approaches to update only a selection of
model parameters.

Cold-start and user-free models Other models are specifically designed to
deal with new users and items. In Section 6.2 we explore models designed
for cold-start scenarios (i.e., users and items with few or no associated interac-
tions). Such models generally make use of features or side-information to com-
pensate for a lack of historical observations. A second class of models avoids
modeling users altogether, and directly makes use of an interaction history at
inference time (meaning such models can naturally adapt to user cold-start
settings), including approaches like those we explored in Section 5.3.

Strategies for online training Finally, we mention schemes that are designed
specifically to handle model updates in online settings. Such approaches gen-
erally follow the outline we described above, i.e., efficiently updating a sub-
set of model parameters in the presence of an otherwise fully-trained model.
See e.g. Rendle and Schmidt-Thieme (2008), which outlines efficient gradient
descent-based update schemes under this setting.

5.8 Recommender Systems in Python with Surprise and
Implicit

Although the types of recommender systems we’ve seen so far can (with some
effort) be implemented ‘from scratch’ either by computing the gradient ex-
pressions as in Equations (5.15) to (5.17) or by using high-level optimization
libraries like Tensorflow (we’ll explore a Tensorflow implementation in Sec-
tion 5.8.3), the recommendation techniques we’ve covered so far are reason-
ably well-supported by popular Python libraries.

Here we examine two specific libraries, Surprise and Implicit for latent fac-
tor recommendation (as in sec. 5.1) and Bayesian Personalized Ranking (as in
sec. 5.2.2). These examples serve more to introduce the overall recommenda-
tion pipeline, rather than to dive deeply into the specifics of these libraries.
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5.8.1 Latent Factor Models (Surprise)

Surprise (Hug, 2020) is a library that implements various recommendation
algorithms based on explicit feedback (e.g. ratings). Below we show how to
use Surprise’s implementation of a latent factor model as in Equation (5.10)
(‘SVD’ as in Koren et al. (2009)).

First we import the model (‘SVD’), and utilities to read and split the dataset:

1 from surprise import SVD, Reader, Dataset
2 from surprise.model_selection import train_test_split

While the library has various routines to read data, the most straightforward
is to read from a csv/tsv file. Here we’ve processed the Goodreads ‘fantasy’
data to extract just the ‘user id’, ‘book id’, and ‘rating’ fields, though this ex-
ample could be applied to any similar dataset. After reading in the data, we
split it into train and test fractions, with 25% of the data withheld for testing:

3 reader = Reader(line_format='user item rating', sep='\t')
4 data = Dataset.load_from_file('goodreads_fantasy.tsv',

reader=reader)
5 dataTrain , dataTest = train_test_split(data, test_size=.25)

Next we fit the model, and collect its predictions on the test set:

6 model = SVD()
7 model.fit(dataTrain)
8 predictions = model.test(dataTest)

From ‘predictions’ we can then extract and compare the model’s prediction
(p.est) and the original value (p.r ui), in this case to compute the Mean
Squared Error:

9 sse = 0
10 for p in predictions:
11 sse += (p.r_ui - p.est)**2
12
13 MSE = sse / len(predictions)

5.8.2 Bayesian Personalized Ranking (Implicit)

Implicit14 is a library for recommender systems that operate on implicit feed-
back datasets. Here we show how to use the library for Bayesian Personalized
Ranking, as in Section 5.2.2.

First, we read in the data. This time, the required data format is a sparse ma-
trix describing all user/item interactions. Despite this matrix having hundreds
of thousands of rows and columns, only observed interactions are stored:
14 https://github.com/benfred/implicit

https://github.com/benfred/implicit
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1 from implicit import bpr
2
3 Xiu = scipy.sparse.lil_matrix((nItems, nUsers)) #

Initialized after extracting the number of users and
items

4 for d in data:
5 Xiu[itemIDs[d['book_id']],userIDs[d['user_id']]] = 1 #

Only storing positive feedback instances
6
7 Xui = scipy.sparse.csr_matrix(Xiu.T)

Next, we initialize and fit the BPR model:

8 model = bpr.BayesianPersonalizedRanking(factors = 5)
9 model.fit(Xiu)

Having fit the model, we can retrieve the user and item factors γu and γi, as
well as recommendations (high γu ·γi) and similar items (high similarity to γi):

10 itemFactors = model.item_factors
11 userFactors = model.user_factors
12
13 recommended = model.recommend(0, Xui) # Recommendations for

the first user
14 related = model.similar_items(0) # Highly similar to the

first item (cosine similarity)

5.8.3 Implementing a Latent Factor Model in Tensorflow

Following our introduction to Tensorflow in Section 3.4.4, it is now fairly
straightforward to implement more complex models such as those developed
in this chapter. Here we fit a latent factor model following Section 5.1.1.

We start by initializing our model, which takes as parameters the model di-
mensionality K and the regularization strength λ. Here we define our variables
to be fit (α, βu, βi, γu, γi). In practice, appropriate initialization of such vari-
ables is important; here alpha is initialized to the mean rating µ while all other
parameters are initialized following a normal distribution:

1 class LatentFactorModel(tf.keras.Model):
2 def __init__(self, mu, K, lamb):
3 super(LatentFactorModel , self).__init__()
4 self.alpha = tf.Variable(mu)
5 self.betaU = tf.Variable(tf.random.normal([len(

userIDs)],stddev=0.001))
6 self.betaI = tf.Variable(tf.random.normal([len(

itemIDs)],stddev=0.001))
7 self.gammaU = tf.Variable(tf.random.normal([len(

userIDs),K],stddev=0.001))
8 self.gammaI = tf.Variable(tf.random.normal([len(

itemIDs),K],stddev=0.001))
9 self.lamb = lamb
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Next we define our function (a method in the same class) that makes a pre-
diction for a given user/item pair, i.e., f (u, i) = α + βu + βi + γu · γi as in
Equation (5.10):

10 def predict(self, u, i):
11 p = self.alpha + self.betaU[u] + self.betaI[i] +\
12 tf.tensordot(self.gammaU[u], self.gammaI[i], 1)
13 return p

Similarly we define our regularizer as in Equation (5.8) (which could easily
be adapted to include different coefficients for different terms, for example):

14 def reg(self):
15 return self.lamb * (tf.reduce_sum(self.betaU**2) +\
16 tf.reduce_sum(self.betaI**2) +\
17 tf.reduce_sum(self.gammaU**2) +\
18 tf.reduce_sum(self.gammaI**2))

Finally we define the function to compute the squared error for a single
sample, which will be called when computing gradients:

19 def call(self, u, i, r):
20 return (self.predict(u,i) - r)**2

5.8.4 Bayesian Personalized Ranking in Tensorflow

Bayesian Personalized Ranking (as in sec. 5.2.2) can be implemented simi-
larly. Again we initialize our model variables (this time only βi, γu, and γi) are
included:

1 class BPR(tf.keras.Model):
2 def __init__(self, K, lamb):
3 super(BPR, self).__init__()
4 self.betaI = tf.Variable(tf.random.normal([len(

itemIDs)],stddev=0.001))
5 self.gammaU = tf.Variable(tf.random.normal([len(

userIDs),K],stddev=0.001))
6 self.gammaI = tf.Variable(tf.random.normal([len(

itemIDs),K],stddev=0.001))
7 self.lamb = lamb

Our prediction function estimates the unnormalized score xu,i = βi + γu · γi:

8 def predict(self, u, i):
9 p = self.betaI[i] + tf.tensordot(self.gammaU[u],

self.gammaI[i], 1)
10 return p

Finally we define our loss for a single sample, this time including a user u,
and items i and j that they did and did not interact with:
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11 def call(self, u, i, j):
12 return -tf.math.log(tf.math.sigmoid(self.predict(u,i

) - self.predict(u,j)))

5.8.5 Efficient Batch-Based Optimization

Although the above implementations are straightforward, they are not partic-
ularly efficient if we attempt to compute the complete MSE (eq. (5.14)) or
likelihood (eq. (5.30)) across the entire dataset. Instead, we compute gradients
and update parameters in batches consisting of a random sample of our data.

First we generate our sample; for a BPR-like model this consists of three
lists, corresponding to user, positive item, negative item triples (u, i, j):

1 sampleU, sampleI, sampleJ = [], [], []
2 for _ in range(Nsamples):
3 u,i,_ = random.choice(interactions) # positive sample
4 j = random.choice(items) # negative sample
5 while j in itemsPerUser[u]:
6 j = random.choice(items)
7 sampleU.append(userIDs[u])
8 sampleI.append(itemIDs[i])
9 sampleJ.append(itemIDs[j])

Next we must redefine our score function to operate over a sample rather
than a single data point. Note that rather than merely iterating over all points,
estimates for all samples in our batch are computed using efficient vector op-
erations:

10 def score(self, sampleU, sampleI):
11 u = tf.convert_to_tensor(sampleU, dtype=tf.int32)
12 i = tf.convert_to_tensor(sampleI, dtype=tf.int32)
13 beta_i = tf.nn.embedding_lookup(self.betaI, i)
14 gamma_u = tf.nn.embedding_lookup(self.gammaU, u)
15 gamma_i = tf.nn.embedding_lookup(self.gammaI, i)
16 x_ui = beta_i + tf.reduce_sum(tf.multiply(gamma_u,

gamma_i), 1)
17 return x_ui

The ‘call’ function is similarly modified:

18 def call(self, sampleU, sampleI, sampleJ):
19 x_ui = self.score(sampleU, sampleI)
20 x_uj = self.score(sampleU, sampleJ)
21 return -tf.reduce_mean(tf.math.log(tf.math.sigmoid(

x_ui - x_uj)))

For the complete implementation (including various ‘boilerplate’ compo-
nents), see the online supplement (sec. 1.4).
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5.9 Beyond a ‘Black-Box’ View of Recommendation

Finally, we should mention that our view of recommendation through the lens
of machine learning represents only part of the study of recommender systems.
For the most part, we have taken a ‘black box’ view in which we regard the
‘recommender system’ as merely a model that predicts user/item interactions
(clicks, purchases, ratings, etc.) as accurately as possible.

Although high-fidelity prediction is clearly necessary to build a success-
ful recommender, it is only part of the picture. For example, we have not
considered broader questions of what makes a recommender system ‘usable’
or would ultimately drive user satisfaction or engagement. For example, if a
user watches Harry Potter should they be recommended its sequel, or another
movie from the same genre? The former might maximize some naive metric
like click probability, whereas the latter is more likely to generate a suggestion
that the user isn’t already aware of. But either could be a legitimate goal of
building a recommender system: helping a user quickly navigate a user inter-
face by predicting their next interaction is just as important as recommending
for novelty or discovery.

Such questions go beyond the black-box supervised learning view of rec-
ommendation: they are less questions about how to accurately predict the next
action, and more about what we should do with that prediction. At the very
least such questions require more nuanced evaluation metrics, if not user stud-
ies. While this book largely avoids discussion of user interface design, in Chap-
ter 10 we’ll revisit the consequences of how recommender systems are applied,
and look at strategies to improve personalized recommendation beyond simply
optimizing prediction accuracy.

5.10 History and Emerging Directions

So far we have attempted to construct something of a narrative behind the de-
velopment of recommender systems: we started with simple ‘memory-based’
solutions (chap. 4), followed by ‘model-based’ approaches such as latent factor
models (chap. 5); later we argued about the benefits of leveraging implicit feed-
back (clicks, purchases, etc.) rather than relying on ratings (sec. 5.2.2); finally,
we began to discuss emerging trends in neural network-based recommendation
(sec. 5.5). While this narrative reflects current thinking on the topic, the actual
history of recommender systems is substantially more complicated; for exam-
ple one survey paper (Burke, 2002) points out that even neural-network based
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recommender systems have been proposed since the early nineties (Jennings
and Higuchi, 1993).

To a large extent, research on recommender systems has been driven by the
release and adoption of large-scale benchmark datasets. High-profile compe-
titions such as the Netflix Prize (Bennett et al., 2007) have driven widespread
interest in recommendation problems: the specific nature of the data (purely
based on interactions with no side-information); the choice of metrics used
(the Mean Squared Error); and the specific dynamics of the data itself (e.g. the
critical role of temporal dynamics), all show their influence in the models
we’ve explored throughout this chapter. Likewise other datasets and compe-
titions, including industrial datasets (e.g. Yelp, Criteo) and academic projects
(e.g. MovieLens (Harper and Konstan, 2015)) have inspired models based on
alternate settings and evaluation metrics.

A constant theme in such research is the extent to which new models must
be designed to adapt to the specific dynamics of new datasets. As we’ll ex-
plore in upcoming chapters, research on recommender systems has sought
to incorporate rich signals in the form of text, temporal and social signals,
or images. Such factors serve not only to improve the predictive accuracy of
recommendation models, but can also help to make recommendation models
more interpretable, and to deal with modalities of data not supported by tradi-
tional recommendation approaches. We revisit such content aware approaches
throughout the remainder of this book, as we begin to develop techniques that
make use of social (chap. 6), temporal (chap. 7), textual (chap. 8), and visual
(chap. 9) signals.

Methodologically, recent research on recommender systems has been dom-
inated by deep learning-based approaches, as we discussed a little in Sec-
tion 5.5. Besides models based on multilayer perceptrons, convolutional neu-
ral networks, or autoencoders, a major trend has been to incorporate ideas
from natural language processing. Roughly speaking, models of natural lan-
guage are concerned with modeling the semantics of sequences of discrete
tokens (i.e., words or characters), and thus translate naturally to recommenda-
tion problems involving sequences of interactions over a discrete set of items.
Recommender systems based on natural language models (e.g. Self-Attention,
Transformer, BERT, etc.) arguably represent the current state-of-the-art (Kang
and McAuley, 2018; Sun et al., 2019). We’ll explore this relationship in Chap-
ters 7 and 8 when developing general-purpose models of sequences and text.

The study of complex recommender systems that make use of data from
images, text, and other forms of structured side-information will dominate our
discussion for the next several chapters. Partly these complex forms of side-
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information allow us to build increasingly more accurate recommender sys-
tems that leverage complex signals (chap. 6). They also facilitate novel types
of recommendation such as generating sets of compatible items (chap. 9), or
recommender systems with natural-language interfaces (chap. 8). We’ll also
argue that personalization in such domains goes well beyond recommenda-
tion, playing a role in several settings where differences among individuals
explains significant variance in data.

Several survey papers present more detailed histories of recommender sys-
tems. Konstan et al. (1998) discuss early research from the GroupLens project,
several of whose papers and datasets we discuss throughout this book. Their
survey gives an interesting early perspective on recommender systems, with
their focus mainly centering around memory-based methods (as in sec. 4.3),
but also discussing broader topics such as user interfaces and benchmark-
ing beyond accuracy. Burke (2002) discuss hybrid recommender systems—
systems which combine multiple types of recommendation, feature representa-
tion, or knowledge extraction approaches. Their survey focuses on the setting
of restaurant recommendation, though broadly serves as an excellent intro-
duction to a breadth of recommendation techniques, their trade-offs, and how
they can be effectively combined. More recent surveys include Bobadilla et al.
(2013), which provides a high-level survey of many of the same techniques
we’ve presented so far, as well as those we’ll explore in later chapters such as
socially-aware and content-based approaches; other surveys focus on specific
collections of techniques such as deep-learning based recommendation (Zhang
et al., 2019).

Exercises

5.1 All of the exercises in this section can be completed on any dataset in-
volving users, items, and ratings. Before implementing the latent factor
recommender system described in Equation (5.10), it is instructive to
implement simpler variants in order to understand the model-fitting pro-
cedure. Implement a bias-only model, i.e., one that makes predictions
according to r(u, i) = α+βu +βi. This can be achieved either by comput-
ing derivatives for this simplified model (as we did in Section 5.1.1), or
more simply by discarding the latent factor terms from the Tensorflow
code from Section 5.8.3. Implement this model and compare its perfor-
mance (in terms of the MSE) to one which always predicts the average
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rating. Find the items with the largest values of βi, and compare them to
the items with the highest average ratings.15

5.2 Implement a complete latent factor model, either by computing deriva-
tives for all terms ( ∂obj

∂γi,k
, ∂obj
∂γu,k

, etc.) in the objective from Equation (5.14),
or by following the Tensorflow implementation. For your model to out-
perform the bias-only model from Exercise 5.1, you’ll need to carefully
experiment with the number of latent dimensions K, initialization strate-
gies, and regularization.16

5.3 In Exercise 5.2 we predicted star ratings using a model that optimized
the Mean Squared Error. However the ratings we are predicting in many
datasets are integer valued, e.g. ru,i ∈ {1, 2, 3, 4, 5}. In light of this, it
might be tempting to round the predictions of our model to the nearest
integer. Surprisingly, this type of rounding is generally not effective, and
results in a higher MSE compared to non-rounded values. Explain why
this might be the case (e.g. by constructing a simple counterexample),
and consider whether other rounding strategies might be more effective
(e.g. rounding ratings above 5 or below 1).

5.4 Implement Bayesian Personalized Ranking (starting from the code in
Section 5.8.4 or otherwise), and compare this method to simpler ap-
proaches based on item-to-item or user-to-user compatibility such as
those we studied in Chapter 4 (e.g. recommend items with high Jaccard
similarity compared to those the user has recently consumed). In doing
so, consider several of the evaluation metrics from Section 5.4, such as
the AUC, Mean Reciprocal Rank, etc.

Project 4: A Recommender System for Books (Part 2)

Here we’ll extend our work from Project 3 to incorporate and compare model-
based recommendation techniques.

(i) Start by comparing model-based approaches to the similarity-based recom-
menders you developed in Project 3. Start by comparing rating prediction

15 Consider why these two lists might not be the same: for example, a mediocre item which
tends to be rated by ‘generous’ users (high βu) could have a high average rating but a low
value of βi.

16 When debugging gradient-descent models, it can be instructive to isolate individual terms
(i.e., updating only a single parameter or a subset of parameters at a time) to determine that
each update results in an improvement of the objective; it can also be useful to start with only
a single latent factor (i.e., K = 1) before experimenting with higher-dimensional models.



Exercises 143

approaches (e.g. models like those of Equations (4.20) to (4.22)) to latent-
factor modeling approaches (as in sec. 5.1). It can be useful to develop your
model in several stages: e.g. starting with (a) a model including only an off-
set f (u, i) = α; (b) using only an offset and biases f (u, i) = α + βu + βi; (c)
using latent factors f (u, i) = α + βu + βi + γu · γi.

(ii) Next, compare implicit feedback models, such as the Bayesian Personalized
Ranking model from Section 5.2.2. Much as we measured the performance
of BPR in terms of evaluation metrics like the AUC (eq. (5.26)), simple
memory-based ranking schemes such as those we developed in Project 3
can also be evaluated based on how effectively they distinguish interactions
(positive samples) from non-interactions.

(iii) Try to thoroughly tune and regularize the latent factor model you developed
above. Some factors you might consider include (a) the number of latent
factors K; (b) the regularization approach, for example you might be able to
improve performance by using separate regularizers for the bias terms and
latent factors, i.e., λ1Ω(β) and λ2Ω(γ); (c) other factors, such as learning
rates, initialization schemes, etc.

(iv) Experiment with fast retrieval techniques (or libraries) such as those we
examined in Section 5.6.



6
Content and Structure in Recommender Systems

So far, the systems we’ve built for personalized recommendation have been
based purely on interaction data. We argued in Chapters 4 and 5 as to why
interactions are often sufficient to capture all of the critical signals that we
need, simply by finding patterns among users and items that maximally explain
variance. This argument holds in theory under certain conditions, though is
quite limited. For one, collecting sufficient interaction data to fit parameter-
hungry latent factor models is not feasible when we consider the long-tail of
new users and rarely-consumed items. Even when we can harvest sufficient
interaction data, several recommendation settings simply don’t conform to the
canonical setting of predicting an interaction given a user item pair.

In practice, several situations deviate from the classical setting we’ve de-
scribed so far, and require more complex models that leverage side-information
or problem structure to improve performance. Leveraging content and struc-
ture can be useful in a variety of situations, for example:

• Only a limited amount of interaction data may be available. Our argument
that interaction data is sufficient to capture subtle preference signals applies
only in the limit, i.e., when a large number of interactions are available for
each user (or item). When few interactions are available (or none, in cold-
start settings), one must instead rely on user or item features to estimate
initial preference models.

• Beyond improving performance, incorporating features into recommender
systems may be desirable for the sake of model interpretability. For example,
we may wish to understand how a user will react to a change in price; doing
so effectively may require that price features are appropriately ‘baked in’ to
the model (we study this specific case in Section 6.5).

• User preferences or item properties may not be stationary. Even the simple
fact that Christmas movies are unlikely to be watched in July cannot be cap-

144
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tured simply by adding more latent dimensions. Although not the topic of
this chapter, we’ll revisit models of such temporal and sequential dynamics
in Chapter 7.

• Many settings simply do not follow the setup we developed in Chapters 4
and 5. For example, many recommendation scenarios have a social compo-
nent (dating, bartering, etc.), or other constraints that must be accounted for
in addition to user-to-item compatibility.

In this chapter we’ll develop models that help us to adapt to the situations
above. First, we’ll explore general-purpose strategies to incorporate content
(or simply features) into recommender systems, starting with factorization ma-
chines in Section 6.1. For the most part, our goal is to study strategies to in-
corporate simple numerical and categorical features; we develop strategies for
the specific cases of temporal, textual, and visual features in Chapters 7 to 9.
We are especially interested in how features can be incorporated for the sake
of solving so-called cold-start problems (sec. 6.2), whereby we have little (or
no) data associated with new users or items, as must infer an initial model of
their preferences.

Beyond incorporating features into recommender systems, we’ll also ex-
plore various modalities of recommendation that deviate from the basic setup
in Chapter 5. We’ll explore examples including online dating (sec. 6.3.1), bar-
tering (sec. 6.3.2), social and group recommendation (sec. 6.4), among others.
In exploring such settings, our goal is not only to explore a few specific ap-
plications of interest, but more importantly to understand the overall process
of designing and adapting personalized machine learning techniques for situ-
ations that exhibit additional structure, or otherwise don’t perfectly align with
traditional settings.

6.1 The Factorization Machine

Factorization Machines (Rendle, 2010) are a general-purpose approach that
seeks to incorporate features into models that capture pairwise interactions
(such as interactions between users and items).

In essence, the factorization machine extends the approach behind the latent
factor model (sec. 5.1). The latent factor model embeds users and items into
low dimensional space via γu and γi, and then models the interaction between
them via an inner product; the factorization machine extends this approach
to incorporate arbitrary pairwise interactions between users, items, and other
features.



146 Content and Structure in Recommender Systems

The input to the model is a feature matrix X and a target y. In the simplest
case, X might simply encode the identity of the user and item via a one-hot
encoding, though can be extended to incorporate any additional properties as-
sociated with the interaction:



1000000 . . . 000100000 . . . 0001000 . . . 15.95
0001000 . . . 000000010 . . . 0001000 . . . 12.25
0100000 . . . 000100000 . . . 0000010 . . . 15.00
0000100 . . . 010000000 . . . 0010000 . . . 17.50
1000000 . . . 000000010 . . . 1000000 . . . 19.95
0000100︸    ︷︷    ︸

user
. . . 000010000︸       ︷︷       ︸

item
. . . 0000010︸    ︷︷    ︸

weekday
. . . 10.15︸︷︷︸

price


(6.1)

The basic idea of the factorization machine is then to model arbitrary in-
teractions between features. Each feature dimension is associated with a latent
representation γi; the model equation is then defined in terms of all pairs of
(non-zero) features (with feature dimensionality F):

f (x) = w0 +

F∑
i=1

wixi︸           ︷︷           ︸
offset and bias terms

+

F∑
i=1

F∑
j=i+1

〈γi, γ j〉xix j︸                  ︷︷                  ︸
feature interactions

(6.2)

It is instructive to consider the case where the interaction matrix in Equa-
tion (6.1) includes only a user and item encoding. In such a case, Equation (6.2)
expands to be equivalent to a latent factor model (as in eq. (5.10)), i.e., the only
interaction term is γu · γi for a user u and item i.

As such, the factorization machine can be viewed as a generalization of a
latent factor model, that allows for additional types of interactions to be consid-
ered. For example, if we include an additional one-hot feature in Equation (6.1)
that encodes the previous item the user consumed, then the factorization ma-
chine will include an expression encoding the compatibility of the next item
with the previous one, i.e., the model can learn how contextually relevant the
previous item is compared to the next one. It will be useful to compare this
approach to the models we design specifically to handle sequential inputs in
Chapter 7 (sec. 7.5). Rendle (2010) discuss such topics, describing the extent
to which the general-purpose factorization machine formulation subsumes var-
ious approaches designed to handle specific types of features.

Rendle (2010) describe how the model equation of Equation (6.2) can be
computed efficiently (and how parameter learning can be done efficiently), by
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showing that the interaction term can be rewritten as

F∑
i=1

F∑
j=i+1

〈γi, γ j〉xix j =
1
2

K∑
f =1


 F∑

i=1

γi, f xi

2

−

F∑
i=1

γ2
i, f x2

i

 , (6.3)

which allows for computation in O(KF) (the dimension of the latent factors
multiplied by the feature dimensionality).

6.1.1 Neural Factorization Machines

As we saw in Chapter 5 (sec. 5.5), deep learning-based models can potentially
be used to improve the performance of traditional recommender systems, es-
sentially by learning complex non-linear relationships among latent features.
Likewise, Neural Factorization Machines (He and Chua, 2017) generalize fac-
torization machines by using a multilayer perceptron to learn complex non-
linear feature interactions. The idea is similar to what we presented in Chap-
ter 5 (sec. 5.5.2): just as user and item embeddings were combined by He et al.
(2017b) to develop neural collaborative filtering, He and Chua (2017) combine
the embeddings of several terms (users, items, previous items, etc.). The main
additional component compared to neural collaborative filtering is a pooling
operation which aggregates the pairwise interactions among latent represen-
tations into a single feature vector, so that they can be passed to a multilayer
perceptron.

Wide and Deep learning for recommender systems The model architec-
ture of the Wide & Deep model of Cheng et al. (2016), while not precisely a
factorization machine, is inspired by the setting of factorization machines, as
well as the neural collaborative filtering model from Chapter 5. Cheng et al.
(2016) note that while neural networks can potentially learn complex interac-
tions among latent features, they may nevertheless struggle to learn trivial but
useful pairwise interactions among features. The wide and deep architecture
essentially extends an architecture like the one above (the deep component) by
adding a path that allows the model to ‘circumvent’ the multilayer part of the
model using simple linear interactions (the wide component). The wide com-
ponent is based on a simple linear model (i.e., x · θ), which includes (among
other components) simple binary combinations of features. This allows the
wide component to focus on important but simple feature interactions, while
the deep component can focus on more complex interactions.

Finally we mention Guo et al. (2017a) (DeepFM), which adopts the same
wide & deep architecture from Cheng et al. (2016). Their presentation is more
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Table 6.1 Deep learning-based recommendation techniques. References: He
et al. (2017b); He and Chua (2017); Cheng et al. (2016); Guo et al. (2017a);

Sedhain et al. (2015).

Ref. Technique Description

H17 neural collaborative
filtering

Uses multilayer perceptrons to learn complex in-
teractions between user and item latent factors
(chap. 5).

HC17 neural factorization
machines

Similar to the above, but using multilayer percep-
trons within a factorization machine framework.

C16 wide & deep learning
for recommendation

Includes a ‘wide’ component to help the model
capture pairwise feature interactions directly, al-
lowing the deep component to focus on more
complex hidden interactions.

G17 deep factorization
machines

Similar to the above; incorporates the wide &
deep architecture with the specific components of
factorization machines.

S15 AutoRec Learns compressed representations of item (or
user) interaction vectors; the compressed repre-
sentations can be used to estimate scores associ-
ated with unobserved interactions (chap. 5).

closely built around, and adopts the specific components of, the factorization
machine architecture from Section 6.1.

Table 6.1 summarizes a few deep learning-based recommendation models
(including some from Chapter 5); note that this is only a small sample intended
to cover the variety of techniques and architectures involved (see e.g. Zhang
et al. (2019) for a more complete survey).

6.1.2 Factorization Machines in Python with FastFM

As we saw above, factorization machines are a highly flexible, general-purpose
technique to incorporate numerical or categorical features into recommender
systems. Later in this chapter, and in Chapter 7, we’ll explore specific types
of dynamics that can be captured via factorization machines, but for the mo-
ment we’ll explore an implementation of a ‘vanilla’ factorization machine via
the FastFM library (Bayer, 2016) (in this case using Goodreads data, as in
Project 4).

First, we read our dataset and construct a mapping from each user to a spe-
cific index (from 0 to |U | − 1); this index will be used to associate each user
and item with a feature dimension in our one-hot encoding (as in eq. (6.1)):
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1 userIDs,itemIDs = {},{}
2 for d in data:
3 u, i = d['user_id'], d['book_id']
4 if not u in userIDs: userIDs[u] = len(userIDs)
5 if not i in itemIDs: itemIDs[i] = len(itemIDs)
6
7 nUsers, nItems = len(userIDs), len(itemIDs)

Next, we build our matrix of features associated with each interaction. Each
feature is simply the concatenation of a (one-hot encoding of) a user ID and an
item ID. Note that we use a sparse data structure (lil matrix) to represent
the feature matrix. Although we only use user and item IDs here, these feature
vectors could straightforwardly be extended to include other features, such as
those we explore later in the chapter:

8 X = scipy.sparse.lil_matrix((len(data), nUsers + nItems))
9 for i in range(len(data)):

10 user = userIDs[data[i]['user_id']]
11 item = itemIDs[data[i]['book_id']]
12 X[i,user] = 1 # Essentially a row from Equation 6.1
13 X[i,nUsers + item] = 1
14
15 y = numpy.array([d['rating'] for d in data])

Finally, we split the data into training and test fractions, fit the model, and
compute its predictions on the test set:

16 X_train, y_train = X[:2000000], y[:2000000]
17 X_test, y_test = X[2000000:], y[2000000:]
18
19 fm = fastFM.als.FMRegression(n_iter=1000, init_stdev=0.1,

rank=2, l2_reg_w=0.1, l2_reg_V=0.5)
20
21 fm.fit(X_train, y_train)
22 y_pred = fm.predict(X_test)

The model has several tunable parameters: n iter controls the number of
iterations; init stdev controls the standard deviation of random parameter
initialization; rank controls the number of latent factors (K); l2 reg w and
l2 reg V control the regularization for the model’s linear and pairwise terms
(similar to λ1 and λ2 in Equation (5.12)).

6.2 Cold-Start Recommendation

So far, the recommendation approaches we have developed have depended
on having detailed interaction histories associated with users and items. Natu-
rally, we cannot find similar users (as in sec. 4.3) to a user who has no purchase
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history; likewise, we cannot estimate latent parameters γu (or even a bias βu)
for a user who has never rated or purchased any items (as in sec. 5.1).

As such, we need to develop recommendation approaches that can be use-
ful in so-called cold-start scenarios. Depending on the setting, either users or
items may be ‘cold’ (i.e., have zero associated interactions).

We’ll investigate two categories of approach to deal with cold-start prob-
lems. First, one may attempt to deal with cold-start situations via the use of
side-information about users or items. Side information could range from prod-
uct images, to text, or social interactions. In each case, side information gives
clues as to the properties of an item, whether by learning user preferences to-
ward observed item features (sec. 6.2.1), harvesting weaker signals such as the
preferences of a user’s friends (sec. 6.4.2), or by using item features to estimate
item latent factors (sec. 9.2.1). We explore some of the simpler methods below,
but revisit the use of side-information throughout the book. Second, we’ll ex-
plore methods that directly seek to elicit preferences from new users through
surveys (sec. 6.2.2).

6.2.1 Addressing Cold-Start Problems with Side Information

In the absence of historical interaction data associated with users or items, one
option is to resort to secondary signals. Park and Chu (2009) consider cold-
start settings in the context of movie recommendation. For movies, associated
features are available such as the release year, genre, (etc.), which can be en-
coded (for example) as a one-hot vector. For users, demographic features are
used such as a user’s age, gender, occupation, or location. These features are
captured via user and item feature vectors xu and zi for each user u and item i.

Recall that at the beginning of Section 4.1, we discussed the differences be-
tween recommendation and regression and argued that recommendation was
fundamentally different from simple linear regression on user and item fea-
tures. Critically, we argued that recommender systems must model the inter-
action between users and items, in order to be able to meaningfully personalize
predictions for each user.

In order to capture interactions, Park and Chu (2009) use what is termed a
bilinear model (we briefly mentioned bilinearity in Section 5.7), to estimate
the compatibility between user and item features. The model parameters can
then be described via a matrix W, and user/item compatibility can be written
as

su,i = xuWzT
i =

|xu |∑
a=1

|zi |∑
b=1

xu,azi,bWa,b. (6.4)



6.2 Cold-Start Recommendation 151

Here, unlike the linear regression model from (e.g.) Equation (4.4), W now en-
codes how user features should interact with item features. That is, a parameter
Wa,b encodes the extent to which the ath user feature is compatible with the bth

item feature. So, the model can learn (for example) the extent to which users in
the 35-50 age demographic will respond positively to the teen romance genre.

Both xu and zi include a constant feature. These features (or rather the cor-
responding entries in W) roughly fill the role of bias terms (i.e., α, βu, and βi in
Equation (5.10)), that is, they allow the model to learn the extent to which users
in a certain demographic, or movies of a certain genre, tend to yield higher or
lower ratings than others.

The model is trained so that the compatibility su,i should align with observed
interactions (e.g. ratings). Park and Chu (2009) achieve this using a specific
type of pairwise loss (i.e., a loss that considers two items at a time, similar to
the BPR loss of Equation (5.30)), though this is an implementation detail that
is not critical to the main idea of the method.

Ultimately, the method is evaluated on two movie datasets (MovieLens and
EachMovie). Cold users and items in these datasets are simulated, simply by
withholding interactions from a subset of users and items at training time, with
interactions from those users being used to evaluate the system at test time.
Experiments show that when considering cold users and/or items, the method
outperforms alternatives that don’t make use of features.

6.2.2 Addressing Cold-Start Problems with Surveys

An alternative to relying on side information in user cold-start settings is sim-
ply to directly solicit the preferences of new users once they first interact with
the system.

Rashid et al. (2002) investigated strategies for generating initial user sur-
veys. ‘Surveys’ in this setting simply consist of collecting ratings about an
informative set of items in order to most quickly learn the preference dynam-
ics of new users. Several strategies are investigated for selecting informative
items. Surfacing popular items has the advantage that users will generally have
interacted with them (and can thus provide an informed opinion), though opin-
ions may not be informative if all users generally like the most popular items.
In contrast an entropy-based strategy selects items where opinions are highly
varied: each rating provides more information, but users may be unable to rate
a large number of unknown items. Beyond these they explore hybrid strate-
gies that balance popularity and entropy, as well as personalized strategies that
(once a few known items are found) survey similar items that a user is likely
to have interacted with.
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Zhou et al. (2011) investigate more elaborate strategies based on the same
principle, where a decision tree is constructed over items (where a user can
provide positive, negative, or ‘unknown’ feedback at each step) to iteratively
choose the most informative items to surface to the user.

Of course this setting is only appropriate for settings where users can re-
alistically be expected to already have experience with a reasonable fraction
of the items (Rashid et al. (2002) and Zhou et al. (2011) consider movie rec-
ommendation scenarios). We’ll revisit the topic of cold-start recommendation
regularly in later chapters, as well as ‘cool-start’ settings (where we have only
a few interactions per user or item), as we develop systems that operate on fea-
tures from sequences, text, and images. Whether explicitly designed for cold-
start or not, such methods often seek to use side information to circumvent the
paucity of available interaction data.

6.3 Multisided Recommendation

So far, our view of recommendation and personalization has consisted of maxi-
mizing some predicted utility for each user, e.g. estimate their ratings or which
items they’ll interact with. Furthermore, every user has predictions made inde-
pendently of each other.

Such a setting seems natural when considering contexts such as movie rec-
ommendation, but there are several cases where such models are inappropri-
ate. For example, recommendation on an online dating platform would require
quite different assumptions. For instance, the problem has symmetries in the
sense that the users being recommended are also receiving recommendations—
as such, users must be interested in their matches, but the matches must have a
reasonable chance of reciprocating. Likewise we must ensure not only that ev-
eryone receives recommendations, but that everyone is recommended to some-
body.

These types of problems are referred to as multisided or multistakeholder
recommendations (Abdollahpouri et al., 2017). Such constraints appear in sev-
eral settings, many of which we will visit throughout the book. In Section 6.4.3
we will look at group recommendation, where recommendations must simul-
taneously satisfy the interests of multiple users in a group. And in Section 6.7,
we will consider advertising settings, where we must consider not only user
preferences but also the budgets of individual advertisers (which prevent us
from recommending the most compatible ads to everyone). Finally we’ll re-
visit the topic in depth in Chapter 10, where we consider issues of fairness,
calibration, balance, etc. For example, when recommending movies we might
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want reasonable coverage of different genres (Steck, 2018), or when recom-
mending authors, we might want our recommendations not to be too narrow in
terms of gender or nationality (Ekstrand et al., 2018b).

For now, we’ll consider two specific examples of multistakeholder recom-
mendation: online dating and bartering (i.e., recommending trading partners).

6.3.1 Online Dating

Pizzato et al. (2010) studied recommendation in the context of online dating.
Online dating has several constraints not present in the types of recommen-
dation problems we’ve seen so far, in particular due to the fact that the users
receiving recommendations are the same ones that are being recommended.

Pizzato et al. (2010) consider the specific objective of reciprocal commu-
nication, which is partly motivated by a specific mechanism in the data they
study (from a large Australian online dating website). That is, a recommenda-
tion of a user v to a user u should be considered successful only if u messages
v, and v responds to their message.

Actual compatibility scores f (u, v) in Pizzato et al. (2010) are estimated us-
ing a fairly simple feature-based strategy that looks for a match between u’s
preferences and v’s attributes (some of which may be matched strictly, e.g. if
a user has historically expressed interest only in a certain gender). Following
this the reciprocal compatibility is simply the harmonic mean of the two com-
patibility scores:

reciprocal compatibility(u, v) =
2

f (u, v)−1 + f (v, u)−1 . (6.5)

The harmonic mean here is preferable to (e.g.) the arithmetic mean as it does
not allow either user’s preference to ‘dominate’ the compatibility estimate,
i.e., two users are only compatible if both have high compatibility scores for
each other.

Beyond the notion of reciprocity considered in Pizzato et al. (2010), on-
line dating has certain ‘balance’ or ‘diversity’ constraints not yet seen in other
problems, for example we cannot identify a user with ‘ideal’ characteristics
and recommend them to everyone (which might be perfectly reasonable for,
say, movies); instead, the system only has utility if users both receive, and ap-
pear in, recommendations. We consider this type of constraint further when
considering online advertising problems in Section 6.7.1.
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6.3.2 Bartering Platforms

Rappaz et al. (2017) considered the problem of generating recommendation
systems for bartering platforms, i.e., settings in which users exchange goods.

They study several settings in which products are exchanged, including CDs
and DVDs, though most of their analysis centers around three datasets, of
books (from bookmooch.com), beers (from ratebeer.com), and video games
(from reddit.com/r/gameswap).

On each of these websites, users have both a ‘wishlist’ Wu and a ‘give-away’
list Gu, i.e., sets of items they wish to give or receive. Given this constraint
on the problem, one might think that recommending compatible trades is as
simple as identifying compatible pairs. However surprisingly the data reveals
that ‘eligible’ swapping partners are incredibly rare, and the vast majority of
logged trades occur between items that were not expressly included in a user’s
wishlist; thus there is a need to build a system that can model likely trading
partners via latent preferences. They also note that users repeatedly trade with
the same partners, indicating that there is a social component to trading.

Given the two factors above, the basic model combines a standard latent fac-
tor representation with a social term. Given a user u, an item i, and a potential
trading partner v, their compatibility is modeled as

f (u, v, i) = γu · γi + S u,v. (6.6)

Here γu and γi are low-rank factors as in Equation (5.10), whereas S u,v is
a (potentially full-rank) matrix S ∈ R|U |×|U |; although S potentially encodes
a large number of parameters, in practice it is very sparse (at least in their
datasets) as the number of observed trading partners is limited.

Note that the above model captures only the interest of one user toward an-
other’s item; to model reciprocal interest, Rappaz et al. (2017) simply captures
the average of interest in both directions (fig. 6.1):

f (u, i, v, j) =
1
2

( f (u, v, i) + f (v, u, j)). (6.7)

Other aggregation functions besides the arithmetic mean (such as the harmonic
mean) can be used, though the arithmetic mean proved the most effective, in-
dicating that a weak preference from one user can be made up for by a strong
preference from another (in contrast to the online dating scenario from Sec-
tion 6.3.1). The model also includes a temporal term encoding timepoints when
certain users are particularly active and certain items are particularly popular,
though we leave discussion of temporal models to Chapter 7.

Ultimately, the method is evaluated in terms of its ability to assign higher
scores to observed interactions compared to non-observed ones (i.e., using a
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Figure 6.1 Basic idea behind reciprocal interest, as in Rappaz et al. (2017); in
bartering settings a strong preference from one user compensates for a potentially
weaker one from the other. Compatibility is a function of the social cohesion
between u and v, as well as their interest in the desired items (eqs. (6.6) and (6.7)).

BPR-like training and evaluation scheme, as in Section 5.2.2). The main con-
clusion of the experiments is that several components are important in barter-
ing settings: reciprocal interest, a social history of trades, as well as temporal
‘trends’ across users and items.

6.4 Group- and Socially-Aware Recommendation

Our opinions and decisions are influenced by our social connections. Within
the context of recommendation, One possible dynamic is that of social trust:
the fact that a friend has liked or purchased an item is a strong predictor of a
user’s future behavior (sec. 6.4.1). Alternately, in some contexts recommen-
dations must satisfy several users’ interests simultaneously (e.g. selecting a
movie for a group of users to watch), so that a user’s preferences should be
balanced against those of their friends (sec. 6.4.3).

More prosaically, social connections can simply be a way to harvest addi-
tional interaction data to improve the accuracy or cold-start performance of
recommender systems. Given a paucity of data from a particular user, interac-
tions from their social network can act as weak signals to augment the amount
of data to be used for training. We explore a few representative approaches
below, which we summarize in Table 6.2.

6.4.1 Socially-Aware Recommendation

Several approaches have sought to incorporate signals from social networks to
improve recommendation. The basic idea behind doing so is that social con-
nections will help us to circumvent sparsity issues in interaction data. That is,
even if a user has only a small number of observed interactions, we can (to
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Table 6.2 Comparison of socially-aware recommendation techniques.
References: Ma et al. (2008); Zhao et al. (2014); O’connor et al. (2001);

Amer-Yahia et al. (2009); Pan and Chen (2013).

Ref. Social Data Description

M08 Epinions Trust links help to regularize γu, which must
simultaneously explain rating and trust factors
(sec. 6.4.1).

Z14 Epinions, Delicious,
Ciao, LibraryThing

Friends’ interactions act as additional implicit
signals for recommendation (sec. 6.4.2).

O01 MovieLens Studies the desirable characteristics of good in-
terfaces for group recommendation (sec. 6.4.3).

A-Y09 MovieLens Designs measures of group consensus and pro-
poses recommendation algorithms to maximize
them (sec. 6.4.3).

PC13 MovieLens, Netflix Treats group preferences as weak signals to
design pairwise sampling strategies for BPR
(sec. 6.4.4).

some degree) leverage the interactions of their friends, whose opinions they
are likely to trust.

Conceptually, the typical approach behind socially-aware recommendation
is to use social connections as a form of regularizer, which states that a user’s
preferences should be similar to those of their connections in a social network.
For example, given a user with few interactions, we might assume that their
preferences align with the (average of) their friends; this is a possibly better
assumption than the regularizer of Equation (5.11), which in practice will es-
sentially discard user latent factors (γu) for users with few interactions.

An early attempt to incorporate social networks into recommender systems
extended the basic framework of a latent factor model. Ma et al. (2008) looked
at data from Epinions, which in addition to interactions in the form of rat-
ings (much like Equation (4.8)), includes a network of ‘trust’ and ‘distrust’
relationships. Unlike a typical social network, these are signed relationships,
where users explicitly indicate that they ‘trust’ (1) or distrust (-1) each other.
That is, in addition to our interaction matrix we have a (directed) adjacency
matrix:

A =


1 · · -1 1
· 1 -1 · ·

· 1 1 -1 ·

1 · 1 · 1
-1 -1 · 1 1

︸                            ︷︷                            ︸
users


users. (6.8)
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γi γu γ′v

ru,i = σ(γu · γi) au,v = σ(γu · γ
′
v)

ratings social links

Figure 6.2 Social recommendation techniques often make use of a shared param-
eter (in this case γu) that simultaneously explains rating dimensions and social
connections. In this way, social links can estimate preference dimensions even for
users with few historical ratings.

Ultimately though, the distrust relationships are not used in Ma et al. (2008),
as it is argued that the semantics of ‘distrust’ are somewhat more complex than
(e.g.) users having different preference dimensions.

Thus, given a rating matrix R, and an adjacency matrix A, we want to predict
ratings in R in such a way that A informs us about each user’s likely latent
preferences. The basic idea is to make use of a shared parameter γu for each
user. For rating data, γu is no different from a user latent factor in a matrix
factorization model, i.e., it is combined with an item latent factor and used to
predict the rating, in this case via a sigmoid function:1

ru,i = σ(γu · γi). (6.9)

Next, the parameter γu is re-used to predict trust relationships in A:

au,v = σ(γu · γ
′
v). (6.10)

The original paper allows A to be a weighted matrix, indicating varying degrees
of social trust, but for simplicity we assume here that A contains only trust (1)
and not-trust (0) values.

Note that while γu is a shared parameter, γ′v is not; since the matrix A is
directed, γu can be thought of as explaining why u trusts others, whereas γ′v
explains why v is trusted by others. In practice we are usually not interested
in predicting entries au,v; rather, the trust relationships are additional data that
should help us to calibrate γu more efficiently. This idea is depicted in Fig-
ure 6.2.

1 The specific choice of the sigmoid function is an implementation detail, and ratings are scaled
to be in the range [0, 1] to accommodate this choice.
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The overall objective then takes the form∑
(u,i)∈R

(ru,i − σ(γu · γi))2

︸                       ︷︷                       ︸
rating prediction error

+λ(trust)
∑

(u,v)∈A

(au,v − σ(γu · γ
′
v))2

︸                         ︷︷                         ︸
trust prediction error

+λ‖γ‖22, (6.11)

where λ(trust) trades-off the importance of predicting the trust network (versus
predicting ratings). Ultimately, experiments in Ma et al. (2008) show that the
trust network helps to predict ratings more accurately than matrix factorization
alone. Of course, it should be noted that trust relationships on Epinions are
very closely tied to opinion dimensions, presumably more than in other social
networks.

Note that the above is essentially a more complex form of cold-start (or
‘cool-start’) recommendation (as we saw in Section 6.2), in the sense that we
are leveraging a form of side-information (social connections) to make up for
a paucity of interaction data. In the case of a user who has never rated an item
(but has social connections), the system can still reasonably estimate γu from
the preference dimensions of u’s friends.

6.4.2 Social Bayesian Personalized Ranking

Above we showed how matrix factorization frameworks can be extended to
incorporate signals from social networks. The intuition behind the idea simply
stated that the same factors that explain preferences should also be able to
explain ‘trust’ relationships.

Next, we’ll see how this idea can be adapted to predict interactions (rather
than ratings), by incorporating social connections into the Bayesian Personal-
ized Ranking framework from Section 5.2.2.

Conceptually, using social links to predict interactions relies on a possi-
bly different assumption than we made above. Whereas our previous intuition
above was based on some notion of trust, here we are simply assuming that a
user is more likely to interact with items (e.g. to watch movies or read books)
if their friends have previously interacted with them.

Zhao et al. (2014) attempted to adapt the assumptions made by Bayesian
Personalized Ranking (BPR) to datasets involving social connections. Recall
that BPR makes the assumption that a user’s compatibility with items they’ve
interacted with (xu,i) should be higher than their compatibility with items they
haven’t interacted with (xu, j), which is captured via a sigmoid function:

xu,i ≥ xu, j → σ(xu,i − xu, j) should be maximized (6.12)

(see eq. (5.30)). To adapt this to settings involving a social network, Zhao
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et al. (2014) assume a third type of feedback: for a user u, in addition to pos-
itive feedback i, and negative feedback j (as with BPR), we also have social
feedback k, which consists of items consumed by u’s connections in a social
network.

Zhao et al. (2014) test two assumptions about how this social feedback
should be incorporated. The first states that social interactions are weaker than
positive interactions, but still stronger than negative interactions, essentially
stating that users are somewhat more likely to interact with items their friends
have interacted with:

xu,i︸︷︷︸
positive

≥ xu,k︸︷︷︸
social

; xu,k︸︷︷︸
social

≥ xu, j︸︷︷︸
negative

. (6.13)

An alternate hypothesis states the opposite: if our friends have interacted with
an item but we haven’t, this might instead be a signal that we know about the
item, but deliberately chose not to interact with it; in this instance we drop the
second assumption from Equation (6.13) and replace it with a weaker assump-
tion:

xu,i︸︷︷︸
positive

≥ xu,k︸︷︷︸
social

; xu,i︸︷︷︸
positive

≥ xu, j︸︷︷︸
negative

. (6.14)

Note that neither of these assumptions is ‘better’ than the other; rather they
are simply hypotheses that must be tested by determining which best fits real
datasets.

To train the model, a BPR-like objective (eq. (5.30)) is used, but which now
involves two terms. E.g. using the assumption from Equation (6.13):∑

(u,i,k)∈T

logσ(xu,i − xu,k) +
∑

(u,k, j)∈T

logσ(xu,k − xu, j) + ‖γ‖22, (6.15)

where T is a training set consisting of positive, negative, and social feedback
(i, j, and k) for each user u.

Ultimately, Zhao et al. (2014) show that both models outperform alternatives
that don’t leverage social connections. Several datasets besides Epinions are
used, including data from Ciao, Delicious, and LibraryThing (product reviews,
social bookmarks, and books). Overall, the assumption from Equation (6.14)
slightly outperforms that of Equation (6.13) on all datasets.

6.4.3 Group-Aware Recommendation

Somewhat related to the topic of social recommendation is the idea of group
recommendation, where recommendations should be made collectively to a
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group of users, rather than to an individual. Understanding group dynamics
can help to improve recommendation accuracy, though another goal of the
approaches below is to design evaluation criteria that correspond to group sat-
isfaction.

Early work on this topic includes PolyLens (O’connor et al., 2001), though
this work was mostly concerned with designing user interfaces for the purpose
of group recommendation, rather than using group data to improve recommen-
dation performance. Although focused on interface-building, the work shows
the utility of group-based recommenders, which could help users to find items
that are compatible with their group’s mutual interests.

Later, Amer-Yahia et al. (2009) attempted to formalize the notion of group
recommendation, by defining useful objectives that define how compatible a
set of items is with a group. Given a pre-defined compatibility function f (u, i)
(e.g. the output of a latent factor model), a simple attempt to define group com-
patibilty between a group of users G and an item i might consist of computing

Average compatibilty of i: rel(G, i) =
1
|G|

∑
u∈G

f (u, i). (6.16)

Alternately, we could define the compatibility as that of the least compatible
user in the group, known as least misery:

Least misery: rel(G, i) = min
u∈G

f (u, i). (6.17)

The latter is preferable in settings where users have constraints, e.g. to avoid
recommending a steakhouse to a group of users, some of whom are vegetarian.

Amer-Yahia et al. (2009) argue that in addition to maximizing relevance
(or minimizing misery), it is also important that the group has some degree
of consensus about the quality of an item. That is, users in a group should
not drastically disagree about f (u, i), separately from their actual scores. Two
disagreement functions proposed are the average pairwise disagreement:

dis(G, i) =
2

|G|(|G| − 1)

∑
(u,v)∈G,u,v

| f (u, i) − f (v, i)|, (6.18)

and disagreement variance:

dis(G, i) =
1
|G|

∑
u∈G

(
f (u, i) −

1
|G|

∑
v∈G

f (v, i)︸          ︷︷          ︸
average compatibility in G

)2
. (6.19)

Finally, Amer-Yahia et al. (2009) argue that a group consensus function
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should be a combination of both of these factors, i.e., a relevance function
(eq. (6.16) or (6.17)) and a disagreement function (eq. (6.18) or (6.19)):

F (G, i) = w1 × rel(G, i) + w2 × (1 − dis(G, i)), (6.20)

where w1 and w2 trade-off the relative importance of the two terms. Group
recommendation then consists of finding suitable items (e.g. movies that no
user in the group has seen) that maximize a (tuned) group consensus function.

Beyond defining notions of group consensus, Amer-Yahia et al. (2009) show
how to efficiently select items that maximize the above criteria (note the large
number of comparisons involved when performing optimization naively). They
also demonstrate experimentally (via a Mechanical Turk-based user study of
movie recommendations) that both relevance and disagreement are simultane-
ously important to achieve satisfaction within a group.

6.4.4 Group Bayesian Personalized Ranking

Much like Zhao et al. (2014) incorporated social links into Bayesian Person-
alized Ranking by treating friends’ interactions as additional implicit signals,
‘Group BPR’ (Pan and Chen, 2013) seeks to treat group preferences as a form
of implicit signal that can be used within a BPR framework.

While BPR assumes that a user u’s compatibility with an observed inter-
action i is greater than their compatibility with an unobserved interaction j
(i.e., xu,i > xu, j, as in Equation (5.25)), Pan and Chen (2013) assume that
group preference acts as a similar form of implicit feedback. As with Social
BPR (sec. 6.4.2), the goal of Group BPR is essentially to leverage weak sig-
nals from related users as a way of harvesting implicit pairwise preference
feedback.

Specifically, if a group of users G has interacted with some item i, their
mutual preference toward the item, defined as

xG,i =
1
|G|

∑
g∈G

xg,i (6.21)

is assumed to be greater than a user u’s preference toward an unseen item
j (i.e., xu, j). This notion of group preference is combined with the pairwise
preference model from Equation (5.25), resulting in a preference model of the
form:

ρxG,i + (1 − ρ)xu,i > xu, j, (6.22)

where ρ is a hyperparameter controlling the relative importance of individual
versus group preference.
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Interestingly, the training data used for evaluation by Pan and Chen (2013)
consists of ‘standard’ interaction datasets that do not contain explicit groups;
rather, groups are sampled randomly among users who have consumed a par-
ticular item. As such, Group BPR is perhaps best thought of as a different
means of leveraging explicit and implicit signals in implicit feedback settings,
rather than as a group method as such.

Experiments in Pan and Chen (2013) show that sampling pairwise prefer-
ences as in Equation (6.22) can improve performance over standard BPR on
various benchmark datasets.

6.5 Price Dynamics in Recommender Systems

In spite of the obvious impact price has on user decisions, there is surprisingly
little work that seeks to incorporate price features into personalized predictive
models. Partly this owes to the lack of suitable datasets: the vast majority of
the datasets we’ve studied so far (concerned with movies, books, restaurants,
etc.) include few useful features from which to build a model of price.

Even in datasets that include a price variable, it is not obvious how this vari-
able should be incorporated in to the types of algorithms we’ve seen so far (the
difficulty of incorporating these variables is discussed in e.g. Umberto (2015)).
Naively one might think that price might be incorporated into (e.g.) a factor-
ization machine (sec. 6.1) much like any other feature. While such a feature
might help in cold-start settings, it is unlikely to improve predictive perfor-
mance in general: to the extent that price explains significant variability in
user preferences or item properties, it may already be captured by user or item
latent factors. This form of ineffectiveness often comes as a surprise when im-
plementing content-aware models: the features that explain the most variance
(price, brand, genre, etc.) are precisely those that latent factor models already
capture, and add little predictive capacity (see fig. 6.3). A notable exception
to this is features that are not static: while a simple feature like the price of
an item may already be ‘baked in’ to a latent factor representation, what our
current models cannot tell us is how a user would react to a change in price. As
such, much of the research we’ll explore below is concerned with questions of
price variability, and modeling the impact that a change in price will have on
user preference.

The models covered in this section are summarized in Table 6.3.
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Figure 6.3 When is side-information useful for recommendation?

• Most of the settings we’ve considered in this chapter have essentially been
forms of cold-start. In other words, features compensate for a lack of histor-
ical interaction data (from either the user or item side).

• Features are unlikely to be particularly useful in ‘warmer’ settings: even if a
feature (price, brand, genre) explains variance, high-variance dimensions will
already be captured by latent terms (i.e., γu and γi).

• An exception to the above is features which are not static. We study price vari-
ability in this chapter, and temporal dynamics more broadly in Chapter 7. La-
tent terms will struggle to capture this type of variability unless it is explicitly
modeled.

• Another important use of features is for model interpretability: even features
that yield a modest improvement in predictive performance may help us to
understand the underlying dynamics of a particular problem better than we can
from latent representations. We discuss such notions of interpretability (in the
context of text-aware models) in Chapter 8.

Table 6.3 Comparison of price-aware recommendation techniques.
References: Ge et al. (2011); Guo et al. (2017b); Hu et al. (2018); Wan et al.

(2017).

Ref. Price Data Description

G11 (Proprietary) data of
travel tour purchases

Incorporates price and time constraints into travel
tour recommendations (sec. 6.5.1).

G17 Various Amazon
categories

Disentangles interactions in terms of preferences
versus price compatibility (sec. 6.5.1).

H18 Purchase and browse
data from Etsy

Forecasts a user’s target purchase price from a se-
quence of browsed items (sec. 6.5.2).

W17 Purchases from
Seattle grocery stores

Estimates how purchase decisions (item choice,
quantity, etc.) are affected by price fluctuations
(sec. 6.5.3).

6.5.1 Disentangling Prices and Preferences

Ge et al. (2011) consider price from the perspective of a user who wants recom-
mendations that satisfy a budget constraint. They consider this problem in the
context of recommending ‘travel tours,’ where a user has constraints in terms
of time (the length of the vacation), and the amount they are able to spend.
They note however, that while the length and price of an actual travel package
are observed, a user’s constraints may not be, and as such must be modeled (or
estimated) based on their historical activities.

To achieve this type of price-aware recommendation, Ge et al. (2011) con-
sider a modification of a latent factor model that includes both a preference
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compatibility, and a price-compatibility term:

f (u, i) = S (Cu,Ci)︸     ︷︷     ︸
price compatibility

·

user preference︷︸︸︷
γu · γi . (6.23)

γu and γi are user and item (travel tour)-related latent factors, as in Equa-
tion (5.10). Cu and Ci are cost-related factors; the cost for the tour (Ci) is
assumed to be an observed, two-dimensional vector, encoding both time and
price; Cu is assumed to be a corresponding latent compatibility encoding the
user’s price constraints; S is then a compatibility function, such as the (nega-
tive) Euclidean distance:

S (Cu,Ci) = 1 − ‖Cu −Ci‖
2
2. (6.24)

A few improvements to this basic model are proposed (including in a follow-up
paper (Ge et al., 2014)); for example, different training strategies are proposed
based on different types of explicit and implicit feedback; and the user factor
Cu is carefully regularized (since e.g. a trivial `2 regularizer would center user
price constraints around zero).

Experiments (on a proprietary dataset of historical travel tour interactions)
show that the model outperforms variants that fail to consider price informa-
tion.

Guo et al. (2017b) also build a model to separately capture price and pref-
erence dynamics. Although the specific method is somewhat different from
those we’ve discussed (a form of Poisson Factorization, see e.g. Gopalan et al.
(2013)), this approach has a common goal with Ge et al. (2011) of separat-
ing price and preference concerns. In essence, latent item properties γi are re-
sponsible for estimating ratings via γ(rating)

u · γi and also price compatibility via
γ(price) · γi; compatible items are then those that satisfy both of these concerns.
This idea is similar to the use of shared parameters for social recommendation
as in Figure 6.2.

6.5.2 Estimating Willing-to-Pay Prices within Sessions

Hu et al. (2018) also considered the effect that price has on users’ purchas-
ing decisions, but did so at the level of individual browsing sessions. That is,
the sequence of products a user browses might provide some clue as to their
purchase intent or their ‘willing-to-pay’ amount, e.g. if they are comparison
shopping among items within a certain price range.

Like Ge et al. (2011), the basic model of Hu et al. (2018) extends a latent
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factor model to incorporate a price-compatibility term:

f (u, i) = γu · γi + αuC(u, pi). (6.25)

Here C(u, pi) encodes the compatibility between the user u and the price pi of
the item i, and αu is a personalized measure of user u’s sensitivity toward this
term.

A trivial price-compatibility term might take the form

C(u, pi) = exp
(
−ω(bu − pi)2

)
(6.26)

where pi is the price of the item and bu is a latent estimate of the user’s bud-
get; ω controls the bandwidth of the compatibility function. This function is
essentially a variant of Equation (6.24).

To incorporate session dynamics, Hu et al. (2018) model price-compatibility
in terms of a feature vector ρi, which is a one-hot encoding representing the
quantile of the price pi compared to the prices of previously-viewed items in
the session;2 then the price-compatibility is merely C(u, pi) = θ · ρi. This is
further extended by using a mixture model, which essentially says that there
could be different parameters θg for different (latent) users groups:

C(u, pi) =
∑

g

eψu,g∑
g′ eψu,g′︸    ︷︷    ︸

extent to which u belongs to group g

price-compatibility model for group g︷︸︸︷
θg · ρi . (6.27)

Hu et al. (2018) ultimately find that there are several different classes of
user (based on latent group membership ψu,g): some tend to gradually browse
toward more expensive items, some gradually browse toward cheaper items,
and some consider a range of prices throughout a session.

6.5.3 Price Sensitivity and Price Elasticity

Notions such as price sensitivity, and price elasticity (defined as the change in
purchase quantity given a change in price) are well understood in economics
and marketing (Case and Fair, 2007). Understanding such factors can help to
guide custom marketing and promotion strategies (Zhang and Krishnamurthi,
2004; Zhang and Wedel, 2009).

However they are less well understood in terms of their effectiveness in a
predictive setting, i.e., in terms of how price should be used to understand and
forecast user actions (or to make recommendations).

2 For example, ρi = [0, 0, 0, 1] would indicate that the price pi was among the top 25% of
browsed prices.
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Part of the reason that price has received relatively little attention (at least in
academic literature) is presumably the lack of useful available data; even when
price is observed, it is confounded by numerous other factors, such as brand or
manifest aspects of a product; moreover even when price data is available, one
rarely has historical data on price that allows for measurement of the impact
of a change in price.

Wan et al. (2017) studied price in the context of grocery recommenda-
tion. Their research was mostly based on real transaction data from a physical
grocery store (in Seattle), though was also validated based public data from
dunnhumby. Both datasets contain price measurements, and critically measure-
ments of price variation over time. As such the main questions center around
the extent to which purchase decisions are affected by changes in price.

In the context of grocery shopping, potential questions include:

• Will a reduction in price cause a user to buy a category of product they
otherwise wouldn’t have (e.g. would they buy milk at a discount if it wasn’t
on their shopping list)?

• Will a reduction in price cause users to buy a specific item that they other-
wise wouldn’t have (e.g. would they buy a different brand of milk because
of a discount)?

• Will a reduction in price cause users to buy a larger quantity of an item than
they otherwise would have?

To study these questions, prediction is broken down into three subsequent
choices:

pu(buy q units of an item i from category c) =

p(category)
u (buy a product from category c)

×p(item)
u (buy product i | buying from category c)

×p(quantity)
u (buy q units | buying item i).

(6.28)

Each of these three prediction tasks (category, item, and quantity predic-
tion) is based on a predictor f (u, c, t), f (u, i, t), and f (u, q, t|i); the underlying
method behind each is a latent factor model, as in Equation (5.10), including
additional features associated with the time (e.g. what day of the week the trip
occurs on). Each is passed through a different activation function, for example
quantity prediction is modeled via a Poisson function:

p(quantity = q|buying item i) =
f (u, q, t|i)q−1 exp(− f (u, q, t|i))

(q − 1)!
. (6.29)

Next, the change in purchase probability due to price is captured (for each
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of the three models) using a simple feature encoding the price at a particular
point in time. Specifically (e.g. for quantity)

f ′(u, q, t|i) = f (u, q, t|i)︸     ︷︷     ︸
u’s compatibility with q units of item i at time t

+βu,q log Pi(t)︸︷︷︸
price of item i at time t

, (6.30)

where Pi(t) is the price of the item at time t. βu,q is a coefficient encoding the
price sensitivity, i.e., the extent to which a particular user u, when purchasing
q units of an item, will react to changes in price (e.g. a negative value of βu,q

would indicate that a user is less likely to purchase a particular quantity given a
price increase). All parameters are learned by training on purchase data, using
a BPR-like training scheme.

Price-elasticity now reflects how much preferences change given a change
in price, e.g. for a particular item i; or cross-elasticity measures the extent to
which a change in i’s price will change a user’s compatibility toward (e.g. prob-
ability of purchasing) a different product j. Price-elasticity and cross-elasticity
are measurements after the model has been trained. The main finding of the
model is that price-elasticity applies mostly to product choice, but not to cat-
egory choice or quantity (i.e., a change in price may cause users to buy a dif-
ferent brand of eggs, but will not cause them to buy eggs when they otherwise
wouldn’t have).

Ruiz et al. (2020) develop a somewhat similar model of consumer choice,
also in a setting of grocery purchases. Like the above model, Ruiz et al. (2020)
attempt to disentangle the various effects of item popularity, user preferences,
and price dynamics, though also include additional terms involving seasonal
effects. The main goal of the paper is to answer ‘counterfactual’ queries about
price (i.e., what would the user have done if the price had been different?). By
modeling how users will react to changes in price, they argue that the model
is also able to detect interactions between products, namely in terms of which
items are likely to be substitutable and complementary.

Finally, we mention attempts to use similar ideas within the context of dy-
namic pricing. Jiang et al. (2015) seek to combine ideas from pricing and rec-
ommendation in order to design optimal (i.e., profit-maximizing) promotion
strategies. Conversely, Chen et al. (2016) analyze the characteristics of sell-
ers on Amazon, in order to automatically detect the presence of algorithmic
pricing.
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6.6 Other Contextual Features in Recommendation

In this chapter, we have attempted a high-level treatment of the various ways
features can be incorporated to develop richer models of interaction data. Nat-
urally, we cannot give a complete presentation of all feature modalities, and as
such we’ve only sought to cover some of the most common scenarios. Below
we briefly survey a few of the other main directions for content-based recom-
mendation.

6.6.1 Music and Audio

A number of scenarios we’ll explore later in the book involve interactions with
music and audio data. First, interactions with music have significant sequential
context, i.e., the next interaction or recommendation should relate to the char-
acteristics of the previous song (chap. 7, sec. 7.5.3). Second, music recommen-
dations must carefully balance familiarity and novelty (chap. 10, sec. 10.5.1).

Given our focus in this chapter, we briefly explore the specific semantics of
interaction data and the challenges involved in building content-aware models.
We refer to e.g. Celma Herrada (2008) for a deeper survey of music recom-
mendation.

Interaction signals in music can be quite different from those associated with
the types of data we’ve seen so far (e.g. ratings and purchases). Feedback asso-
ciated with music is often implicit, and can be weak and noisy: for instance we
may know as little as whether a user finished a song or whether they skipped
it (see e.g. Pampalk et al. (2005)). Handling such signals is difficult as they do
not obviously map to ‘positive’ and ‘negative’ signals.

Unlike most of the data we’ve studied so far, music interactions are also
highly driven by repeat consumption (see e.g. Anderson et al. (2014)). This
requires specific techniques to understand under what conditions users might
seek novelty versus more familiar options.

Extracting useful features from audio is also challenging. Wang and Wang
(2014) note the difficulty of directly using high-dimensional audio features
(e.g. based on spectrogram-based representations of audio) within a traditional
feature-based recommender system. The solution they propose is to use a neu-
ral network-based representation (essentially a multilayer perceptron) to learn
embeddings of songs that are useful for recommendation, i.e.,:

γi = MLP(xi). (6.31)

Van Den Oord et al. (2013) adopt a similar approach based on a convolu-
tional neural network (CNN) which operates on an audio spectrogram. Spec-



6.6 Other Contextual Features in Recommendation 169

trograms are two-dimensional time/frequency representations of audio, so the
approach is methodologically similar to using CNNs to develop content-aware
models from images. We forego detailed discussion but note the similarity to
image-based recommendation approaches such as those we develop in Chap-
ter 9.

Like other recommendation domains, research in music recommendation
has partly been driven by data. Popular music datasets include the Million Song
Dataset and the Taste Profile Dataset (McFee et al., 2012), containing rich au-
dio and interaction data, though various studies also make use of proprietary
sources including data from YouTube (Anderson et al., 2014) and Spotify (An-
derson et al., 2020).

6.6.2 Recommendation in Location-Based Networks

Several attempts have been made to incorporate geographical features into
recommender systems. Actions are often guided by geographical constraints,
whether due to a user operating within a certain geographical region, or due to
sequential actions being highly localized.

Bao et al. (2015) survey attempts to model recommendations in location-
based social networks, and highlights some of the main ideas and challenges
in modeling this type of data:

• Locations are often used as a contextual feature, for example, users are likely
to visit places (restaurants, hotels, landmarks, etc.) in the vicinity of those
they have recently visited. We explore this type of assumption in the context
of sequential recommendation in Chapter 7 (sec. 7.5.3).

• Appropriately extracting features from location data is difficult due to its
hierarchical nature. For example, a restaurant belongs to a neighborhood,
a city, a state, and a country. Strategies for extracting useful hierarchical
representations from GPS data are covered in (e.g.) Zheng et al. (2009).

• Recommendation in such settings varies in terms of the data and goals in-
volved. In addition to geo-tagged activities, data may include profile infor-
mation, relations among users, etc. (Cho et al., 2011).

• Other familiar issues, such as cold-start, can be amplified in location-based
data, where user activities can be sparse and data can grow rapidly.

As such, successful solutions to modeling in location-based social networks
can incorporate several features, including those we’ve seen so far, e.g. how
to leverage social connections (as in sec. 6.4), and those we’ll see in later
chapters, such as sequential dynamics. Bao et al. (2015) also highlight a num-
ber of data sources that are commonly used for the study of recommendation
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in location-based networks, including (e.g.) Brightkite, Gowalla, Foursquare,
etc.

6.6.3 Temporal, Textual, and Visual Features

So far we have covered content in recommender systems, including features
ranging from price, geography, social signals, and audio. In the following
chapters we’ll revisit content-aware recommendation techniques using fea-
tures based on temporal and sequential dynamics (chap. 7), text (chap. 8), and
images (chap. 9). These modalities require special attention, primarily to deal
with the complex semantics of the data and high-dimensional signals involved.
Exploring how to build personalized models based on these complex modal-
ities of data is one of the main themes explored throughout the remainder of
this book.

6.7 Online Advertising

Superficially, surfacing advertisements to users seems no different from any
other form of personalized recommendation. That is, we can imagine learning
user ‘preferences’ and advertisement ‘properties’ from (e.g.) clicked advertise-
ments in much the same way that any other recommender system is trained.

While ad recommendation does indeed have many similarities to other forms
of personalized recommendation, there are several properties that demand dif-
ferent solutions compared to what we have seen so far. In particular:

• Advertisers have budget constraints. In many recommendation settings we
can tolerate considerable imbalance among the items that are recommended
(e.g. a highly popular movie might be recommended to a substantial fraction
of all users); this is impossible when recommending ads, given that each
advertiser can afford to surface only a limited number of ads (and at the same
time, we want to ensure that all advertisers have some ads recommended).

• Likewise, each user may only be shown a limited number of ads; while this
seems a common enough feature in most recommendation scenarios, it is
especially apparent when surfacing ads, as users are unlikely to explicitly
request additional ads.

• Ad recommendations need to be made immediately. Again, this feature is
common enough in many recommender systems, but is especially challeng-
ing given the considerations above: we cannot find a globally optimal solu-
tion that maximizes utility while satisfying advertisers’ budget constraints.
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Instead, we must develop schemes that make local decisions in a way that
approximates the globally optimal solution.

• Ad recommendation is highly contextual. Whereas most recommender sys-
tems rely heavily on user interaction histories, these are presumably less
reliable in ad recommendation scenarios (where users’ interactions with ads
are extremely sparse), if an interaction history is available at all. As such,
one has to rely more heavily on user context (e.g. a user’s query to a search
engine).

• Even if a user is responsive to a certain type of ad, there is diminishing value
in repeatedly showing similar ads. Instead, we must sometimes recommend
ads with low expected utility in the hope of discovering new user interests
(this is the basic principle behind a so-called explore/exploit tradeoff).

We’ll discuss a few of these issues as we briefly investigate systems for
online advertising below. Note that in this section we will mostly ignore the
question of how ‘compatibility’ between a user and an ad is estimated—this
could itself be the output of a recommender system, or could simply be a bid
that an advertiser places on a user or query. Our goal in this section is mostly
to explore situations where we have constraints in terms of how many recom-
mendations can be received by a user (or given of an item), and highlight some
of the general differences and strategies used to build ad recommenders.

6.7.1 Matching Problems

A typical constraint in ad recommendation is what is known as a matching
constraint, where each user can only be shown a fixed number of ads, and each
ad can only be shown to a fixed number of users.

To begin with, we’ll consider the case where each ad is shown to exactly one
user, and each user is shown exactly one ad. That is, we would like to select a
function ad(u) that maps users to ads, such that

ad(u) = ad(v)→ u = v. (6.32)

Alternately, we could write this as an adjacency matrix A such that Au,a = 1 if
ad(u) = a. Then our constraint could be written as

∀a
∑

u

Au,a = 1︸            ︷︷            ︸
each advertiser shows one ad

; ∀u
∑

a

Au,a = 1︸            ︷︷            ︸
each user sees one ad

. (6.33)

Then, we would like to choose the mapping that maximizes the utility between
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Figure 6.4 Ad recommendation can be viewed as a bipartite matching problem
(left), where users are shown a fixed number of ads, and each ad is shown to a
fixed number of users (in this figure each ad is shown to exactly one user, and vice
versa). In an online setting (right), users arrive one at a time; we seek a solution
that will be as close as possible to the solution we would have obtained in an
offline setting at left.

users and the ads they are shown:

max
A

∑
u,a

Au,a f (u, a) (6.34)

where f (u, a) is a measure of the compatibility between a user and an ad
(e.g. the output of a recommender system, a click probability, etc.).

This type of problem is known as a matching problem. Conceptually, it can
be viewed as matching two sets of nodes to form a bipartite graph (fig. 6.4,
left), where each possible edge has an associated weight (i.e., the compatibility
between a user and an ad). Our constraint above now says that every node
should be incident on one edge.

Outside of ad recommendation, this type of matching problem appears in
many settings, for example it is equivalent to the US’s National Residency
Matching Program, in which medical school students are matched to residency
programs: each student can only be matched to a single residency, and each
program has a limited number of slots; the matching should be chosen so as
to optimize students’ preferences for programs (and vice versa). Similar prob-
lems appear in various resource allocation settings (Gusfield and Irving, 1989);
the original paper proposing the solution outlined below considered a setting
related to college admissions (Gale and Shapley, 1962).

Although Equation (6.34) is a combinatorial optimization problem, it admits
efficient approximation (the so-called ‘stable marriage’ problem (Gusfield and
Irving, 1989)) and a polynomial exact solution (see Kuhn (1955)).
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6.7.2 AdWords

Above we discussed the issue of developing recommendation approaches that
consider some notion of constraints or ‘budgets’ from the perspective of users
and advertisers. While incorporating constraints is potentially useful in a va-
riety of recommendation scenarios, our solution still doesn’t fully address the
setting of ad recommendation; in particular, when recommending ads, we are
unlikely to see the entire set of users (or queries) in advance, before having to
select advertisements.

As such, we desire algorithms that make decisions (i.e., assigns ads to users)
one at a time, while still conforming to matching (or budget) constraints, as in
Figure 6.4 (right).

Formally, the above describes the distinction between an offline and an on-
line algorithm, i.e., one which sees the entire problem in advance, versus one
which must make predictions (or update model parameters) immediately in
response to new interactions. We discussed this type of setting briefly in Sec-
tion 5.7.

AdWords (Mehta et al., 2007) is a specific instance of this type of recom-
mendation problem developed for Google’s online advertising platform.

Mostly, the setting follows the one we described above, though includes a
few additional components. Specifically,

• Each advertiser a has a bid f (q, a) that they are willing to make for each
query q.

• The bid generally refers to how much the advertiser will pay if the ad is
clicked on; this is determined by an estimated click-through-rate, ctr(q, a).
As such the expected profit would be f (q, a)× ctr(q, a), which one can think
of as being analogous to user-to-item compatibility (and could be estimated
using a model such as one from Chapter 5).

• Each advertiser has a budget b(a) (e.g. for a one-week period).
• As in Section 6.7.1, there is a limit on the number of ads that can be returned

for each query.

Ultimately advertisers are selected via a function which considers both their
bid amount f (q, a) and the fraction of their budget remaining r(a) compared
to their initial budget b(a). Specifically, advertisers are selected according to
f (q, a) · (1 − e−

r(a)
b(a) ). Although the derivation of this specific formula is quite

involved, it can be shown (see e.g. Mehta et al. (2007)) that this tradeoff is in
some sense optimal in terms of how closely the online algorithm approximates
the offline solution.

Of course the actual implementation of AdWords contains many features not
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described here, for instance Adwords uses a second-price auction (the winning
advertiser pays the amount that the second highest bidder bid), and advertisers
don’t bid on exact queries, but rather are matched using ‘broad matching’ cri-
teria that can include subsets, supersets, or synonyms of keywords being bid
on. We refer to Rajaraman and Ullman (2011) for further description of these
details, and Mehta et al. (2007) for a more detailed technical description.

Exercises

6.1 In Section 6.1 we introduced the factorization machine as a general-
purpose technique for incorporating features into recommender systems.
In this exercise we’ll incorporate a few features into a factorization ma-
chine to measure the extent to which they improve recommendation
performance. You could use any dataset for this exercise, so long as
it includes a few features. For example, using our beer dataset (as in
sec. 2.3.1) we might include features such as:

• Simple numerical features such as the ABV of the beer or the age of
the user;

• The category of the item (one-hot encoded);
• The timestamp; this will require some care to encode, e.g. you might

use an encoding of the season or day of week.

Using a few of these features (or similar features on another dataset),
measure the extent to which they boost recommendation performance
over a model which does not include them.3

6.2 In Section 6.2 we discussed the potential value of incorporating features
(side information) into recommender systems, and argued that features
may be most informative in cold-start scenarios. To assess this, conduct
the following experiment (using your model from Exercise 6.1):

• For each user (or item) in the test set, count how many times that user
appeared in the training set;

• Plot the testing performance (y) of your model as a function of how
many times that user appeared in the training set (x); this type of plot
is shown in Figure 6.5;

• Generate the same plot both with and without additional features in
your factorization machine.

3 Do not be surprised if the improvement is minimal; we’ll investigate this more in Exercise 6.2.
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Performance versus user ‘coolness’

Figure 6.5: Performance (MSE)
as a function of user coolness (de-
fined as the number of times that
user was seen during training).
Goodreads ‘Graphic Novels’ data.

Naturally, our expectation is that performance will improve as users (or
items) are less ‘cold’ (i.e., more training interactions). However, we ex-
pect the performance degradation to be more mild when features can
compensate for a lack of historical interactions.

6.3 Before implementing a socially-aware recommender, test the hypothe-
sis that friends actually interact with more (or less) similar items com-
pared to randomly chosen sets of users. Use any dataset that contains
social interactions (such as those in Table 6.2). This hypothesis could be
tested in various ways, e.g. by computing the average Jaccard (or cosine,
etc.) similarity between randomly chosen pairs of users, versus randomly
chosen pairs of friends.

6.4 In Section 6.4 we explored a few ways to incorporate social signals into
recommender systems. For the most part, these techniques amounted to
ways of sampling negative feedback instances, e.g. we might be more
or less likely to interact with negative instances that our friends have
already interacted with (eqs. (6.13) and (6.14)). Experiment with these
sampling strategies (e.g. using the same dataset from Exercise 6.3) and
determine which (if any) lead to improved performance over a traditional
BPR implementation.

Project 5: Cold-Start Recommendation on Amazon

As we argued in Section 6.2, one of the main reasons to incorporate features
into personalized recommendation approaches is to improve their performance
in cold-start settings. Here, we’ll look at cold-start recommendation problems
using data from Amazon, following data from (e.g.) Ni et al. (2019a). We se-
lect this dataset as it includes various types of item metadata (prices, brands,
categories, etc.) that can potentially be useful in cold-start settings, though
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this project could be completed using any dataset that includes user or item
metadata. For this project you’ll likely want to select a specific sub-category
(e.g. Musical Instruments, as we saw in Section 4.3.2) which has informative
features, and which is of an appropriate scale to build your model.

We’ll build our system for cold-start recommendation via the following
steps:

(i) Start by implementing a ‘vanilla’ factorization machine to solve the predic-
tion problem, i.e., without incorporating any side-information. Note that this
problem could be cast either as one of rating prediction (as in sec. 5.1) or as
purchase prediction (as in sec. 5.2).

(ii) To build models for cold-start recommendation, it is useful to develop some
evaluation metrics specifically for the purpose of evaluating cold-start (and
‘cool-start’) performance. To do so, try plotting the performance on the test
set as a function of the number of times the item appears in the training set
(as in Exercise 6.2)—this type of plot is shown in Figure 6.5 for a ‘standard’
latent factor model. Our hypothesis when incorporating side-information
into recommendations is that performance improvements will be largest for
the coldest items, and less useful for items with longer interaction histories.
We’ll use this same type of plot to compare models in the following.

(iii) Several features could potentially be useful in cold-start scenarios. Consider
how to encode the following: (a) the brand of the item; (b) the category
(or categories) the item belongs to; and (c) the price of the item. Features
describing relationships among items (‘people who viewed X also viewed
Y,’ etc.) may also be useful (in much the same way as we considered user
relationships in Section 6.4).

For each cold-start feature you include, compare the performance of the
model with and without that feature.

It may be worth revisiting this project as we explore more complex feature
modalities in the later chapters, for example you might consider more complex
features based on the text of the product description, temporal information, or
visual features. We’ll revisit these topics in Chapters 7 to 9.



7
Temporal and Sequential Models

Throughout Chapters 5 and 6 we gradually developed more refined arguments
about the role that features (or ‘side-information’) play when modeling user in-
teraction data. Our initial argument (started in Section 5.1) was that latent user
and item representations are sufficient to capture complex preference dynam-
ics, and whatever features are most predictive (i.e., explain the most variability)
of interactions will automatically emerge via our latent representations.

Later, (e.g. in sec. 6.2) we refined our argument, noting that side-information
can be useful, especially in settings where there is a paucity of interaction data
from which to learn high-dimensional latent representations (i.e., cold-start
settings).

However in both of the above cases we still assumed that our model of
users and items was stationary. In practice, preferences and interactions can
be non-stationary for a variety of reasons. For instance, no matter how many
interactions we observe, and how many latent factors we fit, the models we’ve
developed so far would struggle to tell us that a user might only buy swimsuits
in summer, or that they are unlikely to watch the third film in a series until they
have already seen the second.

In this chapter we explore techniques to build personalized models around
user behavior that has temporal and sequential dependencies. Most straight-
forwardly, we might simply treat temporal and sequential information as addi-
tional features that can be modeled, e.g. via the framework of a factorization
machine as we developed in Chapter 6 (and indeed we will explore temporal
models based on this type of approach). However as we will see in this chap-
ter, a variety of complex and subtle temporal dynamics could be at play, for
example:

• Dynamics could apply to users (e.g. users may ‘grow out’ of certain movies);

177
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items (e.g. a movie’s special effects may become dated over time); or the
zeitgeist of the entire community may shift over time.

• Temporal dynamics exist at multiple scales, e.g. when modeling heart-rate
data (sec. 7.8), dynamics can be short-term (e.g. a user running uphill),
medium-term (e.g. a user getting tired) or long-term (e.g. a user becoming
more fit).

• In addition to short- and long-term dynamics, dynamics can also be periodic
(e.g. weekly or seasonal trends), or prone to bursts and outliers (e.g. pur-
chases around a major holiday).

Our main focus in this chapter is to explore a wide variety of (personalized)
models for temporally-evolving data. As we’ll see, dynamics such as those
above require carefully-designed models (rather than simply including a tem-
poral feature in a general-purpose model). As such, we focus on understand-
ing the overall process and design considerations when building personalized
models with temporal dynamics.

7.1 Introduction to Regression with Time Series

Before investigating more sophisticated models of temporal and sequential
data, it is instructive to consider how much progress can be made with the
techniques we have already developed.

To do so, we’ll consider developing predictors that estimate the next value
in a sequence (or the next several values). In the simplest case, we are given a
sequence of observations y = {y1 . . . yn}, from which we would like to predict
the next value (yn+1). For example, one might want to estimate website traffic
on the basis of historical traffic patterns.

To solve such a problem using a regression approach (or a classification ap-
proach for a binary outcome), we can imagine constructing features based on
the previous observations ({y1 . . . yn}) in order to predict the next one. Presum-
ably, once we observe the true value of yn+1, we would like to predict yn+2, and
so forth. Note that this blurs the line somewhat between ‘features’ and ‘labels,’
since the label for one prediction becomes a feature for the next.

Autoregression This procedure is known as autoregression (referring to the
fact that we are regressing on the same data that was used for prediction). As
usual, we are typically interested in defining our regressor (or classifier) such
that it minimizes some error between the predictions and the true values. That
is, we want to define a predictor f (y1 . . . yn) that estimates the next value (yn+1)
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Figure 7.1: Moving-average plots
of ∼1 week of Goodreads Fantasy
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in the sequence so as to minimize (e.g.) a Mean Squared Error:

1
n

n∑
i=1

( f (y1 . . . yi) − yi+1)2. (7.1)

Trivially, we might imagine several naive techniques for estimating the next
value in a sequence, e.g. we could predict the next value as a weighted sum of
previous values:

moving average: f (y1 . . . yn) =
1
K

K−1∑
k=0

yn−k (7.2)

weighted moving average: f (y1 . . . yn) =

∑K−1
k=0 (K − k) · yn−k∑K

k=1 k
. (7.3)

Although simple, one can imagine how these averages could potentially be
better predictors than always predicting the next value to be equal to the pre-
vious one. These types of trivial predictors can also be used to plot trends in
noisy data (fig. 7.1); averages over larger intervals (i.e., larger values of K)
will produce smoother summaries of the data. Such averages can be efficiently
computed for successive values via a dynamic programming solution; code to
generate the plots in Figure 7.1 is presented below:

1 xSum = sum(x[:wSize]) # Given data x and y to plot, and a
window size wSize

2 ySum = sum(y[:wSize]) # Sum of first wSize values
3 xSliding = []
4 ySliding = []
5
6 for i in range(wSize,len(x)-1):
7 xSum += x[i] - x[i-wSize] # Strip off oldest value and

add newest one
8 ySum += y[i] - y[i-wSize]
9 xSliding.append(xSum / wSize)

10 ySliding.append(ySum / wSize)

The two trivial strategies above are heuristics for predicting the next value,



180 Temporal and Sequential Models

capturing the intuition that it should be similar to recently observed values
(eq. (7.2)), and possibly that more recent values should be more predictive
than less recent ones (eq. (7.3)). However, a better strategy might be to learn
which of the recent values are the most predictive, i.e.,

f (yi . . . yn) =

K−1∑
k=0

θkyn−k. (7.4)

The values θk now determine which of the previous k values are most related
to the next one. For example, in periodic data (e.g. network traffic, seasonal
purchases), the most predictive values may include recent observations, obser-
vations from the same day last week, observations from the same day in the
previous month, etc.

For example, training a simple autoregressive model on a dataset of hourly
measurements of bike rentals in the Bay Area1 yields the following model:

yn =

0.471yn−1

- 0.284yn−2

+ 0.106yn−3

+ 0.014yn−4

- 0.021yn−5

+ 0.175yn−24

+ 0.540yn−24×7

(7.5)

Here we see that the two most predictive observations are those from the pre-
vious hour (yn−1) and from exactly one week ago (yn−24×7). Observe that we
didn’t include every previous observation up to 24 × 7 hours ago as a feature,
rather we only included those previous observations that we expected to be
predictive.

Note that although the solution in Equation (7.4) uses only previous values
in the sequence, one can of course include other features associated with the
current timepoint or previous values, just like in a normal regression model.

Although a simple approach to regression and classification of time series
data, the basic idea behind autoregression (i.e., to use previous observations to
predict future values in a sequence) will reappear in many of the more complex
models we develop, especially as we develop sequential models in Sections 7.5
and 7.6.

1 Each observation yh is a measurement of how many trips were taken during hour h.
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7.2 Temporal Dynamics in Recommender Systems

Several attempts have been made to improve recommendations by incorpo-
rating temporal dynamics. There are countless reasons why preferences, pur-
chases, or interactions may change over time, or more simply why knowing
the current timestamp may help us to more accurately predict the next interac-
tion. Consider for example the following scenarios which could cause changes
in movie ratings or interactions over time:

(i) Users who favor special effects may give lower ratings as a movie’s special
effects become dated.

(ii) Users may give higher ratings to older movies, e.g. due to feelings of nos-
talgia.

(iii) Alternately, ratings of older movies may represent a biased sample of items
that users had explicitly searched for (versus newer items which a user se-
lected due to their being surfaced on a landing page).

(iv) A mundane change to a user interface, such as modifying the tool-tip text
associated with a certain rating, may alter the rating distribution.

(v) A family member may borrow a user’s account, and temporarily consume
movies quite different from the account’s typical activities.

(vi) Users may binge-watch a series, dominating their interaction patterns for a
short period.

(vii) Action blockbusters may be more favored during summer (or Christmas
movies during Christmas).

(viii) Users may want to consume (or avoid) content very similar to what they
have previously interacted with.

(ix) Users may gradually develop an appreciation for certain characteristics of a
movie as they consume more content from that genre.

(x) Users may be anchored by external forces, i.e., the zeitgeist of what is cur-
rently popular in their community.

The above dynamics are quite varied in their sources and scale: Effects (i) and
(ii) are gradual and long-term; (iii) and (iv) owe to vagaries of a changing user
interface; (v) and (vi) are ‘bursty’ or short-term; (vii) is seasonal; (viii) is se-
quential; (ix) owes to user growth; and (x) is due to a changing community.
One can imagine many other sources, especially in different settings subject
to social dynamics, price variability, fashion, etc. As we will see, understand-
ing such dynamics is often key to making successful recommendations. Some
may scarcely seem like ‘temporal dynamics’ at all: e.g. a change to the user
interface has little to do with user or item evolution. Nevertheless, we’ll argue
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that modeling even these trivial or mundane dynamics proves critical in order
to disentangle them from the ‘real’ personalization dynamics in the data.

7.2.1 Methods for Temporal Recommendation

Methods for temporal recommendation fall broadly into two classes. The first
make use of the actual timestamps of events. Each interaction (u, i) is aug-
mented with a timestamp (u, i, t), and the goal is to understand how ratings
ru,i,t vary over time. That is, our goal is to extend models such as the one in
Section 5.1 (eq. (5.10)) so that parameters vary as a function of time, e.g.

ru,i,t = α(t) + βu(t) + βi(t) + γu(t) · γi(t). (7.6)

Modeling temporal dynamics in this way is effective at capturing long-term
shifts of community preferences over time. Such a model can also capture
short-term or ‘bursty’ dynamics, such as purchase patterns being affected by
external events, or periodic events, such as purchases being higher at a partic-
ular time of day, day of week, or season.

A second class of methods discards the specific timestamps, but preserves
only the sequence (or order) of events. Thus the goal is generally to predict the
next action as a function of the previous one, i.e.,

p(user u interacts with item i | they previously interacted with item j). (7.7)

This type of model makes the assumption that the important temporal informa-
tion is captured in the context provided by the most recent event. This is useful
in highly-contextual settings, such as predicting the next song a user will listen
to, or other items they will place in their basket, etc. In such settings knowing
the most recent action (or most recent few actions) is more informative than
knowing the specific timestamp.

These two classes of model are quite orthogonal, both in terms of the set-
tings where they are effective, as well as the techniques involved. Below we’ll
explore both settings via several case-studies. First we’ll explore parametric
temporal models (as in eq. (7.6)) through the example of the Netflix Prize,
where temporal dynamics are carefully modeled to capture a wide variety of
application-specific dynamics. We explore sequential models (as in eq. (7.7))
in Section 7.5 via several examples, starting with online shopping scenarios;
these settings tend to be highly contextual, where the context of recent activi-
ties is often more informative than long-term historical activities.

Later, we’ll introduce recurrent networks as general-purpose models of se-
quence data (sec. 7.6), and as a potential approach to capture complex dy-
namics in evolving interaction sequences. Such models have the potential to
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overcome the limitations of traditional sequential models by learning complex
semantics that persist over many steps. Such models (and variants based on dif-
ferent sequential architectures) arguably represent the current state-of-the-art
for general purpose recommendation.

7.2.2 Case Study: Temporal Recommendation and the Netflix
Prize

Careful modeling of temporal dynamics was one of the key features charac-
terizing the strongest solutions to the Netflix Prize (which we described at the
beginning of Chapter 5). Several of the ideas that proved effective for modeling
temporal dynamics on Netflix specifically are covered in Koren (2009) (‘Col-
laborative Filtering with Temporal Dynamics’), which we summarize here.

As a motivating example, consider the two plots shown in Figure 7.2. At top,
we see ratings over time averaged across weekly bins. We see several points
where ratings appear to increase suddenly, followed by plateaus of relatively
stable ratings; for example at around week 210, average ratings appear to jump
from around 3.5 stars to 3.6 stars.

Such long-term, population-level changes could owe to several explana-
tions. Changes in rating patterns could be due to a changing user base, or from
certain movies being added to Netflix; such changes could be due to world
events exogenous to Netflix. Or, the change could owe to a factor as simple as
a change in Netflix’s User Interface (UI), causing users to rate movies differ-
ently.

The bottom plot in Figure 7.2 shows another temporal trend, demonstrating
that individual movies receive higher ratings the longer they have been avail-
able on Netflix. Again, such trends could be due to a variety of factors: users
may be favorably biased toward older movies (e.g. by nostalgia); or again it
could be a function of the UI: a user who specifically sought out an older
movie may view it more favorably than a user who had discovered the same
movie from the front page.

Whatever the underlying cause of these trends, they account for significant
variability in the observed ratings. And as such, we should model these dy-
namics to predict ratings more accurately. Naively, one might simply discard
(e.g.) older data that does not correspond to current rating trends. But, a more
effective model would attempt to account for the differences between newer
and older data, while learning from both.

To model the kinds of long term trends captured in Figure 7.2, Koren (2009)



184 Temporal and Sequential Models

160 180 200 220 240 260 280 300

Weeks since first rating (across entire dataset)

3.0

3.2

3.4

3.6

3.8

4.0
A

ve
ra

ge
ra

tin
g

Netflix ratings over time

0 5 10 15 20

Weeks since first rating (of the movie being rated)

2.8

3.0

3.2

3.4

3.6

3.8

4.0

A
ve

ra
ge

ra
tin

g

Netflix ratings by movie age

Figure 7.2 Temporal dynamics on Netflix. The top plot shows ratings averaged
across each week over the lifetime of the dataset; the bottom plot shows how rat-
ings change for newly-introduced movies, showing that ratings gradually increase
during the first few weeks the movie is on Netflix. These plots reveal a combina-
tion of sudden and gradual trends in movie ratings over time.

first focus only on temporally evolving bias terms, i.e.,

bu,i(t) = α + βu(t) + βi(t). (7.8)

Starting with item biases, one can capture long-term, gradual variation simply
by having different bias terms for different periods, i.e.,

βi(t) = βi + βi,bin(t). (7.9)

Koren (2009) suggest ∼ 30 bins corresponding to about 10 weeks each in the
case of the Netflix data.

This basic idea of separating bias terms into bins could likewise be applied to
capture periodic trends, much like we encoded periodic terms in Section 2.3.4.
Here the bias term would again take the form of several bins:

βi(t) = βi + βi,bin(t) + βi,period(t), (7.10)

where period(t) could represent periodic effects at the level of different days of
the week, or months of the year (etc.).
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The above ideas are effective for modeling long-term and periodic dynam-
ics, but are quite expensive: e.g. the model in Equation (7.9) requires an addi-
tional 30 parameters per item; this is affordable for items on Netflix since the
average item has over 5,000 ratings (100 million ratings of 17,770 titles). How-
ever this would likely not be possible for users, as the average user has only
around 200 ratings. Thus one needs a way of parameterizing user temporal
dynamics that is considerably cheaper (i.e., involves fewer parameters).

A solution suggested in Koren (2009) is to use an ‘expressive deviation’
term for each user:

devu(t) = sign(t − tu)︸       ︷︷       ︸
before (−1) or after (1) the mean date

·|t − tu|x. (7.11)

The term tu represents the mean date amongst a particular user u’s ratings, so
that the term (t − tu) represents whether a particular point in time t is before
or after the midpoint of the user’s rating lifetime. The expressive deviation
term is depicted in Figure 7.3; the exponent of 0.4 was found to work well on
Netflix data. The deviation term augments the user bias term via a user-specific
scaling term αu, essentially controlling how strongly the deviation term applies
to a specific user:

βu(t) = βu + αu · devu(t), (7.12)

e.g. a negative value of αu would mean the user’s ratings trend down over time,
whereas a value αu ' 0 would mean that the user’s overall bias is not subject
to temporal variation. A similar strategy can also be used to capture variation
at the level of individual latent dimensions, e.g.

γu,k(t) = γu,k + αu,k · devu(t) + γu,k,t. (7.13)

Note that the deviation terms in Equations (7.12) and (7.13) add only a single
term per user (eq. (7.12)) or a single term per factor (eq. (7.13)). The final term
γu,k,t in Equation (7.13) (a temporally-evolving term applied to a specific factor
for a specific user) models highly-local preference dynamics and can be used
to model (e.g.) day-specific variability; this term is however highly expensive
(in terms of the number of parameters introduced) so may only be feasible for
some users.

When combined with the carefully-chosen deviation term of Equation (7.11)
this allows the model to capture quite complex dynamics while adding only
a modest number of parameters; this basic design philosophy (a carefully-
designed parametric model that costs only a small number of parameters) will
prove a common theme when designing temporal models (sec. 7.2.3).
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Figure 7.4: Spline interpolation of
temporally evolving user bias.

While the expressive deviation term is effective for users who have few inter-
actions, for users who have more it can be useful to fit a more complex model.
To do so, a spline function can be used to model gradual shifts in user biases.
A spline function smoothly interpolates between a series of control points via
the following function:

βu(t) = βu +

∑ku
l=1 eγ|t−tu

l |bu
tl∑ku

l=1 e−γ|t−tu
l |
. (7.14)

Here ku is the number of control points for user u (which grows with the num-
ber of ratings that user has entered); tu is a series of uniformly spaced time-
points for each user; and bu

tl is the bias associated with each control point. This
type of interpolation is depicted in Figure 7.4.

The above term is a reasonably flexible way to capture gradual drift in user
preferences, though still can’t handle sudden changes. Koren (2009) address
this with a ‘per day’ user bias βu,t, which can be useful for particular days
in which users have a lot of activity. Note that such a bias is unlikely to be
helpful when predicting future events; instead, by modeling outliers in this
way, the model can essentially learn to ‘ignore’ events that are not useful for
prediction. This too is a common design principle when building temporal
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models: the goal is not so much to forecast future trends but rather to adjust
and account for past events appropriately.

The above ideas capture the essential components covered in Koren (2009);
their work also includes an exploratory study of several alternative modeling
approaches, including incorporating temporal dynamics into neighborhood-
based models like those of Chapter 4.

7.2.3 What can Netflix Teach us about Temporal Models?

The model developed in the above case study involved several decisions that
are quite specific to Netflix, and indeed the model was designed with the ex-
plicit goal of achieving strong performance on a single dataset. As such, many
of the specific choices (such as the specific parametric form of the expressive
deviation term) may not generalize to other settings. Nevertheless, there are
several important lessons in the above study that apply generally when devel-
oping temporal models of user behavior:

• Successful solutions to the Netflix Prize highlighted the critical importance
of temporal dynamics in recommendation settings. While the approaches
we explored in Section 7.2.2 are quite Netflix-specific, they highlight a gen-
eral philosophy followed when building temporal models: temporal models
tend to be carefully designed around the dynamics of specific datasets and
applications.

• One reason for the proliferation of many different hand-crafted temporal
models is that temporal models are expensive in terms of the number of
parameters required. As such a main focus when building temporal models
is that of model parsimony: to prevent the parameter space from exploding,
one must carefully choose models that capture the desired dynamics with as
few parameters as possible.

• Temporal dynamics may range from ‘lofty’ concepts such as users becom-
ing nostalgic toward older movies, to more mundane sources of variation,
such as an overall shift in average ratings across the community. Both are
important to model as both explain variance in the data: untangling even
mundane dynamics is a critical step toward extracting meaningful personal-
ization signals.

• Some specific lessons from Netflix generalize quite well, especially the
importance placed on temporally evolving bias terms: the vast majority
of temporal variation often owes to shifts in item popularity, user activity
(etc.), and can be captured via evolving βu or βi; temporally evolving latent
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Table 7.1 Comparison of temporally-aware recommendation techniques.
References: Koren (2009); Ding and Li (2005); Xiang et al. (2010); McAuley

and Leskovec (2013b).

Ref. Temporal Signal Description

K09 Various Uses a variety of parameteric functions and temporal
bins, mostly to capture gradual drift in item biases
and preferences (sec. 7.2.2).

DL05 Recency Recent interactions are weighted more highly when
determining relatedness against historical interac-
tions (sec. 7.3.1).

X10 Sessions Interactions within the same session are used as
an additional signal of relatedness among items
(sec. 7.3.2).

M13 Acquired tastes Users acquire tastes toward certain items due to re-
peated exposure to related items (sec. 7.3.3).

factors (γu or γi) play less of a role, or otherwise are simply too expensive
to model.

Finally, we highlight that our goal in developing temporal models is typi-
cally not to forecast long-term trends. For example our model of opinion dy-
namics on Netflix tells us nothing about what will be popular next year. Rather
the goal is typically to account for discrepancies across different time periods
so that interactions across time can be meaningfully compared. The resulting
model thus gives a more accurate sense of current rating dynamics, if not fu-
ture trends. See also Bell and Koren (2007) for further discussion.

7.3 Other Approaches to Temporal Dynamics

Our case study of temporal dynamics on Netflix demonstrated the general ap-
proach of building temporal models by carefully hand-crafting model com-
ponents to account for the dynamics in a particular dataset or setting. Natu-
rally, temporal dynamics can vary widely in other settings, demanding differ-
ent modeling approaches. Below we outline a few of the main categories of
temporal models and present a few specific examples which we summarize in
Table 7.1.
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7.3.1 Long-Term Dynamics of Opinions

Other than the methods we discussed above for temporal recommendation on
Netflix, several papers studied the notion of gradually evolving concepts within
the context of preferences and opinions.

Early works that deal with temporal dynamics explore the notion of concept
drift (Widmer and Kubat, 1996; Tsymbal, 2004); early works on this topic are
concerned with systems for classification in settings with temporally-evolving
data. Simple approaches consist of (e.g.) taking only a window of recent ex-
amples during training (much like we saw in Figure 7.1). More sophisticated
approaches allow the context window size to adapt based on how ‘stable’ a
particular concept is; or to reuse concepts that recur periodically; or to distin-
guish drifting concepts from noise. Models based on these ideas, along with
theoretical results, are discussed in Widmer and Kubat (1996), among others.

Among temporal techniques for recommendation, early approaches incor-
porate temporal factors into heuristic techniques, such as the model from Equa-
tion (4.20). For example in Ding and Li (2005), the basic idea is to weight
related items in Equation (4.20) so that recent interactions are weighted more
highly:

r(u, i) =

∑
j∈Iu

Ru, j · Sim(i, j) · f (tu, j)∑
j∈Iu

Sim(i, j) · f (tu, j)
. (7.15)

Here tu, j is the timestamp associated with the rating Ru, j, and f (tu, j) is a mono-
tone function of the timestamp. For example, relevance can decay exponen-
tially for older items:

f (t) = e−λ·t. (7.16)

Godes and Silva (2012), while less focused on predictive modeling, attempt
to characterize the long-term dynamics of opinions through online reviews.
They studied book reviews on Amazon. Like our study of Netflix data (espe-
cially Figure 7.2), they study how ratings evolve over time, as well as how they
evolve in terms of the age of a book (time since first review). The dynamics
are quite different from those on Netflix, where both show a decreasing trend
over time (in contrast to the ‘nostalgia’ effect we observed in Figure 7.2).

In addition to a difference in domain (books versus movies), online reviews
potentially have quite different dynamics than ratings on Netflix, which Godes
and Silva (2012) discuss in detail. For example, given that users see each
other’s reviews, they may be guided by social effects, e.g. users may enter
a review only if they perceive that it will affect the average rating (Wu and Hu-
berman, 2008). They also discuss the importance of self-selection, where users
who assign more value to a product tend to purchase it earlier (and thus are
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responsible for more positive early reviews) (Li and Hitt, 2008). Ultimately
Godes and Silva (2012) argue that more complex dynamics may be at play
once we appropriately control for these effects; ultimately their study again re-
veals that temporal dynamics can differ drastically as a function of a particular
setting or dataset.

7.3.2 Short-Term Dynamics and Session-Based Recommendation

Most of the models of temporal dynamics we’ve discussed so far capture no-
tions such as gradual drift, where models used a small number of parameters
to describe gradually evolving parametric functions (fig. 7.3), sequential bins
spanning several months (eq. (7.9)), or periodic effects (eq. (7.10)). While ef-
fective in the settings they were designed for, such models are limited to captur-
ing broad, global trends. We touched briefly on models of short-term dynamics
using per-day biases (Koren, 2009), though such terms are essentially forms of
outlier detection.

Another pattern of short-term temporal variation arises due to users’ specific
context within an interaction session. Sessions may have a specific, narrow
focus that can be useful to predict future interactions in the short term, but
which differ from users’ overall patterns and can be discarded in the long term.
‘Sessions’ can be extracted in various ways, though are typically based on
some simple heuristic such as setting session boundaries based on a threshold
between successive interaction timestamps.

Xiang et al. (2010) attempt to combine models of long- and short-term dy-
namics by incorporating user sessions. Their model is based on random walk-
based methods similar to those we studied in Section 4.4. Here, ‘sessions’
simply become additional nodes in the interaction graph, as in Figure 7.5.
Edges now connect user-to-item interactions and session-to-item interactions.
In terms of our random walk model, this means there are two mechanisms for
information to propagate between related items. User-to-item and session-to-
item terms are associated with different interaction weights ηu and ηs; roughly
speaking, these control the relative importance of long-term user-level dynam-
ics and short-term session-level dynamics. The model can also be tuned in
terms of the granularity at which interactions are divided into sessions (with
shorter sessions capturing more local dynamics). Xiang et al. (2010) show the
value of this notion of short-term dynamics on user bookmark data (from Ci-
teULike and Delicious).

We revisit session-based recommenders in more depth in Section 7.4 and
Section 7.7 when we explore methods based on Markov chains and recur-
rent networks. Like Xiang et al. (2010), such models have a general goal of
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users: items: sessions:
ηsηu

Figure 7.5: Session-based Tempo-
ral Graph (Xiang et al., 2010). Each
session describes a sequence of in-
teractions from a specific user.

combining local dynamics from recent interactions with longer-term features
extracted from users’ interaction histories.

7.3.3 User-Level Temporal Evolution

Most of the sources of temporal dynamics we’ve explored so far owe to shifting
properties of items (or how items are perceived over time, due to e.g. nostal-
gia), or gradual shifts that apply to the community as a whole (including trivial
dynamics such as a change in the user interface, which don’t apply specifically
to any user or item). Temporal drift could likewise occur at the level of individ-
ual users, for example due to a user gradually gaining more experience with a
certain type of item.

McAuley and Leskovec (2013b) sought to model this notion of ‘acquired
tastes’ in recommendation datasets. They noted that in many settings, a user’s
preference toward a certain type of item may change due to the very act of con-
suming items of that type. This setting was motivated by data of beer and wine
reviews (including the same datasets we’ve been using in examples throughout
this book), though applies in various other settings: e.g. a user will likely have
a different opinion of Seven Samurai depending on whether it is the first or the
fiftieth drama they’ve watched.

Note that this notion of temporal dynamics is not attached to an item, nor is
it attached to the community as a whole (i.e., it is not a function of the precise
timestamp); rather it is a function of a specific user’s expertise at the time
of their rating. McAuley and Leskovec (2013b) capture this type of dynamic
by fitting two variables: γE

u captures user latent factors for users at different
experience levels (where E belongs to a discrete set, e.g. E ∈ {1 . . . 5}). E is
then fit for each user as a function of time (i.e., E(u, t)), with an additional
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constraint that E(u, t) > E(u, t′) → t > t′, i.e., a user’s ‘experience level’ must
be non-decreasing over time.2

In addition to improving performance on certain datasets where acquired
tastes play a key role, McAuley and Leskovec (2013b) argue that such a model
can also be used to understand which specific types of items require exper-
tise or experience for users to fully appreciate. Examples include IPAs (India
Pale Ales), which users tend to gradually develop a preference toward, versus
so-called ‘adjunct lagers’ (e.g. Bud Light), which experienced users tend to
dislike.

7.4 Personalized Markov Chains

The temporal models we saw in Section 7.2 directly modeled (or extracted
features from) the timestamps associated with each interaction. We showed
how features extracted from timestamps could include factors like seasonality,
the day of the week, or nostalgia effects (etc.) on the Netflix dataset, and later
we’ll revisit such models in the context of the temporal dynamics of fashion
(sec. 9.2.1).

However in many settings, the best predictor of what a user will do next is
simply what they did last. For example, if you click on a winter coat, then you
might be interested in other winter clothing, regardless of whether those items
are currently in-season.

Even trivial models such as the item-to-item recommenders which we saw in
Section 4.3 implicitly made this assumption. For example, recommendations
such as ‘people who viewed X also viewed Y’ can be made based purely on the
context of what is currently being viewed; the user’s historical interactions—or
their preferences—are not considered. In contrast the approaches we explore
below generally try to combine both personal and contextual factors.

Markov chains The assumption described above—that the next action is con-
ditionally independent3 of the interaction history given the previous action—
describes exactly the setting of a Markov Chain. Formally, given a sequence
of interactions (among a discrete set of items i ∈ I) i(1) . . . i(t), a Markov Chain

2 This constraint forces the model to learn parameters resembling experience levels, in the sense
that the model is forced to discover systematic ‘stages’ through which many users progress in
common.

3 Two variables a and b are said to be conditionally independent given a third variable c if
p(a, b|c) = p(a|c)p(b|c). Essentially c ‘explains’ any dependence a and b. In the case of
Markov Chains, this assumption implies that the most recent event is sufficient to explain the
next action’s dependence on the history.
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assumes that the probability of the next interaction given the history can be
written purely in terms of the previous interaction:

p(i(t+1) = i | i(t) . . . i(1)) = p(i(t+1) = i | i(t)) (7.17)

Personalized Markov Chains generalize Equation (7.17) by allowing the
probability of the next item to depend on both the previous item and the iden-
tity of the user u. That is, for a given user we have:

p(i(t+1)
u = i | i(t)u . . . i(1)

u ) = p(i(t+1)
u = i | i(t)u ). (7.18)

What this means in practice is that when predicting a user’s next action, our
prediction should be a function of their previous action as well as their pref-
erence dimensions. Most of the time we can ignore the formalism of Markov
Chains and more simply state that we are trying to fit a function of the form

f (
score associated with the next interaction︷︸︸︷

u, i | i(t−1)
u︸︷︷︸

given the user’s previous interaction

). (7.19)

That is, where our previous models took a user and item as inputs (i.e., f (u, i)),
or a user, item, and timestamp ( f (u, i, t)), we now wish to model a user, an
item, and the user’s previous interaction. We might fit this function via a rating
estimation framework (as in sec. 5.1), or a personalized ranking framework (as
in sec. 5.2.2), etc.

The key challenge in fitting models of the form in Equation (7.19) is that
techniques like matrix factorization can no longer be straightforwardly applied.
Whereas we previously modeled user/item interactions by factorizing a U × I
matrix we must now factorize a U × I × I tensor (i.e., interactions between the
user, the item, and the previous item).

We’ll explore this idea by investigating specific implementations from case
studies in the following section.

7.5 Case Studies: Markov-Chain Models for
Recommendation

Below we describe various attempts to extend latent factor recommendation
approaches to incorporate signals from the previous item. The main challenges
involved include handling the large state space of interactions between users,
items, and previous items; understanding the semantics that describe sequen-
tial relationships among items; and incorporating sequential dynamics with
additional signals such as social information.
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Table 7.2 Markov-Chain models for personalized recommendation.
References: Rendle et al. (2010); Cai et al. (2017); Feng et al. (2015); Chen

et al. (2012); He et al. (2017a).

Ref. Method Description

R10 Factorized Personalized
Markov Chains (FPMC)

The next item should be compatible with
the user, as well as the previous item
(sec. 7.5.1).

C17 Socially-Aware Personalized
Markov Chains (SPMC)

Extends FPMC, incorporating a social term
which states that the next item should
be similar to our friends’ previous items
(sec. 7.5.2).

F15 Personalized Ranking Metric
Embedding (PRME)

Similar to FPMC, but measures compat-
ibility via similarity in a metric space
(sec. 7.5.3).

C12 Factorized Markov
Embeddings (FME)

Also uses a metric space, though items
can have distinct ‘start’ and ‘end’ points
(sec. 7.5.3).

H17 Translation-based
Recommendation

Replaces the fixed user embedding γu with
a translation operation in latent item space
(sec. 7.5.4).

The models covered in this section are summarized in Table 7.2.

7.5.1 Factorized Personalized Markov Chains

An early paper that used Markov Chains for personalized recommendation
was Factorizing Personalized Markov Chains for Next-Basket Recommenda-
tion (Rendle et al., 2010). Factorized Personalized Markov Chains (FPMC for
short) predict what items a user will purchase next, based on the items in their
previous basket; customer basket data from Rossmann (a German drugstore)
was used to train and evaluate the model.

The basic premise of FPMC is that the contents of the previous basket should
help to predict the contents of the next one, but also that the basket contents
should be personalized to the user. This is achieved by fitting a function of the
form

f (i|u, j) (7.20)

where u is a user, i is a potential item to be recommended, and j is an item
from the user’s previous basket.4

4 Although the original paper uses basket data, baskets are mostly a complication needed to
handle their specific dataset. It is more straightforward to present the work by simply
considering item sequences (which is how the method is often adopted by other papers).
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The paper discusses the difficulty of modeling sparse interactions of the
form in Equation (7.20), and explains how this might be addressed with tensor
decomposition. The decomposition used is essentially a generalization of the
matrix factorization schemes we saw in Chapter 5, where f (i|u, j) decomposes
into a series of pairwise factors:

f (i|u, j) = γ(ui)
u · γ(iu)

i︸     ︷︷     ︸
f (i|u)

+ γ
(ij)
i · γ

(ji)
j︸    ︷︷    ︸

f (i| j)

+ γ
(uj)
u · γ

(ju)
j︸     ︷︷     ︸

f (u, j)

. (7.21)

The three terms above denote the user’s compatibility with the next item (γ(ui)
u ·

γ(iu)
i ), the next item’s compatibility with the previous item (γ(ij)

i · γ
( ji)
j ), and the

user’s compatibility with the previous item (γ(uj)
u · γ

(ju)
j ). In practice, the latter

expression cancels out when optimizing the model using a BPR-like frame-
work (as we see in Equation (7.23), below), which is perhaps intuitive as the
expression doesn’t include the candidate item i; as such the factorization can
be rewritten

f (i|u, j) =

user’s compatibility with the next item︷     ︸︸     ︷
γ(ui)

u · γ(iu)
i + γ

(ij)
i · γ

(ji)
j︸    ︷︷    ︸

next item’s compatibility with the previous item

. (7.22)

Intuitively, this factorization simply states that the next item should be compat-
ible with both the user and the previous item consumed. Note that (as indicated
by superscripts), item parameters are not shared between the terms γ(ui), γ(iu),
γ(ij), γ(ji), i.e., we use separate sets of factors when modeling how an item in-
teracts with a user vs. another item.

Ultimately, the model is optimized using a BPR-like framework (sec. 5.2.2),
i.e., using a contrastive loss of the form

σ( f (i|u, j) − f (i′|u, j)), (7.23)

where i′ is a sampled negative item that the user did not consume.
Experiments compare two variants of FPMC, which exclude either the se-

quential or the personal term. That is, they model f (i|u) = γu · γi or f (i| j) =

γi · γ j. Excluding the sequential term reduces the expression to regular ma-
trix factorization (MF), as in Section 5.1. Excluding the personal term (which
they term Factorized Markov Chains, or FMC), captures ‘global’ sequential
dynamics that are common to all users. The experiments thus measure (albeit
on a specific dataset) the extent to which future actions can be explained by
the previous action, versus overall historical preferences.

Where we write a term for a previous item, in Rendle et al. (2010) that expression would
usually be replaced by a sum over items in the previous basket
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Ultimately FPMC outperforms both variants, though interestingly FMC and
MF outperform each other under different conditions. Importantly, FMC is
particularly effective in sparse settings (i.e., few interactions per user/item)
whereas MF works better on dense data.

We note briefly that methods like factorization machines (chap. 6, Sec-
tion 6.1) can relatively straightforwardly be used to implement FPMC-like
models: in addition to embedding user and item encodings, one can simply
augment the representation to include the previous item. We leave this as an
exercise (Exercise 7.2), though also show how to implement FPMC in Tensor-
flow in Section 7.5.5.

7.5.2 Socially-Aware Sequential Recommendation

Just as we saw how Bayesian Personalized Ranking can be augmented by sam-
pling signals from social interactions in Section 6.4.2, sequential models like
FPMC can also be improved by leveraging social information.

Socially-Aware Personalized Markov Chains (SPMC) (Cai et al., 2017) ex-
tend FPMC (and Social BPR) by merging both temporal and social signals.
The basic idea is to extend Equation (7.22) from FPMC based on the reason-
ing that the user’s next item should be similar to those that their friends have
recently consumed:

f (i|u, j) = γ(ui)
u ·γ

(iu)
i +γ

(ij)
i ·γ

(ji)
j + |S|−α

∑
(v,k)∈S

σ(γ(uv)
u · γ(uv)

v )︸           ︷︷           ︸
similarity between u and v

next item’s compatibility with friend’s previous item︷       ︸︸       ︷
(γ(ik)

i · γ(ik)
k ) . (7.24)

Here the set S consists of only the most recent interactions k by each of u’s
friends v. The first term inside the summation σ(γ(uv)

u · γ(uv)
v ) measures the sim-

ilarity between u and v, so that we only consider the effect of social influence
if u and v are sufficiently similar. The term |S|−α normalizes the expression so
that social influence does not saturate the other terms for users with a large
number of friends. Note that there is no term γ(vu) or γ(ki) in Equation (7.24)
(i.e., only one set of representations is learned, rather than asymmetric rep-
resentations as in Equation (7.22)); this is done simply to reduce the number
of model parameters. Cai et al. (2017) show that including both temporal and
social terms improves predictive performance over FPMC and Social BPR.

7.5.3 Locality-Based Sequential Recommendation

In Section 5.5.1, we briefly suggested that different aggregation functions (be-
sides the inner product) could be useful in various contexts. This proves to
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be the case in various sequential recommendation settings, where sequential
actions follow some notion of locality.

In Feng et al. (2015), sequential recommendation schemes were studied in
the setting of Point-of-Interest recommendation. In such a setting, the context
of the previous action is particularly informative, since the following action is
likely to be (geographically) close. We briefly touched upon this assumption
when introducing location-based social networks in Chapter 6 (sec. 6.6.2).

If the actual semantics of the problem demand some notion of locality, then
arguably similarity in the latent space should also be based on locality (rather
than, say, an inner product).

The framework of Feng et al. (2015), Personalized Ranking Metric Em-
bedding (PRME), models sequential compatibility using an expression of the
form:

f (i| j) = −d(γi − γ j)2 = −‖γi − γ j‖
2
2. (7.25)

Note two differences between this model (PRME) and FPMC (sec. 7.5.1):

• The main difference is the use of a distance (actually a squared distance)
function, so that sequential activities exhibit locality in the latent space.

• Unlike FPMC, which used separate latent spaces γ(ij) and γ(ji) for the next
and previous item, PRME uses only a single latent space (which saves pa-
rameters).

Like FPMC, PRME also includes an expression encoding the compatibility
between the user and the item (again using a distance function), and also trains
the model using a BPR-like framework (i.e., including a negative item i′ as
in Equation (7.23)). Other specific details include an explicit feature encoding
geographical distance (based on latitude and longitude), and a temporal feature
which down-weights the influence of the sequential term if sequential events
are temporally far apart.

Though the authors of PRME argue that Euclidean distance is a more natural
way of comparing sequential items (and show that PRME outperforms FPMC
for POI recommendation), it should be noted that whether one similarity func-
tion is ‘better’ than the other largely depends on the semantics of the specific
problem and dataset.

Another paper makes use of a similar model for personalized playlist gen-
eration (Chen et al., 2012). Like PRME, their model (Factorized Markov Em-
beddings, or FME) notes that sequential songs in playlists tend to be highly
localized, such that a metric embedding is possibly well-motivated. The com-
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Translation in Latent Space

Figure 7.6: Some sequential
models use the principle of trans-
lation to model sequential transi-
tions between items.

patibility function given a user u, song i, and previous song j takes the form

f (i|u, j) = −d(γ(start)
i − γ(end)

j )2 + γu · γ
′
i . (7.26)

Note a few differences between FME and PRME:

• FME uses a separate embedding for the next song (γ(start)) and the previous
song (γ(end)). The basic idea being that songs in playlists should not just be
highly local, but should gradually ‘transition’ from one song to the next, so
that the ‘start point’ of the next song in latent space should be similar to the
‘end point’ of the previous song (fig. 7.6).

• FME uses a combination of both a distance function (for compatibility with
the previous item) and an inner product (for compatibility with the user) in
Equation (7.26). Again, this demonstrates that the correct choice of compat-
ibility function is highly dependent on problem semantics.

7.5.4 Translation-Based Recommendation

Like FME (sec. 7.5.3), a third class of models for sequential recommendation
are based on the principle of translation.

He et al. (2017a) built recommender systems using principles adapted from
knowledge-base completion. Several techniques for knowledge base comple-
tion are based on the principle of learning low-dimensional embeddings that
describe relationships among entities (Bordes et al., 2013; Wang et al., 2014;
Lin et al., 2015). The basic idea is to represent both entities and relationships
as vectors in a low-dimensional space, such that a relation vector encodes how
to ‘translate’ between entities. For example, we might seek to learn vectors de-
scribing entities such as ‘Alan Turing’ and ‘England’, such that given a vector



7.5 Case Studies: Markov-Chain Models for Recommendation 199

describing the relation ‘born in’ we should have

d(
−−−−−−−−−−→
Alan Turing +

−−−−−→
born in,

−−−−−−−→
England) ' 0, (7.27)

where d is a Euclidean distance.
Translation-based recommendation (He et al., 2017a) adapts this type of ap-

proach to personalized recommendation. Whereas for knowledge graph com-
pletion relations tell us how to traverse the space of entities, in a recommen-
dation setting, items fulfil the role of entities, and users traverse the space of
items. Then, given the previous item j and the next item i to be consumed in
sequence,5 we should have

d(γ j + γu, γi) ' 0. (7.28)

Training such a model is quite similar to how we trained FME and PRME in
Section 7.5.3: that is, we fit a compatibility function between a user, an item,
and a previous item (much like Equation (7.26)):

f (i|u, j) = βi − ‖γ j + γu − γi‖2, (7.29)

where βi is incorporated so that the method is capable of capturing overall
item popularity as well as preferences. He et al. (2017a) further constrains
item representations to live on a unit ball (i.e., ‖γi‖

2
2 = 1), which was found to

be effective in the knowledge graph completion settings above.
Conceptually, the above model corresponds to users following a ‘trajectory’

through their interactions over time (fig. 7.6). In principle, this ought to mean
that related items (e.g. sequential songs in a playlist) should be aligned to form
a chain of equally-spaced items in the latent space. In practice, such complex
dynamics are unlikely to emerge from the model; rather, like other temporal
modeling approaches, the model benefits from its parsimony (i.e., it has much
fewer parameters than other sequential models, due to the use of only a single
latent space) but is still able to capture common sequential patterns even in
sparse datasets.

7.5.5 FPMC in Tensorflow

Although several of the above models can be implemented via an appropriately
designed factorization machine (Exercises 7.2 and 7.3), it is worth briefly de-
scribing how a sequential model might be implemented ‘from scratch;’ this
will be useful when implementing variants that do not straightforwardly map

5 In the original paper j is the next item and i is the previous, though we reverse the order to
maintain notation across all methods.
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to existing architectures (such as the factorization machine of Section 6.1) or
libraries.

Here we implement the Factorized Personalized Markov Chain (FPMC)
method from Section 7.5.1, though the code can straightforwardly be adapted
to implement other sequential methods discussed in Section 7.5.

We build our solution on top of our Bayesian Personalized Ranking imple-
mentation from Section 5.8.4. First, when parsing the data, we must be careful
to process the timestamp:

1 for d in parse('goodreads_reviews_comics_graphic.json.gz'):
2 u = d['user_id']
3 i = d['book_id']
4 t = d['date_added'] # Raw timestamp string
5 r = d['rating']
6 dt = dateutil.parser.parse(t) # Structured timestamp
7 t = int(dt.timestamp()) # Integer timestamp
8 if not u in userIDs: userIDs[u] = len(userIDs)
9 if not i in itemIDs: itemIDs[i] = len(itemIDs)

10 interactions.append((t,u,i,r))
11 interactionsPerUser[u].append((t,i,r))

Note the use of the dateutil library to process the timestamp. The original
timestamp in this dataset consists of raw strings (e.g. ‘Wed Apr 03 10:10:41 -
0700 2013’); the operation dt = dateutil.parser.parse(t) converts this
to a structured format; this can be used to extract features associated with the
timestamp, e.g. dt.weekday() reveals that this date is a Wednesday, which
might be useful for extracting features for temporal models such as those
in Section 2.3.4.6 To build a sequential recommender, we are mainly inter-
ested in determining the sequence order of the interactions; to do so we call
dt.timestamp(). For the date above this returns 1365009041, which repre-
sents the number of seconds since January 1, 1970 (‘unix time’). Such a time
representation, while seemingly fairly arbitrary, is useful when our goal is sim-
ply to sort observations chronologically, as we do when building sequential
recommenders.

Next we sort each user’s history by time, and augment our interaction data
such that each interaction (u, i) includes the previous item j. We also add a
‘dummy’ item which acts as the previous item for the first observation:

6 While fairly obvious in this instance, determining even such simple properties is difficult for
certain date formats.
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12 itemIDs['dummy'] = len(itemIDs)
13 interactionsWithPrevious = []
14
15 for u in interactionsPerUser:
16 interactionsPerUser[u].sort()
17 lastItem = 'dummy'
18 for (t,i,r) in interactionsPerUser[u]:
19 interactionsWithPrevious.append((t,u,i,lastItem ,r))
20 lastItem = i

Given these augmented interactions, we can modify the model from Sec-
tion 5.8.4 to include the additional terms from Equation (7.22). Here we train
in a BPR-like setting (i.e., including a sampled negative item k), though we
could similarly adapt the model for rating prediction following code from Sec-
tion 5.8.3. Omitting a few boilerplate elements, the model equation (eq. (7.23))
becomes:

21 gamma_ui = tf.nn.embedding_lookup(self.gammaUI, u)
22 gamma_iu = tf.nn.embedding_lookup(self.gammaIU, i)
23 gamma_ij = tf.nn.embedding_lookup(self.gammaIJ, i)
24 gamma_ji = tf.nn.embedding_lookup(self.gammaJI, j)
25 # (etc.)
26 x_uij = beta_i +\
27 tf.reduce_sum(tf.multiply(gamma_ui , gamma_iu), 1) +\
28 tf.reduce_sum(tf.multiply(gamma_ij , gamma_ji), 1)
29 x_ukj = beta_k +\
30 tf.reduce_sum(tf.multiply(gamma_uk , gamma_ku), 1) +\
31 tf.reduce_sum(tf.multiply(gamma_kj , gamma_jk), 1)
32 return -tf.reduce_mean(tf.math.log(tf.math.sigmoid(x_uij -

x_ukj)))

The code above could be straightforwardly adapted to implement other se-
quential models, such as PRME (sec. 7.5.3) or translation-based recommenda-
tion (sec. 7.5.4).

7.6 Recurrent Networks

A fundamental limitation of the Markov-Chain-based models we saw in Sec-
tion 7.4 is that they have a very limited notion of ‘memory,’ due to the assump-
tion that the next event is conditionally independent of all historical events,
given the most recent observation. This assumption may be sufficient in certain
scenarios, such as recommendation settings that are highly dependent on the
context of the previously clicked item (for example). However, as we begin to
model text data (chap. 8), or sequence data such as heart-rate logs (sec. 7.8), or
more complex recommendation scenarios, we will need to handle longer-term
semantics (such as grammatical structures in a sentence, or even an individ-
ual’s level of ‘fatigue’ in a heart-rate trace).
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Recurrent Neural Networks (RNNs) seek to achieve this notion of ‘memory’
by maintaining a ‘hidden state’ during each step.7 The hidden state is a vector
of latent variables that somehow capture the ‘context’ that the model needs
to know to capture the long-term semantics of the problem. Formally, we can
visualize the RNN as taking a sequence of inputs (x1 . . . xN), and producing
a sequence of outputs (y1 . . . yN), and maintaining hidden states that update at
each step (h1 . . . hN). We might visualize this model as follows:

xt−1 xt xt+1 xt+2

ht−2 ht+2

yt−1 yt yt+1 yt+2

ht−1 ht ht+1

The RNN cell is now responsible for determining how the hidden state should
change at each step, and what outputs should be generated.

More complex RNN models repeat this idea across multiple layers, so that
RNN cells can be stacked, e.g.:

hl−2
t−1 hl−2

t hl−2
t+1 hl−2

t+2

hl−1
t−2 hl−1

t+2

hl
t−2 hl

t+2

hl
t−1 hl

t hl
t+1 hl

t+2

hl−1
t−1 hl−1

t hl−1
t+1 hl−1

t+2

hl−1
t−1 hl−1

t hl−1
t+1

hl
t−1 hl

t hl
t+1

In this depiction (and in many treatments of the topic), the model is described
only in terms of hidden states: the model receives an input, updates its hidden
state, and passes this state to the next timestep and the next layer. The first
layer may receive inputs (i.e., observed values x) while the last layer generates
outputs (i.e., y).

When designing this cell, one might consider the types of dynamics required
to model state transitions between successive steps:

• Based on the current hidden state, what output should be generated?
7 Note that ‘simpler’ models attempt to accomplish the same goal within the framework of

Markov-Chain-based models; see e.g. Hidden Markov Models. However Recurrent Neural
Networks are more typical of current practice and form the basis of models we develop later.
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• How should the hidden state change as a function of the input that was just
seen?

• What part of the hidden state should be preserved, and what part can be
discarded?

• How can hidden state be preserved across long interaction sequences?

Below we describe one particular implementation of an RNN cell. Although
there is nothing particularly sacred about the particular model we present, it is
representative of the overall design approach, in terms of capturing the features
described above.

7.6.1 The Long Short-Term Memory Model

The Long Short-Term Memory Model (Hochreiter and Schmidhuber, 1997) is
a specific implementation of an RNN that has been popularized especially for
use in text generation tasks, as we’ll discuss in Chapter 8.

A challenge in designing RNN cells as described above is how to encourage
them to ‘remember’ state across long sequences. To achieve this, the LSTM
cell (fig. 7.7) preserves the cell state (c in the equation below), mostly unmodi-
fied across steps. Other components are responsible for ‘forgetting’ part of the
state ( f ), as a function of the current input and previous hidden state; updating
the cell state (i and g); updating the hidden state (h); and determining what to
output (o). Although not particularly relevant for the current discussion—the
models discussed here could easily be replaced by different architectures—the
specific form of these components in an LSTM cell is as follows:

f l
t = σ(W ( f )

l × [hl−1
t ; hl

t−1]) (7.30)

ilt = σ(W (i)
l × [hl−1

t ; hl
t−1]) (7.31)

ol
t = σ(W (o)

l × [hl−1
t ; hl

t−1]) (7.32)

gl
t = tanh(W (g)

l × [hl−1
t ; hl

t−1]) (7.33)

cl
t = gl

t × ilt + cl
t−1 × f l

t (7.34)

hl
t = tanh(cl

t) × ol
t. (7.35)

Several variants of the above have been proposed to incorporate additional
components, mostly consisting of specific differences to how the state is pre-
served and transformed among the equations above. It should be remarked
though that the overall view of a ‘cell,’ in terms of inputs, outputs, and hid-
den states, is largely interchangeable across models in spite of differences in
specific details.
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Figure 7.7 Visualization of an LSTM cell (Equations (7.30) to (7.35)).

7.7 Neural Network-Based Sequential Recommenders

Having developed a basic understanding of the structure of neural network-
based models (including some ‘basic’ architectures in Section 5.5.2 and re-
current networks in Section 7.6), we now have the basic building blocks to
understand how recurrent networks can be used to build personalized models
of sequences. Although we won’t present a full treatment of such approaches
here (since some depend on techniques and models quite different from those
covered in this book), here we outline the general directions explored by a few
representative examples.

Relationship to natural language processing
Many of the models we’ll study in this section are closely related to approaches
used to model natural language. As we’ll discuss, the development of mod-
ern sequential recommenders has closely followed the development of state-
of-the-art natural language models, ranging from recurrent networks (Hidasi
et al., 2016), attention mechanisms (Li et al., 2017), self-attention (Kang and
McAuley, 2018), and BERT-based models (Devlin et al., 2019).

The basic mechanism of applying natural language models to sequential
data is fairly straightforward. In a natural language setting, documents are rep-
resented as sequences of discrete tokens (words); a model (such as that of Sec-
tion 7.6.1) might be trained to estimate the next word in a sequence. Likewise,
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in a recommendation setting, a user’s sequence of actions can be represented as
a sequence of discrete tokens (items). Via this analogy, state-of-the-art models
from natural language can be fairly straightforwardly adapted to describe the
dynamics of user interaction sequences. We’ll discuss this relationship more
when designing models specifically for text in Chapter 8.

Conceptually, the appeal of neural network approaches to sequential model-
ing (and more broadly, the appeal of borrowing models from natural language)
is that they allow models to capture complex syntax or semantics in sequen-
tial data. So far, when developing temporal and sequential recommenders we
have mostly focused on either of (a) developing simple parametric functions
to capture long-term dynamics, as we did in Section 7.2.2; or (b) modeling
sequential dynamics using the context of previous interactions, following a
Markov chain-like setup, as in Section 7.4. Both approaches have limitations:
the former tends to require carefully hand-crafting models around specific dy-
namics, while the latter potentially captures only limited context (e.g. a single
previous interaction). In principle, the techniques in this section aim to address
these issues, by automatically uncovering both long- and short-term dynamics
simultaneously, or potentially capturing complex interrelationships between
items in a sequence.

‘User-free’ sequential recommendation
When introducing sequential models based on Markov Chains in Section 7.4,
we argued that it was valuable to model both the compatibility between the
user and the item, as well as the compatibility between adjacent items in a
sequence. In short, both sources provide useful and complementary signals
that each explain variation in users’ activities.

However it is unclear whether this argument applies in the limit. Clearly, a
single previous interaction does not provide the full context of a user’s prefer-
ences; however, a model that includes enough historical interactions can pos-
sibly capture all of the necessary context without explicitly including any user
term (we explored this idea a little when introducing FISM in Section 5.3.2).

It is interesting to note that none of the models we describe below learn
explicit user representations, relying instead on item representations plus a
sufficient window of context to capture the dynamics of individual users. Do-
ing so is conceptually appealing as an alternative to (e.g.) the cold-start models
we discussed in Section 6.2: by eliminating the need for an explicit user term,
we can quickly make effective recommendations by observing a few user ac-
tions, without needing to retrain the model (to fit user terms) or rely on side-
information.

Such models fall somewhere in between the memory-based approaches we



206 Temporal and Sequential Models

Table 7.3 Summary of deep-learning based sequential models. References:
Hidasi et al. (2016); Li et al. (2017); Kang and McAuley (2018); Sun et al.

(2019).

Ref. Method Description

H15 Session-based
Recommendation
with RNNs

Item sequences are passed to a recurrent network;
the network’s hidden state is used to predict the
next interaction (sec. 7.7.1).

L17 Neural Attentive
Recommendation
(NARM)

Combines an RNN (similar to that of Hidasi et al.
(2016)) with an attention mechanism that operates
on the sequence of network latent states in order to
‘focus’ on relevant interactions (sec. 7.7.2).

KM18 Self-Attentive
Sequential
Recommendation

Similar to NARM, but uses the principle of self-
attention (i.e., a Transformer model) rather than a
recurrent network (sec. 7.7.2).

S19 BERT4Rec Also uses the principle of self-attention, though
with a different architecture based on BERT (De-
vlin et al., 2019) (sec. 7.7.2).

studied in Chapter 4 and model-based approaches we saw in Chapter 5: al-
though item representations are learned from data, user representations must
be captured implicitly by the model ‘remembering’ the context among their
sequential actions.

The models covered in this section are summarized in Table 7.3.

7.7.1 Recurrent Network-Based Recommendation

An early paper to explore the use of recurrent networks for recommendation
did so using the types of model we developed in Section 7.6.8 Hidasi et al.
(2016) explored the problem of session-based recommendation, where user
interactions are divided into distinct ‘sessions’ (typically using some heuris-
tic based on interaction timestamps). This setting is typical for recommenders
based on recurrent networks (or more broadly, for recommenders that borrow
techniques from natural language), since it allows sessions to be treated anal-
ogously to sentences, i.e., short sequences of discrete tokens (items).

The method from Hidasi et al. (2016) seeks to pass sequences of items into
a recurrent network (similar to that of Section 7.6.1) such that the hidden state
of the network is capable of predicting the next interaction.9 As stated pre-
viously, this model (along with most of the related methods below) does not
8 Specifically they used a Gated Recurrent Unit, or GRU, though methodologically the

approach is similar to the LSTM-based techniques we explored in Section 7.6.1.
9 The specific architecture used to achieve this passes the final hidden state into a feed-forward

network (similar to those we studied in Section 5.5.2), whose final layer estimates scores
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learn a user representation: rather the user ‘context’ is captured via the hidden
state of the recurrent network. Hidasi et al. (2016) argue that a benefit of this
type of approach is that it will work well in situations where long user histo-
ries are unavailable (e.g. on niche platforms or long-tailed datasets). In such
cases, techniques like those we developed for the Netflix Prize (sec. 7.2.2) are
unreliable as effective user representations (γu) cannot be learned from only a
few interactions.

7.7.2 Attention Mechanisms

The main argument in favor of recurrent network-based approaches is that they
can potentially capture longer-term sequential semantics compared to (e.g.) the
Markov chain-based approaches we studied in Section 7.4. On the other and,
the fact that simple Markov chain-based models are so effective in the first
place suggests that even the context of a single recent item might be enough to
capture a user’s ‘context’ in many cases.

The basic intuition behind incorporating attention mechanisms into sequen-
tial recommender systems is to help the model to ‘focus’ on a small set of
interactions among a relatively longer interaction sequence. Intuitively, this
ought to allow the model to capture context from long interaction sequences,
while still leveraging the fact that the relevant part of the context may only
consist of a few interactions (Kang and McAuley, 2018). Attention mecha-
nisms have been used in other settings such as image captioning (Xu et al.,
2015) and machine translation (Bahdanau et al., 2014) (among others), where
a small component of the input is ‘attended on’ when generating part of the
output.

Neural Attentive Recommendation
Neural Attentive Recommendation (NARM) (Li et al., 2017) essentially seeks
to extend and combine ideas from recurrent recommendation with the use of
an attention mechanism. Their suggested model has two main components: a
global encoder, which models sequential data from sessions in much the same
way as a traditional RNN-based model (as described above); here the final
hidden state of the RNN is responsible for (generating features capable of)
predicting the user’s next action. A second component, the local encoder, uses
an attention mechanism over all of the hidden states in the sequence to build

associated with all items; while computationally expensive, this is feasible for datasets with
relatively small item vocabularies, e.g. in the low tens-of-thousands for data in Hidasi et al.
(2016).
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a feature. Roughly speaking, the local encoder’s representation captures those
specific actions in the user’s recent history that best capture the user’s intent.

Self-Attentive Sequential Recommendation
The approaches above essentially treat attention mechanisms as an additional
component to extend existing recurrent models (i.e., NARM uses an attention
mechanism to learn features from the latent representations from an RNN).
A recent trend in natural language processing has been to rely more heav-
ily on attention modules to capture complex structures in sentences, again
with the attention mechanism retrieving relevant words in a source sentence
to generate words in a target sentence (e.g. for machine translation). Recently,
attention-based sequence-to-sequence methods, especially those based on the
Transfomer model (Vaswani et al., 2017), have emerged as the state-of-the-art
for various general-purpose language modeling tasks. The overall goal of such
models is much the same as we saw when developing recurrent networks in
Section 7.6: to estimate an output sequence on the basis of an input sequence
(or in the case of modeling interaction sequences, estimating the next item in
the sequence based on the previous items). Whereas the recurrent networks we
developed in Section 7.6 did so by successively passing and modifying a latent
state across across network cells, the Transformer architecture instead relies
purely on attention modules, so that the estimation of the next item in a se-
quence is a function of all previous items,10 with attention determining which
of the previous items is relevant to the next prediction.11

Kang and McAuley (2018) sought to apply the principle of self-attention
to sequential recommendation problems; the method is a fairly straightfor-
ward adaptation of the Transformer architecture, whereby the next item in a
sequence of user interactions is predicted on the basis of the previous items,
with an attention module being responsible for determining which of the pre-
vious interactions are relevant to predicting the next one.

Other than the performance benefits of Transformer-based models (com-
pared to recurrent networks and Markov chain models), Kang and McAuley
(2018) attempt to visualize the attention weights of their model in order to un-
derstand which previous interactions the model ‘attends on’ when predicting
the next item in a sequence. Not surprisingly they find that the most relevant
item tends to be the previous item in the sequence, though interestingly, sig-
nificant weight is given to more distant interactions. On some datasets these

10 Up to some fixed maximum length.
11 This description of the Transformer architecture is admittedly very rough, though a full

description is quite involved; see the original paper (Vaswani et al., 2017) or one of many
excellent tutorials that attempt to distill the core idea.
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weights decay rapidly, while on others (such as MovieLens), relevance weights
are more widely distributed across several historical interactions; collectively
this suggests that while recommendations are subject to sequential context, this
‘context’ requires more than a single previous observation to capture.

BERT4Rec
While Kang and McAuley (2018) base their model on a ‘standard’ Transformer
implementation, various extensions have been made to this architecture. For
example, BERT4Rec (Sun et al., 2019) adapts BERT (Devlin et al., 2019),
another Transformer-based model architecture. Without going into detail, this
model is largely an architectural modification to the approach above; again
their superior performance in language modeling tasks appears to translate
well to sequential recommendation problems. Overall this (and other related
approaches) further highlight the general trend of applying state-of-the-art lan-
guage models to build sequential recommenders.

Attentional Factorization Machines
We also note that attention mechanisms have been applied in the context of
traditional recommender systems. Attentional Factorization Machines (Xiao
et al., 2017) apply attention mechanisms to factorization machines, as intro-
duced in Chapter 6 (recall that such models are not necessarily sequential,
though can encode sequential features). The application of attention mech-
anisms in this context is fairly straightforward. Recall from Chapter 6 that
factorization machines aggregate pairwise interactions across (latent represen-
tations of) all features, as in Equation (6.2). Xiao et al. (2017) use attention to
determine which pairwise interactions are most important in a particular con-
text, which arguably helps the model not to focus on irrelevant interactions.
Experiments show improvements over traditional factorization machines, and
some of the deep learning-based recommendation approaches studied in Sec-
tion 5.5.

7.7.3 Summary

Above we have only given a limited sample of recommendation methods based
on recurrent networks and attention mechanisms. Although we have provided
little detail about the specifics of each approach, we have highlighted the gen-
eral trend of borrowing models from natural language and repurposing them
for recommendation. The use of general-purpose language and sequence mod-
els for recommendation is increasingly representative of the current state-of-
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the-art; we’ll further visit this idea as we explore additional language modeling
approaches in Chapter 8.

Note also that the above models in general have no explicit user representa-
tion: the input to the model is a sequence of items, based on which the next item
is predicted. As such they can be thought of as contextual or memory-based
models (though they do have item representations which are analogous to γi

in traditional models). In principle, if long enough sequences are modeled, we
can still capture the broad historical interests of the user, without a need for
an explicit user term. In many cases the lack of a user term is a virtue of this
type of model: when dealing with new users, we can make reasonable predic-
tions based on a few sequential actions, without needing to resort to complex
cold-start approaches, or retraining the model (though of course, attempts have
been made to explicitly incorporate user terms into such sequential models, see
e.g. Wu et al. (2020)).

We will further revisit neural network based approaches at various points
throughout the book. In Chapter 8 we consider neural network approaches to
modeling text (including for text generation), following the same types of ap-
proaches we developed in Section 7.6. We also consider text representation
approaches in Section 8.2, which can in turn be used to develop item represen-
tations for use in sequential recommendation (sec. 8.2.1). Finally in Chapter 9
we explore convolutional neural network approaches for image representation,
recommendation, and generation.

7.8 Case Study: Personalized Heart-Rate Modeling

Other than building personalized sequence models for the purpose of recom-
mendation as in Section 7.7, such models can also be used to capture dynamics
in various other types of sequence data. In Chapter 8 we’ll explore using se-
quence models for personalized text generation; here we briefly examine how
such models can be used to model heart-rate sequences.

Ni et al. (2019b) explored using personalized sequence models to estimate
users’ heart-rate profiles as they exercised using data from EndoMondo. That
is, given the GPS route (latitude, longitude, and altitude) that a user intends to
run (or walk, cycle, etc.), and a historical record of the user’s previous activ-
ities, the goal of the model is to forecast the user’s heart-rate profile as accu-
rately as possible.

Modeling the dynamics of heart-rate sequences is particularly challenging
for a few reasons, including:
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• The dynamics are noisy, complex, and are highly dependent on external
factors (e.g. the user’s running speed, the altitude, etc.).

• These factors are a combination of both long- and short-term dynamics,
e.g. the user gradually becoming fatigued, versus the user encountering a
hill.

• There is significant variation among individuals, to the point that a non-
personalized model would be ineffective for the task.

• A large amount of training data is likely required to capture the complex
factors involved in heart-rate dynamics. On the other hand, very few obser-
vations are likely to be available for each individual.

The model used by Ni et al. (2019b) is fairly similar to recurrent network
models we studied in Section 7.6, where a recurrent neural network (an LSTM
in Ni et al. (2019b)) is augmented with low-dimensional embeddings captur-
ing user characteristics, and contextual features describing the current activity:
these embeddings are essentially analogous to user/item embeddings γu and
γi. The argued benefit of low-dimensional user representations in this context
is that one can learn a ‘global’ model to capture complex heart-rate dynam-
ics from a large amount of data, along with a small number of user-specific
parameters that allow the model to adapt to specific user characteristics from
a limited number of observations. Again this is similar to personalized lan-
guage models, where a high-dimensional language model is adapted via low-
dimensional user and item terms.

In addition to user and contextual features, the recurrent network in Ni et al.
(2019b) takes as input the GPS trace (latitude, longitude, altitude) of the route
the user intends to complete. This sequence of variables is passed as an addi-
tional input to the model during each network step, so that the goal is to fore-
cast heart-rate profiles as a function of the user, contextual variables (weather,
time, etc.) and the intended route.

Ni et al. (2019b) show the benefit of such a model, over non-personalized
alternatives and various alternative model architectures. Ultimately they argue
that a system that can accurately make such forecasts can be used in various
ways, e.g.

• To recommend routes that will help a user to achieve a desired heart-rate
profile.

• To recommend alternative routes that are semantically similar (in terms of
heart-rate dynamics) to those they normally take, e.g. if they want to main-
tain their routine while visiting a new city.

• To detect anomalies in the event that a user’s heart-rate should significantly
exceed the projected rate at any point.



212 Temporal and Sequential Models

Ultimately, we present the approach from Ni et al. (2019b) to highlight that
personalized models of sequences have applications beyond ‘traditional’ rec-
ommendation settings that operate on (e.g.) click or purchase data. This case
study highlights potential applications to settings such as personalized health.

7.9 History of Personalized Temporal Models

Although the Netflix Prize was one of the early drivers for the use of temporal
models in recommendation scenarios, the basic idea of concept drift, in which
the distribution of labels changes over time, dates back significantly further.
For example, the Dynamic Weighted Majority algorithm (Kolter and Maloof,
2007) considers using an ensemble of classifiers (‘experts’); the weighting of
these classifiers’ decisions changes over time as a function of the empirical
performance of the classifiers. Kolter and Maloof (2007) also give a historical
perspective on the problem of concept drift, dating back to early papers on the
topic (e.g. Schlimmer and Granger (1986)).

While Koren (2009) showed the effectiveness of temporal factors on the
Netflix data, a few earlier efforts to use temporal dynamics in recommen-
dation scenarios are notable. For example, Sugiyama et al. (2004) consid-
ered the problem of personalized search, though their solution is actually a
form of recommender system. Theirs is an interesting case study in the use
of simple similarity-based methods (like those of Equation (4.19) and Equa-
tion (4.22)) for a setting (personalized search) that doesn’t immediately appear
to be a recommender system. In terms of temporal dynamics, the main idea
is to distinguish between ‘persistent preferences’ and ‘ephemeral preferences’
when building user profiles (from interaction histories), though this is mostly
achieved by considering interactions within differently sized recency windows.

Following the success of modeling temporal dynamics on Netflix, there has
been a proliferation of models that attempt to capture temporal dynamics in
a variety of settings. As we described in Section 7.3, temporal dynamics may
occur for a variety of reasons, ranging from long- and short-term dynamics
(Xiang et al., 2010), community effects (Godes and Silva, 2012), or user evo-
lution (McAuley and Leskovec, 2013b).

Exercises

7.1 Just as the autoregressive and sliding window techniques we introduced
in Section 7.1 can be used for prediction, they can also be used for
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anomaly detection, that is, to determine which events in a sequence sub-
stantially deviate from our expectations. Using any time-series dataset
(e.g. the bike rental data from Section 7.1 or otherwise), train an au-
toregressive model and plot the model’s residuals (i.e., the difference
between the label and the prediction, as in Equation (2.34)) over time to
find where the autoregressive prediction is least accurate. Creating such
visualizations can be a good strategy to design additional model features:
do the anomalies you find appear to occur at random, or can you design
additional features to account for them?

7.2 In Chapter 6 we introduced factorization machines as a technique to
incorporate various types of features into recommendation approaches
(and discussed libraries to do so in Section 6.1.2). When introducing
Factorized Personalized Markov Chains in Section 7.5.1 we argued that
this type of model can be represented via a factorization machine. Es-
sentially, this can be done by concatenating representations for the item,
the user (as in sec. 6.1), and the previous item. Following this approach,
using any interaction dataset, compare models that use (a) only the se-
quential term γi · γ j; (b) only the preference term γu · γi; and (c) both
(i.e., FPMC). You could use either a regression (e.g. rating prediction)
or implicit feedback setting, though if extending the code from Sec-
tion 6.1.2 it is more straightforward to model the problem as one of rating
prediction.

7.3 Likewise, FISM (sec. 5.3.2) can be implemented via a factorization ma-
chine. Here, the user term is replaced by a feature representing items the
user has consumed (divided by the number of interactions), as in Equa-
tion (5.37). Incorporate such a feature into a factorization machine, i.e.,

fi =

{
1/|Iu| if i ∈ Iu

0 otherwise
. (7.36)

When extracting a feature based on the interaction history, be sure to
exclude the current interaction. Compare this model to the variants you
trained in Exercise 7.2.

7.4 Herding effects occur when users’ decisions (e.g. their ratings) are bi-
ased by those they’ve already seen: e.g. a user may enter a high rating
for an item simply because they see that ratings are already high. Inves-
tigate two types of models to determine the role of herding effects in
recommendation data:

• An autoregressive model, in which previous item ratings are used to
predict the next (with no personalization or item-specific terms).
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• A recommendation-based approach, e.g. by incorporating the most
recent ratings as features in a factorization machine.12

Use these models to study under what conditions herding plays a role.
For example, does it have a larger effect on high- or low-rated items,
items with few ratings, etc.

Project 6: Temporal and Sequential Dynamics in Business
Reviews

In this project we’ll explore the various notions of temporal dynamics we cov-
ered in this chapter, and conduct a comparative study to determine which no-
tions work well in a particular setting. Specifically, we’ll consider consumption
patterns of business reviews on Google Local, which has been used in various
studies on temporal dynamics for recommendation (see e.g. He et al. (2017a)).
Business reviews are useful for the study of temporal dynamics, as activities
have a combination of short-term, long-term, and sequential dynamics, though
in principle this project could be conducted using any dataset that includes
temporal information.

For most components in this project, you can base your implementation on
the factorization machine framework we covered in Section 6.1 (e.g. using the
fastFM library as in Section 6.1.2). Others which don’t follow this framework,
such as models based on metric embeddings, are more challenging to imple-
ment.

We’ll explore this problem via the following steps:

(i) Start by training a (non-temporal) latent factor model for the task. Note that
this problem could be cast either as one of rating prediction (as in sec. 5.1)
or as visit prediction (as in sec. 5.2). Use this initial model to set up your
learning pipeline and to find good initial values in terms of the number of
latent factors, regularizers, etc. Also consider how you might pre-process
the dataset, e.g. is it better to consider all businesses, or to consider only
businesses within a specific category (such as restaurants)? If your setting
requires negative samples (e.g. you are modeling visit prediction), consider
how you will sample timestamps for the negative items.13

(ii) Next, we’ll incorporate temporal dynamics into our model via simple fea-
tures. Consider how temporal dynamics might be at play in each of these

12 Consider how to deal with missing features (i.e., for observations with insufficient rating
history), and whether any derived features (such as the historical average) may be useful.

13 For instance, you could duplicate a timestamp from a positive instance from the same user.
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settings, e.g. ratings might vary on certain days of the week, or be more pos-
itive for new businesses, etc. Process the timestamps associated with each
activity to extract the day of the week, the month of the year, and the ‘ab-
solute’ timestamp (which you may want to scale e.g. for the range [0, 1] to
represent the lifetime of the dataset). Consider any other temporal features
that might be useful in this dataset, e.g. following ideas from Section 7.2.2.

(iii) Alternately, try including features based on sequential dynamics, e.g. fol-
lowing the techniques from Exercises 7.2 and 7.3. Again you may use simple
features (e.g. a one-hot encoding of the previous item, as in Exercise 7.2),
or more complex ones (such as including several recent items, weighting in
terms of recency or geographical distance, etc.).

(iv) Try to implement an alternate sequential model, such as one based on recur-
rent neural networks from Section 7.7. Although challenging to implement
‘from scratch,’ several of the cited papers have public code repositories on
which you may base your implementation.

Although the main goal of the project is to build familiarity with and com-
pare various temporal modeling techniques, consider also whether the tempo-
ral models you develop give you insight into the underlying dynamics of the
data. For example, under what circumstances are users guided by temporal
dynamics? Or what types of businesses are most subject to seasonal trends?
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8
Personalized Models of Text

Throughout this book we have already worked with a wide variety of datasets
involving text. Although we have made little use of this data so far, text can be
useful both as a feature to improve the predictive performance of the types of
method we’ve seen already, but can also be used to explore a variety of new
applications.

As a feature to improve prediction, effectively making use of text is not
straightforward. Text is noisy, varies in length, has complex syntax, and only a
small fraction of words may be important to prediction. As such, we start this
chapter with a primer on the types of feature engineering techniques that can
be used to extract meaningful information from text (sec. 8.1).

Following this, we explore how text can be used to improve the types of per-
sonalized models we’ve developed in previous chapters. In the case of recom-
mender systems, text ought to be helpful, as there is abundant text (e.g. product
reviews) that can help us to ‘explain’ the underlying dimensions of users’ pref-
erences and items’ properties; however effectively extracting these signals is
not straightforward (sec. 8.3).

Having explored methods that use text as a feature to improve prediction,
we also explore recent trends in natural language generation. The prolifera-
tion of language models based on recurrent networks, along with a slew of
recent architectures for general-purpose language modeling and generation,
have opened up a range of applications ranging from goal-oriented dialog
(Bordes et al., 2016) to story (Roemmele, 2016) or poetry (Zhang and Lap-
ata, 2014) generation. Naturally, such methods benefit from personalization,
to better capture the context, preferences, or characteristics of individual users
(Joshi et al., 2017; Majumder et al., 2020). We’ll explore such settings in the
context of recommendation approaches that generate text to ‘explain’ recom-
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Figure 8.1 What’s the point of sentiment analysis?

Sentiment analysis, viewed superficially, may seem like an odd (or a ‘toy’) task:
why would we ever want to predict ratings from reviews, given that in practice we
never observe a review without a rating? Nevertheless, sentiment analysis is one
of the core topics in natural language processing whose importance transcends
the immediate task of predicting ratings. Sentiment analysis research is generally
focused on:

• Understanding the socio-linguistic dimensions of sentiment, rather than the im-
mediate task of predicting the rating.

• Building sentiment models that are general purpose, i.e., models that can be
trained on one corpus (e.g. of reviews), but can be used to predict sentiment in
settings where ratings aren’t available.

• As a benchmarking task to test scalability, and the ability of NLP systems to
understand detailed nuances in language.

mendations to users (sec. 8.4.3), and systems that generate recommendation
via natural language conversations with users (sec. 8.4.4).

Outside of recommendation, we also examine the use of text in other per-
sonalized or contextual settings, from simple forms of personalized retrieval
(Project 7), to complex systems such as Google’s Smart Reply (sec. 8.5).

8.1 Basics of Text Modeling: The Bag-of-Words Model

In the following, we’ll explore the challenges involved in developing fixed-
length feature vectors that describe text, as we develop the so-called bag-of-
words representation. We’ll start by trying to develop text representations as
naively as possible, and in doing so explore the various pitfalls and ambiguities
involved.

8.1.1 Sentiment Analysis

To understand why modeling textual data is difficult, let’s consider the seem-
ingly simple task of predicting a rating based on the text of a review:

rating = x(review) · θ (8.1)

This is the same as the type of problem we set up in Chapter 2, except that our
features X are derived from review text. Intuitively it makes sense that reviews
should help us predict ratings, as they are specifically intended to explain a
user’s rating.



8.1 Basics of Text Modeling: The Bag-of-Words Model 221

Loved every minute. So sad there isn’t
another! I thought JK really made Harry
an even stronger archetypal hero - almost
in a Paul Maud’Dib from Dune kind of
way. He’s fighting the ultimate evil, he’s
brave and takes risks, and believes in
himself and doesn’t give up despite many
hardships.

risks, Paul and hardships. believes the
almost sad ultimate kind up every - an
there in brave hero I fighting Dune an-
other! way. himself made really he’s
despite He’s Loved from archetypal
minute. and a Maud’Dib isn’t even evil,
of in many stronger So takes JK thought
Harry give and doesn’t

Figure 8.2 Bag-of-Words models. The two reviews above have identical bag-of-
words representations (the second randomly shuffles the words of the first). The
review at right misses details that depend on syntax. Consider whether there is still
enough information in the review at right to tell whether the overall sentiment is
positive, or to predict other attributes (such as the genre).

The task described in Equation (8.1) captures the basic setting of sentiment
analysis, i.e., learning what types of features are associated with ‘positive’
(i.e., high ratings) and ‘negative’ language. We discuss the importance of this
task a little in Figure 8.1. The main challenge is how to appropriately extract
meaningful features from text.

The first problem that we must deal with is that the features in Equation (8.1)
are fixed length (i.e., X is a matrix), whereas text data is sequential. Later we’ll
see how to establish more complex representations of text (sec. 8.2) but for
now let’s see how much progress we can make just by extracting a pre-defined
set of features from each review.

Bag-of-words models attempt to solve this by composing X out of features
that encode the presence or absence of certain words in a document. Thus it
ignores key details such as the order in which words appear (see fig. 8.2).

A key component in the bag-of-words model is the dictionary that is used to
build our feature vector. Our first attempt to build this dictionary might merely
consist of compiling every word in a given corpus, e.g.:

1 wordCount = defaultdict(int)
2 for d in data:
3 for w in d['review/text'].split():
4 wordCount[w] += 1
5
6 nWords = len(wordCount)

Doing so on just the first 5,000 of our beer reviews reveals a total of 36,225
unique words. In other words, each review (on average) contains around seven
previously unseen words. This number sounds large, but we might think that
by the time we have seen 5,000 reviews that we would have ‘saturated’ the
vocabulary of English words, and will not see too many more. However, if
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we repeat the same experiment for (e.g.) 10,000 reviews, we obtain 55,699
unique words—not quite double, but still a substantial increase, revealing that
saturating the vocabulary happens slowly, if at all.

Looking at a few of the actual words in our dictionary, we see words like:

...the; 09:26-T04.; Hopsicle; beery; #42; $10.65; (maybe; (etc.)

That is, we see words including proper nouns, unusual spelling, prices, punc-
tuation, etc. From this, we soon see that we will not quickly run out of unique
‘words,’ given any reasonable number of reviews.

To use a bag-of-words representation, we will need to reduce this dictionary
to a manageable size. Some potential steps to do so include:

Removing capitalization and punctuation Removing punctuation will re-
duce our dictionary size substantially, as word variants like ‘(maybe’ (i.e., a
word following a parenthesis) will be resolved to a common word. Likewise,
we might ignore different capitalization patterns simply by converting all doc-
uments to lower-case.

Stemming Stemming, i.e., resolving similar words to their common word
stems. Words like ‘drink’, ‘drinking’, and ‘drinks’ would all map to ‘drink’.1

Such techniques are mostly motivated by search and retrieval settings (i.e., to
make sure results are retrieved even if a query uses a different word inflection
than the result), though they could also be used to reduce our dictionary size.
See e.g. Lovins (1968); Porter (1980) for examples of stemming algorithms.

Stopwords Stopwords are common (English) words that likely carry (rela-
tively) little predictive power compared to their frequency in a document.
Standard stopword lists2 include words such as ‘am,’ ’is’, ‘the’, ‘them’, etc.
Removing such words can reduce our dictionary size a little, or otherwise pre-
vent our feature representations from being overwhelmed by common words
(though we will see other ways to address this in Section 8.1.3).

Decisions like whether to remove punctuation, whether to stem, or whether
to remove stopwords, are largely dataset and application dependent. Characters
like exclamation points could be predictive of sentiment;3 or different word
inflections (such as ‘drinks’ or ‘drinker’ in a corpus of beer reviews) may have

1 Or words like ‘argue’, ‘arguing’, and ‘argus’ would map to ‘argu’—the stem need not be an
actual word.

2 See e.g. nltk.corpus.stopwords in Python.
3 Often, important punctuation characters are preserved by treating them like separate words,

e.g. the string ‘great!’ would be replaced by ‘great !’.
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different meanings; or stopwords like ‘i’ and ‘her’ could change the meaning
of a sentence.

As such, the procedures above essentially amount to feature engineering
choices: we should ultimately accept or reject the above procedures based on
whether they improve performance for our given application (again, these are
the kind of choices we’d make with our validation set as in Section 3.4.2).

For the moment, let’s consider removing punctuation and capitalization,
e.g.:

7 for d in data:
8 r = ''.join([c for c in d['review/text'].lower() if not

c in string.punctuation])
9 for w in r.split():

10 wordCount[w] += 1

After removing them, we are left with 19,426 unique words. This is a reduc-
tion of nearly half compared to what we had before removing them, but is still
a fairly large dictionary size.

A more straightforward way to reduce our dictionary to a manageable size
is simply to include only the most commonly occurring words:

11 counts = [(wordCount[w], w) for w in wordCount]
12 counts.sort()
13 counts.reverse()
14
15 words = [x[1] for x in counts[:1000]]

Although perhaps not a completely satisfactory solution, this representation
at least allows us to build a feature representation. A simple bag-of-words-
based sentiment analysis model would now consist of predicting:

rating = θ0 +
∑
w∈D

count(w) · θw. (8.2)

HereD is our dictionary (i.e., our set of words); θ is indexed by a word w, but
in practice we would replace each word by an index (here from 1 to 1,000) for
the sake of building a feature matrix.

Fitting such a model on our beer review dataset4 yields a training MSE of
0.27 and a testing MSE of 0.51; this attests to both the expressive power of
such models, as well as their ability to overfit.

Examining the coefficients θ, we find the five words associated with the most

4 Here with an `2 regularizer with coefficient λ = 1, 4,000 data points for training and 1,000 for
testing.
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positive and most negative coefficients are:

θexceptional = 0.320; θskunk = −0.364;

θalways = 0.256; θoh = −0.312;

θkeeps = 0.234; θskunky = −0.292;

θimpressed = 0.224; θbland = −0.284;

θraisins = 0.204; θrecommend = −0.267.

For example, every instance of the word ‘skunk’ (a negative association with
beer) decreases our prediction of the rating by around one third of a star;
likewise every instance of the word ‘exceptional’ increases our prediction by
around the same amount. A few more observations:

• Words like ‘skunk’ and ‘skunky’ presumably convey the same information,
indicating some redundancy in our representation; possibly this could be
addressed by stemming.

• The word ‘oh’ is extremely negative, despite conveying little meaning by
itself. Presumably, it occurs in phrases like ‘oh no’ (whereas ‘no’ itself ap-
pears in a wide variety of phrases so is not as negative); possibly we could
account for such confounds by using N-grams (sec. 8.1.2).

• Likewise words like ‘always’ or ‘keeps’ are highly positive despite convey-
ing little sentiment in isolation; the word ‘raisins’ possibly appears in the
context of a specific popular item.

• The word ‘recommend’ is highly negative, in spite of seeming to convey
positive sentiment. Presumably, this word frequently appears in negative
phrases (‘would not recommend,’ etc.); we could account for such con-
founds by better handling of negation.

Finally, it is notable that the words ‘skunk’ and ‘exceptional’ are the 962nd

and 991st most popular words in our corpus—that is, they are words we nearly
discarded when we selected a 1,000 word dictionary. On the one hand, this
might be an argument that our dictionary size was too small, since we nearly
missed the most ‘important’ words. On the other hand, it is almost true by
definition that the most predictive words will be rare ones: it is, after all, quite
exceptional for an item to be described as ‘exceptional.’

8.1.2 N-grams

Some of the oddities with the sentiment model we’ve developed so far possibly
arose due to the simplifying assumptions made by the bag-of-words model.
Critically, a bag-of-words model has no notion of syntax in a document, and as



8.1 Basics of Text Modeling: The Bag-of-Words Model 225

such cannot handle even simple concepts such as negation (e.g. ‘not bad’) or
compound expressions that carry different meaning together than when alone
(e.g. ‘oh no’).

N-gram models attempt to address some of these issues by considering
words that frequently co-occur in sequence. That is, bigrams consist of pairs
of words that are adjacent in a document; trigrams consist of groups of three
words that appear consecutively in a document (etc.).

For example, the N-grams associated with the following sentence would be:

Sentence: ‘Dark red color, light beige foam’
Unigrams: [‘Dark’, ‘red’, ‘color,’, ‘light’, ‘beige’, ‘foam’]
Bigrams: [‘Dark red’, ‘red color,’, ‘color, light’, ‘light beige’, . . .]
Trigrams: [‘Dark red color,’, ‘red color, light’, ‘color, light beige’, . . .]
(etc.)

From the above example we can already see some potential benefits of us-
ing an N-gram representation, e.g. several of the words in the above sentence
are adjectives that modify the words ‘color’ and ‘foam;’ without an N-gram
representation we might fail to correctly understand those nouns in context.5

Similarly, negated terms (e.g. ‘not bad’ etc.) are readily handled by an N-gram
representation.

N-grams are straightforward to extract in Python, e.g.:

16 sentence = 'Dark red color, light beige foam'
17 unigrams = sentence.split()
18 bigrams = list(zip(unigrams[:-1], unigrams[1:]))
19 trigrams = list(zip(unigrams[:-2], unigrams[1:-1], unigrams

[2:]))

Having extracted N-grams, our approach to modeling the data is much the
same as that of our bag-of-words model, i.e., we extract counts associated with
each N-gram, and use those counts as features to predict some outcome.

Note that generally we would not use (e.g.) bigrams exclusively, but rather
would use a representation that included both unigrams and bigrams simulta-
neously. Much like our previous approach from Section 8.1.1, which simply
found the most popular words (i.e., unigrams), we might count the popularity
of unigrams and bigrams together.

On the same review corpus as in Section 8.1.1, the majority of popular terms
are still unigrams—longer N-grams comprise 452 of the 1,000 most popular
terms.

5 Though one could argue the opposite: if an adjective like ‘beige’ rarely occurs in any other
context, then a regular bag-of-words representation may be sufficient to capture the relevant
information.
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A few of the most popular N-grams include terms like ‘with a’, ‘in the’, ‘of
the’, etc. At first glance, these don’t look particularly useful, and are mostly
combinations of stopwords. Likewise, few of the top N-grams appear to in-
clude negation—for example among the top 1,000 terms, only eleven include
the word ‘not’, including e.g. ‘but not’, ‘not a’, ‘is not’, ‘not much’, ‘not too’,
etc. Again these seem unlikely to be informative given that they do not modify
meaningful terms.

The above example highlights that N-grams are not quite a simple panacea
for the issues mentioned above about handling adjectives and negation (etc.).
Indeed, one must carefully trade off the fact that N-grams introduce substan-
tial redundancy into our feature vector with the possibility that they introduce
some useful compound terms. Note that it is not straightforward to get the
‘best of both worlds’ in this scenario: assuming a dictionary of fixed size,
we are potentially discarding informative unigrams (like ‘exceptional’ from
Section 8.1.1) in favor of less-informative N-grams. Again, these issues are
model- and dataset-specific, and likely could be addressed by better accounting
for stopwords (or possibly by using a larger dictionary). Mostly this example
simply highlights that we must make extra considerations when incorporating
N-grams into a model, and that they will not confer benefits unless carefully
handled.

Some of these potential advantages and disadvantages of N-gram represen-
tations are summarized in Figure 8.3. Many of the disadvantages center around
the redundancy of the representation, which can partly be mitigated by care-
fully selecting important features. We will revisit the topic of word importance
in Section 8.1.3.

Finally, let’s evaluate an N-gram representation on the same task from Sec-
tion 8.1.1. Again we’ll build a ‘bag-of-ngrams’ model by taking the 1,000 most
popular N-grams (for any value of N). Once extracted our model is again the
same as that from Equation (8.2), the only difference being that our dictionary
consists of a combination of N-grams of different lengths.

After fitting the model, performance in fact slightly degrades compared to
the model from Section 8.1.1 (a test MSE of 0.54 compared to 0.51 in Sec-
tion 8.1.1). Examining some of the most predictive N-grams (i.e., largest and
smallest values of θw) we find terms such as

θpitch black = −0.397; θpitch = 0.354.

Upon further inspection, the word ‘pitch’ always appears in the expression
‘pitch black’, to the point that the two terms will mostly ‘cancel out’; again
this highlights an issue of redundancy in our representation.

Possibly we can address this simply by further regularizing our model. In-
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Figure 8.3 Arguments for and against N-grams.

To summarize our discussion in Section 8.1.2, N-grams are not always beneficial
in language modeling tasks, partly because one has to trade off the predictive value
of N-grams against the redundancy in encoding them. Some positive and negative
points are summarized below:

• N-grams straightforwardly allow us to handle negation, and various forms of
compound expressions, allowing us to handle relationships among words with-
out having to resort to more complex models that explicitly handle syntax.

• Our dictionary size quickly multiplies when using N-grams. Assuming that we
can handle a fixed dictionary size, in practice this sometimes means some in-
formative unigrams will be replaced by uninformative N-grams.

• Stopwords, which made up a small fraction of our unigram dictionary, quickly
multiply when building N-gram representations; thus there is additional redun-
dancy in the N-gram representation.

• An N-gram representation may add substantial redundancy (or co-linearity) be-
tween features, e.g. as informative unigrams are now duplicated among several
N-gram features.

creasing the regularization coefficient to λ = 10 improves the performance
somewhat (test MSE of 0.506), and results in more reasonable coefficients,
such as:

θwonderful = 0.177; θnot bad = 0.174; θlow carbonation = 0.137, (8.3)

which appear to correctly handle negation (‘not bad’) and compound words
(‘low carbonation’).

8.1.3 Word Relevance and Document Similarity

Suppose we wanted to build a system that recommends articles that are similar
in content to ones a user had recently interacted with. As in Section 4.3, we
might do so by defining an appropriate similarity metric between articles, and
recommend those articles that are most similar:

f (i) = arg max
j

Sim(i, j). (8.4)

Given that our goal is to define similarity based on article content (rather than
interaction histories as in Section 4.3), we might consider defining similarity
based on the feature representations we developed so far in Section 8.1. For
example, we could compare the cosine similarity of two bag-of-words repre-
sentations xi and x j:

Sim(i, j) = Cosine Similarity(xi, x j). (8.5)
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I read this after hearing from a few people
that it was among their all-time favorites.
I was almost put off when I saw it was a
story about rabbits, originally written as
a tale by a father to his children—but I’m
glad I wasn’t. I found the folk tales about
El-ahrairah to be very impressive. The
author clearly had a vivid imagination to
create so much of the rabbits culture and
history. But I think this book was worth
reading as it’s really a story about sur-
vival, leadership, and human nature. Oh
and Fiver rocks. And BigWig is the man.

I was delighted by this book... the only
fault is that it was too short! What a fan-
tastic idea; a refuge for the children who
have had adventures & now cannot fit
back into the identity assigned to them.
How many of us are not comfortable in
the families we were born to? I loved the
way the different doorways were sorted;
one would think that adventures shared
would be a bonding moment. Rivalries
will be ever present; guess that is human
nature. I don’t want to describe too much
& ruin the magic[...]

Figure 8.4 Term frequency and tf-idf comparison. At left, the top 10 words by
term frequency are bolded (i.e., the most common words in the review), and top
10 tf-idf words (based on a sample of 50,000 reviews) are underlined. A highly-
similar review (based on cosine similarity of tf-idf vectors) is shown at right.

However as we discussed in Section 8.1, the vectors xi and x j will be dom-
inated by the most common words in the corpus (i.e., the largest magnitude
words will likely be stopwords).

In practice a user would probably not regard two documents as ‘similar’ just
because they used words like ‘the’, ‘of’, or ‘and’ in similar proportions. As
such, we presumably want a feature representation xi that focuses on relevant
terms.

In Figure 8.4 we see an example of a book review (of Watership Down) with
the most frequently occurring words in boldface. Naturally, we would not say
that the topic of this review was ‘i’ or ‘a’, even though those words are the
most frequently occurring.

Rather, we might argue that words like ‘nature’ or ‘children’ are more char-
acteristic of the document, presumably because they do not occur in most
documents. As such, we might consider words characteristic of a particular
document to be those that occur frequently in that document but not in others.

To capture such a definition we should separately consider word frequency
in a particular document, and frequency across a corpus at large. To do so we
define two terms. First, the term frequency of a word w in a document d is
simply the number of times that word appears in the document:

Term Frequency(w, d) = tf (w, d) = |{t ∈ d | t = w}|. (8.6)

Note that this is essentially the same as the Bag-of-Words representation we
developed in Section 8.1 (although the latter includes a fixed dictionary size).

Next, the document frequency measures how many documents in a corpus
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contain a particular word. In terms of a word w and a corpusD:

Document Frequency(w,D) = df (w,D) = |{d ∈ D | w ∈ d}|. (8.7)

Now, for a word to be ‘relevant’ in a particular document, we want the term
frequency tf (w, d) to be high, and the frequency of the word across the en-
tire corpus df (w,D) to be relatively low. The tf-idf measure (term frequency-
inverse document frequency) is a heuristic which achieves this goal via the
following function:

tf -idf (w, d,D) = tf (w, d) × log2

(
|D|

1 + df (w,D)

)
(8.8)

(the expression 1 + df (w,D) ensures that the denominator is never zero even
for previously unseen terms). While the expression above captures our intu-
ition that the term frequency should be high while the document frequency is
relatively low, the specific expression may seem somewhat arbitrary (e.g. the
inclusion of the log2 term). Indeed, this expression is merely a heuristic, as de-
scribed in the original implementation (Jones, 1972). Later work has attempted
to justify this choice, e.g. by interpreting log2

|D|

df (w,D) as a log-probability of a
word appearing in a document (Robertson, 2004), though these are post-hoc
justifications for what was ultimately a heuristic choice.

Likewise, the term frequency is also a heuristic and is often modified for
use in specific contexts. For instance, two alternate definitions of the term fre-
quency include:

tf ′(w, d) = δ(w ∈ d) (8.9)

tf ′′(w, d) =
tf (w, d)

maxw′∈d tf (w′, d)
. (8.10)

Both of the above are essentially normalization schemes, intended to prevent
tf-idf scores being higher for longer documents.

8.1.4 Using TF-IDF for Search and Retrieval

Although our interest in developing tf-idf is mostly to develop an effective,
general-purpose feature representation of bag-of-words models of text, we
briefly describe the general strategy when using this type of representation
for document retrieval.

Tf-idf can be used relatively straightforwardly to retrieve similar documents,
e.g. by combining tf-idf representations with the cosine similarity (Figure 8.4,
Exercise 8.4). However in a search or retrieval setting, the ‘query’ is not typi-
cally a document but rather a few user-specified keywords.
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Okapi BM-25 (Robertson and Zaragoza, 2009) adapts tf-idf -based similarity
measures to retrieval settings, essentially by treating terms in a query q and
document d differently. While document words are represented using a tf-idf
representation, all query words are regarded as being equally important. The
specific scoring function between a query q and document d is defined as:

score(d, q) =

|q|∑
i=1

idf (qi) ·

 tf (qi, d) · (k1 + 1)

tf (qi, d) + k1 ·
(
1 − b + b · |d|avgdl

)  . (8.11)

Most terms are similar to those in Equation (8.8); k1 and b are tunable param-
eters (e.g. k1 ∈ [1.2, 2.0] and b = 0.75, as in Schütze et al. (2008)). avgdl nor-
malizes by the average document length (much like the normalization strate-
gies in Equations (8.9) and (8.10)). The inverse document frequency score in
Equation (8.11) also uses a custom normalization:

idf(qi) = log
(
|D| − df (qi,D) + 0.5

df (qi,D) + 0.5
+ 1

)
. (8.12)

Although we avoid an in-depth treatment of the topic, the above is merely
to note the general difference in strategy between retrieval based on a query
versus similar-document retrieval. We refer to Robertson and Zaragoza (2009)
or Schütze et al. (2008) for further details.

8.2 Distributed Word and Item Representations

Word2Vec is a popular approach to developing semantic representations of
words (Mikolov et al., 2013). Such representations are somewhat analogous to
the user and item representations (γu and γi) we have been studying through-
out this book. That is, just as our latent item representations give us a sense of
which items are ‘similar to’ which others (likewise for users), we would like
to find latent word representations γw that tell us which words are similar, or
are likely to appear in the same context as each other.

These types of ‘distributed’ word representations are potentially useful for
a variety of reasons:

• Unlike bag-of-words models (sec. 8.1), distributed representations offer a
natural mechanism to handle synonyms. That is, words w and v that are
synonyms of each other ought to have nearby representations γw and γv,
since they will tend to appear in related contexts.
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• Beyond synonyms, distributed representations might allow us better under-
stand relationships among words.6

• In certain settings, distributed representations allow us to avoid dimension-
ality issues associated with bag-of-words models. For instance, when devel-
oping generative models of text (which we’ll touch on briefly in Section 8.4),
documents are typically represented as sequences of low-dimensional word
vectors γw, rather than as vectors of (e.g.) word IDs via a bag-of-words
model.

Below we briefly outline word2vec as described in Mikolov et al. (2013);
in Section 8.2.1 we describe how this idea applies to learning item representa-
tions γi for recommendation. Although the latter and the former are essentially
equivalent, the latter may feel more familiar, as it is similar to the way we
learned item representations γi in user-free models models in Section 5.3.

Methodologically, word2vec seeks to model the probability that a word in
a sequence wt appears near words wt+ j, i.e., p(wt+ j|wt). So, for a sequence of
words w1 . . .wT , we would like to learn word representations that maximize
the (log) probability

1
T

T∑
t=1

∑
−c≤ j≤c, j,0

log p(wt+ j|wt). (8.13)

Here c is the size of a context window, which determines how many neighbor-
ing words we consider; this is a hyperparameter that may be chosen to balance
accuracy and training time, though potentially can vary depending on the word
wt. A simple way to define the probability p(wt+ j|wt) is to say that words wt+ j

are likely to appear near words wt with similar representations. In Mikolov
et al. (2013) this is defined in terms of the inner product between representa-
tions:

p(wo|wi) =
eγ
′
wo ·γwi∑

w∈W eγ
′
w·γwi

(8.14)

whereW is the set of words in the dictionary. The numerator in the above en-
codes the compatibility between the ‘input’ and ‘output’ words wi and wo; the
denominator simply normalizes the value so that it corresponds to a probability
over class labels.

Note also that we learn two representations, γw, and γ′w for each word (re-
ferred to as the ‘input’ and ‘output’ representation, respectively). Although
doing so doubles the number of parameters, this type of representation avoids

6 See for example in Mikolov et al. (2013), where the word representation γking − γman + γwoman
is close to that of γqueen.
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symmetries, for example a word is not likely to appear near itself. This is sim-
ilar to the idea we saw when developing item-to-item recommender systems,
and sequential recommender systems in Section 7.5, again the intuition being
that an item is not likely to be co-purchased with itself (or appear nearby in a
sequence).

Since the denominator in Equation (8.14) requires normalizing across all
words in the dictionaryW, it is not efficient to compute. Mikolov et al. (2013)
suggest a few schemes to overcome this issue, though the most straightfor-
ward is simply to sample a small number of ‘negative’ words, rather than nor-
malizing over the whole dictionary. As such each computation of p(wo|wi) is
replaced by an approximation:

log p(wo|wi) ' logσ(γ′wo
· γwi ) +

∑
w∈N

logσ(−γ′w · γwi ), (8.15)

where N is a sampled set of negative words. Mikolov et al. (2013) propose
various schemes for choosing the sample N , though most critically argue that
the sampling probability should be proportional to the overall frequency of
each word.

8.2.1 Item2Vec

Item2Vec (Barkan and Koenigstein, 2016) adapts the basic idea from word2vec
as a means of learning item representations γi for recommendation settings.
The main difference between item2vec and word2vec is simply that sequences
of words in sentences/documents are replaced by ordered sequences of items
that each user has consumed. In practice this simply means that the probability
in Equation (8.15) is replaced by

log p(i| j) ' logσ(γ′i · γ j) +
∑
i′∈N

logσ(−γ′i′ · γ j), (8.16)

where N is a set of negative items, again sampled proportionally to overall
item frequency.

Barkan and Koenigstein (2016) discuss the effectiveness of this type of item
representation in the setting of item-to-item recommendation on a corpus of
song listens from Microsoft Xbox Music. They show that the method natu-
rally identifies latent dimensions that are associated with song genres; and
they argue qualitatively that related items are semantically more meaningful
than those produced by alternate item-to-item recommendation techniques.
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8.2.2 Word2Vec and Item2Vec with Gensim

Finally, we show how word2vec and item2vec work in practice, using interac-
tion and review data from beer reviews (as in sec. 8.1.1). To learn word repre-
sentations, the input to the model is a list of documents (in this case reviews),
each of which is a list of tokens (words). For this example we first remove
capitalization and punctuation before tokenizing, as in Section 8.1.1.

Here we use the Gensim implementation of word2vec.7 The model takes as
input our tokenized reviews (in this case, we use a corpus of 50,000 reviews),
a minimum word frequency, a dimensionality (i.e., |γi|), and a window size
(i.e., c in Equation (8.13)). The final argument specifies which specific version
of the model is used, which corresponds to the model presented above:

1 from gensim.models import Word2Vec
2
3 model = Word2Vec(reviewTokens , # Tokenized documents
4 min_count=5, # Minimum frequency before

words are discarded
5 size=10, # Model dimensionality
6 window=3, # Window size
7 sg=1) # Skip-gram model
8
9 model.wv.similar_by_word('grassy')

In the final line, we retrieve the most similar words for a particular query;
in Gensim this is based on the cosine similarity (eq. (4.17)) between the two
word vectors:

max
w

γw · γgrassy

‖γw‖‖γgrassy‖
= ‘citrus’, (8.17)

followed by ‘citric’, ‘floral’, ‘flowery’, ‘piney’, ‘herbal’, etc.
Similarly, we can use the same code to run item2vec, where our tokenized

reviews are replaced by lists of items (i.e., product IDs) that each user has
consumed (ordered by time).

After training a model on review histories, we find that the most similar
beers to Molson Canadian Light are other light beers such as Miller Light,
Molson Golden, Piels, Coors Extra Gold, Labatt Canadian Ale, (etc.). In Fig-
ure 8.5 we train a two-dimensional item2vec model for the sake of visualizing
the data, which reveals that beers belonging to different categories tend to oc-
cupy different parts of the item space.8

7 https://radimrehurek.com/gensim/
8 A more effective visualization might be produced by using higher-dimensional embeddings,

followed by a distance-preserving visualization technique like t-SNE (Maaten and Hinton,
2008), though for here we plot the embedding dimensions directly for simplicity. We explore
t-SNE a little further in Chapter 9.

https://radimrehurek.com/gensim/
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γi[0]

γ
i[

1]
item2vec-based item embeddings

Adjunct Lager
Porter
Smoked Beer

Figure 8.5: Item representations
(γi) using a two-dimensional
item2vec model. Representations
for items from three distinct cate-
gories are shown.

8.3 Personalized Sentiment and Recommendation

The models for text we have explored so far, although they can be applied to
user data like reviews, and can be used to recommend related documents, are
ultimately not personalized.

Several attempts have been made to combine models of text with models of
users and preferences, and in particular with recommendation approaches. For
example, just as we saw techniques in Chapter 6 that improve recommender
systems through the use of side-information, text can be useful to efficiently
understand the dimensions of user’s opinions.

Often there is a significant amount of textual data available in addition to
interactions that might be leveraged to fit better models. Other than helping
understand sentiment, text can help to understand the dimensions of items and
preferences, e.g. the different properties of products and the different aspects
that users care about.

Text can also be helpful for model interpretability. So far, the recommender
systems we’ve developed are essentially ‘black boxes,’ whose predictions (as
in eq. (5.10)) are defined purely in term of latent factors. Models of text can
be used to understand what aspects these latent dimensions correspond to
(sec. 8.3.1), to synthesize reviews (sec. 8.4), or to explain recommendations
(sec. 8.4.3).

However, extracting meaningful information from text is challenging. For
example, most of the simple text representations we’ve seen so far (sec. 8.1)
are high-dimensional and not particularly sparse; simply incorporating such
features into general-purpose feature-aware models is possibly not effective,
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and one must instead design methods to work specifically with text. Below we
cover a few representative approaches.

8.3.1 Case Studies: Review-Aware Recommendation

Product reviews are often used as a source of information to improve recom-
mendation performance. Conceptually, reviews ought to tell us much more
about preferences and opinions than (e.g.) a single rating can. This could be
especially true for latent dimensions (γu and γi for users and items) since prod-
uct reviews are intended to ‘explain’ the underlying dimensions behind users’
decisions.

Roughly speaking, there are two schools of thought as to how reviews should
be incorporated to improve recommendation performance. One option is to
treat review text as a form of regularization, essentially to encourage the low-
dimensional representations of users or items (via γu and γi) to be similar to
low-dimensional representations extracted from text. Others seek to extract
representations from text that can be used to improve feature-based matrix
factorization methods. We give examples of both below.

Hidden Factors as Topics
An early attempt to incorporate text into recommender systems attempted to
do so by making use of topic models applied to product reviews (McAuley and
Leskovec, 2013a). Topic models (Blei et al., 2003) learn low-dimensional rep-
resentations of text (essentially finding structure in the types of bag-of-words
representations we covered in Section 8.1). ‘Topics’ then correspond to sets or
clusters of words that tend to co-occur together. For example, a topic model
trained on movie reviews might discover that groups of words associated with
‘action,’ ‘comedy,’ or ‘romance,’ might tend to co-occur together, and there-
fore that these are distinct topics among movie reviews (we give examples of
actual topics in Table 8.1).

The basic idea in McAuley and Leskovec (2013a) is that the low dimen-
sional structure among reviews should be related to the low-dimensional struc-
ture in ratings—after all, reviews are intended to explain why a user rated a
product a certain way. Furthermore, even though a single rating can tell us very
little about the underlying dimensions that explain a user’s ratings, a single re-
view potentially contains enough information to understand which dimensions
are important to a user, or the characteristics of an item.

The method is somewhat reminiscent of the social recommendation ap-
proach we covered in Section 6.4.1 (Ma et al., 2008), in which a shared param-
eter γu was tasked with simultaneously explaining rating dimensions as well
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theaters mexican italian medical coffee seafood

theater mexican pizza dr coffee sushi
movie salsa crust stadium starbucks dish
harkins tacos pizzas dentist books restaurant
theaters chicken italian doctor latte rolls
theatre burrito bianco insurance bowling server
movies beans pizzeria doctors lux shrimp
dance taco wings dental library dishes

popcorn burger pasta appointment espresso menu
tickets carne mozzarella exam stores waiter
flight food pepperoni prescription gelato crab

Table 8.1 Example of topics that explain variance in rating dimensions on
Yelp (McAuley and Leskovec, 2013a).

γi γu ψ

rating word frequency

ratings document topics

Figure 8.6 Similar to the social recommendation models from Section 6.4.1, per-
sonalized models of text often make use of a shared parameter that must simulta-
neously explain structure in interactions and documents.

as social connections. The argument we made in Section 6.4.1 was that absent
sufficient rating data, our estimate of γu can be informed from u’s friends.

Likewise, McAuley and Leskovec (2013a) suggest that a shared parameter
γu could simultaneously explain rating dimensions via a latent factor model,
as well as the topics in reviews:∑

(u,i)∈T

(α + βu + βi + γu · γi − ru,i)2

︸                                      ︷︷                                      ︸
rating error

+λ
∑

(u,i)∈T

∑
w∈du,i

log p(w|γu, ψ)︸                         ︷︷                         ︸
topic likelihood

, (8.18)

where ψ is a set of additional (non-shared) parameters specific to the topic
model (much like the approach in Section 6.4.1 had shared and non-shared
social parameters). This idea is depicted in Figure 8.6.

Critically, the above model assumes an alignment between latent rating di-
mensions and review topics. In practice, there may be dimensions in reviews
(i.e., topics) which are not related to rating dimensions (e.g. if a user discusses
the plot in a book review, it may have little connection to their rating); likewise
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there may be ‘intangible’ latent dimensions that don’t correspond to topics
expressed in reviews. By assuming a one-to-one relationship between topics
and latent dimensions, the model is useful in cold- (or cool-) start settings by
forcing the topic model to discover those topics that are capable of explaining
the variation in ratings. These topics in particular will be the ones that help
us to quickly understand the dimensions that explain user ratings from a few
interactions.

Examples of the types of topics discovered by this model are shown in Ta-
ble 8.1; mostly, the discovered factors correspond to fine-grained product cate-
gories, which mostly reflect users’ tendency to favor certain types of item over
others.

Other topic-modeling approaches
The above is a simple approach to combine low-dimensional representations of
text (via a topic model) with low-dimensional representations of interactions
(via a latent factor model). Several others have adopted a similar approach,
typically by modifying how user factors γu and topic dimensions are related to
each other.

Ling et al. (2014) and Diao et al. (2014) both consider the same setting as
above, in which reviews are used to improve the performance of rating predic-
tion models. Both note the limitations of assuming a simple one-to-one map-
ping between review topics and user preferences as in McAuley and Leskovec
(2013a), and suggest more flexible ways to align topic and preference dimen-
sions.

Wang and Blei (2011) proposed a similar approach to the problem of rec-
ommending scientific articles, where document representations are extracted
from article text, and user preferences are modeled to predict which articles
they will include in their libraries. This differs from the above formulation in
that text is associated with items (documents) rather than users, and the setting
is essentially an instance of ‘one-class’ recommendation (as in sec. 5.2), since
one generally doesn’t have explicit negative feedback about the articles a user
didn’t read.

Neural-network approaches
Although our discussion above centered around ‘traditional’ models of text
(such as topic models), more recent approaches learn representations of text us-
ing neural networks. Zheng et al. (2017) adopt a CNN based approach (based
on TextCNN (Kim, 2014)), in which they treat user and item reviews as two
separate ‘documents,’ based on which user and item representations (essen-
tially γu and γi) are estimated. Later works extend this idea using attention



238 Personalized Models of Text

. . .

<s> I w a s d

I w a s d e

Figure 8.7 Recurrent neural network for text generation. At each step the network
is responsible for generating the next token (in this case a character) on the basis
of the tokens seen so far, and the network’s current hidden state. ‘<s>’ represents
a ‘start token’ to begin generation (and generation would be terminated once the
network generates an end token ‘<\s>’).

mechanisms (which we discussed in Section 7.7.2), to infer which reviews are
more relevant in a particular context (Tay et al., 2018; Chen et al., 2018).

8.4 Personalized Text Generation

In Section 7.6 we presented Recurrent Neural Networks as general-purpose
models that can be used to estimate the next value in a sequence, or to generate
sequences, based on some context and the sequence of tokens seen so far.

Such models are routinely used to sample (or generate) realistic-looking
text. Recurrent networks for text generation (see e.g. Graves (2013)) follow
essentially the same setup we saw in Section 7.6. At each step t, the network
takes an input xt (either a character, or a word representation), and updates
its hidden states ht based on the current input xt and the previous step’s hidden
state ht−1 (as in sec. 7.6, multiple network layers can be stacked). The sequence
of target outputs y is identical to x, but shifted by a single token, i.e., the model
is responsible for generating the next token in a sequence based on all the
tokens seen so far. This type of setup is depicted in Figure 8.7.

While the above model will be capable of generating realistic-looking sam-
ples (i.e., documents that mimic those in the training set), the samples will not
be context-dependent, and they will not be personalized.

Several papers have sought to adapt RNNs to generate personalized text, that
is, text that mimics the context, preferences, or writing style of an individual
user. We describe several such approaches below. Most are models of product
reviews: partly because such data exhibits variation due to the user, item, and
interaction between them, but also simply because such data is widely avail-
able. The models covered in this section are summarized in Table 8.2.
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Table 8.2 Summary of personalized text generation approaches. References:
Radford et al. (2017); Dong et al. (2017a); Li et al. (2017); Ni et al. (2017).

Ref. Goal Description

R17 Sentiment analysis Focuses on the task of generating user reviews,
though is not personalized; the goal is mainly to learn
disentangled representations and discover sentiment.

D17 Attribute-based
generation

An encoder-decoder approach to generate reviews
based on contextual attributes (such as the user, item,
or rating).

L17 Abstractive tip
generation

Generates short ‘tips’ (similar to review summaries),
also based on an encoder-decoder approach; reviews
are used during training to learn an intermediate rep-
resentation.

N17 Personalized
review generation

Generates reviews using a latent factor approach that
takes user and item factors as inputs.

Why generate reviews?
Personalized text generation, especially when applied to datasets of product
reviews, may seem an unusual task with no obvious application (beyond gen-
erating review spam): existing platforms are unlikely to surface generated re-
views (such as the one in Figure 8.9) to users. However this task has more value
when considering the broader context of personalized language generation. In
practice, as we’ve seen elsewhere, reviews are often simply a convenient test-
bed for training due to the wide availability of data. Other applications where
personalized language generation could include dialog systems, assistive lan-
guage tools, or natural language processing in other datasets with significant
personal variability (e.g. clinical NLP).

Even within the context of reviews, a high-fidelity personalized language
model can be used for other functions besides generation. For example the
model could be ‘reversed’ for personalized retrieval or search, i.e., to retrieve
items that a user might describe in a particular way (e.g. a query such as ‘good
dress for a summer wedding’). Personalized text generation can also be used
within systems that explain or justify predictions, as we see in Section 8.4.3.

8.4.1 RNN-based Review Generation

Radford et al. (2017) were among the first to explore the use of recurrent neural
networks (and in particular, LSTM neural networks, as in Section 7.6.1) to
generate reviews.

Although the model from Radford et al. (2017) is not personalized, the
approach shows the effectiveness of recurrent networks to sample realistic-
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γu; γi I w

I w a

. . .

<s> I w

γu; γi γu; γi γu; γi γu; γi

I w a

Figure 8.8 Personalized (or contextual) recurrent network architectures. Left: an
encoder-decoder architecture; here the start token from Figure 8.7 is replaced by
an input signal produced by (or jointly trained with) a previous model (in this case
encoding user and item information). Right: the generative-concatenative network
from Ni et al. (2017); here the contextual information is input during every step
to help the model ‘remember’ the context over many steps.

looking reviews. Below we explore several approaches that attempt to per-
sonalize reviews to individual users. ‘Personalization’ in this setting includes
understanding an individual user’s writing style, the context associated with
a particular item, and the interaction between the two (which determines an
individual user’s reaction and their sentiment toward an item).

Conditional review generation
Given the promise of using recurrent networks to sample realistic-looking re-
views from a background distribution, several papers have followed a similar
approach to Radford et al. (2017) to generate reviews that are relevant to a
specific context.

Conceptually, generating reviews to match a specific context follows ideas
from encoder-decoder architectures which have proved useful in (for example)
image captioning settings (Vinyals et al., 2015). Here, rather than passing a
start token to the generator (as in fig. 8.7) one passes an encoding (i.e., a low
dimensional representation) of the context, such as an embedding representing
an image; following this, decoding follows the same approach as in Figure 8.7,
where the model’s hidden states ought to retain the essential components of the
context necessary to generate text conditionally. This type of encoder-decoder
approach is depicted in Figure 8.8 (left).

Personalized review generation
Dong et al. (2017a) follow this type of encoder-decoder approach to accom-
plish ‘attribute-based’ conditional review generation. The approach follows
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the setting described above, whereby attributes are encoded and passed to an
LSTM text generation model. The attributes used in their model include a user
ID, an item ID, and the score associated with the review.9

Li et al. (2017) follow a similar approach to generate short ‘tips,’ i.e., short
summaries of reviews. The setting also follows an encoder-decoder approach,
though is trained on data from Yelp and Amazon that includes both reviews and
summaries (or ‘tips’ on Yelp). While summaries are used as the model output,
reviews are used during training to learn an effective intermediate representa-
tion that explains interactions between users and items.

The above methods generate reviews based on specific features or attributes,
and as such can essentially be thought of as forms of ‘contextual’ personaliza-
tion. Ni et al. (2017) designed text generation methods that directly model
users (and items) in order to estimate reviews given only the context of a user
and item ID.

The basic setup follows a latent factor approach, i.e., the ‘input’ to the model
is a representation γu for the user and γi for the item. These latent user and item
representations are trained jointly with the language model (in this case an
LSTM, as in Section 7.6.1); in practice these representations are concatenated
onto the input tokens as in Figure 8.8 (right). Conceptually, rather than the
latent factors γu and γi explaining user preferences and item properties that
predict ratings (as in chap. 5), user factors must now account for patterns of
variation in user writing styles (e.g. the structure used in their reviews), and
item factors must account for the overall characteristics of items (e.g. their
objective properties) that users are likely to write about. At the same time both
the user and item factors must jointly explain the user’s sentiment toward the
item, e.g. the positive or negative language that they will use.

An example of a review generated via this technique is shown in Figure 8.9.
The review is surprisingly coherent and seems to capture (a) the user’s writing
style (e.g. they tend to write their reviews across separate paragraphs describ-
ing each aspect); (b) the item’s overall characteristics (e.g. the category and
flavor profile); and (c) the essential features of the user’s preferences (leading
to a lukewarm response for this item). Recall that as with a traditional recom-
mender system although both the user and item have been seen during training,
this specific user and item combination have not.

Extensions of this work combined latent user and item representations with
observed attributes (Ni and McAuley, 2018). Doing so can help the model to
use language that better captures specific item details (such as technical fea-

9 Though this dependency on having the rating as an input could presumably be overcome by
estimating it separately.
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12 oz. bottle, excited to see a new Victory
product around, A: Pours a dark brown, much
darker than I thought it would be, rich creamy
head, with light lace. S: Dark cedar/pine
nose with some dark bread/pumpernickel. T:
This ale certainly has a lot of malt, border-
ing on Barleywine. Molasses, sweet maple
with a clear bitter melon/white grapefruit hop
flavour. Not a lot of complexity in the hops
here for me. Booze is noticable. M: Full-
bodied, creamy, resinous, nicely done. D: A
good beer, it isn’t exactly what I was expect-
ing. In the end above average, though I found
it monotonous at times, hence the 3. A sipper
for sure.

A: Pours a very dark brown with
a nice finger of tan head that pro-
duces a small bubble and leaves de-
cent lacing on the glass. S: Smells
like a nut brown ale. It has a slight
sweetness and a bit of a woody
note and a little cocoa. The nose
is rather malty with some choco-
late and coffee. The taste is strong
but not overwhelmingly sweet. The
sweetness is overpowering, but not
overwhelming and is a pretty strong
bitter finish. M: Medium bodied
with a slightly thin feel. D: A good
tasting beer. Not bad.

Figure 8.9 A real (left) and a synthetically generated review for the same user
and item (right). Bold/italics added for emphasis.

tures of an electronics product). Further applications are proposed that use this
type of technique for assistive review generation, e.g. rather than generating
reviews from scratch, the system could be used to help users write reviews
based on a template or specific points or attributes, while still following their
personalized writing style.

8.4.2 Case Study: Personalized Recipe Generation

So far, our study of personalized text generation has focused on product re-
views. This is largely an opportunistic choice, as review corpora are a widely
available source of user-generated text. Here we focus on an alternative source
of text data with user-level interactions, namely recipes.

Recipes have recently emerged as an interesting source of textual data, both
for personalized retrieval, and more recently, generation (Majumder et al.,
2019). Early systems to facilitate personalized interactions with recipes did so
by helping users to search for recipes whose ingredients target specific health
conditions (Ueta et al., 2011). Later systems approached the same task with ex-
plicit rules, and constraints of ingredients to avoid specific dietary restrictions
(Inagawa et al., 2013). Other retrieval-oriented systems have sought to help
users find recipes ‘in the wild,’ e.g. by searching for recipes that correspond to
a photo (Marin et al., 2019).

More recently, Majumder et al. (2019) considered whether personalized
recipes can be synthesized using text generation frameworks. Here, the idea
is to generate novel recipes that are consistent with a particular user’s pref-
erences (or specifically, their previous interactions). The setup is somewhat
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Name: Pomberrytini;
Ingredients: pomegranate-blueberry juice,

cranberry juice, vodka;

Combine all ingredients except for the ice in a
blender or food processor. Process to make a
smooth paste and then add the remaining vodka
and blend until smooth. Pour into a chilled glass
and garnish with a little lemon and fresh mint.

Figure 8.10: Example of a
personalized recipe, from
Majumder et al. (2019).

similar to that of Section 8.4, where we sought to generate personalized text
conditioned on a (representation of a) user and an item. In Majumder et al.
(2019), the training objective consists of a set of recipes a particular user has
consumed, based on which the system should output (i.e., generate the text of)
another recipe the user would consume.10 In this way, the method can generate
recipes that are consistent (in terms of e.g. ingredients, cooking techniques,
etc.) with those that the user would normally consume. An example of a recipe
generated with this system is included in Figure 8.10.

8.4.3 Text-Based Explanations and Justifications

So far, we have examined (a) textual data as a means of improving the pre-
dictive accuracy of personalized models (sec. 8.3); and (b) textual data as the
output of a predictive model (sec. 8.4). Beyond these applications, text is also
appealing as a means of explaining model predictions.

Text-based explanation connects to the more broad topics of interpretability,
explainability, and justification of machine learning models. In the case of text-
based explanations, the goal is to retrieve or generate a short text fragment
that explains a model prediction. Such models bring us a little closer to the
conceptual goal of producing ‘human-like’ explanations, i.e., mimicking the
way one person would justify a decision or recommendation to another.

As with the personalized text generation models above, much of the work in
this space is focused on recommendations and review datasets, as review data
serves as a convenient testbed to train models for personalized explanation.
The more broad topic of (non-personalized) text-based explanation has been
considered in other settings, such as text-based classification (Liu et al., 2019).

10 In practice, Majumder et al. (2019) input other metadata (such as a recipe title) to the method
to overcome the difficulty of generating recipes ‘from scratch.’
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Extractive vs. abstractive approaches Justification (and summarization) ap-
proaches can broadly be categorized as extractive or abstractive. ‘Extractive’
models use retrieval-like approaches to select text fragments (e.g. from a train-
ing corpus) that are relevant to a given context or query; ‘abstractive’ ap-
proaches generate novel text, either by paraphrasing the corpus or via a gener-
ative approach (as in sec. 8.4).

Crowd-sourced explanations
Prior to the use of generative models for text-based explanation, Chang et al.
(2016) sought to use crowd-sourcing to generate personalized explanations for
movie recommendations. Since crowd workers are unlikely to be available to
generate recommendations in real-time, Chang et al. (2016) adopt a template-
based approach, where workers generate justifications based on users’ interest
in a particular aspect or tag (e.g. why should Goodfellas be recommended to
a user who likes drama?). To help crowd-workers write explanations, workers
are shown extracted review segments relevant to a particular tag, and are tasked
with abstracting that text into a coherent explanation.11

Regardless of the practicality of crowd-sourcing such explanations, a main
goal in Chang et al. (2016) is to confirm the overall value of text-based ex-
planations to users (where human-generated explanations can be regarded as
something of a gold-standard). They evaluate text-based explanations in terms
of efficiency (acquainting users with the relevant properties of an item), effec-
tiveness (helping users decide whether they want to watch a movie), trust, and
satisfaction. They find that text-based explanations are preferred over more
trivial tag-based explanations in terms of efficiency, trust, and satisfaction,
though the change in terms of effectiveness is negligible.

Generating explanations from reviews
Ni et al. (2019a) explore abstractive approaches to justification generation.
Overall, the model is similar to the methods we explored for review generation,
in which a model is trained to generate a review given a particular user/item
pair. Ni et al. (2019a) use a similar training setup, except that the target text
used for training is text that has been identified as being suitable to surface as
a recommendation justification. Ultimately this text is harvested from reviews,
with a main challenge being how to identify suitable justification sentences
among review text. Ni et al. (2019a) argue that training on this type of har-
vested text yields more effective justifications than models trained on reviews,
tips, or retrieval-based techniques.
11 The complete pipeline from Chang et al. (2016) includes a few additional details, such as a

step to vote on the best among several crowd-based explanations, among others.
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Method Type Output

Personalized Retrieval Extractive A great burger and fries
Generated ‘tip’ Abstractive This place is awesome
Generated explanation Abstractive breakfast sandwiches are overall very filling

Figure 8.11 Examples of generated justifications for a recommendation of Shake
Shack to a particular user. From Yelp data (Ni et al., 2019a).

Examples of justifications generated using different techniques and training
setups (from Ni et al. (2019a)) are shown in Figure 8.11.

8.4.4 Conversational Recommendation

Arguably, our implicit goal when developing systems for text-based explana-
tion or justification above is to mimic the ways humans explain or justify their
decisions. Following this, perhaps an ideal system for interactive recommen-
dations might mimic the paradigm of conversation.

Conversational recommender systems combine ideas from dialog genera-
tion, explainability, and interactive recommendation. The precise paradigm of
‘conversation’ varies widely: early methods facilitate simple iterative feedback
from users (Thompson et al., 2004), while more recent methods more closely
represent free-form conversation (Kang et al., 2019a).

Below we survey a few representative approaches; we refer to Jannach et al.
(2020) for a more thorough survey. The models covered in this section are
summarized in Table 8.3.

Query refinement
Early approaches for conversational recommendations essentially treat ‘con-
versation’ as a form of iterative query refinement. In Thompson et al. (2004)
users are asked questions that attempt to determine their preferences or con-
straints toward a fixed set of attributes (e.g. cuisine type, price range, etc.); as
such a user model is simply a weighting over potential attribute values. Re-
trieval then consists of selecting items whose attributes most closely match
user preferences.

Other early approaches to ‘conversational’ recommendation are essentially
forms of interactive recommendation, in which a system can query users or
gather feedback from users during each round (Mahmood and Ricci, 2007,
2009). Mahmood and Ricci (2009) adopt a reinforcement learning approach
to interactive recommendation. During each step, the system may perform a
number of actions, including asking users more detail about specific attributes,
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Table 8.3 Summary of approaches for conversational recommendation.
References: Thompson et al. (2004); Mahmood and Ricci (2009);

Christakopoulou et al. (2016); Li et al. (2018); Kang et al. (2019a).

Ref. Type Description

T04 Query refinement Elicits users’ preferences and constraints with re-
gard to item attributes.

MR09 Reinforcement
learning

Queries users about recommendation attributes dur-
ing each round; learns a policy to choose queries to
efficiently yield a desirable recommendation.

C16 Iterative
recommendation

Collects feedback about recommended items in
order to iteratively learn user preferences; ex-
plores various query strategies to elicit preferences
quickly.

L18 Free-form
conversation

Collects conversational data in which a ‘recom-
mender’ suggests movies and a ‘seeker’ provides
feedback. Trains a dialog model to mimic the role
of the recommender.

K19 Free-form
conversation and
reinforcement
learning

Similar to the above, though trained using rein-
forcement learning so that the ‘recommender’ and
‘seeker’ exchange information to arrive at a target
recommendation.

or asking them for feedback on a panel of recommendations. Reinforcement
learning techniques are used to select an optimal policy in terms of what ac-
tions the system should perform under a given state.

Interactive recommendation
Christakopoulou et al. (2016) follow a similar strategy to those above, but com-
bines an interactive recommendation framework with a latent factor model,
similar to those we studied in Chapter 5. Here, the goal is to use a conversa-
tional strategy to quickly infer users’ preferences γu toward item properties γi.
Interactions consist of a one-sided form of ‘conversation’ in which the system
asks simple questions to the user about their preferences; a main goal of Chris-
takopoulou et al. (2016) is to understand the ideal characteristics of questions
that should be asked to users in order to elicit their preferences efficiently.
Questions can be absolute (ask a user whether they like or dislike an item),
or pairwise (ask a user which of two items they prefer). Question selection
strategies consist of determining which items should be evaluated during each
step. Strategies include selecting random items, items with the highest esti-
mated compatibility, or items whose compatibility has the most uncertainty.
After each question, compatibility scores are recomputed based on question



8.4 Personalized Text Generation 247

responses, resulting in a model that gradually becomes more accurate during
successive rounds.

Free-form conversation
More recent approaches try to follow the conversational paradigm more lit-
erally. Ideally, conversations should be free-form, in which both the system’s
question and the user’s response take the form of free text. Li et al. (2018)
attempted to formulate conversational recommendation in this form, for the
specific task of movie recommendation. A major challenge which they over-
come is to build appropriate ground-truth data for this task. Their approach
builds on previous attempts to build dialog datasets, including dialogs specifi-
cally focused around movies (Dodge et al., 2016). Dialogs are constructed by
crowd workers, who assume roles of a recommender or seeker; conversations
between the recommender and the seeker are tagged in terms of the movies
mentioned, as well as explicit feedback (has the seeker seen the movies men-
tioned and did they like them). Around ten thousand such conversations are
collected.

Having collected such data, Li et al. (2018) then seek to train a dialog gen-
eration model that can fulfil the role of the recommender. Their solution com-
bines ideas from dialog generation with a recommender system, so that users’
preferences can be estimated and the output controlled to reference specific
movies.

A potential limitation of Li et al. (2018) is that it relies on explicit movie
mentions and feedback to learn user preferences; as such their method could
not straightforwardly recommend a movie based on a simple goal, such as
a user requesting ‘a good sci-fi movie.’ Kang et al. (2019a) seek to build
conversational recommenders following this ‘goal oriented’ view of recom-
mendation. To collect data, a conversation game is conducted, where both the
seeker and recommender (‘expert’) are given prompt movie sets: the seeker’s
set represents their ostensible interests, while the expert’s set is a collection
of movies, one of which matches the seeker’s preferences (determined offline
based on a similarity metric). The expert’s goal is to determine which movie in
their set matches the user’s preferences via repeated conversation turns. Kang
et al. (2019a) note that while in principle the expert could simply enumerate
movies in their set until they reach the ‘correct’ one, in practice this rarely
happens, and players tend to engage in free-form conversation, asking about
general attributes and qualities.

Like Li et al. (2018), Kang et al. (2019a) then train dialog agents to play
the game. During play, the expert can either engage in a dialog turn or select
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one of the movies from their set; the goal is for the expert to identify the target
movie in as few moves as possible.

8.5 Case Study: Google’s Smart Reply

Google’s Smart Reply is a system developed for GMail to automatically rec-
ommend short responses for e-mail. Given an e-mail thread as input, the sys-
tem is tasked with surfacing (three) likely responses; although the goal is ul-
timately to maximize engagement with the feature, the system is trained by
taking a large corpus of thread/response pairs, and learning to predict (or max-
imize the likelihood of) users’ historical responses to a given e-mail thread.

As a case study in personalized text generation, this system is interesting for
several reasons:

• As a form of personalized machine learning, Google’s solution does not
have explicit user parameters; rather, ‘personalization’ is done implicitly by
learning from the context already present in the e-mail thread.

• They describe two successive—and quite different—solutions to this prob-
lem in a sequence of papers. The first is based on a sequence-to-sequence
language model (i.e., a text generation framework); the second is a seem-
ingly more trivial retrieval-based solution.

• Other interesting facets of the studies include how they deal with scalability,
diversification, the appropriateness of suggesting a reply for a given context,
etc.

The models we discuss are described in Kannan et al. (2016) and Henderson
et al. (2017). The first solution (Kannan et al., 2016) uses an LSTM-based
sequence-to-sequence model, similar to those we described in Section 7.6.1.
The model reads a sequence of tokens from the original message, which are
used to generate a hidden state, which is then used to begin generation of
the target response (the model can be used to rank predetermined response
candidates as well as for generation). Several issues must be dealt with (in
both of the solutions from Kannan et al. (2016) and Henderson et al. (2017)):

• The system must be trained in such a way that private/sensitive data is not
used during training (and likewise decoding must not leak sensitive data).

• When selecting among response candidates, the generated responses must
be semantically diverse. Even responses with quite different syntax may be
redundant in terms of intent; this is achieved using a semantic clustering
approach.
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• Even for messages that tend to receive positive responses, candidates should
include a combination of positive and negative responses.

• Finally, the system should only be used in situations where an automatic
response is likely to be appropriate.

In a follow-up paper, Henderson et al. (2017) suggested alternative meth-
ods based on multilayer perceptrons. The overall problem setting is similar:
to select a small set of responses given an input e-mail. However given that a
multilayer perceptron cannot generate responses, a large set of response can-
didates is collected, such that the system is merely responsible for scoring or
ranking candidates.

The main thesis in Henderson et al. (2017) is simply to argue that given a
large enough set of candidate responses, a retrieval-based approach has per-
formance on-par with a generation-based approach—while being significantly
more straightforward, and facilitating faster inference (retrieval). Several de-
tails are incorporated in order to achieve the desired result, that mimic several
of the strategies we’ve explored in this book, for instance:

• How to effectively represent text (e-mails) using fixed length features. Hen-
derson et al. (2017) use a bag-of-words representation based on N-grams
(sec. 8.1.2).

• How to select negative instances (i.e., non-replies); as in Section 5.2.2 one
cannot compare all negatives to a given positive instance, and must instead
rely on sampling.

• How to perform efficient inference (retrieval). After query and response
pairs are embedded via a multilayer perceptron, they are scored via an in-
ner product operation. Thus finding the most compatible reply resembles
maximum inner product search, as in Section 5.6.

Ultimately, this case study reveals (or reinforces) the notion that simple so-
lutions can often be as effective as more complex ones, and that complex, real-
world systems can be developed from exactly the kind of ‘standard’ techniques
we’ve studied.

Exercises

8.1 The exercises below may be conducted using any dataset that includes
reviews associated with numerical ratings. Implement a sentiment anal-
ysis pipeline based on a bag-of-words model, as in Section 8.1, Equa-
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tion (8.2). You may follow the code provided as a starting point to build
a model based on the 1,000 most common unigrams.

8.2 Several choices must be made when building feature representations
from text. Extending your model from Exercise 8.1, and using a vali-
dation set, experiment with various modeling choices (in addition to the
regularization hyperparameter λ). Possible modeling choices include:

• The dictionary size;

• Whether to use unigrams, bigrams, or a combination of both.12

• Whether to remove capitalization, punctuation, or to treat punctuation
characters as separate words;

• Whether to use tf-idf (eq. (8.8));

• How to handle stopwords, stemming, etc.

8.3 In Section 8.2.1 we presented Item2vec as an alternate means of item-
to-item recommendation. Much as we did in Chapter 4 (Exercise 4.3),
consider how this item-to-item model can be used to make recommen-
dations based on a user’s history, and compared against alternate recom-
mendation approaches. Several methods in Gensim could be helpful to
retrieve related items based on an interaction sequence.

8.4 As discussed in Section 8.1.4, tf-idf representations of documents can
be used to retrieve documents that are semantically similar to each other.
For this exercise, we’ll use all reviews of a single item as a single ‘docu-
ment.’ First, compute the tf-idf representations of all items, and compute
the most similar item (in terms of cosine similarity between tf-idf vec-
tors) given a particular query (e.g. the first item in the dataset). Compare
this to similarity computed on bag-of-words representations.

8.5 In Chapter 4 (Exercise 4.4), we considered using similarity functions to
predict ratings for user/item pairs. Adapt one of those predictors (e.g. the
predictor from Equation (4.22)) to estimate ratings using a text-based
item-to-item similarity function, such as the one you developed in Exer-
cise 8.4 or the Item2vec model from Exercise 8.3.13

12 That is, all unigrams and bigrams can be sorted by popularity; certain common bigrams (such
as common negations) will then have higher frequency than some unigrams and will be
included in the model.

13 Given that repeatedly computing item-to-item similarities for high-dimensional text features is
likely quite computationally intensive, it is most likely feasible to evaluate your method only
on a small sample of user/item pairs.



Exercises 251

Project 7: Personalized Document Retrieval

The models we developed in the above exercises use features derived from text,
but most are not personalized. Here, we’ll explore how to personalize these
models following the approaches we developed in this chapter. This project
could be conducted using any dataset involving ratings and user reviews, as in
the above exercises.

As a starting point, we’ll build a personalized model of sentiment analysis;
your model can extend the one you developed in Exercises 8.1 and 8.2. Per-
haps the simplest form of personalization consists of fitting bias terms for each
user, much like the bias terms we included when developing recommender
systems in Chapter 5. Such a term can account for the fact that one user may
regard (e.g.) a three-star rating as positive (and therefore use positive language)
whereas anther user may regard it as negative. This term can be incorporated
by extending a model like that in Equation (8.2):

α + βu +
∑
w∈D

count(w;D) · θw. (8.19)

This model could be fit either by (a) treating the user identity as a one-hot
vector, and treating the problem as an ordinary linear regression problem, or (b)
by gradient descent, much as we fit bias terms when developing recommender
systems in Chapter 5.

Having fit this model, investigate the extent to which the addition of the bias
term improves performance (e.g. in terms of the MSE), and the extent to which
it alters the weights associated with the most positive and negative words.

Following this, we would like to develop a more complex model that esti-
mates personalized compatibility with (the words in) a particular document.
Fitting a model θw per-user would be impractical (we likely wouldn’t have
enough interactions per user). Instead, develop a model that estimates a user’s
compatibility with a document in terms of latent factors. Rather than associat-
ing latent factors with individual documents, we’ll associate them with words
in documents, augmenting our bag-of-words model from Equation (8.19):

α + βu +

K∑
k=1

∑
w∈D

count(w;D) · γu,kθk,w. (8.20)

Here K is essentially a set of topics: γu,k measures the extent to which user u is
interested in topic k; θk,w measures the extent to which the word w is relevant
to topic k; and count(w;D) measures how many times a word appears in a
particular document.

Again, the above model could be implemented via gradient descent, though
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alternately consider how you might fit a similar model using a factorization
machine (sec. 6.1). Equation (8.20) essentially captures latent interactions be-
tween word embeddings (via a bag-of-words model), and users.14

Compare the performance of your model from Equation (8.20) to a bias-only
(eq. (8.19)) and non-personalized (eq. (8.2)) model. The model could easily be
extended to incorporate N-grams, or additional features from text.

14 Roughly speaking, we’re replacing the item in the design matrix from Equation (6.1) with a
bag-of-words representation of a document.



9
Personalized Models of Visual Data

Traditional models of visual data deal with problems like classification, detec-
tion, or (more recently) image generation, though the bulk of approaches are
not personalized: discriminative models (classifiers, detectors) are usually con-
cerned with identifying some objective label in an image, or generative models
are concerned with learning a background distribution governing the overall
dynamics of a large corpus of data. On the other hand, many of our decisions
and interactions can be guided by visual factors, and preferences toward visual
attributes can be highly subjective.

The situation above is much as we saw when introducing models for text
in Chapter 8. Just as we saw in Section 8.3 that text can be used to improve
both the fidelity and interpretability of recommendations, visual data can like-
wise be included to improve the accuracy of models in settings where personal
preferences are significantly guided by visual signals.

Visual data are critical in domains like fashion, where preferences are largely
guided by visual factors. Problems like recommendation in such settings are
highly personalized, and problems like compatibility among items depend on
complex factors that are hard to precisely define. Furthermore, recommenda-
tion in such scenarios frequently suffers from cold-start (or ‘cool start’) prob-
lems, given the long-tail of new and rarely consumed items.

We’ll begin this chapter by exploring personalization in ‘traditional’ settings
like image search and retrieval (sec. 9.1). Following this we’ll explore how to
incorporate visual data into recommendation approaches (sec. 9.2). Much of
our discussion will be centered around domains like fashion recommendation,
where visual features naturally play a key role, though we’ll also look at other
visually-guided scenarios ranging from art to home decor.

Following this we’ll explore new recommendation modalities involving vi-
sual data. Item-to-item, or set-based recommendation are particularly impor-
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tant in settings involving visual data, again including settings like outfit gener-
ation in fashion (sec. 9.3).

Finally we’ll explore personalized generative models of images (sec. 9.4).
Just as we saw models that generate personalized text in Chapter 8, there are a
few settings where one might wish to generate images that are personalized to
a user’s preference or context, such as systems for personalized design.

9.1 Personalized Image Search and Retrieval

Before studying the use of visual data in the context of recommendation, it is
worth briefly considering how visual data is handled in ‘traditional’ settings
like image search and retrieval, and how those settings can be personalized.
We’ll explore two representative approaches that have common elements with
methods we’ve seen in previous chapters, namely the use of latent factor rep-
resentations to describe users and queries, and the use of joint embeddings.
These same themes will reappear as we develop more complex personalized
models in later sections.

Latent factors Wu et al. (2014) personalize image retrieval by identifying
trending searches that are relevant to a particular user. After finding trending
queries (based on an approach from Al Bawab et al. (2012)), they estimate
compatibility between a user and a query using a latent factor approach. The
setting is one of implicit feedback (we only observe positive instances, i.e., his-
torical queries), and Wu et al. (2014) adopt an instance reweighting scheme
similar to those we saw in Section 5.2.1. Here they fit latent factors associated
with a user (γu) and a query (γq) as follows:∑

u,q

cu,q(Ru,q − γu · γq)2 + λΩ(γ). (9.1)

Here Ru,q is a binary interaction matrix measuring whether the user has ever
issued query q during training. The weight matrix c controls our instance
reweighting strategy (see eq. (5.19)); the basic idea is that higher importances
should be associated with trending instances.

Joint embeddings In Chapter 8 we saw the use of joint embeddings to cap-
ture hidden factors that are shared between interaction and review data (see
e.g. Figure 8.6). Similar ideas are used in image retrieval settings, in this case
to learn a shared embedding between a query q and an image i:

d(q, i) = ‖g(q) − g(i)‖22 (9.2)
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For example, in Pan et al. (2014), g(q) and g(i) were based on simple linear
embeddings of (textual) query features fq and (visual) image features fi:

g(q) = fqW (query); g(i) = fiW (image). (9.3)

W (query) and W (image) are trained so that distances in Equation (9.2) are mini-
mized based on click-through data. That is, distances should be small between
query/image pairs associated with a large number of clicks.1

We’ll see a similar setting in Section 9.3.1, in which a query image is pro-
jected into a low-dimensional ‘style space’ (eq. (9.8)) so that neighboring im-
ages can be retrieved. The query-based retrieval approach of Equation (9.3)
operates on a similar principle, except that query features are extracted from
text (as we studied in Section 8.3.1).

9.2 Visually-Aware Recommendation and Personalized
Ranking

Much as we saw with text in Chapter 8 (sec. 8.3), visual data is difficult to
incorporate directly into recommender systems, given that feature representa-
tions are high-dimensional, and dense.

Personalized recommendation problems involving visual content (e.g. cloth-
ing) have been studied for several years, with initial attempts ignoring visual
data altogether. For example, an early system for clothing recommendation
(Hu et al., 2014) learns a user’s ‘style’ in order to recommend clothing, but
does so using ‘likes’ rather than any analysis of visual features. Likewise,
YouTube’s early recommendation approaches (Davidson et al., 2010) are based
on heuristic ‘relatedness scores’ based on co-visitation (essentially a form of
neighborhood-based approach, as in Section 4.3), though some features based
on video metadata are included in the model; newer solutions (based on deep
learning) adopt more complicated candidate generation and ranking strategies,
though again make little if any use of explicit visual signals (Covington et al.,
2016).

Below we focus on a few of the main approaches that explicitly incorporate
visual data into recommendation and personalized ranking models.

1 Note that this approach assumes that query and click data is available at training time,
presumably from a method not based on visual embeddings.
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9.2.1 Visual Bayesian Personalized Ranking

Initial attempts to incorporate visual signals into ranking models follow the
Bayesian Personalized Ranking framework from Section 5.2.2 to incorporate
observed image features fi associated with each item, such as a product image.
That is, we want to define a compatibility function xu,i, j = xu,i − xu, j (as in
eq. (5.24)) that estimates which of two items i and j are more compatible with
the user.

Starting with a simple latent factor-based compatibility model, we might
first consider simply replacing our (latent) item representations γi with our
observed image features, i.e.,

xu,i = α + βu + βi + γu · fi. (9.4)

In this way, γu would now determine which features are most compatible with
each user (in fact, this is a linear model as in Chapter 2). Although conceptu-
ally reasonable, the issue in doing so becomes quickly apparent once we con-
sider that image features are typically very high dimensional. For instance, the
visual features used in the study below (extracted from ImageNet) are 4,096
dimensional. Incorporating them directly into xu,i as in Equation (9.4) would
thus require fitting thousands of parameters per user, which is not feasible in
datasets that typically consist of only (e.g.) tens of interactions per user.

Visual Bayesian Personalized Ranking (He and McAuley, 2015) attempts to
address this by projecting images into a low-dimensional embedding space via
a matrix E. Here E is | fi| × K matrix (e.g. 4096× K), which projects the image
into a K dimensional space. Following this, the projected image dimensions
can be matched to user preference dimensions:

xu,i = α + βu + βi + γu · (E fi). (9.5)

Note that the projected features E fi fulfil much the same role as γi in a typical
latent factor model, except that they are learned based on features rather than
historical interactions (and as such can be used in cool- or cold-start settings).

Note that E fi is a learned embedding, and is fit so as to maximize the
probability of observed interactions, as with all other terms in Equation (9.5).
Note also that while E is high dimensional (e.g. around 40,000 parameters if
| fi| = 4096 and K = 10), it is a global term that is shared among all items; thus
for a large enough dataset it accounts for only a small fraction of the model’s
parameters.

Because the embedding is low-rank, we are assuming that users’ preferences
toward these visual dimensions can be explained via a small number of factors.
While this is similar to the assumption made by a ‘standard’ latent factor model
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(e.g. as in Equation (5.10)), we are further assuming that these factors can be
explained by visual dimensions. However in practice there could be several
latent factors not explainable by visual features (e.g. factors due to price, ma-
terial, brand, etc.). To address this the original paper includes both latent item
factors γi as well as visual item factors E fi:

xu,i = α + βu + βi +

visual preference dimensions︷  ︸︸  ︷
γu(E fi) + γ′u · γi︸︷︷︸

latent preference dimensions

+

visual bias︷ ︸︸ ︷
β( f ) · fi . (9.6)

Correspondingly, there are two sets of user terms: γu, which explains prefer-
ences toward visual factors, and γ′u, which explains preferences toward non-
visual factors. Intuitively, the two terms will play different roles depending
on how ‘cold’ an item is: for a cold (or ‘cool’) item, visual features will be
much more reliable than latent factors; whereas for ‘hot’ items (i.e., those with
many associated interactions) γi will be able to capture additional non-visual
dimensions. Equation (9.6) also includes a ‘visual bias’ term β( f ) · fi (β( f ) is an
| fi|-dimensional vector) that is able to estimate item biases in cold scenarios.

Several other considerations must be made to implement such an algorithm
efficiently. For instance, accessing (high-dimensional) image features at ran-
dom (e.g. within a stochastic gradient descent algorithm), leads to poor caching
performance; likewise computing the projection E fi is expensive. In practice
these issues are dealt with by pre-computing all projections E fi (which can be
performed as a single matrix-matrix product), and updating E only periodically
during gradient descent.

Visual Bayesian Personalized Ranking is effective in settings where items
have few associated interactions (which He and McAuley (2015) note is com-
mon in fashion recommendation scenarios). In the original paper the model is
demonstrated on a clothing dataset from Amazon, as well as a clothing trading
dataset (Tradesy). The latter is particularly challenging because traded items
are not associated with long transaction histories, meaning that model predic-
tions must largely rely on visual signals.

Modeling the visual evolution of fashion trends
He and McAuley (2016) extended the above ideas from Visual Bayesian Per-
sonalized Ranking to incorporate temporal dynamics. Modeling temporal dy-
namics in this setting is interesting partly because the patterns of temporal vari-
ation in (e.g.) clothing purchases are different from those that were successful
in other settings, such as on Netflix (sec. 7.2.2). Such models are interesting as
a means of analyzing historical trends in fashion over time.

The main idea in He and McAuley (2016) is simply to break the training
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dataset into a sequence of epochs, each of which have their own parameters.
These epochs are somewhat akin to the ‘bins’ used to model long-term tem-
poral dynamics on Netflix, though a key difference is that the bin sizes are
variable and placed at learned intervals (using a dynamic programming pro-
cedure); given that the model has a large number of parameters, this helps to
ensure that fewer bins are used during time periods with little temporal varia-
tion, whereas more (and smaller) bins are used during periods which are more
dynamic.

9.3 Case Studies: Visual and Fashion Compatibility

In Section 9.2 we saw how visually-aware recommender systems can be used
to match items (or images of items) to users’ preferences. Earlier, in Chap-
ter 4 (sec. 4.3) we discussed several types of recommendation approaches that
considered similarity between items; such measures guide ‘item-to-item’ rec-
ommendation approaches (e.g. ‘people who bought X also bought Y’). Here,
we would like to develop similar approaches that establish visual similarity
(or compatibility) between items. Rather than basing similarity on interaction
histories as we did in Section 4.3, here we can base similarity directly on the
visual appearance of items.

Many studies on visual compatibility are specifically concerned with fash-
ion images. Estimating compatibility in such a domain has obvious applica-
tions to specific tasks like outfit generation and recommendation, or even to
generate ‘wardrobes’ of mutually compatible items. More simply, in settings
like fashion, visual compatibility with past interactions or purchases is a strong
predictor of future interactions.

Some of the specific characteristics that make this problem difficult (and
different from other forms of item-to-item recommendation), are as follows:

• It is challenging to construct datasets that act as ‘groundtruth’ for visual
compatibility, i.e., pairs of items that are known to ‘go well’ together.

• Further to the above, any groundtruth of compatible items is bound to be
highly noisy, and highly subjective; successful methods need to account for
these challenges, and possibly learn compatibility in a personalized way.

• The features that make items visually compatible in settings like fashion
could be subtle, and could be quite different from the information available
in co-purchase data, or even in most visual feature descriptors.

• Finally, the notion of ‘compatibility’ is semantically quite different from
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‘similarity.’ E.g. clothing items that go together should be similar in some
ways but complementary in others.

Approaches to these problems mainly differ in their specific solutions to the
problems above. We describe a few key approaches below.

9.3.1 Estimating Compatibility from Co-purchases

Early approaches to estimating visual compatibility built datasets from co-
purchases, for example using publicly-available datasets of reviews from Ama-
zon.

McAuley et al. (2015) crawled data from Amazon’s surfaced recommenda-
tions (‘people who bought X also bought Y’ etc.) and, in the case of clothing,
treated these as ‘groundtruth’ examples of items that are visually compatible.

Having defined such a compatibility function, the goal is to learn an ap-
propriate distance function, such that frequently co-purchased items tend to
be closer together than others. The distance function is then used in a simple
binary classification framework (similar to logistic regression) to predict:

p(i co-purchased with j) = σ(c − d(i, j)). (9.7)

In Chapter 7, we considered how to learn distance functions for problems such
as next Point-of-Interest recommendation (sec. 7.5.3). When doing so, items
(and users) were projected into a latent space via parameters γ. To recommend
compatible clothing, we might instead use features extracted directly from (the
product images of) i and j: first, general-purpose visual features are readily
available, and are likely to be informative in fashion compatibility scenarios;
second, reliance on features is desirable in cold-start settings, which might be
common in settings (like fashion) where item vocabularies are large and chang-
ing; third, a model based only on visual features can be more straightforwardly
transferred to settings where user data is not available.

Given image features associated with the items fi and f j, McAuley et al.
(2015) discuss several strategies for establishing visual similarity. Trivially,
one could directly consider the (squared) distance between fi and f j (i.e., ‖ fi −
f j‖

2
2), however general-purpose image features may not focus on attributes that

are relevant to fashion.
A second solution is to learn a weighted distance function that discovers

which features are relevant and discards those that are not, i.e.,
∑

k wk( fi,k −
f j,k)2. However it is argued that in fashion scenarios ‘compatibility’ cannot be
captured by modeling similarity between features—for example, a user gen-
erally would not select a shirt because it looks ‘similar’ to a pair of pants. To
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address this, a similarity function is proposed which projects the images into a
low-dimensional ‘style space’:

d(i, j) = ‖si − s j‖
2
2; where si = E × fi. (9.8)

In the case of McAuley et al. (2015) fi is a 4096-dimensional image descrip-
tor, extracted from a model trained on ImageNet (Jia et al., 2014); E is then a
4096 × K vector, where K is some small embedding dimension (on the order
of K = 10). Ultimately the embedded vector si = E × fi is analogous to the
latent vectors γi from previous models (and very closely matches the embed-
ding approach of Section 9.2.1), in the sense that it captures the underlying
dimensions that explain variation in co-purchases.

The method is then trained using a dataset C of complementary pairs, along
with a set of non-complementary pairs C− (which in practice are sampled ran-
domly). The model is then trained using a logistic regression-like setup to dis-
tinguish complementary and non-complementary pairs:

∑
(i, j)∈C

logσ(c − d(i, j))︸                      ︷︷                      ︸
complementary pairs

+

non-complementary pairs︷                              ︸︸                              ︷∑
(i, j)∈C−

log(1 − σ(c − d(i, j))) . (9.9)

Finally, although the approach is mainly designed for item-to-item recom-
mendation (and as such is not personalized), a personalized version can be
developed by adding a user latent vector γu that encodes which dimensions of
this ‘style space’ are important to each user:

du(i, j) =
∑

k

(γu,k sik − γu,k s jk)2 (9.10)

(in this case, the model is trained on triples (u, i, j) of co-purchases of items by
each user u).

McAuley et al. (2015) show that this type of model can be used in several
ways. First, it can predict co-purchases accurately, especially when predictions
are personalized. Second, the use of image data is effective at visualizing the
parameters of the model, i.e., determining what are the primary dimensions
that explain variance in users’ ‘styles.’ Finally, since the model (as in eq. (9.8))
takes only images as input, it can be transferred to assess compatibility (and
arguably, ‘fashionability’) of outfits outside of the original training data.

Veit et al. (2015) made use of the same co-purchase data to solve the same
task, but did so directly from the ‘pixel level,’ i.e., by training a Convolutional
Neural Network, rather than using a pre-trained image representation. This



9.3 Case Studies: Visual and Fashion Compatibility 261

item y φ(y)CNN

φ(x)item x
CNN

‖φ(x) − φ(y)‖ compatible?

Figure 9.1 Basic Siamese setup for item-to-item compatibility.

type of architecture is depicted in Figure 9.1: two input images (items), la-
beled as ‘compatible’ or ‘incompatible,’ are passed through two CNNs, both
of which share the same parameters. The CNNs learn low-dimensional repre-
sentations φ(x) and φ(y) for the two items; these are essentially equivalent to
the ‘style space’ embeddings of Equation (9.8), except that they are learned
from the pixel level, and therefore could potentially capture subtle characteris-
tics not available in pre-trained representations. Like Equation (9.8), the model
is trained to learn a metric, so that compatible items have nearby embeddings
and incompatible items do not.

He et al. (2016a) showed that prediction performance can be improved in
fashion settings by using separate embeddings for the ‘query’ and ‘target’
items i and j, i.e.,

d(i, j) = ‖γi − γ
′
j‖

2
2. (9.11)

Critically, by using two different latent spaces, ‘compatibility’ need not follow
the assumptions of a metric space, e.g. an item need not be compatible with
itself. In this way the model can learn which aspects should be systematically
different when matching items—such as blue pants going with brown shoes.

9.3.2 Learning Compatibility from Images in the Wild

The above papers showed that visual data can be effective when predicting co-
purchases in domains like fashion. However, it is arguable whether such mod-
els actually learn a useful notion of ‘fashionability.’ For one, a co-purchase is
a very noisy indicator of whether two items are compatible: in practice, two
purchases on one account may not even be for the same person. Secondly,
the images in such datasets (e.g. product images from Amazon) are not ‘wild’
images (they are usually scaled, centered objects on a white background), so
might struggle to capture the fashionability of an outfit in a photo (for exam-
ple).
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Kang et al. (2019b) try to address this issue by developing models of fash-
ionability that operated directly on images in the wild. At training time, the
approach consists of an image (or ‘scene’) that is known to contain a particu-
lar item; each item also has a ‘clean’ product image much like those in Sec-
tion 9.3.1. The basic idea is then that the item must be compatible with other
objects in the scene.

To build a training set, the known items are cropped from each training
image, each resulting in a scene image that does not contain the known item,
but ought to contain compatible objects. Ultimately, this means that we have a
set of training pairs consisting of an item plus a (cropped) scene that is known
to be compatible with the object (but does not contain it). From here, fashion
compatibility can be estimated by learning a relationship between the scene (s)
and product (p) images:

d(s, p) = ‖ f (s) − f (p)‖22. (9.12)

Much like Equation (9.8), this distance function is based on learned embed-
dings of the scene and product images. Several differences exist between these
embeddings and those used in Section 9.3.1, mostly to account for the fact that
the scene image likely contains a large number of irrelevant objects. Critically,
the method uses an attention mechanism (as in sec. 7.7.2, see also e.g. Xu et al.
(2015)), which is used to identify regions of the scene image that are relevant
for compatibility detection. For example, in an outdoor image, the attention
mechanism may learn to focus on the person in the image and their outfit,
while ignoring ‘background’ objects in the surrounding scene.

Note that the above is ultimately not a personalized model, i.e., there are
no parameters associated with the individual users. However the system is ar-
guably more useful than that of Section 9.3.1 from a personalization perspec-
tive, in the sense that it would allow a user to upload an image of themselves
and receive recommendations that complement their personal style. As such,
it is an example of contextual or non-parametric personalization.

In addition to experiments on personalized fashion, Kang et al. (2019b)
show that the same technique can be used for complementary item recommen-
dation in other settings, such as recommending compatible furniture based on
items in a living room.

9.3.3 Generating Fashionable Wardrobes

The papers above consider pairwise compatibility among items as a proxy for
selecting sets of items that will form compatible outfits.
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Hsiao and Grauman (2018) consider the more challenging problem of find-
ing collections of items that can be used to generate compatible outfits (called
‘capsule wardrobes’). Their specific notion of a ‘wardrobe’ is a set of items
belonging to fixed sets of categories (or ‘layers’), e.g. tops, bottoms, outer-
wear. The suggested quality of a good wardrobe is that it should be capable
of generating many outfits, i.e., a large number of sets of items should be mu-
tually compatible. At the same time, a wardrobe should have a wide variety
of items (e.g. many nearly-identical pairs of jeans and t-shirts would generate
many outfits but would not be a good wardrobe).

First Hsiao and Grauman (2018) define a measure to determine the com-
patibility of items in a single outfit. Their specific approach is based on topic
modeling which we studied a little in Section 8.3.1. Essentially, an outfit is
represented by a low-dimensional vector; each dimension of this vector in turn
corresponds to a mixture over certain visual attributes (e.g. an outfit dimension
might correspond to ‘floral patterns,’ and this dimension might be associated
with visual attributes describing appearance, shape, cut, etc.).2 A set of items
is said to constitute a good outfit if their collective attributes resemble those of
training outfits.

Hsiao and Grauman (2018) explore the relationship between these interact-
ing components (outfits, wardrobes, versatility, as well as personalization of
these components), and develop optimization schemes to circumvent the com-
binatorial nature of the problem.

Perhaps the most important contributions in Hsiao and Grauman (2018) are
simply the creative use of training data, and the formalization of what it means
for a set of items to be ‘good’ in terms of compatibility. Hsiao and Grauman
(2018) make the argument that this type of model and training procedure is
preferable to other techniques that rely on (e.g.) pairwise compatibility rela-
tionships; a topic model-based approach results in a holistic notion about the
overall qualities of an outfit, and allows for training on complete outfit im-
ages rather than collecting training data from co-purchases (as in sec. 9.3.1),
which may be subject to noise or otherwise not representative of real fashion
compatibility.

9.3.4 Domains other than Fashion

The visual dynamics of fashion items are often the focus of studies on person-
alized visual models, though fashion is not the only domain in which visual
features play a key role.
2 ‘Outfits’ and ‘attributes’ are roughly analogous to ‘documents’ and ‘words’ in the original

topic model formulation (Blei et al., 2003).
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A few others have sought to study personalized visual dynamics in related
domains. Bell and Bala (2015) learned models of visual compatibility of home
decor items collected from Houzz; the model is similar to the fashion com-
patibility models we studied in Section 9.3.1, with the main goal being to
learn a similarity function between images via a Siamese network. At train-
ing time, the problem is essentially cast as a form of visual search: that is,
given a scene containing an item, identify the item. This is achieved by train-
ing on a dataset of image pairs, where one image consists of an item in a scene
while the other consists of a clean (or ‘iconic’) product image. As such, the
learned distance metric simply attempts to map both in-situ images and clean
images to the same point. Although the main application for this task is visual
search (i.e., find the item in this image, or find images containing this item),
other potential applications are discussed that make use of the learned metric,
such as identifying stylistically compatible items across categories.

Kang et al. (2019b) also adapted their model (which we studied in Sec-
tion 9.3.2) to the problem of furniture / home decor recommendation. The tech-
nique is essentially the same as that described in Section 9.3.2, but is trained on
a dataset of interior design and home decor items from Pinterest. Here, rather
than estimating a clothing item which completes an outfit (by withholding that
item from the scene during training), the method is used to identify home decor
items which are visually compatible (or complementary to) others in the scene.

He et al. (2016b) considered visual dynamics in the context of art recom-
mendation. Their setting is an online art community (Behance), where person-
alized preferences can potentially be guided by a variety of visual, temporal,
and social factors. Spiritually, the modeling approach is similar to that used to
model the temporal dynamics of fashion (as in sec. 9.2.1), i.e., by combining
pre-trained image embeddings with a variety of application-specific temporal
dynamics. The main component of their temporal model is a Markov chain-
based approach (as in sec. 7.5), whereby interactions are largely guided by
recent context. He et al. (2016b) also observe that art recommendation has a
significant social component, whereby preferences can be estimated based on
the identity of the artist as much as from the art itself (as in e.g. sec. 6.3.2).

9.3.5 Other Techniques for Substitutable and Complementary
Product Recommendation

While much of the work on substitutable and complementary item recommen-
dation is motivated by applications in fashion (where such recommendations
can naturally be used to generate outfits, etc.), a few others have considered the
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problem more broadly, either to consider different modalities of data (besides
visual features), or to consider complementarity in settings other than fashion.

Learning non-metric item relationships
Wang et al. (2018) also studied the problem of recommending substitutable and
complementary products, proposing several modifications to the approaches
we studied above.

First, as we saw in Section 9.3, a good model for complementary product
recommendation ought to recognize that ‘complementarity’ should ideally not
be captured by a similarity function. That is, complementary items have sys-
tematically different characteristics, and in particular an item is not comple-
mentary with itself.

Following this logic, we might train a complementarity model consisting of
two sets of factors γi and γ′j (much like that of Equation (9.11)) for comple-
mentary pairs i and j:3

∑
(i, j)∈C

logσ(γi · γ
′
j)︸                 ︷︷                 ︸

complementary pairs

+

non-complementary pairs︷                  ︸︸                  ︷∑
(i, j)∈C−

logσ(γi · γ
′
j) . (9.13)

Several other extensions are proposed, mostly to handle data sparsity issues
and cold-start scenarios. Wang et al. (2018) leveraged knowledge about the
specific semantics of substitutable items; for example, if complementary pairs
tend to belong to specific sub-categories (e.g. shirts are often compatible with
jeans), this acts as a weak signal that other products within these categories are
also complementary. Likewise, substitutable relationships might be transitive
(for example), i.e., if i is substitutable for j, and j is substitutable for k, then i
is likely substitutable for k; various ‘soft’ constraints of these types ultimately
help to improve performance.

Diversifying complementary item recommendation
Although complementary recommendations are intended to be distinct from
the query item, this does not necessarily mean that recommended complements
will be distinct from each other. For example, it would presumably not be
useful to recommend only t-shirts as a complement for a pair of jeans; instead,
one might wish to recommend a combination of shirts, belts, shoes, etc.

Although we’ll revisit the notion of diversity in depth in Chapter 10, here we

3 Note that in practice, complementary pairs i→ j are directed, e.g. a large fraction of camera
purchases are paired with a memory card, whereas only a small fraction of memory card
purchases are paired with a camera.
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discuss some approaches that consider the problem within the specific context
of complementary item recommendation.

He et al. (2016a) considered that a good set of complementary items might
be represented as a mixture over different notions or ‘modes’ of compatibility
c. They start with a simple pairwise compatibility model between items i and
j of the form

dc(i, j) = ‖γi − γ
(c)
j ‖

2
2, (9.14)

where γi and γ(c)
j are based on image embeddings. This is similar to the model

of Equation (9.8), though includes separate embeddings γ and γ(c) for the
‘query’ item i and complementary item j; using separate embeddings breaks
the symmetry between i and j, which is desirable for complementary items
(e.g. an item should not be complementary with itself).4

Next, He et al. (2016a) note that Equation (9.14) captures only a single no-
tion of compatibility; if a model is trained using such a function, this will
presumably correspond to the predominant mode of compatibility in the data,
but will not be diverse. To address this, He et al. (2016a) proposed treating the
compatibility relationships in the data as a probabilistic mixture over several
competing notions. This idea borrows from a mathematical framework known
as a mixture of experts (Jacobs et al., 1991). Specifically:

d(i, j) =

C∑
c=1

p(c|i)︸︷︷︸
relevance of compatibility function c to query i

·dc(i, j). (9.15)

Here, p(c|i) measures which types of compatibility relationships dc(i, j) are
most likely to be relevant for a query item i; while written as a probability, this
can more simply be thought of as a function that is used to combine compati-
bility relationships with different weights. Here

p(c|i) =
exp(θc fi)∑
c′ exp(θc′ fi)

, (9.16)

where fi is a feature vector describing the image i, and θc is a parameter vector
associated with the cth compatibility function.

Ultimately this model learns C separate embeddings γ(c)
i for each item (along

with the query embedding γi), each corresponding to a different notion of com-
patibility or ‘complementarity.’ In principle, this means the model can capture
several different modes of compatibility that interact simultaneously. At test
time, diverse lists of compatible items can be generated by sampling from dif-
ferent compatibility functions dc(i, j) according to their relevance p(c|i).

4 As such, Equation (9.14) is no longer a distance function.
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Incorporating item types
Hao et al. (2020) noted that both accuracy and diversity of complementary
product recommendation can be achieved my making explicit use of avail-
able category data. Instead of directly predicting which items j are compatible
with a query item i, the approach first attempts to estimate which of several
categories are relevant to a given query; following this, the method generates
complements via several category-specific compatibility functions, similar to
dc(i, j) form Equation (9.14).

9.3.6 Implementing a Compatibility Model in Tensorflow

Most of the compatibility models we saw in the previous section are relatively
straightforward to implement on top of pre-trained image features.

Below we assume a feature matrix X such that xi is an image feature de-
scribing item i (e.g. a feature from ImageNet as in He and McAuley (2015)),
and that each pair (i, j) is associated with a label y determining whether the
pair is compatible (y = 1) or not (y = 0). The model then projects the images
into ‘style space’ via si = Eixi and s j = E jx j (similar to Equation (9.5)); here
we use two separate embeddings so that the model can learn asymmetric re-
lationships. Finally compatibility is evaluated via σ(c − d(si − s j)) (similar to
Equation (9.9)):

1 class CompatibilityModel(tf.keras.Model):
2 def __init__(self, featDim, styleDim):
3 super(CompatibilityModel , self).__init__()
4 # Embeddings for the query item (Ei) and target item

(Ej)
5 self.E1 = tf.Variable(tf.random.normal([featDim,

styleDim],stddev=0.001))
6 self.E2 = tf.Variable(tf.random.normal([featDim,

styleDim],stddev=0.001))
7 # Offset term as in Equation 9.9
8 self.c = tf.Variable(0.0)
9

10 def predict(self, x1, x2):
11 # Style-space embeddings γi and γ j
12 s1 = tf.matmul(x1, self.E1)
13 s2 = tf.matmul(x2, self.E2)
14 return tf.math.sigmoid(self.c - tf.reduce_sum(tf.

math.squared_difference(s1,s2)))
15
16 # Given image features x1 and x2, and label y (0/1)
17 def call(self, x1, x2, y):
18 # Shorthand for Equation 9.9
19 return -tf.math.log(self.predict(x1,x2)*(2*y - 1) -

y + 1)
20
21 model = CompatibilityModel(4096, 5)
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Similarly, we could modify the code to use the compatibility based on the
inner product:

22 def predict(self, x1, x2):
23 s1 = tf.matmul(x1, self.E1)
24 s2 = tf.matmul(x2, self.E2)
25 return tf.math.sigmoid(self.c - tf.matmul(s1,tf.

transpose(s2)))

Finally, we train the model by sampling compatible and incompatible pairs
from our training set and computing gradients:5

26 def trainingStep(compat):
27 with tf.GradientTape() as tape:
28 (i1,i2,y) = random.choice(compatiblePairs)
29 x1,x2 = X[i1],X[i2]
30 objective = model(x1,x2,y)
31 gradients = tape.gradient(objective , model.

trainable_variables)
32 optimizer.apply_gradients(zip(gradients , model.

trainable_variables))

9.4 Personalized Generative Models of Images

In Chapter 8, we examined personalized models of text from two directions:
first, we used text within predictive tasks, e.g. we saw how text can be used
for regression problems (sec. 8.1), and to improve the performance of rec-
ommender systems (sec. 8.3). Second, we saw how to personalize generative
models of text (sec. 8.4), i.e., to generate text that matches a user’s writing
style or preferences.

Likewise, our discussion of visual data has so far considered using images
to improve predictive performance; it is worth spending a little time exploring
how to personalize generative models of images.

Briefly, the basic framework we will consider extending is that of the Gen-
erative Adversarial Network, or GAN.

Generative Adversarial Networks are an unsupervised learning framework
in which two components ‘compete’ to generate realistic looking outputs (in
particular, images) (Goodfellow et al., 2014). One component (a generator) is
trained to generate data, while another (a discriminator) is trained to distin-
guish real versus generated data. Thus the generated data are trained to look
‘realistic’ in the sense that they are indistinguishable from those in the dataset.

5 Although this example is simple enough to allow reasonably fast training, there are several
ways that this code could be made more efficient, e.g. the embeddings of all images in X could
be computed simultaneously.
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Figure 9.2 Basic setup of a Generative Adversarial Network (GAN), and a per-
sonalized GAN. The components above the dotted line depict the ‘standard’ GAN
setup, in which a generator competes with a discriminator to generate images that
are indistinguishable from real data. Components below the dotted line are used
to develop a personalized GAN that encourages the generated image to be com-
patible with a particular user.

Such systems can also be conditioned on additional inputs, in order to sample
outputs with certain characteristics (Mirza and Osindero, 2014).

The basic setup of a Generative Adversarial Network is depicted in Fig-
ure 9.2. Here xreal is an image sampled from a dataset, whereas xgen is a syn-
thetically generated image. The discriminator D(x) is then given an image x,
and is responsible for predicting whether it is a sample from the dataset or is
a synthetic image. For image generation, the discriminator is typically a form
of convolutional neural network (CNN), whereas the generator is a series of
deconvolution operators, essentially operating via a similar principle as the
CNN, but in reverse. The generator takes as input a latent code z, a random
input which allows the generator to produce distinct images (z is essentially a
manifold which describes patterns of variation in image data so as to capture
the variability in the training dataset). The discriminator D and generator G
are trained simultaneously, such that the generator gradually becomes better at
generating images that are capable of ‘fooling’ a better and better discrimina-
tor.

The above type of architecture has been used to generate various types of
realistic images, including artwork, clothing, and human faces. Kang et al.
(2017) sought to develop personalized GANs, that would generate images that
capture the preferences of individual users.
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The approach from Kang et al. (2017) essentially combines the GAN frame-
work with a personalized image preference model, similar to that of Visual
Bayesian Personalized Ranking (sec. 9.2.1). The basic idea is depicted in Fig-
ure 9.2 (bottom). Once a GAN is trained (as above), the image G(z) generated
by a given latent code is passed to both the discriminator (D) as well as a
personalized preference model. For the preference model, the image is repre-
sented via Φ(G(z)); this is analogous to γi, or E fi as in Equation (9.5), though
unlike VBPR (sec. 9.2.1) the synthetic image is not associated with any par-
ticular item i. A user’s preference toward this synthetic item is then estimated
via γu · Φ(G(z)). Ultimately, the objective is that a generated image should be
simultaneously plausible (according to D(G(z))), but also desirable to the user
(according to γu · Φ(G(z))):

arg max
z

γu · Φ(G(z))︸        ︷︷        ︸
user preference toward generated image

−

‘plausibility’ of generated image︷              ︸︸              ︷
η(D(G(z)) − 1)2 . (9.17)

Kang et al. (2017) argue that a model such as that above can be used in
several ways. Most straightforwardly, it can be used to generate designs (or
images) that match the preferences of individual users; Equation (9.17) can be
straightforwardly modified to find optimal designs for a population of users
(e.g. by taking an average over users

∑
u γu · Φ(G(z))). Alternately, given an

existing image (rather than a generated image G(z)), Equation (9.17) (or rather,
its gradient) can be used to suggest local modifications to the image that will
make it preferable to a user or population.

Exercises

9.1 Starting from the code from Section 9.3.6, and using a small dataset of
compatible (and non-compatible) pairs (e.g. from Amazon clothing prod-
ucts, as in McAuley et al. (2015)), set up a pipeline for estimating com-
patibility relationships (e.g. ‘also bought’ or ‘also viewed’ products).
Tune the model (e.g. in terms of the number of embedding dimensions,
regularization, etc.) and measure its accuracy (in terms of its ability to
successfully distinguish compatible from non-compatible items).

9.2 The model from Exercise 9.1 is based on a distance (or similarity) func-
tion of the form ‖si − s′j‖

2
2. Note that there is nothing particularly special

about this specific choice of similarity function (much as we discussed
in Section 5.5.1). Consider whether variants of this model might lead to
better performance, for example:
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• Is squared distance preferable to an inner product, or other choices of
distance function?

• The model from Section 9.3.6 embeds image features fi into a latent
space via si = E fi. Is this superior to a purely latent embedding (γi)?
How do they compare for cold versus warm items?

• Different categories could have different compatibility semantics. Is it
useful to learn different embeddings Ec per category?

9.3 A challenging aspect of learning a compatibility model between images
is that of generating negative samples (i.e., pairs of items believed to
be incompatible). If we naively generate samples by randomly choosing
incompatible items, we may learn a trivial solution which merely pre-
dicts that (e.g.) men’s shoes don’t tend to be compatible with women’s
dresses. In other words, the model may have learned to do little more
than to indirectly categorize items. Such a model may be accurate, but
would hardly have learned the semantics of what combinations are fash-
ionable. Alternately, try training a compatibility model that for each pos-
itive (compatible) pair (i, j) selects a more challenging negative pair (i, k)
where k has the same category as j; this will force the model to rely on
aspects like color, texture, patterns (etc.) rather than simply learning to
categorize items. Evaluate your solution by training both models (ran-
domly sampled, and within-category), and comparing their performance
on a within-category test set.

9.4 When studying notions like fashion compatibility (or indeed, any la-
tent item representation in a recommender system), it is worth exploring
whether the learned representations semantically correspond to our intu-
itive notion of similarity. To assess this, it helps to visualize latent item
representations γi in two dimensions (for the sake of plotting them). In
Figure 8.5 we did this simply by learning two-dimensional item repre-
sentations, though by doing so we are likely visualizing a sub-optimal
model. Various techniques exist that learn distance-preserving embed-
dings for the sake of visualizing data.6 Below we show code for embed-
ding a matrix of representations via t-SNE (McInnes et al., 2018):

1 import numpy as np
2 from sklearn.manifold import TSNE
3
4 X_embedded = TSNE(n_components=2).fit_transform(X) # X

is a matrix of all item representations γi

6 That is, so that we can embed K-dimensional data into two dimensions such that ‘similar’
items in the original space are still nearby once they are embedded.
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Figure 9.3: Ten-dimensional item
representations (γi) embedded into
two dimensions via t-SNE; this is
a ten-dimensional version of the
model from Figure 8.5.

Using this (or an alternative embedding) strategy, visualize the em-
beddings you fit in the above exercises. To understand the semantics of
the embeddings, it can be useful to visualize them by category (as in
fig. 9.3) or some other feature (price, brand, etc.).

Project 8: Generating Compatible Outfits

In this project we’ll explore various ways to build outfit recommenders, fol-
lowing similar strategies to those we developed in Section 9.3.

First, consider how you would generate a training dataset of compatible
items. It is probably most realistic to start by considering pairwise compati-
bility, i.e., to generate a training dataset of pairs of items (i, j) that are mutu-
ally compatible (as in sec. 9.3 or sec. 9.3.6). Even then, several options are
available for mining pairwise compatibility data. For example:

• Co-purchase relationships (e.g. ‘people who bought i also bought j’), as in
McAuley et al. (2015).

• Directly mining co-purchased items from user interaction histories (e.g. if a
user u purchased both items i and j, this is an indication that they might be
compatible). This strategy was also explored in McAuley et al. (2015).

• Both of the above approaches are highly noisy, as items are not necessarily
co-purchased with the intention of being worn together. A third approach
consists of mining explicit relationships from actual outfit data. e.g. as in
Section 9.3.2.
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Consider the advantages and disadvantages of each of the above approaches.
For example, which will allow you to collect the most data, and which will be
the least noisy? Further consider how you should select samples, e.g. you prob-
ably want to avoid pairs (i, j) where both items belong to the same category, or
might further restrict your dataset to certain categories of interest.

Similarly, you should choose an appropriate strategy to generate negative
samples for training, i.e., pairs (i, j) that do not go together. Trivially, such
samples could be generated from pairs of random items, though more ‘diffi-
cult’ negatives could be generated by selecting pairs from specific categories.

Having built your dataset, there are several potentially interesting directions
for study. For example:

(i) What is an appropriate model to use to estimate compatibility relationships?
A good starting point may a model such as that from Equation (9.13), since
compatibility relationships are likely to be asymmetrical in this context.

(ii) Consider whether it is worthwhile to incorporate visual features to estimate
compatibility via an embedding strategy (e.g. following the code from Sec-
tion 9.3.6) or whether it is sufficient to model compatibility in a latent space
(e.g. as in eq. (9.11)).

(iii) Consider whether it is useful to incorporate other features, such as brands,
prices, features from text, etc.

(iv) Is there value to training a personalized model for this task, i.e., rather
than predicting whether a pair of items (i, j) are compatible, can you pre-
dict whether i and j are compatible for a particular user u. Think carefully
whether the identity of the user explains a significant amount of variation
in compatibility relations, and whether enough data can be mined to fit a
personalized model (similar to the approach in Equation (9.10)).

Finally, consider ways to visualize the model (or its predictions), either by
representing items in a low-dimensional space (as in Exercise 9.4), or by build-
ing a simple interface to explore compatible items.

Note that other than the use of visual features, the above steps could be used
to build item-to-item compatibility models for any types of data (e.g. dishes in
a menu, songs in a playlist), and are not limited to outfit generation.
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Learning

So far, we have largely viewed personalized machine learning as a ‘black-box’
task. That is, given a user, their context, and some potential stimulus, can we
estimate how the user will react to that stimulus?

This black-box view of machine learning, while effective for building accu-
rate models, ignores the potential real-world consequences of how such models
are applied.

Broadly, the dangers of blindly applying machine learning models are well-
studied: ML algorithms can perpetuate, mask, or amplify biases in training
data, or have low accuracy for underrepresented groups. Detecting and miti-
gating these types of biases largely describes the study of ‘fairness’ in machine
learning (see e.g. Dwork et al. (2012)).

Within the context of personalized machine learning, black-box models, if
applied carelessly, can also hide or amplify biases or other issues. Below we
highlight a few examples, to be studied throughout this chapter:

• A recommender system, although ostensibly designed to aid discovery, may
actually have a ‘concentration’ effect, where users are gradually locked into
a ‘filter bubble’ containing only a narrow set of items (sec. 10.2).

• Alternately, by recommending content that maximally aligns with a user’s
interests, a system may gradually push them toward more and more ‘ex-
treme’ content (sec. 10.2).

• Recommender systems may have reduced utility for users (or groups of
users) who are underrepresented in the training data; for instance ‘popu-
lar’ items that are widely recommended may merely reflect what is popular
among the majority group (sec. 10.7).

• Recommendations may focus only a user’s predominant interest, while fail-
ing to capture the diversity and breadth of their interactions (sec. 10.6.3).

274
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Figure 10.1 Recommendations selected for a user by maximizing an inner prod-
uct (left) or taking nearest neighbors (right).

• Likewise, systems could disadvantage vendors (or content creators, etc.) by
failing to recommend products in the long-tail (sec. 10.7.1).

To conceptually demonstrate some of the above issues, Figure 10.1 high-
lights the ways in which a recommender system, if applied naively, may lead
to a ‘concentration’ or ‘extremification’ effect. At left we show personalized
recommendations generated by maximizing an inner product (γu ·γi), as in Sec-
tion 5.1; at right we show item-to-item recommendations generated by finding
similar items (i.e., nearest neighbors of γi). When maximizing an inner product
(fig. 10.1, left), the recommended items are on the ‘fringe’ of the item space;
roughly speaking, if I know that a user likes action movies (for example), then
I might recommend movies with the most action. While this might make sense
in the context of movie recommendation, when recommending (e.g.) political
videos on YouTube, such a strategy may drive users toward fringe or ‘extreme’
content. Alternately, when choosing nearest neighbors (fig. 10.1, right), users’
recommendations are concentrated around very similar content, which may
lead to a ‘filter-bubble’ effect.

While the above is merely a conceptual demonstration, in the following sec-
tions we’ll examine empirical studies (e.g. from YouTube and Facebook) that
analyze filter bubbles and extremification in the context of deployed recom-
mendation settings. We’ll also look further into issues of diversity, bias and
fairness, exploring a wide variety of potential consequences of personalized
model training.

These ideas connect to the broader topic of fairness and bias in machine
learning, though as we’ll see the issues in personalized settings can be quite
different. Much of our focus when introducing these issues is to present strate-
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gies to address them, in order to build personalized models that are more di-
verse, unbiased, and fair.

10.1 Measuring Diversity

Before exploring case studies measuring the effect of recommendations on di-
versity (and filter bubbles, extremification, etc.), it is useful to briefly consider
how we might assess such effects on top of of recommenders like those we’ve
developed in previous chapters. We’ll look at two main concepts: first, across
all users, do recommended items follow the same distribution as the set of
items that were consumed? Second, among individual users, are the recom-
mended items more or less diverse than their historical consumption trends?

We first train a recommender (here using comic books from Goodreads),
following the code presented in Section 5.8.2 (i.e., using a model based on
Bayesian Personalized Ranking).

Next we generate a set of example recommendations from the model and
compare those with the original interaction data. For each user, we generate as
many recommendations as they have interactions in the original data, so that
each user is represented the same number of times in both our interaction data
and our empirical recommendation data:

1 countsPerItem = defaultdict(int)
2
3 for u in range(nUsers):
4 # Given a matrix of interactions X, as in Section 5.2
5 recs = model.recommend(u, Xui, N = len(itemsPerUser[u]))
6 for i, score in recs:
7 countsPerItem[i] += 1

Next we compare the measurements above to the same measurements de-
rived from the interaction data. In particular, do popular items (based on the
number of historical interactions) frequently appear among recommendations;
and conversely, are frequently recommended items popular? We plot these
comparisons in Figure 10.2.

The two seem to match reasonably closely, i.e., popular items tend to get
recommended frequently, and items that are frequently recommended tend to
be popular; though there are some differences, e.g. the interaction distribution
appears to be less ‘peaked.’ There are various ways we could formally measure
the discrepancy between these two distributions, or compute summary statis-
tics that help us to compare them. In the context of item recommendations,
we might be interested in whether one of the two distributions is more con-
centrated than the other, i.e., whether recommendation frequencies are highly
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Figure 10.2 Distribution of interactions compared to recommendations (based on
an implicit-feedback model trained on comic books from Goodreads). The left
plot measures the recommendation frequency of the 200 most popular items (as
measured by the number of interactions in the training set); the right plot measures
the interaction frequency of the 200 most recommended items.

peaked around a few popular items (versus a flatter, or longer-tailed distribu-
tion). One measure (that we’ll see used in some of the studies below) is the Gini
coefficient, a measure of statistical dispersion. Given a set of measurements y
(in this case, frequencies associated with each item), the Gini coefficient mea-
sures the average (absolute) difference between frequencies, i.e.,:

G(y) =

∑N
i=1

∑N
j=1 |yi − y j|

2N2ȳ
. (10.1)

Highly concentrated data will have a large coefficient, while flatter distribu-
tions will have G(y) close to zero (the presence of 2ȳ in the denominator scales
the expression to be in the range [0, 1]).

In practice the coefficient can be computed approximately, i.e., by sampling
rather than enumerating all possible pairs of items:

8 def gini(y, samples=1000000):
9 m = sum(y) / len(y) # average

10 denom = 2 * samples * m
11 numer = 0
12 for _ in range(samples):
13 i = random.choice(y)
14 j = random.choice(y)
15 numer += math.fabs(i - j)
16 return numer / denom

In the case of this particular experiment, the interaction data yields a Gini
coefficient of G ' 0.72 while the recommendations yield G ' 0.77. In other
words, this particular recommendation algorithm has resulted in recommenda-
tions that are somewhat more ‘concentrated’ compared to historical interaction
data.
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10.2 Filter Bubbles, Diversity, and Extremification

The idea that recommender systems trap users in ‘filter bubbles’ (Pariser,
2011) amplify existing biases toward popular items, or guide users toward
extreme content, are often reported in popular media and discussed anecdo-
tally, though such concepts are often not precisely defined. It is also difficult
to measure these types of dynamics empirically, as one rarely has the ability to
analyze the counterfactual scenario in which the recommender wasn’t in place.

Below we explore several attempts to measure diversity (and related notions
such as filter bubbles and extremification) more precisely, either through sim-
ulation, or by empirically measuring the interaction patterns of real users.

10.2.1 Exploring Diversity Through Simulation

An early paper that attempted to define and analyze the impact that recom-
mender systems have on interaction diversity did so via simulation (Fleder and
Hosanagar, 2009). They noted the existence of two competing hypotheses as
to why recommender systems might encourage or discourage diversity: on the
one hand, recommender systems can guide content discovery, which can in-
crease the diversity of item interactions (Brynjolfsson et al., 2006); on the other
hand, recommender systems might reinforce the popularity of already-popular
products, thus reducing diversity (Mooney and Roy, 2000). Their attempt to
resolve this question built a simple simulation which generates recommenda-
tions, in which the probability of an item being recommended, or the prob-
ability of a user accepting it, can be controlled. By varying the controllable
parameters, they show that under almost all conditions (i.e., except in edge
cases), the recommender system leads to a concentration effect (i.e., results in
a reduction in interaction diversity), as measured by the Gini coefficient.

Of course, the above is not necessarily true of every recommender system;
indeed as we’ll see in Section 10.3, one can design a recommender system so
as to explicitly target the diversity of recommended items. Rather, the above
result is simply a demonstration that under fairly minimal conditions, recom-
mender systems can lead to a concentration effect.

10.2.2 Empirically Measuring Recommendation Diversity

Following Fleder and Hosanagar (2009), which studied the possibility of filter
bubbles via simulation, Nguyen et al. (2014) present an initial attempt to em-
pirically measure the effect of recommender systems on content diversity in a
real setting.



10.2 Filter Bubbles, Diversity, and Extremification 279

The research questions in Nguyen et al. (2014) are similar to the ones stud-
ied via the simulations above, namely: do recommender systems gradually ex-
pose users to narrower content over time; and, how does this effect vary as a
function of how receptive users are to recommendations.

Diversity in Nguyen et al. (2014) is defined in terms of a ‘tag genome,’
which is a collection of tags assigned to movies. Standard similarity measures
(e.g. cosine similarity) are then used to measure the similarity (or spread) be-
tween recommended and consumed movies.

Empirically, Nguyen et al. (2014) found reduced diversity over time, both
for recommendations and users’ actual interactions. Interestingly though, the
effect is mitigated for users who tend to interact with (i.e., rate) the system’s
recommendations. As such, while there appears to be an overall concentration
effect in users’ interaction patterns, it is not entirely clear what role the recom-
mender system plays. We’ll investigate this question a little further via a more
recent empirical study on Facebook in Section 10.5.2.

Zhou et al. (2010) conducted a similar empirical study of recommendations
on YouTube, and argued that YouTube’s recommendations (specifically the ‘re-
lated videos’ feature) have a positive impact on content diversity. They showed
that recommendations drive a large fraction of views on YouTube, and that
views driven by recommendations have higher diversity than views from a
popularity-driven system.1

10.2.3 Auditing Pathways to Extreme Content

Ribeiro et al. (2020) attempted to empirically analyze the pathways via which
users arrive at extreme content on YouTube. The authors used curated lists of
channels (for their study, of ‘alt-right’ political channels) in order to establish
a ground-truth of what is meant by ‘extreme’ content; they also collected less
extreme content (‘alt-lite,’ general media, etc.), in order to determine whether
there are systematic pathways from less- to more-extreme content (by tracking
users’ commenting histories) over time.

Their main finding is that there appears to be a trajectory where users mi-
grate from less (e.g. ‘alt-lite’) to more extreme content, and that users who
interact with extreme content can often be traced to an earlier point in time
where they primarily interacted with more moderate channels. They also con-
sider the role that recommendations play in this radicalization process, noting
that there tend to be pathways from more moderate communities to more ex-

1 Note however that it is hard to argue that recommendation-driven views are therefore
‘diverse,’ given that popularity-driven views would presumably lead to high concentration,
and as such are arguably not a particularly diverse baseline.
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treme content (though this pathway tends to be through channel rather than
video recommendations). Although they cannot assess the role of personaliza-
tion in this process (as they do not have access to the actual recommendations
surfaced to users), this suggests that even simpler item-to-item recommenders
can still guide users to extreme content.

10.3 Diversification Techniques

Having argued in theory how recommenders might guide users to niche, highly
similar, or extreme content (fig. 10.1), and having assessed the same problems
empirically through the case studies above, we now turn to strategies that can
be used to mitigate these consequences. Here we study techniques that attempt
to balance relevance with diversity. Diversification strategies generally seek
to optimize the aggregate quality of a set of results by ensuring that none are
excessively self-similar. Diversity is just the one of several ‘beyond accuracy’
metrics we’ll consider (we’ll explore several others in Section 10.6). Such met-
rics are in some sense largely qualitative: to the extent that we optimize and
evaluate models based on relevance (ratings, likelihood of purchasing, etc.),
here we are generally seeking to improve some subjective notion of aggregate
usefulness (in this case, that a set of results should not be too self-similar). One
theme we’ll see when designing diversification techniques is that we can sig-
nificantly increase diversity (and other metrics) with only a minimal reduction
in relevance. We’ll see more detailed strategies for evaluating these types of
methods via case studies in Section 10.5.

The methods discussed in this section (and another we’ll discuss later) are
summarized in Table 10.1.

10.3.1 Maximal Marginal Relevance

A simple notion of diversity that is commonly used in document retrieval sce-
narios is that among a (ranked) list of retrieved documents, each retrieved item
should simultaneously be relevant, but at the same time not too similar to the
already-returned items.

This notion is captured by the Maximal Marginal Relevance (Carbonell and
Goldstein, 1998) procedure (MMR). The approach was originally designed for
retrieving sets of text passages that best summarize a document (with respect to
some query): each document should be similar to the query, but also dissimilar
from the documents already retrieved.
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Table 10.1 Summary of diversification techniques. References: Carbonell and
Goldstein (1998); Adomavicius and Kwon (2011); Wilhelm et al. (2018);

Zhang et al. (2012); Steck (2018).

Ref. Technique Description

CG98 Maximal Marginal
Relevance

Recommended items should balance utility against
diversity compared to already-recommended items
(sec. 10.3.1).

AK11 Aggregate
Diversity

Recommended items should be those that have high
compatibility for a particular user, but low aggre-
gate compatibility (e.g. popularity); this will lead to
aggregate diversity of recommendations across the
entire population (sec. 10.3.2).

W18 Determinantal
Point Processes

Balances utility and diversity (as with MMR
above), but using a set-based objective (sec. 10.3.3).

Z12 Serendipity Recommendations should be relevant, but unex-
pected compared to those in the user’s history
(sec. 10.6.1).

S18 Calibration Recommendations should exhibit the same dis-
tribution of attributes (e.g. in terms of recom-
mended categories) as users’ historical interactions
(sec. 10.6.3).

The same concept can straightforwardly be applied in recommendation sce-
narios, given that we have notions of both relevance and similarity available,
for example relevance might be the output of a latent factor model, while sim-
ilarity could be defined in terms of cosine similarity, or as an inner product
between item representations γi and γ j.

To apply the concept to recommendation, we would define the Maximal
Marginal Relevance as follows:

MMR = arg max
i∈R\S

[
λ Simuser(i, u)︸        ︷︷        ︸
relevance to the user

−(1 − λ)

similarity to already-recommended items︷              ︸︸              ︷
max

j∈S
Simitem(i, j)

]
, (10.2)

where R is an initial candidate set of recommendations (most trivially e.g. a
list of items the user hasn’t already interacted with), and S is a set of items re-
trieved so far. Simuser and Simitem are item-to-user and item-to-item similarity
functions (respectively); the former is presumably the compatibility function
returned by a recommender system; the latter is any item-to-item similarity
measure.

Note that the above is computed iteratively, that is we add one result at a
time by maximizing the MMR until the list S has the desired size. Finally, λ
trades off the extent to which we care about compatibility versus diversity.
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10.3.2 Other Re-ranking Approaches to Diverse Recommendation

Similar to Maximal Marginal Relevance, several approaches have been specif-
ically designed for re-ranking in recommendation scenarios. Re-ranking ap-
proaches, including MMR, assume that we are given an initial ranking func-
tion which we trust to find items of high relevance, but which lack diversity;
thus we wish to re-rank these initial results to balance the two concerns.

One such re-ranking approach for recommendation was proposed in Ado-
mavicius and Kwon (2011). The approach assumes the presence of three com-
ponents: first, a compatibility score, e.g. a rating prediction r(u, i). Second, a
relevance-oriented ranking technique, ranku(i); this could be any ranking func-
tion (though most trivially one might simply order predictions by r(u, i)). And
third, another ‘diversity oriented’ ranking function; conceptually, this should
focus on recommending items to users that they would not normally consider.

An example of a diversity-oriented loss from Adomavicius and Kwon (2011)
is to sort items by popularity, with the least popular items being ranked first:

rank(pop)(i) = |Ui|. (10.3)

Recommending unpopular items does not at first appear to be a particularly
effective recommendation strategy; however this ranking is used in conjunc-
tion with the prediction score r(u, i). Specifically, to encourage diversity we
want to find unpopular items that this user is likely to enjoy. Spiritually, this
is somewhat reminiscent of our tf-idf approach to finding important words in
documents (sec. 8.1.3).

The specific (re-)ranking objective from Adomavicius and Kwon (2011)
then looks like

rank′u(i, t) =

{
rank(pop)(i) if r(u, i) ≥ t
αu + ranku(i) otherwise

. (10.4)

Here t is a threshold term, essentially determining whether one of the low-
popularity recommendations has a high enough score to recommend; αu is an
offset term ensuring that the popularity-based recommendations appear first in
the ranking before those of ranku(i).

Adomavicius and Kwon (2011) show that as the threshold t is changed,
the system gradually trades-off between recommendation precision and diver-
sity. Several different ranking functions are considered, for example to replace
popularity-based ranking by alternatives based on the average rating, rating
variance, etc.

They also note that the type of diversity achieved by this ranking mechanism
is quite different from that in Section 10.3.1, as it does nothing to encourage
diversity (or dissimilarity) among an individual user’s item list. Instead, they
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discuss the related notion of aggregate diversity, which defines diversity across
the item vocabulary itself, i.e., recommendations across all users should have
reasonable coverage of the complete item vocabulary. This is related to the
notion of P-fairness that we’ll discuss in Section 10.7.1.

10.3.3 Determinantal Point Processes

So far we’ve we discussed various approaches that attempt to balance accuracy
and diversity via what are essentially ‘heuristic’ strategies that greedily select
items that maximize utility while being sufficiently novel compared to the rest.

Determinantal Point Processes (or DPPs) (Kulesza and Taskar, 2012) are a
set-based optimization technique that can be used to identify subsets of items
that simultaneously maximize item quality and diversity among items. Specif-
ically, given a set of items I, a DPP assigns a probability p(S ) to every subset
S ⊆ I. The goal is then to model (i.e., parameterize) this probability, either
globally or for individual users, such that finding the subset of items which
maximizes p(S ) has an optimal tradeoff between utility and diversity.

Wilhelm et al. (2018) studied the application of DPPs to diversify recom-
mendations on YouTube.

The method assumes a few inputs. First, as with previous diversification
techniques, we assume a utility or ‘quality’ estimate f (u, i) is given (e.g. from
a pre-trained recommender system), which encodes the probability that user u
will interact with item i given i’s features; we also assume a predefined distance
function d(i, j) between two items.

Next, we have historical sets of items that have been surfaced to the user
(i.e., the outputs of an existing system), along with subsets of items that the
user selected (indicated by binary labels yu,i). The goal is to select subsets of
items that will maximize the total number of interactions, which in practice is
trained by maximizing the Cumulative Cain:∑

u

∑
i

yu,i

ranku(i)
, (10.5)

where ranku(i) is the new rank assigned by the proposed algorithm. That is,
items the user interacted with (yu,i = 1) should have high rank (see sec. 5.4.3).

Note that the above seems reminiscent of ‘traditional’ approaches to rec-
ommendation, i.e., we are ranking items such that positive interactions should
have high rank (which seems similar to what we saw in Section 5.4.3). The
main difference here is simply the observation that the total number of interac-
tions will be maximized when utility and diversity are balanced (e.g. a user will
quickly become bored if recommendations cover only one of their interests).
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Next, given a candidate set of N items, we define a matrix L(u) such that
diagonal entries L(u)

i,i encode the utility of an item i and off-diagonal entries L(u)
i, j

encode the similarity of two items i and j. The specific parameterization used
in Wilhelm et al. (2018) is:

L(u)
i,i = f (u, i)2 (10.6)

L(u)
i, j = α f (u, i) f (u, j) exp(−

d(i, j)
2σ2 ) for i , j. (10.7)

Now, the quality of a subset S is proportional to the determinant of the
submatrix of L induced by S , det(LS ). Specifically:

p(S ) =
det(LS )∑

S ′⊆I det(LS ′ )
. (10.8)

Critically, the denominator of the above equation can be computed efficiently
as ∑

S ′⊆I

det(LS ′ ) = det(L + I), (10.9)

where I is the identity matrix.
To understand (roughly) why the determinant is diversifying, it helps to con-

sider the trivial example where S consists of only two items i and j; then the
determinant is given by

det
([

Li,i Li, j

L j,i L j, j

])
= Li,iL j, j − Li, jL j,i; (10.10)

this value will be maximized when the utility is high (Li,iL j, j) and the similarity
is low (Li, jL j,i).

In spite of the relatively simple form of Equation (10.8), it is still not prac-
tical to solve the (NP-hard) problem of finding the optimal subset. In Wilhelm
et al. (2018) this is addressed by a simple greedy algorithm (similar to that
of Section 10.3.1, among others), in which one starts with the empty set of
videos S = ∅, and iteratively adds the item i which maximizes the determinant
det(LS∪{i}).

Note that the parameterization in Equation (10.7) includes two tunable pa-
rameters, α and σ. Intuitively these parameters control the relative weight of
utility versus diversity (α), and the ‘tightness’ of the similarity function (σ).
These parameters are selected globally, but in principle could be learned per-
user.

Ultimately, the experiments find that implementing the above DPP on a
user’s video feed increases user satisfaction (as measured by session duration),
compared to various other diversification strategies.
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10.4 Implementing a Diverse Recommender

Here we’ll briefly describe an implementation of a diversified recommender.
Our implementation is based on the maximal marginal relevance method of
Section 10.3.1, though could be straightforwardly adapted to implement other
re-ranking strategies from Section 10.3.2.

We start by building a few utility data structures. First we collect the list
of candidate recommendations, excluding any items the user has already con-
sumed. Next we compute compatibility scores between a user u and all items.
Here our compatibility scores (i.e., Simuser(i, u) in Equation (10.2)) are simply
the output of a latent factor recommender (here we use a batch-based predic-
tion function as in Section 5.8.5). We sort these in order from the highest-
to the lowest-rated items. In practice we might want to re-rank only the top
few hundred items rather than computing diversity scores for extremely low-
compatibility items.

1 candidates = list(itemSet.difference(itemsPerUser[u]))
2 compatScores = list(zip([float(f) for f in model.

predictSample([userIDs[u]]*len(candidates), [itemIDs[i]
for i in candidates])], candidates))

3
4 compatScores.sort(reverse=True)

Next we implement a function to determine the similarity between a can-
didate recommendation and others already in the list (i.e., max j∈S Simitem(i, j)
from Equation (10.2)). itemEmbeddings is a lookup table containing embed-
dings γi for each item. The similarity function (sim) is the cosine similarity
(not shown), though other similarity functions could be substituted (including
simple alternatives such as checking whether items belong to the same cate-
gory):

1 itemEmbeddings = dict(zip(candidates , tf.nn.embedding_lookup
(model.gammaI, [itemIDs[i] for i in candidates])))

2
3 def maxSim(itemEmbeddings , i, seq):
4 if len(seq) == 0: return 0
5 return max([sim(itemEmbeddings ,i,j) for j in seq])

To implement the iterative re-ranker we define a method that takes the list
of recommendations generated so far (seq), and generates the next item to be
added to the list, based on the weighted combination from Equation (10.2). λ
is passed as an argument to the function to trade-off the importance of compat-
ibility and diversity:
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1 def getNextRec(model, compatScores , itemEmbeddings , seq,
lamb):

2 scores = [(lamb * s - (1 - lamb) * maxSim(itemEmbeddings
,i,seq), i) for (s,i) in compatScores if not i in
seq]

3 (maxScore ,maxItem) = max(scores)
4 return maxItem

Note that the above implementation is inefficient and even on a modestly
sized dataset (in terms of the size of the item vocabulary) requires several
seconds to generate recommendations. Several strategies might be used to im-
prove its performance, including efficient retrieval techniques (as in sec. 5.6),
or by exploiting certain structure in our compatibility or diversity functions
that would obviate the need to exhaustively compute all scores.

Examples of diversified recommendations Table 10.2 shows examples of
diversified recommendations on beer review data. Different values of λ are
chosen to control the compatibility/diversity trade-off (for a randomly chosen
user). The first set of recommendations (λ = 1) optimizes only for compatibil-
ity: the user is recommended a selection of rich stouts and IPAs. Decreasing
λ by a little (middle column) introduces a few ‘lighter’ yet similar beers; de-
creasing λ further results in beers from a wide variety of categories (wheat
beers, lambics, scotch ales, etc.).

Note that the ideal value of λ depends on a variety of factors, including
our specific choices of compatibility and diversity functions.2 The solution
can also be sensitive to hyperparameters (e.g. the number of factors and how
strongly we regularize). In practice the optimal amount of diversity may simply
be guided by what ‘looks right.’

10.5 Case Studies on Recommendation and Consumption
Diversity

In Section 10.2.2, we saw an empirical study of diversity on YouTube, which
argued that recommender systems led to diverse views, though this analysis
was limited in that the point of comparison was a popularity-based alternative
(which is likely not diversity-inducing). Below we explore a few additional
case-studies that study diversity within the context of music (sec. 10.5.1) and
news (sec. 10.5.2) recommendation, attempting to characterize users in terms

2 Which may not even be on the same scale: in our case one is a rating (in the range [1, 5]) and
the other is a cosine similarity (in the range [−1, 1]).
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Table 10.2 Diversified recommendations (maximal marginal relevance).

rank Low diversity Medium diversity High diversity

1 Founders KBS
(Kentucky Breakfast
Stout)

Founders KBS
(Kentucky Breakfast
Stout)

Founders KBS
(Kentucky Breakfast
Stout)

2 Two Hearted Ale Samuel Smith’s Nut
Brown Ale

Samuel Smith’s Nut
Brown Ale

3 Bell’s Hopslam Ale Two Hearted Ale Salvator Doppel Bock
4 Pliny The Elder Bell’s Hopslam Ale Oil Of Aphrodite -

Rum Barrel Aged
5 Samuel Smith’s

Oatmeal Stout
Kolsch Great Lakes

Grassroots Ale
6 Blind Pig IPA Drax Beer Blue Dot Double

India Pale Ale
7 Stone Ruination IPA A Little Sumpin’

Extra! Ale
Calistoga Wheat

8 Schneider Aventinus Odell Cutthroat Porter Dogwood Decadent
Ale

9 The Abyss Miner’s Daughter
Oatmeal Stout

Traquair Jacobite

10 Northern Hemisphere
Harvest Wet Hop Ale

Rare Bourbon County
Stout

Cantillon Gueuze
100% Lambic

of their consumption patterns, and potentially how to guide users to more di-
verse content.

10.5.1 Diversity on Spotify

Anderson et al. (2020) sought to empirically study the effect that recommen-
dation algorithms have on diversity, and more critically to understand how
different types of users respond to diverse recommendations.

The paper considers the listening patterns of around 100 million users on
Spotify. Unlike (e.g.) Fleder and Hosanagar (2009), which defined ‘diversity’
in terms of the Gini coefficient (i.e., the statistical dispersion of which items
get consumed), Anderson et al. (2020) define diversity in terms of song repre-
sentations, i.e., essentially the γi values in a recommender system.3

The specific embeddings γi on Spotify are estimated using an item2vec-like
method (as we saw in Section 8.2.1). The musical diversity of a user u’s listen-
ing activity is defined in terms of a score which they term generalist-specialist
(or GS), following previous work (Waller and Anderson, 2019). Specifically,

3 Of course, this version of ‘diversity’ has its own limitations, as it assumes that the learned
latent space accurately captures semantic diversity among items.
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we start by defining the centroid of a user’s listening history (which we’ll term
γu) as

γu =
1
|H|

|H|∑
j=1

γH j , (10.11)

where H is a list of songs in the user’s listening history, with repetition, such
that repeated listens will count more to the average. Then the GS-score is de-
fined as the average cosine similarity between the user representation γu and
the items they listen to:

GS(u) =
1
|H|

|H|∑
j=1

γH j · γu

‖γH j‖‖γu‖
. (10.12)

Intuitively, specialists (high GS(u)) tend to have songs γi in their listening
history oriented primarily in a certain direction; generalists (low GS(u)) do
not, ostensibly corresponding to a broader range of preferences.

Part of the analysis in Anderson et al. (2020) is a study of the relationship
between diversity (as measured by GS(u)) and various other attributes. For
example, less active users tend to be specialists (high GS(u)), generalist users
are less likely to abandon the system (‘churn’), and more likely to subscribe to
the ‘premium’ version of the product.

However the main feature in the analysis is to study the relationship be-
tween recommendations and diversity, and in particular how generalists and
specialists respond differently to algorithmic recommendations. This is mea-
sured experimentally by exposing real users on Spotify to different recommen-
dation conditions. Three types of recommender system are used: one which
merely ranks songs (within a specific predefined subgenre) by popularity; one
which is a simple relevance ranker based on user-to-item similarity (essentially
a form of heuristic recommendation); and one which is a learned recommender
specifically trained to maximize the probability that a user will listen to a song
to completion.

First, compared to popularity, recommendation approaches lead to a sub-
stantial increase in the number of songs streamed for both groups (they also
lead to an increase in the number of songs skipped, but this is more than made
up for in additional streams). That is, users could be said to be more engaged
when interacting with recommendations compared to a popularity baseline.
Second, the benefit of recommendations appears across both groups (gener-
alists and specialists), though is significantly more pronounced for special-
ists: this aligns with the paper’s hypothesis in the sense that specialists are
more sensitive to songs matching their personal relevance criteria. Finally, the
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learned ranker confers a slight additional benefit over the relevance ranker,
though the benefit is surprisingly modest, indicating that simple relevance
ranking is sufficient in this context.

Guiding users to more diverse content
In a follow-up paper, Hansen et al. (2021) also consider consumption patterns
on Spotify, and broadly explore the trade-offs involved in terms of algorithmic
choices, diversity methods, and user satisfaction. They note (as we’ve seen
throughout this chapter) that several ranking approaches bias recommenda-
tions toward highly-popular content that closely resemble interactions from
users’ histories; like Anderson et al. (2020) they also find evidence that users
can in many cases be satisfied by recommendations that are more diverse and
less popular.

Several diversification techniques are explored, each of which essentially
attempts to trade-off a relevance versus a diversity term. Hansen et al. (2021)
explore the merits of each; they broadly favor reinforcement learning-based
approaches as a means of swaying users toward diverse content, but note the
difficulties involved in productionizing such systems.

10.5.2 Filter Bubbles and Online News Consumption

Much of the discussion of ‘filter bubbles’ has been in the context of online
news, where concerns generally center around whether recommender systems
(or more simply, algorithmic ranking techniques) will limit the ideological di-
versity of content users consume.

Bakshy et al. (2015) study the extent to which users on Facebook tend to
consume news that conforms to their political ideology. The analysis begins by
training a supervised learning system to label news articles as ‘liberal,’ ‘con-
servative,’ or ‘neutral,’ based on shares by users who volunteer their political
affiliation as part of their profile.

The main questions of interest center around the extent to which users are
exposed to (or choose to interact with) content that is aligned with their own
ideology versus content which is ‘cross-cutting.’ ‘Exposure’ refers to algorith-
mic feed ranking surfacing the content, whereas ‘interaction’ refers to a user’s
choice to click on exposed content.

There are many confounding factors in such an analysis, which the study
attempts to control for. For example, users’ social networks are primarily com-
posed of friends who share a common ideology, so naturally the content users
could potentially be exposed to via their social network is predominantly not
cross-cutting. Likewise, users’ tendency to interact with (i.e., click on) content
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is confounded by the fact that the feed ranker already factors in click probabil-
ity when determining which (and how prominently) content is surfaced to the
user in the first place.

After attempting to control for these effects, the study’s main findings are
that algorithmic ranking indeed exposes users to less ideologically diverse
news than would be expected by the ideological makeup of their social group,
however users interact with ideologically diverse content at an even lower rate
than their rate of exposure. Based on this, the authors argue that individual
choice plays the largest role in users’ exposure to content that is ideologically
homogeneous.

However, the argument above does not refute the possibility of a ‘filter bub-
ble’ of online news consumption, it merely argues that its primary cause (in
the case of Facebook) is not necessarily algorithmic.

Diversity across consumption channels
Flaxman et al. (2016) sought to measure the impact that new forms of con-
sumption (news aggregators, social recommendation, etc.) have on the diver-
sity and extremity of news consumption. Their analysis is based on 50,000
users who have the Bing Toolbar plugin installed, which allows for their inter-
action patterns to be tracked.

The main goal of the paper is to measure how diversity differs across users
who interact with news via different consumption channels. Direct consump-
tion (directly visiting a URL or accessing a bookmark); aggregator-based con-
sumption (specifically, visiting links from Google News in the case of their
study); social consumption (consumption from Facebook, Twitter, or e-mail);
and search (consumption via queries on Google, Bing, and Yahoo search). Var-
ious mundane aspects must also be dealt with to determine which links corre-
spond to news articles, versus opinion pieces, etc. Much of the data collection
effort centers around determining the ideological stance of articles and publish-
ers (for which there is no ground truth); the ideological stance of individuals
is then measured in terms of the articles they consume.

Consumption from these four sources is measured in various ways. First,
segregation measures the average distance in polarity scores between two ran-
domly chosen users who consume news via the same channel. These scores
reveal that consumers of opinion pieces are more segregated than consumers
of news across all four channels, with social media and search traffic being the
most segregated. This arguably aligns with the concept of a filter bubble, to the
extent that these media lead to ideologically more segregated groups.

Counter to this result, they also find that users who consume media from
search engines and social media also experience higher exposure to ideologi-
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cally diverse news (as opposed to users who consume news from aggregators
or via direct consumption). Flaxman et al. (2016) argue that most online news
consumption mimics patterns of traditional media consumption, with users
predominately visiting homepages of their preferred mainstream outlets; ul-
timately, to the extent that ‘filter bubbles’ exist in online news, their dynamics
are not as straightforward as they might first appear.

Filter bubbles on Google News
Haim et al. (2018) conducted an exploratory study of recommendation on
Google News, in order to determine the effects of personalization on content
diversity. Like Bakshy et al. (2015), they broadly argue that the effects of fil-
ter bubbles are somewhat overstated, or otherwise that the patterns of bias in
recommendations are not the same as what is anecdotally understood to be a
‘filter bubble.’

They conduct two studies, to look at ‘explicit’ and ‘implicit’ personalization.
Both are based on empirical observation of the actual news recommendations
provided by Google News, sampled from several synthetic user accounts. Rec-
ommendations are then compared against ‘traditional’ (i.e., non-personalized,
curated) news sources in terms of topic and content diversity.

In the ‘explicit’ setting, they make use of a Google News feature that al-
lows users to specify the types of news they are interested in, among a set of
broad categories (e.g. sports, entertainment, politics). Annotators then labeled
recommended articles according to these categories in order to quantify the
alignment between the explicit preferences and the recommended articles.

The first finding is simply that Google News does indeed respect users’ ex-
plicit preferences, in the sense that the proportion of recommended articles
matching the desired topic far exceeds their proportion in a non-personalized
setting.

Haim et al. (2018) also evaluate recommendations in terms of source diver-
sity (i.e., in terms of the original news sources that Google News aggregates).
Here, they find surprisingly that a few somewhat niche news sources dominate
recommendations, whereas more mainstream sources are underrepresented;
this result is relatively consistent across each of the personalized accounts.

In the ‘implicit’ setting, Haim et al. (2018) made use of several social media
accounts, corresponding to users with specified (but synthetic) demographics
and preferences (such as a marketing manager, an elderly conservative, etc.).
Each of these simulated agents then interacts with social media (liking articles
on Facebook, Google+, etc.), after which their Google News recommendations
are compared.

The main conclusion of this second study is simply that implicit personal-
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ization has little effect on the recommended results (though there is evidence
that some results are indeed personalized).

Ultimately while both Bakshy et al. (2015) and Haim et al. (2018) argue
against a ‘filter bubble’ as such, both point to potential issues of bias in rec-
ommendations; Bakshy et al. (2015) suggest that recommendations do indeed
present an overall more biased perspective compared to users’ broader social
groups, while Haim et al. (2018) show that certain niche sources tend to be
over-represented in news recommendations.

10.6 Other Metrics Beyond Accuracy

So far, we have considered diversity in terms of the trade-off between rec-
ommending the highest relevance items (e.g. highest click probability) while
ensuring that recommended items are not too similar to each other. Other than
relevance, diversity among items is only one desirable characteristic to trade-
off.

Besides relevance and diversity, other desirable features of a recommenda-
tion list might include:

• Items should be novel to the user, i.e., the recommender system should bal-
ance discovery of new items against recommending items with high interac-
tion probability, but which are already known to the user.

• Rather than being internally diverse, we might have goals such as mutual
compatibility among items (e.g. Hao et al. (2020)).

• Recommended items should have good coverage, i.e., they should represent
a broad range of categories or features; or they should be balanced, in terms
of matching the category distribution from the user’s history.

• Other goals could be more nebulous, such as perceived unexpectedness,
serendipity, or overall user satisfaction.

Kaminskas and Bridge (2016) broadly survey these alternate optimization
criteria for recommender systems, focusing in particular on diversity, serendip-
ity, novelty, and coverage. We briefly survey some of their main findings (as
well as more recent work) below.

Many of the approaches to diverse recommendation discussed in Kaminskas
and Bridge (2016) are re-ranking strategies, similar to maximal marginal rele-
vance (sec. 10.3.1) and other techniques we’ve discussed so far. They also dis-
cuss other settings where diversity might be desirable, such as conversational
recommendation (sec. 8.4.4) and the relationship to more traditional work in
‘portfolio optimization’ from information retrieval (Markowitz, 1968).
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10.6.1 Serendipity

Various attempts have been made to define ‘serendipity’ in the context of rec-
ommendations. Kaminskas and Bridge (2016) start with the core property of
‘surprise’ (i.e., recommendations should be different from one’s expectations);
Kotkov et al. (2018) state that serendipity should be a combination of rele-
vance, novelty and unexpectedness.

Each of these competing elements is difficult to define precisely, and some
(like a recommendation being ‘surprising’) are likely subjective. Below we dis-
cuss a few specific attempts to incorporate serendipity into recommendations,
and to understand what it means to users in practice.

Serendipity in music recommendation
Zhang et al. (2012) consider how music recommendations can be improved by
balancing goals of accuracy, diversity, novelty, and serendipity. Their specific
approach combines many of the ideas we’ve seen already: diversity is mea-
sured in terms of the cosine similarity between items in a recommendation list
(as in sec. 4.3.3); novelty or ‘unexpectedness’ is defined in terms of overall
item popularity (as in sec. 10.3.2); serendipity (or ‘unserendipity,’ since low
values mean high serendipity) is defined using a novel function, which es-
sentially measures how similar recommended items are to those in the user’s
interaction history:

Unserendipity =
1
|U |

∑
u∈U

1
|Iu|

∑
i∈Iu

∑
j∈Ru

Cos(i, j)
|Ru|

, (10.13)

where Ru is a set of items recommended to the user and Iu is the item history for
user u. This measure takes a low value if recommended items are on average
different from those that appeared in users’ histories.

Given these three metrics (diversity, novelty, and serendipity), Zhang et al.
(2012) seek recommendation techniques that can optimize them without overly
compromising accuracy. While metrics such as that of Equation (10.13) can-
not straightforwardly be incorporated into the optimization scheme directly,
various models are designed to ensure that recommendations are topically di-
verse or belong to distinct clusters. Quantitatively, Zhang et al. (2012) study
the trade-off between accuracy, diversity, novelty, and serendipity under differ-
ent configurations of this model. They also conduct a user study to evaluate the
qualitative aspects of the model, revealing that subjective notions of ‘serendip-
ity’ and ‘usefulness’ can be improved without overly harming user enjoyment.
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Investigating serendipity via user studies
Given the ambiguous nature of the precise definition of serendipity, Kotkov
et al. (2018) attempted to assess what it means to users via a survey. They
survey commonly proposed notions for diversity, ranging from items the user
simply hasn’t heard of, didn’t expect to be recommended, or are highly dis-
similar to what they usually consume. They found that serendipitous recom-
mendations are effective in broadening user preferences, though do not have a
significant impact in terms of satisfaction. They investigate the key feature of
unexpectedness and its different definitions in the literature (a few of which we
study in Section 10.6.2). In particular they find that items a user didn’t expect
to be relevant (or didn’t expect to like) tend to have a negative effect in terms of
user satisfaction, and are not as effective at broadening preferences compared
to other notions of unexpectedness.

Wang et al. (2020) also studied serendipity via a large-scale user study,
asking users directly what type of item features contributed to the perceived
serendipity of a recommendation. They found that while perceived serendip-
ity is positively influenced by lower popularity (similar to the principle from
our simple diversification technique in Equation (10.4)), characteristics such
as being from a distant category, or separated temporally from similar recom-
mendations, do not contribute to perceived serendipity. That ‘serendipitous’
results can be close in time and category compared to previous interactions is
somewhat surprising, given our efforts to define serendipity above. Wang et al.
(2020) hypothesize that this is due to the rapidly evolving nature of user pref-
erences, where distant interactions rapidly lose meaning. They also find that
(perceived) serendipity is not static across user demographics (older and/or
male users tend to perceive recommendations as more serendipitous, younger
users are more sensitive to item popularity, etc.); one hypothesis is that this
relates to overall familiarity with the particular shopping platform.

10.6.2 Unexpectedness

Adamopoulos and Tuzhilin (2014) attempt to define the notion of ‘unexpect-
edness’ as it relates to (movie) recommendations. They note that one cannot
target unexpectedness in isolation, or one could trivially generate poor-quality
but unexpected recommendations. As such they seek a notion of utility that
balances unexpectedness against traditional metrics of recommendation qual-
ity. They define unexpectedness (for a user u and item i) as a distance between
i and the set of items the user u ‘expects’ to receive. They further assume that
there is some optimal value for this distance (which could be different for each
user): recommendations that are too expected are uninteresting, while recom-
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mendations that are too unexpected will be regarded as irrelevant; ‘quality’ is
defined more straightforwardly in terms of ratings.

Several quantities must then be determined: each user’s personal tolerance
for unexpectedness, the ideal trade-off between unexpectedness and utility,
and finally the definition of what is ‘expected.’ For the latter Adamopoulos
and Tuzhilin (2014) use a definition based on content similarity in terms of
movie attributes (movies with similar attributes are ‘expected’). The goal of
Adamopoulos and Tuzhilin (2014) is not to fit these values (which are largely
subjective quantities) but to evaluate the performance of different recommen-
dation approaches under various hypothetical scenarios. The most promising
finding is that optimizing this type of joint utility need not harm performance
compared to methods that target quality exclusively.

Li et al. (2020) define unexpectedness in terms of clustering: users’ con-
sumption histories (γi) are clustered in latent space. An ‘unexpected’ item j
is one that is not close to any cluster. To prevent the model from simply rec-
ommending outlying or ‘fringe’ items (which might trivially maximize unex-
pectedness), a unimodal distribution over desired utility values is introduced.
Unexpectedness is then balanced against utility, weighted according to a per-
sonalized factor measuring the extent to which each user tends to favor unex-
pectedness over relevance.

10.6.3 Calibration

A related notion to diversity is that of calibration of predictions or recom-
mendations. Whereas a diversity metric might suggest (for example) that we
should expose users to a wide distribution of recommendations, which poten-
tially span beyond their explicit preferences, calibration refers to the idea that
recommendations should be made in proportion to expressed preferences. For
instance, if a user watches 40% sci-fi movies and 60% romantic comedies, they
should not exclusively be recommended romantic comedies, as might happen
when naively recommending by maximizing compatibility.

Steck (2018) introduce such a notion of calibrated recommendations, in the
context of movie recommendations on Netflix. Their work discusses metrics
to assess calibration, as well as methods to calibrate the outputs of an existing
recommender system.

Their notion of calibration operates over a pre-defined set of item genres,
described using a stochastic genre vector p(g|i) (e.g. a movie might be cate-
gorized as 80% ‘action’ and 20% ‘sci-fi’); this could potentially be adapted to
other attributes toward which one desired calibration. The basic idea behind a
calibration metric is then that the distribution of genres g among a user’s his-
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tory i ∈ Iu should match the distribution of recommended items i ∈ Ru. The
two terms are defined (respectively) as:

historical: p(g|u) =

∑
i∈Iu

wu,i · p(g|i)∑
i∈Iu

wu,i
(10.14)

recommended: q(g|u) =

∑
i∈Ru

wr(i) · p(g|i)∑
i∈Ru

wr(i)
. (10.15)

Both expressions include a ‘weighting’ term w. In the case of the historical
distribution wu,i might weight items according to recency (for example), or for
the case of recommendations wr(i) might weight recommendations according
to their position in a list (i.e., their ranking); either term could also be ignored.

Now, the goal is to generate a set of recommended items Ru such that the
two distributions should match closely. The difference between the two distri-
butions can be measured by (e.g.) the Kullback Liebler divergence:

KL(p, q) =
∑

g

p(g|u) log
p(g|u)
q(g|u)

. (10.16)

Of course, in addition to being well-calibrated, recommendations should also
be highly compatible according to the recommender system itself. This is
achieved in Steck (2018) with a simple expression that trades off recommen-
dation utility and calibration (via a trade-off hyperparameter λ):

Ru = arg max
R

(1 − λ) ·
∑
i∈R

f (u, i)︸                 ︷︷                 ︸
compatibility

− λ · KL(p, q(R))︸            ︷︷            ︸
calibration

. (10.17)

Steck (2018) note that the above is a hard combinatorial optimization problem,
but can be approximated greedily (with a certain optimality guarantee), by
iteratively adding one item at a time to R so as to optimize the above criterion
until the desired number of items is reached.

An appealing property of this approach is that it can be applied in a purely
post-hoc fashion to the outputs of any recommender system that associates
scores between users and items. The experiments in Steck (2018) show (by
varying λ in Equation (10.17)) that a reasonable degree of calibration can be
achieved with minimal loss in recommendation utility.

10.7 Fairness

Fairness in machine learning is often defined in terms of predictions and pro-
tected characteristics. For example, when building a classifier to aid in hiring
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decisions, we might be interested in ensuring that men and women are ranked
as ‘qualified’ at approximately the same rate. Or, a system for predicting recidi-
vism should not be biased against individuals of a certain race (Chouldechova,
2017).

Typically, we might desire that the outputs of our classifier f (xi) do not
depend on some protected feature xi, f (indicating race, gender, etc.). Some
common definitions include, for example, demographic parity, which states
that the probability of a positive prediction (e.g. being ranked as ‘qualified’)
should be the same whether one has the protected feature or not:

p( f (xi) = 1|xi, f = 1) = p( f (xi) = 1|xi, f = 0). (10.18)

The related notion of equal opportunity allows for the possibility that the target
variable depends on the protected feature, and states that among the qualified
(yi = 1) or unqualified (yi = 0) individuals, the probability of a positive pre-
diction should be the same whether or not one has the protected features:

p( f (xi) = 1|xi, f = 1, yi = y) = p( f (xi) = 1|xi, f = 0, yi = y). (10.19)

These are just two examples out of dozens of possible notions of fairness that
may be of interest, see e.g. Mehrabi et al. (2019) for a comprehensive survey.

A classifier may violate the above rules for a variety of reasons. For ex-
ample, the training data may exhibit historical bias against a certain group;
or, a classifier trained on highly imbalanced data may simply make inaccurate
(or imbalanced) predictions for groups that are poorly represented in the data
(we already saw a simple example of this for an imbalanced dataset in Sec-
tion 3.3.1). Several machine learning techniques have been proposed to mit-
igate unfairness in such scenarios, for example by pre-processing the biased
data (Kamiran and Calders, 2009), or by altering the classifier itself (Zafar
et al., 2017).

In the contexts of recommendations and personalized predictions, one may
have slightly different definitions and goals in terms of building a ‘fair’ model.
Yao and Huang (2017) attempt to adapt notions of fairness to personalized
recommendation contexts. They consider a running example of course rec-
ommendation, where course evaluations in Computer Science (for example)
may primarily represent the preferences of the predominantly male popula-
tion; models trained on such data (or even simple statistics or heuristics based
on popularity, etc.) may merely reflect the preferences or activities of the ma-
jority group.

Yao and Huang (2017) introduce several metrics of fairness with respect
to the outputs of a recommender system, and show that these metrics can be
straightforwardly incorporated into the training objective (meaning that the
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model can be discouraged from making unfair predictions). Their metrics are
defined by dividing users into groups gu, which are assumed to be binary,
though in the studied case of gender gu can simply be divided into the over-
represented group (male) and the under-represented group (non-male).

Value Unfairness measures the extent to which one group tends to have their
ratings over- or under-predicted compared to the other:

Uval =
1
|I|

|I|∑
i=1

∣∣∣∣(Eg[y]i︸︷︷︸
expected prediction for group g on item i

−

average rating for group g on item i︷︸︸︷
Eg[r]i

)
−

(
E¬g[y]i − E¬g[r]i

)∣∣∣∣. (10.20)

Note that since both sides take expectations (or averages), the measure is in-
variant to size differences between the two groups.

Value unfairness could occur in a latent factor model (like that of Equa-
tion (5.10)) if, for example, predictions are dominated via the bias terms βi; in
a model in which one group is over-represented, the bias terms may essentially
reflect the preferences only of the over-represented group.

Absolute Unfairness replaces differences in expectation (from eq. (10.20))
with absolute values:

Uabs =
1
|I|

|I|∑
i=1

∣∣∣∣∣∣∣∣Eg[y]i − Eg[r]i

∣∣∣∣ − ∣∣∣∣E¬g[y]i − E¬g[r]i

∣∣∣∣∣∣∣∣. (10.21)

Following this change, absolute unfairness now captures the extent to which
one group has their ratings mispredicted (in an absolute sense) more than the
other. This essentially measures a difference in the system’s utility between the
two groups, in the sense that if one group routinely receives recommendations
with high error then the system is unlikely to be useful to them.

Next, Yao and Huang (2017) define under- and over-estimation unfairness
to assess the model’s tendency to either under- or over-predict the true ratings:

Uunder =
1
|I|

|I|∑
i=1

∣∣∣∣max{0,Eg[r]i − Eg[y]i} −max{0,E¬g[r]i − E¬g[y]i}

∣∣∣∣, (10.22)

Uover =
1
|I|

|I|∑
i=1

∣∣∣∣max{0,Eg[y]i − Eg[r]i} −max{0,E¬g[y]i − E¬g[r]i}

∣∣∣∣. (10.23)

These definitions are somewhat analogous to related concepts we saw when
evaluating ranking models in Section 3.3; consistently underpredicting is anal-
ogous to having low recall (failing to retrieve relevant items), whereas over-
predicting is analogous to having low precision (retrieving items that are not
relevant). Both can potentially reduce the utility of the recommender system
for one of the groups.
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Ultimately, Yao and Huang (2017) show that each of the above metrics
can be incorporated into recommender systems of the form given in Equa-
tion (5.14). That is, they can be combined via a trade-off term so that the model
is accurate while minimizing unfairness, e.g.:

1
|T |

∑
(u,i)∈T

(α + βi + βu + γi + γu − Ru,i)2︸                                ︷︷                                ︸
accuracy

+λ Uabs︸︷︷︸
(absolute) fairness

. (10.24)

Optimization remains straightforward, as each fairness metric is differentiable
with respect to the model parameters. The main finding of the paper is then
that fairness metrics can optimized while paying only a minimal price in terms
of overall model accuracy.

In addition to presenting the above objectives, Yao and Huang (2017) also
show that real data do in fact exhibit biases with respect to the above metrics.
They do so using data from MovieLens across different genres where women or
men are over-represented; finally they show that such biases can be mitigated
using the above techniques.

10.7.1 Multisided Fairness

A separate attempt to introduce fairness metrics into recommendation prob-
lems is described in Burke (2017). In comparison to the fairness metrics de-
fined above, the main difference is to consider fairness from both the perspec-
tive of users of the system (‘consumers’) as well as content providers (‘produc-
ers’). As a motivating example, they consider a hypothetical recommendation
scenario on the microfinancing website Kiva.org, where it may be desirable
that proposals from different businesses receive somewhat balanced represen-
tation among recommendations. More broadly, this is an instance of recom-
mendation in a ‘matchmaking’ setting where both sides (in this case, users and
businesses) are being matched to each other; in such cases, fairness should not
be defined in terms of one ‘side’ only, but should consider the needs of both
types of stakeholders. Other examples are cited including online advertising,
the sharing economy, or online dating (as in sec. 6.3.1).

To achieve this notion of fairness, they consider fairness separately from the
perspective of consumers and producers, which they term C- and P-fairness.
Following these definitions, the fairness metrics we studied above would be ex-
amples of C-fairness. Burke (2017) note that C- and P-fairness are not merely
symmetric definitions, and that P-fairness may have requirements not encoun-
tered when studying C-fairness, such as in the examples above. For example,
in a product recommendation setting, if we wanted to encourage sales diver-
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Table 10.3 Comparison of personalized fairness objectives. References: Yao
and Huang (2017); Ekstrand et al. (2018b); Wan et al. (2020).

Ref. Objective Description

YH17 Value Unfairness Neither of two groups should have their compati-
bility over- or under-predicted more than the other
(sec. 10.7).

YH17 Absolute
Unfairness

Neither of two groups should have their compatibil-
ity mispredicted more than the other (sec. 10.7).

E18 Demographic
parity among
recommendations

Demographics (e.g. author gender) should be rea-
sonably balanced (or should match the training
distribution) among the items being recommended
(sec. 10.8.2).

W20 Marketing fairness Individuals underrepresented in marketing media
(e.g. images) should not have reduced recommen-
dation utility (sec. 10.8.3).

sity, the producers are passive in the sense that they are not actively seeking
out recommendations in the system.

Finally, Burke (2017) consider settings of CP-fairness, where fairness must
be considered from the perspectives of both sides simultaneously. We’ll revisit
examples of P-fairness and CP-fairness as we examine case studies of gender
bias in Section 10.8.

A selection of the fairness objectives from this section (as well as our case
studies in Section 10.8) is summarized in Table 10.3.

10.7.2 Implementing Fairness Objectives in Tensorflow

Part of the appeal of the fairness objectives we’ve developed in this section is
that they can straightforwardly be incorporated into the learning objectives of
standard recommenders.4 Below we’ll implement ‘absolute unfairness’ as in
Section 10.7. We’ll use data from beer reviews (this is the same data we used
in Section 2.3.2) which includes user gender information, and in which male
users are substantially over-represented. First, we read the data, recording user
gender along with each interaction:

4 This is in contrast to fairness objectives in some classical settings. For example, when
balancing hiring decisions with respect to gender it may not be permissible for the algorithm
to base the decision on the protected attribute (see e.g. Lipton et al. (2018)).
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5 for d in parse('beer.json.gz'):
6 if not 'user/gender' in d: continue # Skip users who

didn ' t specify gender
7 g = d['user/gender'] == 'Male'
8 u = d['user/profileName']
9 i = d['beer/beerId']

10 r = d['review/overall']
11 if not u in userIDs: userIDs[u] = len(userIDs)
12 if not i in itemIDs: itemIDs[i] = len(itemIDs)
13 interactions.append((g,u,i,r))

Next we build some utility data structures to store interactions for each item
according to group membership (g and ¬g for males and females):

14 interactionsPerItemG = defaultdict(list)
15 interactionsPerItemGneg = defaultdict(list)
16
17 for g,u,i,r in interactions:
18 if g: interactionsPerItemG[i].append((u,r))
19 else: interactionsPerItemGneg[i].append((u,r))

We also store item sets for each group for sampling:

20 itemsG = set(interactionsPerItemG.keys())
21 itemsGneg = set(interactionsPerItemGneg.keys())
22 itemsBoth = itemsG.intersection(itemsGneg)

Finally, we implement the absolute (un)fairness objective. This implemen-
tation computes the fairness objective for a single item (i.e., one term in the
summation in Equation (10.21)). During training, this objective can be called
for a small sample of items, and added to the accuracy term:

23 def absoluteUnfairness(self, i):
24 G = interactionsPerItemG[i]
25 Gneg = interactionsPerItemGneg[i]
26 # Compute the terms from Equation 10.21
27 rG = tf.reduce_mean(tf.convert_to_tensor([r for _,r in G

])) # Eg[r]i
28 rGneg = tf.reduce_mean(tf.convert_to_tensor([r for _,r

in Gneg])) # E¬g[r]i
29 pG = tf.reduce_mean(self.predictSample([userIDs[u] for u

,_ in G], [itemIDs[i]]*len(G))) # Eg[y]i
30 pGneg = tf.reduce_mean(self.predictSample([userIDs[u]

for u,_ in Gneg], [itemIDs[i]]*len(Gneg))) # E¬g[y]i
31 Uabs = tf.abs(tf.abs(pG - rG) - tf.abs(pGneg - rGneg))
32 return self.lambFair * Uabs

10.8 Case Studies on Gender Bias in Recommendation

Just as Yao and Huang (2017) used gender imbalance as a motivating exam-
ple to study fairness and bias with regard to under-represented groups in rec-
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ommender systems, several studies have investigated specific scenarios where
recommenders exhibit significant bias, or have reduced utility for a specific
gender.

10.8.1 Data Resampling and Popularity Bias

Ekstrand et al. (2018a) study a similar problem to Yao and Huang (2017)
(sec. 10.7), also noting that there is a substantial utility gap between the ma-
jority versus under-represented groups (i.e., closest to absolute unfairness as
in Equation (10.21)). Bias is reported with respect to both gender and age
attributes, both of which are self-reported by users in datasets of movies and
songs (from MovieLens (Harper and Konstan, 2015) and Last.FM (Celma Her-
rada, 2008)).

Unlike Yao and Huang (2017), where this type of bias is corrected using a
joint objective that balances overall utility with unfairness (eq. (10.24)), Ek-
strand et al. (2018a) use a data resampling approach to correct for bias. This
type of approach is borrowed from Kamiran and Calders (2009) where it was
used in the context of fair classification. The basic idea is to resample the data
so as to achieve equal representation among groups; practically speaking this
is fairly similar to the reweighting schemes we explored in Section 3.3.2.

Ekstrand et al. (2018a) also raise the potential issue of popularity bias in
recommender systems (also discussed in Bellogin et al. (2011)), in which al-
gorithms that work well for popular items will generally be favored over algo-
rithms which personalize better (but whose performance is worse for popular
items). To address this they introduce evaluation metrics that control for the
effect of popularity, so that algorithms can be compared according to their de-
gree of personalization rather than their tendency to select popular items.

10.8.2 Bias and Author Gender in Book Recommendations

Ekstrand et al. (2018b) explore bias from the perspective of book authors. This
is somewhat analogous to the idea of P-fairness from Section 10.7.1, given that
we are interested in how recommendations could be biased against ‘producers’
(in this case, authors of a certain gender).

Book reviews and metadata are collected from BookCrossing (Ziegler et al.,
2005), Amazon (McAuley et al., 2015), and GoodReads (Wan and McAuley,
2018). An interesting component of the study is how these datasets can be
augmented to incorporate the gender of each author, which is not a feature
immediately available in any of the above datasets; author gender information
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is compiled from external sources, which is matched to records in each of the
datasets.

Ekstrand et al. (2018b) begin by analyzing the overall gender distribution
of authors in the datasets, as compared to the gender distribution among read-
ing histories of individual users. Beyond this, they seek to study how gender
bias is ‘propagated’ by recommendation algorithms, i.e., the extent to which
users who exhibit a moderate tendency toward authors of a certain gender will
tend to have recommendations in which that gender is more extremely over-
represented. Finally, they analyze the extent to which these issues can be miti-
gated algorithmically.

Ultimately, the study concludes that authors in all three datasets (at least
those whose identities could be resolved) are predominantly male. In terms of
rating histories by users, the distribution is less skewed. In terms of recommen-
dation algorithms, results are quite mixed, with certain algorithms and datasets
leading to more or less skewed recommendations, or otherwise recommenda-
tions that mimic users’ own gender preferences.

Finally, the authors find that gender imbalance in recommendations can be
mitigated easily via simple re-ranking strategies, with minimal impact on per-
formance. This analysis bears some similarity to our study of filter bubbles
(sec. 10.5.2), or the techniques used to calibrate recommendations (in this case
to match a desired gender distribution rather than a genre distribution) from
Section 10.6.3.

10.8.3 Gender Bias in Marketing

Wan et al. (2020) investigate bias in terms of how products are marketed. For
example, a user may be more (or less) inclined to purchase a clothing item if
it is modeled by somebody sharing their gender, weight, age, skin-tone, etc.
In some instances, these features may be directly relevant to the suitability
of the item, but in others they may not be. If users are disinclined to interact
with items simply because their own identity is not represented, this reduces
the utility of the system to the users, represents a missed opportunity in terms
of sales, and raises broader issues of representation in marketing. ‘Fairness’
from this perspective is an instance of CP-fairness from Section 10.7.1, as
both producers and consumers face consequences from unfair treatment.

Like Ekstrand et al. (2018b), Wan et al. (2020) start by assessing the extent
to which these types of bias can be found in historical interactions (in their
case, purchases). They consider two settings: clothing, using a dataset from
ModCloth, and electronics, using data from Amazon. On ModCloth, they are
interested in whether users are less inclined to buy items if the model has a



304 The Consequences of Personalized Machine Learning

different body type than the user (e.g. the user is plus-size but the model is not,
even though the item is available in plus-sizes). On Amazon, they are inter-
ested in whether ostensibly ‘genderless’ products have different sales patterns
among male and female users, based on their marketing images.

Again, the study faces difficult issues of augmenting the data, since gender
and size attributes of users are not readily available. ModCloth specifies the
size of the models in marketing images, and user sizes are inferred from their
historical tendency to purchase only items of a certain size. Data augmentation
is more difficult on Amazon: gender attributes in marketing images must be in-
ferred using computer vision techniques; gender attributes of users are inferred
from their purchases in the clothing category.5

Indeed, the study determines that there is significant correlation between
users’ attributes and their purchase patterns (e.g. male users tend to purchase
electronics items marketed by male models). Of course, as with gender in book
recommendations (sec. 10.8.2), it is hard to disentangle ‘bias’ or ‘unfairness’
from users’ intrinsic preferences or legitimate marketing choices (e.g. the rea-
son that women tend to buy women’s watches may be largely practical). How-
ever the goal is to determine whether bias is amplified by recommender sys-
tems, and whether this effect can be mitigated.

The specific question that is asked is whether recommendation errors are
correlated with market segments and marketing images. This bears passing
similarity to the notion of absolute unfairness as in Equation (10.21), though
that measure considers unfairness only from the perspective of the user’s iden-
tity, whereas the question asked here concerns both user and item ‘identity’
simultaneously. Specifically, four possible types of error are investigated:

Product Image
{

Female
Male

[
ēF,F ēM,F

ēF,M ēM,M

]
Female Male︸                 ︷︷                 ︸
User Identity

. (10.25)

Under a null model, the errors should not be correlated with market segments
(this can be measured via a specific statistical test).

Finding that these errors are indeed significantly correlated with market seg-
ments, Wan et al. (2020) seek to address this via a loss which balances model

5 Of course, clothing purchases are a rough proxy for gender identity, and users whose
purchases span both gender categories are not considered.
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error and error correlation:
prediction error︷                ︸︸                ︷∑

u,i

( f (u, i) − ru,i)2 +α Lcorr︸︷︷︸
error parity on market segments

. (10.26)

Again, this joint loss can be optimized much like the one in Equation (10.24),
satisfying the fairness objective with minimal loss in prediction accuracy.

Ultimately, the above case-studies demonstrate that even with regard to a
single characteristic (gender), the potential fairness consequences are surpris-
ingly varied and require careful attention to resolve.

Exercises

10.1 In this exercise we’ll explore recommender systems that balance rele-
vance with diversity. You may base your implementation on the code
and data from Section 10.4. Start by experimenting with a variety of
diversity objectives. For example:

• Replacing the cosine similarity (sim) with other similarity functions
based on item representations.

• Use similarity functions based on item features. For example, a simple
diversity function might simply measure whether two items belong to
a different category, or have a different ABV (etc.).

• Replace the Maximal Marginal Relevance criterion with an alternative
from Section 10.3, e.g. as in Equation (10.4) or Equation (10.8).

Evaluating diversification techniques is difficult, since they make a qual-
itative improvement at the cost of a quantitative metric. Evaluate your
diversification techniques by plotting a relevance metric (such as those
in Section 5.4) as the diversity parameter (e.g. λ in Equation (10.2))
changes. Does your plot contain an ‘elbow,’ i.e., a region in which di-
versity is significantly increased without sacrificing relevance?

10.2 In addition to issues of diversity as we saw in Exercise 10.1, we also
studied concentration effects in Sections 10.2.1 and 10.2.2, whereby a
recommender system can skew the distribution of recommended items
toward a smaller set of items than those represented in the training data.
In Section 10.1 we measured concentration in terms of the Gini coef-
ficient (eq. (10.1)) of historical data versus recommendations. Consider
some strategies to reduce the concentration among recommendations.
For example:
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• Explicitly penalize highly popular (or highly recommended) items
from being recommended too often (e.g. by adding a small negative
bias to popular items).

• Incorporate a diversification strategy such as one from Exercise 10.1.
• Add some small amount of randomization into recommendations.

Note that one can trivially produce recommendations that are less con-
centrated simply by recommending uniformly at random. As in Exer-
cise 10.1, see if you can produce a strategy that improves concentration
(in terms of the Gini coefficient) without significantly harming relevance
metrics.

10.3 In Section 10.7 we developed various fairness objectives for person-
alized recommender systems; although we’ll explore these objectives
more in Project 9, for the moment let’s consider the notion of demo-
graphic parity as in Equation (10.18). In Ekstrand et al. (2018b) de-
mographic parity is measured with respect to gender (of book authors),
though for the purpose of this exercise you could consider any attribute
associated with the items (e.g. whether a beer is low or high ABV). For a
few such attributes, compare the training distribution (i.e., proportion of
historical interactions having that attribute) to the recommendation dis-
tribution. Consider whether you can design simple strategies to correct
any disparity, e.g. by systematically assigning higher relevance scores to
items from an under-represented class.

Project 9: Diverse and Fair Recommendations

In this project we’ll consider how we can improve the outputs of the types
of recommendation approach we originally developed in Chapter 5. Select a
dataset that includes a gender attribute, such as the beer data we used in Sec-
tion 2.3.2, or others from Section 10.8. A suitable dataset would be one that:

• Contains a gender attribute and is imbalanced with respect to this attribute
(e.g. the majority of users are male); in such a dataset we might be con-
cerned that recommendations will have reduced utility for the underrepre-
sented group.

• Contains item metadata, such as categories, prices, or other item attributes,
which can be used to measure recommendation diversity, calibration, etc.

In principle this project could be completed with any similar dataset that in-
cludes (a) an attribute of interest with respect to which we can measure bias,
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such gender, age, etc.; and (b) item metadata with respect to which we can
measure diversity.

Use this dataset to analyze diversity and fairness from the following per-
spectives:

(i) Implement a recommender system to predict ratings in the dataset, e.g. a
latent factor model as in Section 5.1.

(ii) Using the above model, compute the four fairness metrics from Section 10.7
(i.e., value unfairness, absolute unfairness, under- and over-estimation un-
fairness), comparing male (g) to non-male (¬g) users.6

(iii) Next, assess recommended items in terms of diversity. Diversity could be
measured in several ways, for example you could measure diversity with
respect to the distribution of recommend items, or with respect to some at-
tribute (e.g. the style or brand). This could be a formal measure of dispersion
such as the Gini coefficient (as in eq. (10.1)), or a plot of recommendation
versus interaction frequency as in Figure 10.2.

6 Or whichever group g is over-represented.
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Godes, David, and Silva, José C. 2012. Sequential and temporal dynamics of online
opinion. Marketing Science.

Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-Farley, David,
Ozair, Sherjil, Courville, Aaron, and Bengio, Yoshua. 2014. Generative adversar-
ial nets. In: Advances in Neural Information Processing Systems.

Gopalan, Prem, Hofman, Jake M, and Blei, David M. 2013. Scalable recommendation
with Poisson factorization. arXiv preprint arXiv:1311.1704.



Bibliography 313

Graves, Alex. 2013. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850.

Guo, Huifeng, Tang, Ruiming, Ye, Yunming, Li, Zhenguo, and He, Xiuqiang. 2017a.
DeepFM: A factorization-machine based neural network for CTR prediction. In:
International Joint Conference on Artificial Intelligence.

Guo, Yunhui, Xu, Congfu, Song, Hanzhang, and Wang, Xin. 2017b. Understanding
users’ budgets for recommendation with hierarchical Poisson factorization. In:
International Joint Conference on Artificial Intelligence.

Gusfield, Dan, and Irving, Robert W. 1989. The stable marriage problem: Structure
and algorithms. MIT press.

Haim, Mario, Graefe, Andreas, and Brosius, Hans-Bernd. 2018. Burst of the filter
bubble? Effects of personalization on the diversity of Google News. Digital Jour-
nalism.

Hansen, Christian, Mehrotra, Rishabh, Hansen, Casper, Brost, Brian, Maystre, Lucas,
and Lalmas, Mounia. 2021. Shifting consumption towards diverse content on
music streaming platforms. In: International Conference on Web Search and Data
Mining.

Hao, Junheng, Zhao, Tong, Li, Jin, Dong, Xin Luna, Faloutsos, Christos, Sun, Yizhou,
and Wang, Wei. 2020. P-Companion: A principled framework for diversified
complementary product recommendation. In: Conference on Information and
Knowledge Management.

Harper, F Maxwell, and Konstan, Joseph A. 2015. The Movielens datasets: History and
context. ACM Transactions on Interactive Intelligent Systems.

He, Ruining, and McAuley, Julian. 2015. VBPR: Visual Bayesian personalized ranking
from implicit feedback. In: AAAI Conference on Artificial Intelligence.

He, Ruining, and McAuley, Julian. 2016. Ups and downs: Modeling the visual evo-
lution of fashion trends with one-class collaborative filtering. In: International
World Wide Web Conference.

He, Ruining, Packer, Charles, and McAuley, Julian. 2016a. Learning compatibility
across categories for heterogeneous item recommendation. In: International Con-
ference on Data Mining.

He, Ruining, Fang, Chen, Wang, Zhaowen, and McAuley, Julian. 2016b. Vista: A
visually, socially, and temporally-aware model for artistic recommendation. In:
ACM Conference on Recommender systems.

He, Ruining, Kang, Wang-Cheng, and McAuley, Julian. 2017a. Translation-based rec-
ommendation. In: ACM Conference on Recommender systems.

He, Xiangnan, and Chua, Tat-Seng. 2017. Neural factorization machines for sparse
predictive analytics. In: ACM SIGIR Conference on Research and Development
in Information Retrieval.

He, Xiangnan, Liao, Lizi, Zhang, Hanwang, Nie, Liqiang, Hu, Xia, and Chua, Tat-
Seng. 2017b. Neural collaborative filtering. In: International World Wide Web
Conference.

Henderson, Matthew, Al-Rfou, Rami, Strope, Brian, Sung, Yun-Hsuan, Lukács, László,
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