vmware[®]

Perspective of Virtual Switching Fabric

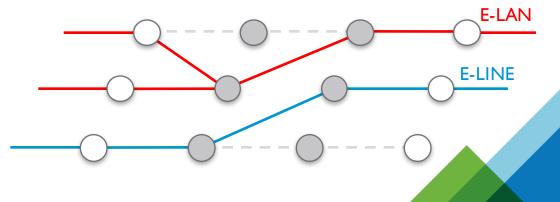
jiezheng@vmware.com

© 2018 VMware Inc. All rights reserved.

Agenda

Overview of Fabric Structure

- Emulation & Demonstration
- Performance Evaluation
- Use cases Imagination



What is the Fabric?

A L2 virtual networking using smart routing

- node naming: spine vSwitch node vs leaf vSwitch node
- pseudo wire service: Ethernet-Line(E-Line)
- pseudo lan service: Ethernet-LAN(E-LAN)
 - o mac based forwarding
 - o emulate LAN at the core(built-in multicast tree, replication on-demand)
- o path optimization
 - o adjacency next-hop count as weight
 - o link workload as weight
 - o for E-LAN, minimum spanning tree
 - o For E-LINE, shortest path

vmware

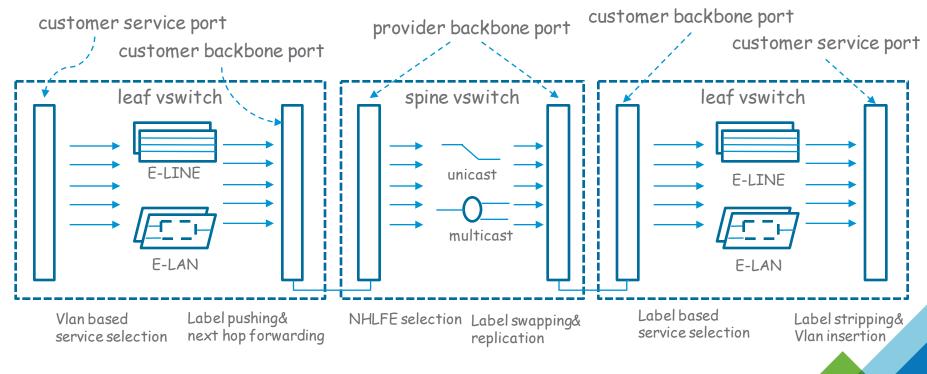
What is the Fabric? contd

transport layer consideration

• Ethernet over MPLS ? RFC448

- o path selection and tenant identification
- o encapsulation overhead: 12+2+4=18 bytes
- mitigate TOR variables:
 - PF and VF mac addresses.
- hardware independency
 - o NICs supported by DPDK
 - o high volume switch

x86 platform networking capability

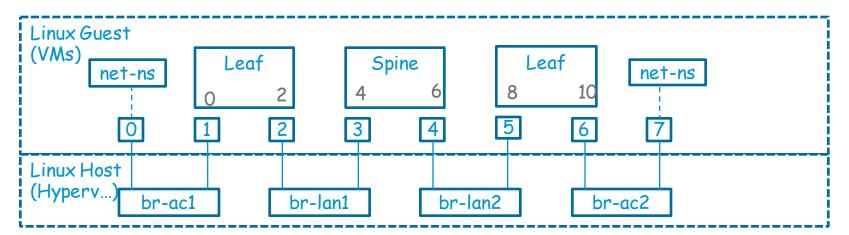

o data path essence

- hardware IO capability(PCIe Gen3 x8GT/s TL bandwidth utilization :66%) from infrastructure network into host(hypervisor) memory vpp benchmark: 480Gbps L3 forwarding, does not scale any more due to nic/PCI bus limitation
- memory bandwidth is bottleneck of virtual network from vm to vm(host/hypervisor) experiment: 60Gbps intra-numa-node ,two times memory copy, does not scale well memory movement consumes too much cpu time and memory bandwidth
- let dedicated servers as fabric do virtual networking!
- \circ more agility and hardware dependency than specific hardware solution.
 - o as the intrinsic requirement of NFV

Fabric constitution

virtual switch internals

vmware[®]


- Overview of Fabric Structure
- Emulation & Demonstration
- Performance Evaluation
- □ Use cases Imagination

Emulated environment pre-setup

- Qemu KVM emulated guest, both host and guest OS are CentOS 7
- 8 x e1000 devices with VLAN stripping and insertion offloading capability
- 4 x ovs bridges for 4 LANs emulation(2 attachment circuit lans and 2 common lans)
- Port 0 and port 7 are for customers and port 1-6 are for fabric switches
- For fabric ports, once taken over by e3datapath, re-index them [0,2,4,6,8,10]
- For customer ports, use Linux namespace and vlan sub-interfaces to segregate themselves

E-line service

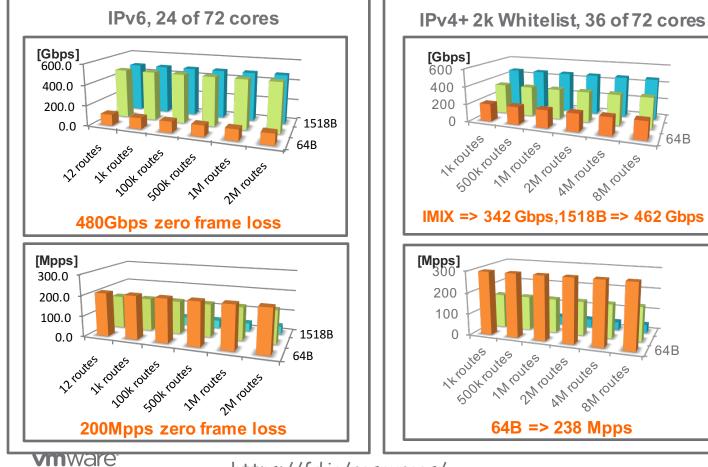
$\operatorname{csp}\operatorname{port} 0$	cbp port 2	pbp port 4	pbp port 6	cbp port 8	csp port 10
create two e-line servic	es: 0 and 1		•	1	
Vlan1000> e-line 0					
	E-line 0 next hop(to p label:1	port 4) via port2 with			
		Port 4 with label 1,knows next hop(to port 8) via port 6 with label 100			
				Port 8 with label 100 goes to e-line1	
					e-line1>vlan 2000
					vlan 2000>e-line1
		E-lan1 next hop(to port 6) via port 8 with label:10000		rt 6) via port 8 with	
		Port 6 with 10000, it knows next hop(to port 2) with label 10.			

vmware

E-lan service multicast forwarding

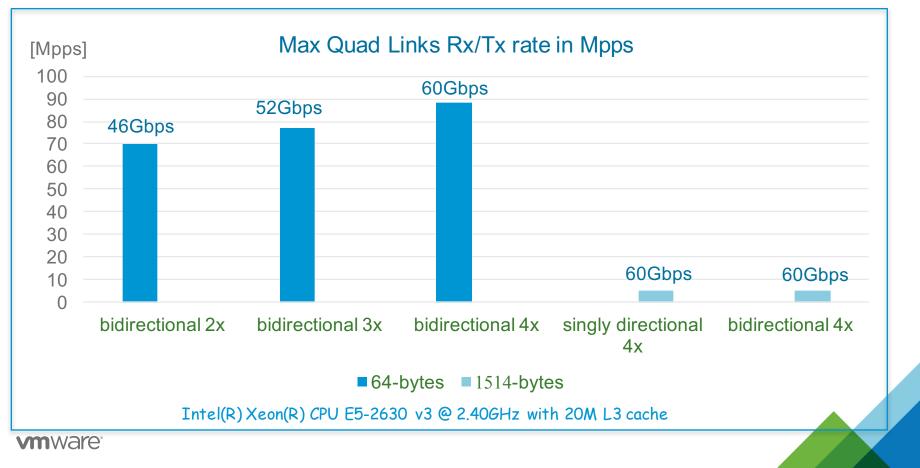
csp port 0	cbp port 2	pbp port 4	pbp port 6	cbp port 8	csp port 10
create two e-lan services	:0 and 1 , and multicast n	ext hop list:0			
Vlan3000> e-lan 0					
	E-lan 0, find no fwd entry, multicast next hop(to port 4) via port2 with label:2				
		Port 4 with label 2, goes to multicast list0,perform RPF check and send replication (to port 8) via port 6 with label:101			
				Port 8 with label 101 goes to e-lan1	
					e-lan1>vlan 4000
					vlan 4000>e-lan1
		E-lan1 still finds no fwd entry, use multicast nexthop(to port 6)via port 8 with label:1000Port 6 with 10001,does multicast forwarding, finally goes to port 2 via port 4 with label:11			

E-lan service unicast forwarding


- At leaf virtual switch, a fwd entry is found with deterministic <label, nhlfe>
- At spine virtual switch, single next hop is bound to input label entry, no multicast list is searched

- Overview of Fabric Structure
- Emulation & Demonstration
- **Performance Evaluation**
- □ Use cases Imagination

VPP Performance at Scale


Phy-VS-Phy				
Zero-packet-loss Throughput for 12 port 40GE				
Hardware:				
Cisco UCS C460 M4				
Intel® C610 series chipset				
4 x Intel® Xeon® Processor E7-8890 v3				
(18 cores, 2.5GHz, 45MB Cache)				
2133 MHz, 512 GB Total				
9 x 2p 40GE Intel XL710				
18 x 40GE = 720GE !!				
Latency				
18 x 7.7trillion packets soak test				
Average latency: <23 usec				
Min Latency: 710 usec				
Max Latency: 3.5 ms				
Headroom				
Average vector size ~24-27				
Max vector size 255				
Headroom for much more				
throughput/features				
NIC/PCI bus is the limit not vpp				

64B

64B

https://fd.io/resources/

Max Quad Links rx/tx rate

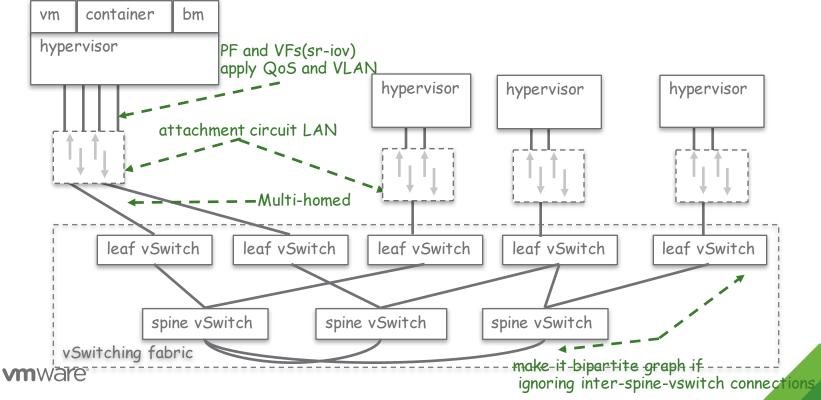
vSwitching processing complexity

items	spatial complexity	temporal complexity	
csp-input	2^12 vlan entries per csp interface	o(1) to find vlan distribution entry	
e-line-forward	1 <vlan,interface> entry and 1 <label,nhlfe> entry</label,nhlfe></vlan,interface>	all $o(1)$ to find the fwd entries	
e-lan-forward	64 <vlan,interface> and 64 <label,nhlfe> and 2^16 fib base entry per e-lan and [n/48,n] fib entry</label,nhlfe></vlan,interface>	O(m/48) to find the mac fwd entry, where m is the average hash bucket's list length	
cbp-input	2^20 label entries per cbp interface	O(1) to find label distribution entry	
pbp-input	2^20 label entries per pbp interface	o(1) to find unicast fwd nhlfe o(n) to enumerate multicast entries where n by default set to 64	

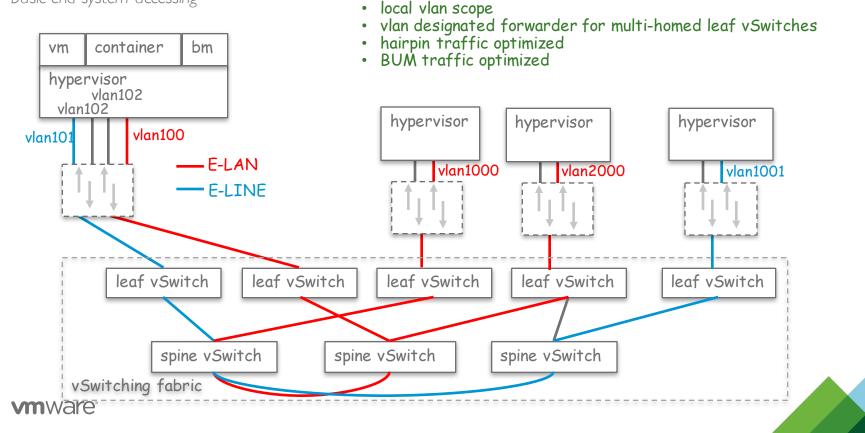
Performance expectation

- o simpler forwarding logic
- dpdk native context
- o burst-oriented and cache optimized and fast index
- o expected to scale out with ports across the vSwitch datapath

Agenda

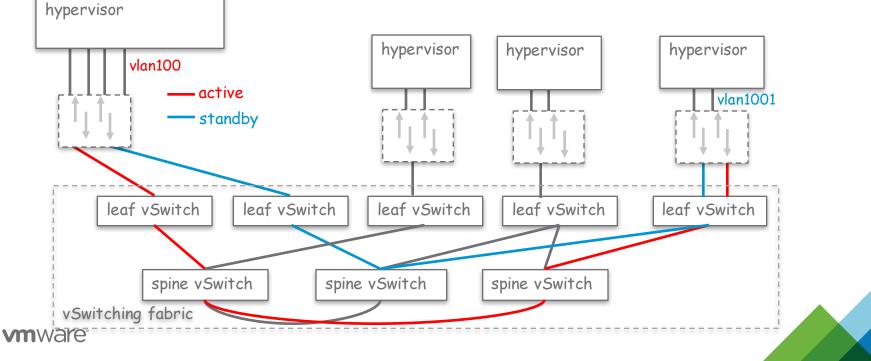

- Overview of Fabric Structure
- Emulation & Demonstration
- Performance Evaluation
- **Use cases Imagination**

Fabric structure review


basic end-system accessing

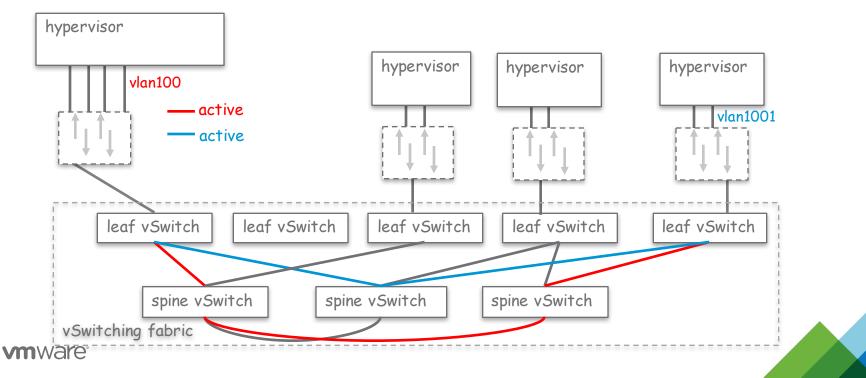
• Try to fully migrate L2 virtual network into infrastructure network domain

Fabric structure review contd


basic end-system accessing

Native HA view

Service continuity


- only active ether-service in forwarding state
 ether-service failure can be detected by in-band OAM or(and) controller
 controller assists ether-service failover
- - populate <ff:ff:ff:ff:ff:ff:smac,vlan> to fast update AC lan's mac table

Native ECMP view

service continuity and load balancing

- each ether-service is active
- •
- ether-services are detected by iOAM or(and) controller failover can be achieved by disabling inactive ether-service •

More use case features

as a link-level 12 network virtualization solution

- We may still borrow ideas from compute virtualization
 - Snapshot or backup and restore your virtual network
 Live migration for your virtual network
 Virtual network High Availability

 - Virtual network fault tolerance (as ECMP?)

