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Introduction: challenges

® Inabout ayear, LHC beginsitsfirst physics run offering unprecedented opportunities.
® Two distinct features: high luminosity and high energy.

® Enormous rates for SM processes; can be used to study SM; have to be understood since
are backgrounds to New Physics.

®  Factorization theorem

c° =DY ®oy; @ F;.

©  F; describes hadron-parton transition — Data;
© oy, describes parton-parton transition — pQCD;
© Dy describes “fragmentation” — models, data, etc.

® pQCD iscentral for hadron collider phenomenol ogy.
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Introduction: challenges

® extraction of parton distribution functions
O reliability
O precision
® shower event generators
©  harder showers
© combining with fixed order computations
©  hadronization models
® resummations
O analytic resummations; numeric resummations
® NLO computations
©  higher multiplicity processes
® NNLO computations

©  genera agorithms for NNLO calculations
©  NNLO phenomenology
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All orders/leading order

® pp — Nijets+ X, N < 10isatypica background process at the LHC.

® To deal with these multi-jet processes, we use all-purpose shower event generators, e.g.
PYTHIA, HERWIG. Are these descriptions accurate?

® Showers are based on collinear emissions.
® Collinear emissions are independent = probabilistic description.
®  Showers are good for processes dominated by soft/collinear radiation.

®  Showers generate large transverse momenta by emissions of many jets with moderate p |
= s Suppression of high p ; radiation.

®  Shower do not change normalizations of total cross-sections

/dO'LQ X MC = 01,0-

® An alternative; exact matrix elementsfor i5 — N jets. How do these things compare?
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All orders/leading order
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® ALPGEN: exact matrix elements; correct hard emissions built in.

® PYTHIA: emulates hard emissions by producing large number of softer jets.

® PYTHIA underestimates the background significantly.
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All orders/leading order
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® NLOisjustLO (pp — W + jet — e + jet) for pe’min > myy /2.
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for p(j_’min > 50 GeV.
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All orders/leading order: CKKW

® An N + 1-jet event is obtained from an IV-jet event either by
large angle hard emission or  shower.

® Event generators can do a better job for multi-jet processesif both mechanisms are taken
into account.

® Catani-Krauss-Kuhn-Webber (CKKW) procedure:

© cadculate pp — m HARD jets, with m < N. Determine probability of an event
with m hard jets using the cross-section val ues,
Om

P, = ) Jm:Jm(ycut)-
oo +01+02+ ..0N

©  Generate hard jet configuration according to the probability distribution; shower it.
© Requires introduction of a measure to distinguish between hard jet and shower jet.

® Thisprocedure is being currently implemented in major shower event generators, such as
PYTHIA and HERWIG.
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Leading order: uncertainties

® Any leading order prediction has the renormalization and factorization scales uncertainty.

® pp — v+ N jets; ij > 80 GeV; |n| < 2.5.
® u= M2+ Pl opr=pp=p/2.2p
jets

N | o(2u)pb o(u/2)pb | variation
1 182 216 17%
2 47.1 75.4 46%
3 6.47 13.52 70%
4 0.90 2.48 93%

Next-to-leading order computations are necessary.
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Next-to-leading order

® The NLO prediction is often the first quantitative prediction.

® Typical background (t£)™ (W Z)™ jets', n,m,1 > 0.

®  Current state of the art is2 — 3 processes:
© NLOJET++[Nagy] pp — (2,3)j, ep — 34, ete™ — 3,4j,v"p — (2,3)5;
© AYLEN/EMILIA [de Florian, Dixon, Kunszt, Signer] pp — (W, Z) + (W, Z,~);
© MCFM [Campbell, Ellis] pp — (W, Z) + (0,1, 2)j, pp — (W, Z) + bb;
© DIPHOX/EPHOX [Aurincheet. d] pp — ~ + 15, pp — vy, Y*p — ~v + 17;
© VBFNLO [Figy, Zeppenfeld, Oleari] pp — (W, Z, H) + 2j.

® Fexible programs: arbitrary restrictions on the final state can be applied.

® We want to extend the NLO computationsto 2 — 4, 5, etc. processes.

® Problem: one-loop 5, 6, 7...n-point functions.
©  Direct numerical integration is not possible because those functions have soft and

collinear divergences.

© Simplifications of many-point functions produce fictitious singularities that are hard
to handle.
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Next-to-leading order

® Recent progress (technical):

©  Mdlin-Barnes transform Anastasiou, Daleo;
O IBP's, sector decompozition, numerics Binoth, Heinrich;
© Numerical solutionsof IBP's Glover, Giele;
©  Bernstein-Tkachov theorem Passarino et al.;
O Integration in momentum space Soper, Kramer.

®  Recent progress (cal cul ations):

© pp — H — 2 jets (virtual), Zanderighi, Giele, Ellis;
© pp —t— Wb, Ellis, Campbell;
© pp — Hbb, Htt, Dawson, Jackson, Wackeroth, Reina, Spira, Kramer;
© pp— WTW—(ZZ) + 24, [VBF] Jager, Oleari, Zeppenfeld.
® First complete2 — 4 computation: et e~ — 4 fermions, Denner, Dittmaier et al.

® FHexible methods are needed; must be easily adaptable to New Physics models.
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Next-to-leading order

® Consider Higgs production in association with b quarks. Two options:

TOTO—>— b
—_— H
TO000—<— B
PT in =% In(m% /m2 T
e n(mgy /my) PT in —

® Puzzle: o1,0(gg — bbH) ~ 0.1 o1,0(bb — H).

® Resolution: ur = my /4 isan appropriate scale
(Kinematics).

® Thisprediction is confirmed by explicit (later) higher
order calculations.
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Next-to-leading order

® bb — H iscurrently known through NNLO; pr = mpr /4 istheright scale!

® gg — bbH iscurrently known through NLO; compares well with bb — H.

. o(pp — (bb)H+X) [pb]
LG : oxto[pb]  LHC, /s = 14 TeV

e === — = - =
— =

1 M,=120GeV . _-- i

| ] T — 1 .
NLO, 4FNS, gg,qq — (bb) H%—— 3
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100 £
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® Gain confidence from looking at the same processin different ways.
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NLO: bottom production

® Bottom production in hadron collisions: pp — B + X was along-standing problem for
pPQCD with discrepancy often quoted as a factor 2-4

® New Physics explanations, e.g. light gluinos, sbottoms

10 1 = T T T T T T T T T T T T T T T T
E Gk [ |

ly(1/¥)| < 0.6
100 &

NLO QCD prediction for p¥ is non-trivial:

© b — B fragmentation function; B
070 B o(pe(3/9)>1.25 Gev):

©  large uncertainties due to PDFs;
©  large NLO QCD corrections;

Points: CDF, 19.973% nb '
1072 = Solid: FONLL, 19.0*%4 nb

Dashes: MC@NLO, 17.2 nb

da/dpy(I/¥) BR(Hy~J/¥) BR(I/Y-pu) (nb/GeV)

O Otot IS dominated bpr ~ myg.

10—3 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
0 5 10 15 2

Pr(I/¥) (GeV)

®  Excellent agreement of the total cross-sections

oGnr = 1997535 b, o572 = 19.078 nb.

®  Large £50% theory uncertainty remains.
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Event generators and higher orders

®  Shower event generators and perturbative cal cul ations are complimentary:

©  Showers: universal, reaistic jets, automatic resummations, hadronization;

O PT: correct rates, correct description of hard emissions, improvable errors.

® Combining MC's and perturbative computations is a good (old) idea
® The most advanced implementation is called MC@NL O (based on HERWIG shower):

MC@NLO = MC (1 + as[NLO — MCaq,]) .

i (Gev) |
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Features:

outputs unweighted events;

no double counting;

total rates are accurate through NLO.
Processes included:
H,W,Z,VV,HZ,tt, bb and single top.

Alternative implementations would be most
useful
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NNLO

® NNLO calculations are desirable for:
O processes where good estimate of the uncertainty is required;
O processes with large NLO corrections.

® Thisleavesuswith H, W, Z, 2 jets, heavy quarks.

® What is known through NNLO for hadron colliders:
© W,Z,g9g — H, g9 — A,bb — H production; total cross-sections;
van Neerven, Matsuura, Kilgore, Harlander, Anastasiou, K.M., Ravindran, Smith
O W, Z,~* rapidity distribution;
Anastasiou, Dixon, K.M., Petriello
© gg — H,Z, W production, fully differential with spin correlations;
Anastasiou, K.M., Petriello

® Generalization to 2 — 2 processes (jets, heavy quarks) is highly non-trivial.
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NNLO: PDFs

® A consistent implementation of NNLO calculations requires NNLO PDFs and NNLO
evolution kernels.

® NNLO Altarelli-Parisi splitting kernels known. Vermaseren,Moch,Vogt
® NNLO PDFs extractions exist. MRST, Alekhin.
® Broad measure of PDFsfits reliability:

oMekbin oy — 0.114(1),  of (My) = 0.121(1).

NNLO effects increase the disagreement.
®  For hard processes at the LHC, PDF uncertainty is

5
7 ~5%, M ~100GeV, |Y]< 2.
o)

® For larger |Y

, In(1/x) terms may require resummations (BFKL, saturation)
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NNLO: Z and W production

Usethe Z, W production to measure L.

Partonic luminosities < rapidity of gauge bosons

NNLO results: scale stability and PDF sensitivity

do
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Anastasiou, Dixon, Petrigllo, K.M.
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NNLO: W™ production

® Theknowledge of rapidity distributions of Z, W bosonsis insufficient for deriving lepton
distributions because of spin correlations.

® Thefully differential NNLO QCD calculation for pp — e + v + X isnow available. Cuts
of theform (ATLAS, CMYS)

Cutl p9 >20GeV, [ne| < 2.5, Eniss > 20GeV
Cut2 pg >40GeV, |ne| < 2.5, Eniss > 40 GeV

LHC | AMMC@NLO) ZMCGNLO | A(NNLO) — ZNNLO

ONILO ONLO
Cutl 0.485 1.02 0.492 0.983
Cut2 0.133 1.03 0.155 1.21

® 1 — 2 percent NNLO effects for pimin > 20 — 30 GeV;

10 — 20 percent NNLO effects for p™™ > 40 — 50 GeV.

® For Cut2, MC@NLO gets the acceptance wrong since second hard emission isimportant.
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NNLO: Higgs boson signal at the LHC

® QCD effectsincrease the inclusive gg — H production cross-section by a factor two.
® For H — ~+, thefollowing cuts on the final photons are imposed (ATLAS,CMS):

o pV > 25GeV, p'P > 40 GeV, 12| < 2.5.
© Isolation cuts, €9. BT padr < 15 GeV, R = /602 + §¢2 < 0.4.

® Do the conclusions based on inclusive cal cul ations change when those cuts are imposed?

pp->yy+X
50 [~ T T
[ Ptl > 40 GeV  Pt2 > 25 GeV Vs = 14 TeV ]
FR =04, Et < 15 GeV mh/z < “w < 2 my - g 35 [ L— L ) L B L B B B =]
40— MRSTR001 pdfs _| ;g LHC 14 TeV
[ : E 3.0 |- 99— H —
i my = 165 GeV
o v < B [: i 1
e 30 R - 25 —— NLO+NNLL Grazzini et al. —]
Z‘ : ' : L= e PYTHIA reweighted to FEHIP E
ﬁ [ P ’VI 1“""'@' > B 20 [ =
5 20 SR }’?&?Oféé}:;:é? L. iy U MC@NLO reweighted to FEHIP ]
[ XX ’0’:’:""“60¢0$0 5 i ]
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Re-weighting MC@NLO and PYTHIA to double differential
distribution in Higgs p | and rapidity.
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Higgs coupling extractions

®  Analyses of Higgs coupling use relation

SM
o) L il
o(H) x Br(H — X) = —2L x —99-=

® Calculate and assign theoretical uncertainty to o' )! /TSN, extract Iy T x /T'sot; NeW
states in loops drop oui.

® Studiesassign +=20% uncertainty to o /T" for gg — H production mode.  Dihrssen et al.

[ = as(pr)?Crpr)? 1+ as(pr) X1 + ..
oM = ay ()2 Cr(pr)? [1 4 s () Y1 + -]

® Scaevariation correlated; large p,- variations cancel; A(o/T) = +5%.

®  Recent developments:
© N3LO soft+virtual correctionsto o, i Moch, Vermaseren, Vogt
© NS3LO correctionsto 'y Baikov, Chetyrkin
© Ao : £10% — +4%; AT : +5% — +2%.
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Conclusions

®  Good understanding of pQCD is an important pre-requisite for the successful LHC physics
program.
® Recent developmentsinclude
©  making showers more realistic (harder);
©  large-scale NL O computations;
© merging shower event generators and NLO computations;
©  emerging NNLO phenomenology.

®  From existing computations and comparison with data we should learn
O to appreciate uncertainties;
© to understand when popular techniques are applicable;
©  to choose “right” scales in perturbative predictions;
© to avoid rushy conclusions if something does not add up.
® There are plenty of challenges, room for new ideas and unorthodox approaches evenin Old

Physics. A significant progress that occurred in pQCD in the last few years will be very
useful once the LHC turns on.
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