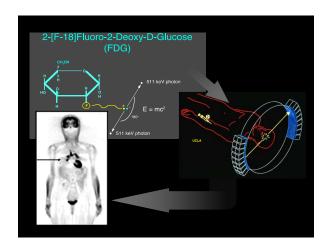
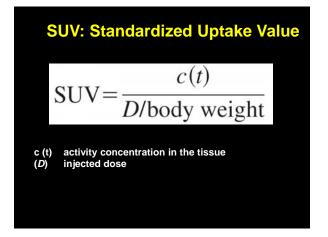
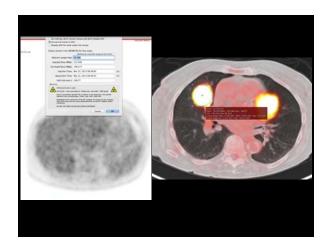
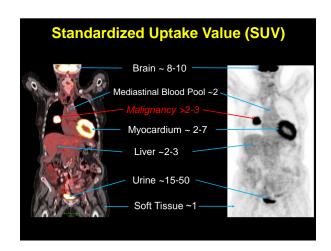
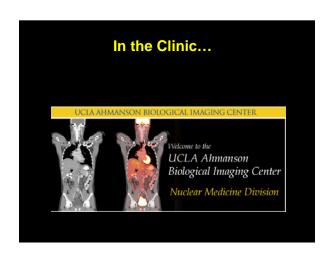

Overview


- What is PET/CT
- What to expect if you were a patient coming to our clinic
- Notes on Radiation exposure
- PET/CT for Lung Cancer
 - Staging
 - Surveillance
 - Treatment Monitoring









How to prepare for a PET/CT

- On the day of the scan take your regularly prescribed medications with water only.
- Do not eat or drink anything except water for 4 to 6 hours before the scan.
- · Refrain from heavy exercise for 12 hours prior to the
- Drink at least two glasses of water one hour before the

What to expect when you come to the Nuclear Medicine Clinic

- Your blood sugar will be checked
- An IV catheter will be placed
- FDG will be injected
- You might be asked to drink oral contrast
- You will rest comfortably for ~45 minutes You will receive IV contrast
- CT images will be obtained first (less than 1 minute)
- PET images will be obtained (about 25 minutes)

You should be in and out of the clinic in less than 2 hours.

Does the PET/CT Scan have **Side Effects?**

The PET component

- IV placement
- · Claustrophobia
- FDG has no side effects

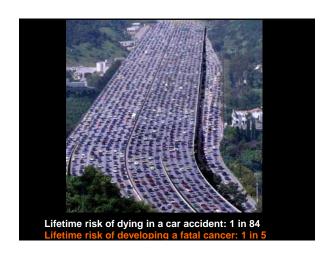
The CT Component

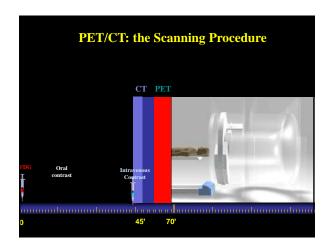
- IV contrast can cause an allergic response; cautious use in patients with kidney problems
- · Oral contrast can cause abdominal discomfort

Frequent Patient Concerns after PET/CT

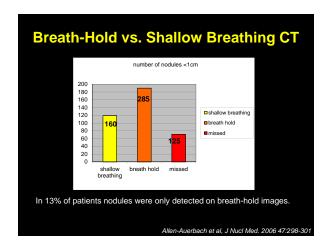
- Am I radioactive? No, not dangerous
- Can I be around children or pregnant women? Yes
- Can I eat anything I want? Yes (and you are encouraged to drink more than usual)

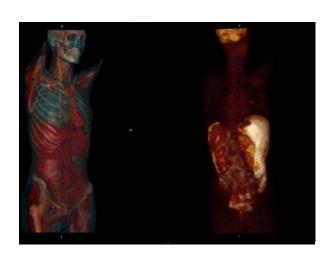
Radiation Exposure

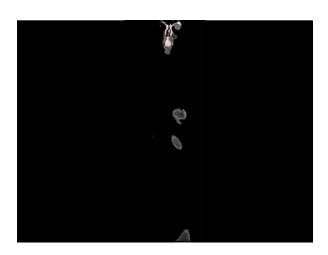


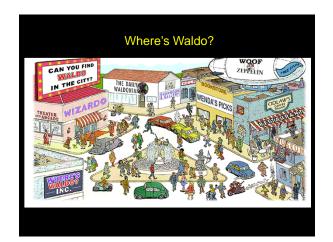

Relative Risk of developing a fatal cancer from Radiation (1PET/CT ~3 rem)

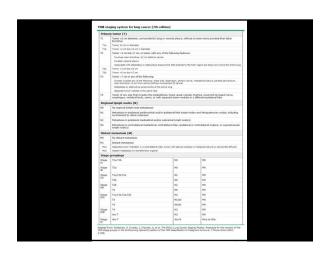
DOSE RISK 25 rem 1 in 100 10 rem 1 in 250 1 in 2500 1 rem 0.1 rem 1 in 25000

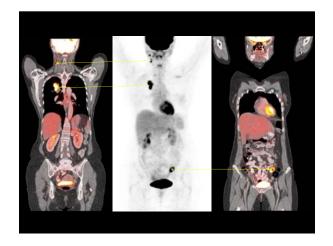

Annual dose limit for radiation workers: 5 rem

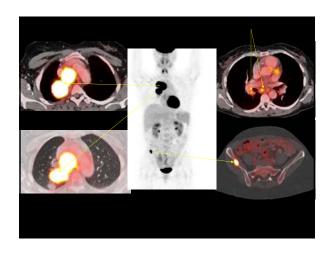

Annual background radiation: 0.72 rem

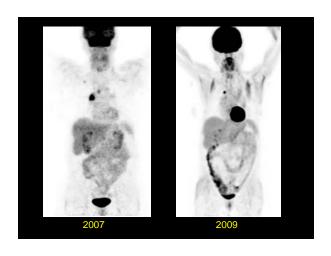


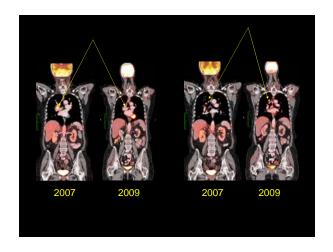


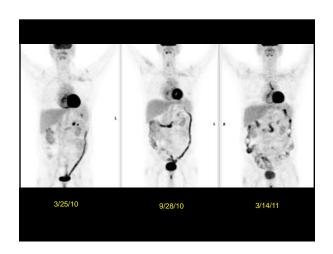


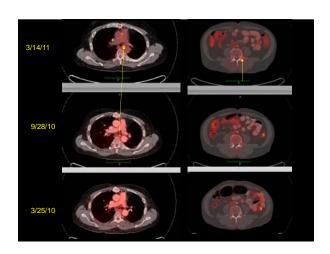




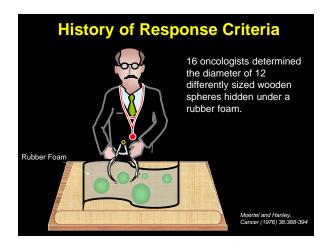

PET/CT for Staging of Lung Cancer

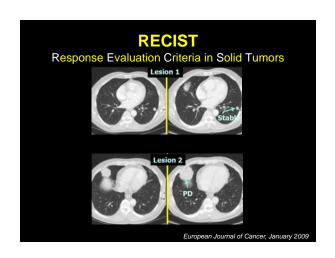


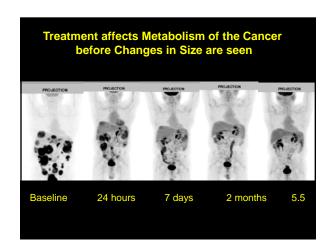


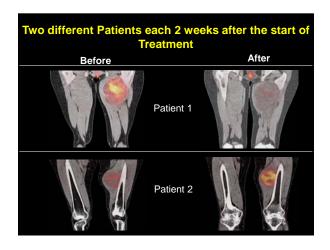


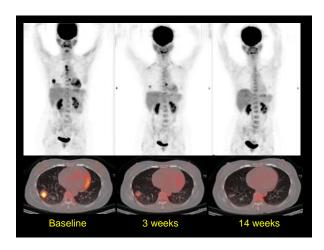
PET/CT for Detection of Recurrence

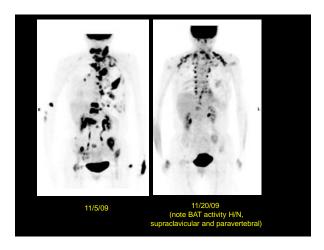


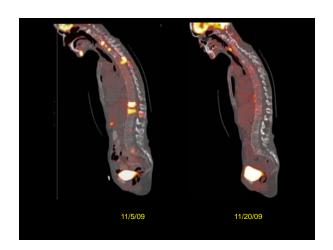


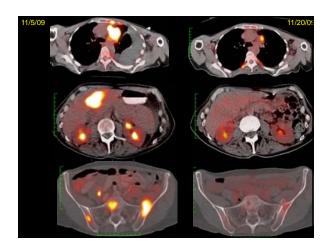

PET/CT for Treatment Monitoring


Why is Treatment Monitoring important?


- Some patients benefit from a particular therapy whereas others (despite what seems to look like the same type of cancer) do not.
- Current therapies can have a lot of side effects. Doctors want to know as early as possible whether a treatment is working.
- The definitive proof of whether a therapy is working is if a patient feels better and lives longer.
- Looking at the cancer with scans is generally used to measure the effects of a treatment earlier.
- Current response assessment is based primarily on changes in tumor size as measured by CT (RECIST).







NSCLC stage	Study	Year	No. of patients	Criteria for response on PET	Outcome measure	Design	Hazard ratio*	P
IIIA	Vansteenkiste et al. (51)	1998	15	50% decrease in SUV	Overall survival	Prospective	NR	0.03
1-01	MacManus et al. (21)	2003	73	CMR	Overall survival	Prospective	0.24	0.000
IIIB-IV	Weber et al. (56)	2003	57	20% decrease in SUV	Overall survival	Prospective	NR	0.005
118-111	Hellwig et al. (47)	2004	47	SUV < 4	Overall survival	Prospective	NB	< 0.001
IIIA	Hoekstra et al. (57)	2005	47	MR _{eu} < 0.13 µmol/mL/min	Overall survival	Prospective	0.33	0.000
	Pottgen et al. (38)	2006	50	50% decrease in SUV	Time to extracerebral progression	Retrospective	NR	< 0.005
10	Eschmann et al. (63)	2007	70	CMR or 80% decrease in SUV	Overall survival	Prospective	NR	0.006
IB-IV	de Geus-Oei et al. (55)	2007	51	MR _{ph} > 47% 35% decrease in SUV	Overall survival	Prospective	NR	0.017
IIIR-IV	Nahmias et al. (40)	2007	18	Decrease in SUV at wk 1-3	Overall survival	Prospective	NB	0.001
IIIA	Dooms et al. (48)	2008	30	Pathologic response in MLN and >60% decrease in SUV in primary tumor		Retrospective		0.002
IIIA-IIIB	Decoster et al. (58)	2008	31	OMR	Overall survival	Retrospective	NR	0.004
IB-IIIB	Tanvelyanon et al. (59)	2008	89	CMR or PMR	Overall survival	Prospective	NR.	NS
				n PET vs. those showing no r etabolism; MLN = mediastin		not significan	t.	

What is missing?

- A decrease in FDG uptake on a PET scan likely means that the cancer is responding to the treatment.
- There have been many PET studies, but the definition of a response and how the scans were done have been quite variable.
- As of now there is no agreement of when treatment monitoring should be performed or how much FDG uptake has to go down to call it a good response to treatment.
- Ongoing trials are trying to answer these questions.

Summary

- FDG PET/CT is a safe test
- PET/CT is useful for Staging of Lung Cancer
- PET/CT is useful for Detection of Recurrence
- PET/CT is useful for Treatment Monitoring

