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1
INTRODUCTION TO STATISTICAL 

METHODS FOR GEOGRAPHY

1.1 INTRODUCTION

The study of geographic phenomena often requires the application of statistical methods 
to produce new insight. The following questions serve to illustrate the broad variety of 
areas in which statistical analysis has been applied to geographic problems:

1. How do blood lead levels in children vary over space? Are the levels randomly scat-
tered throughout the city, or are there discernible geographic patterns? How are 
any patterns related to the characteristics of both housing and occupants? (Griffith 
et al. 1998).

2. Can the geographic diffusion of democracy that has occurred during the post-
World War II era be described as a steady process over time, or has it occurred in 
waves, or have there been ‘bursts’ of diffusion that have taken place during short 
time periods? (O’Loughlin et al. 1998).

3. What are the effects of global warming on the geographic distribution of species? 
For example, how will the type and spatial distribution of tree species change in 
particular areas? (MacDonald et al. 1998).

4. What are the effects of different marketing strategies on product performance? For 
example, are mass-marketing strategies effective, despite the more distant location 
of their markets? (Cornish 1997).

These studies all make use of statistical analysis to arrive at their conclusions. Methods of 
statistical analysis play a central role in the study of geographic problems – in a survey of 
articles that had a geographic focus, Slocum (1990) found that 53% made use of at least 
one mainstream quantitative method. The role of statistical analysis in geography may be 
placed within a broader context through its connection to the ‘scientific method’, which 
provides a more general framework for the study of geographic problems.
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Statistical Methods for Geography2

1.2 THE SCIENTIFIC METHOD

Social scientists as well as physical scientists often make use of the scientific method in their 
attempts to learn about the world. Figure 1.1 illustrates this method, from the initial 
attempts to organize ideas about a subject, to the building of a theory.

Suppose that we are interested in describing and explaining the spatial pattern of cancer 
cases in a metropolitan area. We might begin by plotting recent incidences on a map. Such 
descriptive exercises often lead to an unexpected result – in Figure 1.2, we perceive two 
fairly distinct clusters of cases. The surprising results generated through the process of 
description naturally lead us to the next step on the route to explanation by forcing us to 
generate hypotheses about the underlying process. A ‘rigorous’ definition of the term 
hypothesis is a proposition whose truth or falsity is capable of being tested. We can also think 

Figure 1.1 The scientific method
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of hypotheses as potential answers to our initial surprise. For example, one hypothesis in 
the present example might be that the pattern of cancer cases is related to the distance from 
local power plants.

To test the hypothesis, we need a model, which is a device for simplifying reality so that 
the relationship between variables may be more clearly studied. Whereas a hypothesis 
might suggest a relationship between two variables, a model is more detailed, in the sense 
that it suggests the nature of the relationship between the variables. In our example, we 
might speculate that the likelihood of cancer declines as the distance from a particular 
power plant increases. To test this model, we could plot cancer rates for a subarea versus 
the distance from the subarea centroid to the power plant. If we observe a downward slop-
ing curve, we have gathered some support for our hypothesis (see Figure 1.3).

Models are validated by comparing observed data with what is expected. If the model 
is a good representation of reality, there will be a close match between the two. If observa-
tions and expectations are far apart, we need to ‘go back to the drawing board’, and come 
up with a new hypothesis. It might be the case, for example, that the pattern in Figure 1.2 
is due simply to the fact that the population itself is clustered. If this is true, the spatial pat-
tern of cancer then becomes understandable; a similar rate throughout the population 
generates apparent cancer clusters because of the spatial distribution of the population.

Though models are often used to learn about particular situations, more often one also 
wishes to learn about the underlying process that led to it. We would like to be able to 
generalize from one study to statements about other situations. One reason for studying 
the spatial pattern of cancer cases is to determine whether there is a relationship between 
cancer rates and the distance to specific power plants; a more general objective is to learn 
about the relationship between cancer rates and the distance to any power plant. One way 
of making such generalizations is to accumulate a lot of evidence. If we were to repeat 
our analysis in many locations throughout a country, and if our findings were similar in 

Figure 1.3 Cancer rates versus distance from power plant
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Statistical Methods for Geography4

all cases, we would have uncovered an empirical generalization. In a strict sense, laws are 
sometimes defined as universal statements of unrestricted range – that is, the statement 
may be applied to any place, during any time period. In our example, we might not expect 
our generalization to have an unrestricted range, and we might want, for example, to 
confine our generalization or empirical law to power plants and cancer cases in the coun-
try of interest.

Einstein called theories ‘free creations of the human mind’. In the context of our dia-
gram, we may think of theories as collections of generalizations or laws. The collection is 
greater than the sum of its parts in the sense that it gives greater insight than that produced 
by the individual generalizations or laws alone. If, for example, we generate other empiri-
cal laws that relate cancer rates to other factors, such as diet, we begin to build a theory of 
the spatial variation in cancer rates.

Statistical methods occupy a central role in the scientific method, as portrayed in Figure 1.1, 
because they allow us to suggest and test hypotheses using models. In the following section, 
we will review some of the important types of statistical approaches in geography.

1.3 EXPLORATORY AND CONFIRMATORY APPROACHES IN 
GEOGRAPHY

The scientific method provides us with a structured approach to answering questions of 
interest. At the core of the method is the desire to form and test hypotheses. As we have 
seen, hypotheses may be thought of loosely as potential answers to questions. For instance, 
a map of snowfall may suggest the hypothesis that the distance away from a nearby lake 
may play an important role in the distribution of snowfall amounts.

Geographers use spatial analysis within the context of the scientific method in at least 
two distinct ways. Exploratory methods of analysis are used to suggest hypotheses; confirmatory 
methods are, as the name suggests, used to help confirm hypotheses. A method of visualiza-
tion or description that led to the discovery of clusters in Figure 1.2 would be an explor-
atory method, while a statistical method that confirmed that such an arrangement of points 
would have been unlikely to occur by chance would be a confirmatory method. In this 
book, we will focus primarily upon confirmatory methods.

We should note two important points here. First, confirmatory methods do not always 
confirm or refute hypotheses – the world is too complicated a place, and the methods often 
have important limitations that prevent such absolute confirmation and refutation. 
Nevertheless, they are important in structuring our thinking and in taking a rigorous and 
scientific approach to answering questions. Second, the use of exploratory methods over 
the past few years has been increasing rapidly. This has come about as a result of a combi-
nation of the availability of large databases and sophisticated software (including GIS), and 
a recognition that confirmatory statistical methods are appropriate in some situations and 
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not others. Throughout the book, we will keep the reader aware of these points by point-
ing out some of the limitations of confirmatory analysis.

1.4 PROBABILITY AND STATISTICS

1.4.1 Probability

Probability may be thought of as a measure of uncertainty, with the measure taking on a 
value ranging from zero to one. Experiments and processes often have many possible out-
comes, and the specific outcome is uncertain until it is observed. If we happen to know 
that a particular outcome will definitely not occur, that outcome has a probability of zero. 
At the other extreme, if we know that an outcome will occur, it is said to have a probabil-
ity of one. At these two extremes, there is no uncertainty regarding whether the outcome 
will occur. When we are maximally uncertain about the outcome of an event, its probabil-
ity is equal to 0.5 (i.e., 1/2); there is a ‘50–50’ chance that it will occur. A major focus of 
the study of probability is the study of the likelihood of various outcomes. How likely or 
probable is it that a town will be struck by two hurricanes in one season? What is the 
probability that a resident in a community who is 4 km from a new grocery store will 
become a new customer?

Probabilities may be derived in a variety of ways, ranging from subjective beliefs, to the 
use of relative frequencies of past events. When guessing whether a coin will come up 
heads when tossed, you may choose to believe that the probability is 0.5, or you could 
actually toss the coin many times to determine the proportion of times that the result is 
heads. If you tossed it 1000 times, and it came up heads 623 times, an estimate of the prob-
ability of heads that relied on relative frequency would be 623/1000 = 0.623.

The study of probability has its origins, at least to some degree, in questions of gambling 
that arose in the 17th century. In particular, correspondence between Pascal and Fermat in 
1654 concerned how to properly resolve a game of chance proposed by deMéré that had 
to be terminated before its conclusion. Suppose that the first player with three wins is 
declared the overall winner, and can lay claim to the prize of 64 pistoles (Pistole is the 
French word given at the time to a Spanish gold coin). How should the prize money be 
divided, given that the game had to be terminated, and given that one player had two wins, 
and the other had one win? DeMéré argued that the first player should receive 2/3 of the 
prize, because that person had two-thirds of the wins. Since 2/3 of 64 is 42.67, the first 
player would receive the remaining 21.33 pistoles.

Fermat wrote to Pascal with an alternative solution. Pascal agreed, and in a letter to Fermat 
suggested a more compact way of stating the solution. In particular, he argued that the two 
players should consider what could happen if they continued. With probability equal to ½, the 
player with only one win would win the next round, and they could then split the pot of 
money (each receiving 32 pistoles), since they would then have an equal chance of winning 
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the contest. With probability also equal to ½, the player with two wins would win the next 
round, and consequently the entire prize of 64 pistoles. Pascal argued that this player’s fair share 
was an average of these two, equally likely outcomes; his rightful share was therefore (32+64)/2 
= 48 (and not 42.67, as DeMéré had suggested). Pascal’s reasoning, which is based upon prob-
abilities and possible outcomes, forms the basis of modern probability.

What is the difference between probability and statistics? The field of probability provides 
the mathematical foundation for statistical applications. Year-long courses in probability 
and statistics are often subdivided into a first-semester course on probability, and then a 
second-semester course in statistics. Probability is discussed in more detail in Chapters 3 
and 4; in the next section, we describe in more detail the field of statistics.

1.4.2 Statistics

Historically, a ‘statist’ was a word for a politician, and statistics was ‘the branch of political 
science concerned with the collection, classification, and discussion of facts bearing on the 
condition of a state or community’ (Oxford English Dictionary, online at www.oed.com/
view/Entry/189322?) ). A good example of this usage that survives to the present is the 
term ‘vital statistics’ – used to describe the collection and tabulation of information on a 
region’s rates and numbers of births and deaths.

McGrew and Monroe (2000) define statistics as ‘the collection, classification, presenta-
tion, and analysis of numerical data’. Note that this definition contains both the historical 
function of collection, classification, and presentation, but also the analysis of data. Modern 
definitions have in common the objective of inferring from a sample of data the nature of 
a larger population from which the sample was drawn. Statistics is often subdivided into 
two general areas – descriptive statistics are used to summarize and present information and 
this is in keeping with the more historical definition of the field; inferential statistics, as the 
name implies, allow inference about a larger population from a sample.

1.4.3 Probability Paradoxes

The following paradoxes are described for both mild amusement and to show that, although 
the use of probability to answer questions can often lead to intuitive outcomes, careful con-
sideration is sometimes required to think through seemingly counterintuitive results.

Figure 1.4 One-dimensional space for random walk
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1.4.3.1 A spatial paradox: random movement in several dimensions   

This paradox is taken from Karlin and Taylor (1975). Consider a number line as in Figure 1.4, 
and suppose that our initial position is at the origin. We flip a single coin to govern our move-
ment; if it is heads, we move one step to the right, and if it is tails, we move one step to the 
left. If we flip the coin many times, it is certain that we will, at some point, return to the 
origin (implying that, at that point in time, the total number of heads is equal to the total 
number of tails). This should not be surprising – it accords with our intuition that the number 
of heads and tails exhibited by a fair coin should be roughly equal.

Now consider generalizing the experiment to two dimensions (Figure 1.5), where the 
outcome of two coin flips governs the movement on the two-dimensional grid. One coin 
governs movement in the vertical direction and the other governs movement in the hori-
zontal direction (for example, go one step up and one step to the right if both coins are 
heads, and one step down and one step to the left if both are tails). Again, it is possible to 
show that, although the path will certainly wander in the two-dimensional space, it is cer-
tain that there will be a return to the origin.

Finally, extend the procedure to three dimensions; each of three coins governs movement 
in one of the three dimensions. Movement starts at the origin and proceeds to lattice points 
within a cube. It now turns out that a return to the origin is no longer guaranteed! That is, 
there is a probability greater than zero that the random path will wander away from the 
origin and never return! This conclusion is also true for random walks in all dimensions 
greater than three. This is an example where the process of induction fails – what is true here 
in one and two dimensions cannot be generalized to higher dimensions. As the number of 
dimensions increases, the volume of space is increasing faster than the linear increase in the 
number of coins we have to govern our movement in the space. The example highlights the 

Figure 1.5 Two-dimensional space for random walk
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fact that, while our intuition is often good, it is not perfect. We need to rely not only on our 
intuition about probability, but on a firmer foundation of the theory of probability.

1.4.3.2 A non-spatial paradox: quality pie

This probability paradox is taken from Martin Gardner’s ‘Mathematical Games’ section of 
Scientific American (March 1976).

Consider an individual who goes into a diner each day to have a piece of pie. The diner 
always has apple and cherry pie, and it sometimes has blueberry pie. The quality of the pies 
is rated on a scale of one (lousy) to six (excellent), and the daily variability in the quality 
of each is summarized in Figure 1.6. For example, the cherry pie is either very good (it 
has a rating of five 49% of the time) or barely palatable (it has a rating of one 51% of the 
time). The person wishes to make a choice so as to maximize the proportion of time he 
or she ends up with the best pie. (With the exception of the blueberry pie, the person does 
not know the quality of the pie until after they have ordered!)

Consider first the decision that will be made on days where there is no blueberry pie. The 
possibilities are given in Table 1.1 (the best choice for the day is in bold).

The probabilities represent the proportion of times that particular combination of pie 
qualities will occur. If the person chooses apple pie, they will be getting the best pie the 
diner has to offer about 62% of the time (0.1078 + 0.1122 + 0.1122 + 0.2856 = 0.6178). 
If they choose cherry, they will get the best pie only 38% of the time (0.1078 + 0.2744 = 
0.3822). The choice is clear – go with the apple pie.

Now let’s examine what happens when the diner also happens to have blueberry pie. The 
possibilities are now given in Table 1.2. Here, apple is best about 33% of the time (0.1078 + 
0.1122 + 0.1122 = 0.3322), cherry is best about 38% of the time (0.1078 + 0.2744 = 0.3822), 

Figure 1.6 The relative frequency of pie quality

2

4
6

3

1

5

56%

22%
22%

100% 51%

49%
Apple Blueberry Cherry

01_Rogerson_4e_BAB1405B0092_Ch-01.indd   8 9/1/2014   11:02:00 AM



Introduction to Statistical Methods for Geography 9

and blueberry is best almost 29% of the time (it is only best on days when apple has a rating 
of two and cherry a rating of one – which occurs 28.56% of the time).

The best choice is now to go with the cherry pie. Thus, we have a rather bizarre sce-
nario. The optimal strategy should be for the individual to ask the waiter or waitress if they 
happen to have blueberry pie; if they don’t, the person should choose apple, and if they do, 
the person should choose cherry!

Recall that the objective here was to maximize the proportion of times that one would 
choose the best pie. A more common objective, employed in economic theory, is to 
maximize expected utility, which in this case would mean making a choice to maximize 
average pie quality. Apple has an average quality of (6 × 0.22) + (4 × 0.22) + (2 × 0.56) = 
3.32. Cherry has an average quality of (5 × 0.49) + (1 × 0.51) = 2.96, and blueberry has 
an average quality of 3. Using this objective, one should choose apple if they don’t have 
blueberry (as before); if they have blueberry, one should still choose apple, since it has the 
best average quality. The economist’s objective of maximizing expected utility leads to 
consistent results; other objectives can possibly lead to counterintuitive results.

As is pointed out in the original article, the example with pie is entertaining, but the 
example takes on more significance if one now imagines the information in Figure 1.6 
representing the effectiveness of three alternative drugs in treating an illness. Imagine that 

Table 1.1 Pie qualities and probabilities: apple and cherry

Apple Cherry Probability

6 5 .22 × .49 = .1078
6 1 .22 × .51 = .1122
4 5 .22 × .49 = .1078
4 1 .22 × .51 = .1122
2 5 .56 × .49 = .2744
2 1 .56 × .51 = .2856

Table 1.2 Pie qualities and probabilities: apple, blueberry, and cherry

Apple Blueberry Cherry Probability

6 3 5 .22 × .49 = .1078
6 3 1 .22 × .51 = .1122
4 3 5 .22 × .49 = .1078
4 3 1 .22 × .51 = .1122
2 3 5 .56 × .49 = .2744
2 3 1 .56 × .51 = .2856
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there are two drugs, A and C, and their effectiveness is summarized by the ‘pie’ charts on 
the left and right sides in Figure 1.6 (where for example the ‘6’ implies that drug A is found 
to be highly effective for 22% of all patients it is administered to). To obtain the best out-
come the most frequently, one should choose drug A. Now suppose that drug B enters the 
market (the middle pie chart in Figure 1.6); the result is that in a three-way comparison 
of the available drugs, most frequently it is drug C that is best.

1.4.4 Geographical Applications of Probability and Statistics

This section provides examples of geographical applications of probability and statistics. 
The first two are what may be described as traditional, common applications, of the type 
we will address later in the book. The second two are illustrative of the unique and novel 
ways in which probability and statistics can be used to address geographical questions.

1.4.4.1 Are housing prices lower near airports?

An important objective in urban geography is to understand the spatial variation in hous-
ing prices. Housing characteristics such as lot size, the number of bedrooms, and the age 
of the house have a clear influence on selling prices. Characteristics of the neighborhood 
can also influence prices; whether a house is situated next to an industrial park or a rec-
reational park is likely to have a clear effect on the price!

A nearby airport could potentially have a positive impact on prices, since accessibility is 
generally desirable. However, owning a home in the flight path of an airport may not nec-
essarily be positive when the noise level is taken into consideration. We could take a sample 
of homes near the airport in question; we could also find a sample of homes that are not 
near the airport with similar characteristics (e.g., similar number of bedrooms, floor space, 
lot size, etc.). Suppose we find that the homes near the airport had a mean selling price that 
was lower than the homes not located near the airport. We need to decide whether (a) the 
sample reflects a ‘true’ difference in housing prices, based upon location with respect to the 
airport, or (b) the difference between the two locations is not significant, and the observed 
sample difference in prices is the result of sampling fluctuations (keep in mind that our 
samples represent a small fraction of the homes that could potentially be sold; if we went 
out and collected more data, the mean difference in selling price would likely be different). 
This is a problem in inferential statistics, based upon a desire to make an inference from a 
sample. We will return to this problem later in the book, and we will discuss how a critical 
difference threshold may be set: if the observed difference is below this threshold, we settle 
on conclusion (b); if the difference is above the threshold, we decide on option (a) above.

1.4.4.2 Do two places differ in terms of air quality?   

Suppose we are interested in comparing the particulate matter in two cities. We collect 
daily data on PM10 (particles of 10 micrometers or less in size). Further suppose that we 
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collect five daily samples in city A and five in city B, and these are designed to estimate the 
‘true’ mean in each city. Table 1.3 presents the results.

The sample mean in city B is clearly higher than the mean in city A. But keep in mind 
that we have only taken a sample; there is certainly fluctuation from day to day, and so the 
‘true’ means could possibly be the same (that is, if we took a very large sample over a very 
large number of days, the means could be equal).

We should not necessarily immediately conclude that city B has a higher ‘true’ mean 
particulate count; our results could be due to sampling fluctuations. Instead, we need to 
weigh the observed difference in the sample means against the difference in sample means 
that we might expect from sampling variation alone (when the true means are equal). If 
the observed difference in sample means is small relative to the difference that might be 
expected even when the true means are equal, we will accept the possibility that the true 
means are equal. On the other hand, if the observed difference in sample means is larger 
than the differences we would expect from such sampling fluctuations, we will conclude 
that the two cities have different levels of particulate matter. Details of problems like this 
(including the difference thresholds that must be set to distinguish between accepting and 
rejecting the idea that the means are equal) are covered in Chapter 5, which deals with 
questions of statistical inference.

Table 1.3 Hypothetical PM10 readings (units are micrograms per cubic meter)

City A City B

40 45
38 41
52 59
35 34
26 25

Sample Mean: Sample Mean:

38.2 40.8

1.4.4.3 Buffon’s needle and migration distances

In the United States very little data are collected on the distances people move when they 
change their residential address. Yet this is a very basic measurement pertaining to a very 
important geographic process. Information is collected on the proportion of people 
changing their county of residence, and this may be used, together with concepts of prob-
ability, to estimate migration distances.

We begin with the work of Buffon, a 17th-century naturalist. Buffon was interested in 
many topics, ranging from subjects in botany to the strength of ships at sea. He was also 
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interested in probability, and embedded in a supplement to the 4th volume of his 24-volume 
treatise on natural history is the following question.

Suppose we have a set of many parallel lines, separated by a constant distance, s. Now toss 
a needle of length L onto the set of parallel lines (see Figure 1.7). What is the probability that 
the needle will cross a line? Clearly, this probability will be higher as the length of the needle 
increases, and as the distance between the parallel lines decreases. Buffon found that the prob-
ability (p) of a randomly tossed needle crossing the lines was p = 2L/(πs). Buffon’s needle was 
actually used at the time to estimate π; if a needle of known length is tossed many times onto 
a set of parallel lines separated by a known distance, one can calculate p as the ratio of the 
number of crossings to the number of tosses. The only remaining unknown in the equation 
is π. Beckmann (1971), for example, refers to a Captain Fox, who passed at least some of his 
time this way while recovering from wounds received in the US Civil War. Unfortunately, 

Figure 1.7 Buffon’s needle on a set of parallel lines
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the needle must be tossed a very large number of times to estimate π with any reasonable 
level of accuracy, and so such needle-tossing never developed into a popular pastime.
Laplace generalized this to the case of a square grid (see Figure 1.8). When the side of a square 
is equal to s (and L<s), the probability of crossing a line is now equal to p = (4Ls – L2/(πs2)).

Let us now turn to the connection to migration distance estimation. Define the ends of 
the needle as the origin and destination of a migrant; we wish to estimate this unknown 
needle length (L), which corresponds to migration distance. We will make the assumption 
that counties are approximately square, and that they are all the same size (i.e., we assume 
that a county map will look roughly like a square grid). We can estimate the side of a 
square, s, as the square root of the average area of a county. We may also estimate p if we 
have data on the proportion of all migrants who change their county of residence when 
they relocate. Finally, we of course now know that the value of π is 3.14……. We can solve 
Laplace’s equation for the unknown migration distance:

L s s p= − −2 4 π

Using data from the United States, p = 0.35 and s = 33 miles, and therefore we estimate 
the average migration distance as approximately L = 10 miles. Despite the perception that 
long-distance moving is perhaps the norm, the majority of individuals move a short dis-
tance when they relocate.

Although the assumption of square counties of equal size is of course unreasonable, a 
primary objective of a model is to simplify reality. We do not expect or contend that coun-
ties are equal-sized squares. We could be more exact by performing an experiment where 
we toss needles of a given size down onto a map of US counties; by trying different needle 
sizes, we will eventually find one that gives us county-crossing probabilities equal to about 
p = 0.35. We do not evaluate this assumption in greater detail here, but it turns out that 
the assumption of square counties of equal size is relatively robust – the conclusion doesn’t 
change much when the assumption does not quite hold. Instead, such an assumption allows 
us to get a reasonable estimate of average migration distances.

1.4.4.4 Why is the traffic moving faster in the other lane?

Almost all would agree that traffic seems to always move faster in the other lane. There 
have been several statistical explanations for this. These explanations include:

(a) Redelmeier and Tibshirani (2000) created a simulation where two lanes had identi-
cal characteristics, in terms of the number of vehicles and their average speed. The 
only difference in the two lanes was the initial spacing between vehicles. In the sim-
ulation, the hypothetical vehicles would accelerate when traveling slowly, and would 
decelerate when approaching too closely to the vehicle in front of them. Not sur-
prisingly, while moving quickly, vehicles were relatively far from one another; while 
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moving slowly, they were closer together. Since the average speed in each lane was 
the same, and the number of cars in each lane was identical, each vehicle was passed 
by the same number of vehicles it had passed. However, the number of one-second 
time intervals during which a vehicle was passed was greater than the number of 
one-second intervals during which the vehicle was passing another vehicle. Thus, 
more time is spent being passed by other vehicles than is spent in passing vehicles 
(fast cars are spread out, and they are the ones overtaking you … you are passing the 
slow cars, which are bunched up, so that it doesn’t take long to pass them).

(b) Bostrom (2001) has, on the surface, a simpler answer to the question – cars in the 
other lane are moving faster! If cars in the fast lane are more spread out, the den-
sity of cars will be greatest in the slow lane. Now if you randomly choose a car at 
any time, there is a relatively high probability it will be from the slow lane, since 
that is where the density of cars is highest. So, at any given time, most drivers are 
in fact in the slow lane, and cars in the other lane are in fact moving faster.

(c) Dawson and Riggs (2004) note that if you are traveling at just under or just over 
the speed limit, and if you accurately observe the speeds of the vehicles passing 
you as well as the speed of the vehicles you are passing, there will be a misper-
ception of the true average speed. In particular, drivers traveling at just under the 
average speed will perceive traffic to be going faster than it really is, while drivers 
traveling at just over the average speed will perceive traffic to be slower than it 
really is. The reason has to do with the selection of vehicles whose speeds are 
being observed – this sample will be biased in the sense that it will include many 
of the very fast and very slow vehicles, but not many of the vehicles going at your 
own speed. Although Dawson and Riggs do not mention this, if the distribution 
of speeds is skewed such that more than half of the vehicles are going slower than 
the mean speed (a likely assumption), then more than half of the vehicles will 
perceive traffic to be faster than it really is.

1.5 DESCRIPTIVE AND INFERENTIAL METHODS

A key characteristic of geographic data that brings about the need for statistical analysis 
is that they may often be regarded as a sample from a larger population. Descriptive sta-
tistical analysis refers to the use of particular methods that are used to describe and sum-
marize the characteristics of the sample, while inferential statistical analysis refers to the 
methods that are used to infer something about the population from the sample. 
Descriptive methods fall within the class of exploratory techniques, while inferential 
statistics lie within the class of confirmatory methods. Descriptive summaries of data 
may be either visual (e.g., in the form of graphs and maps), or numerical; the mean and 
median are examples of the latter.
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To begin to better understand the nature of inferential statistics, suppose you are handed 
a coin, and you are asked to determine whether it is a ‘fair’ one (that is, the likelihood of 
a ‘head’ is the same as the likelihood of a ‘tail’). One natural way to gather some informa-
tion would be to flip the coin a number of times. Suppose you flip the coin ten times, and 
you observe heads eight times. An example of a descriptive statistic is the observed propor-
tion of heads – in this case 8/10 = 0.8. We enter the realm of inferential statistics when we 
attempt to pass judgment on whether the coin is ‘fair’. We do this by inferring whether the 
coin is fair, on the basis of our sample results. Eight heads is more than the four, five, or six 
that might have made us more comfortable in a declaration that the coin is fair, but is eight 
heads really enough to say that the coin is not a fair one?

Table 1.4 Hypothetical outcome of 100 experiments of ten coin tosses each

No. of heads Frequency of occurrence

 0 0
 1 1
 2 4
 3 8
 4 15
 5 22
 6 30
 7 8
 8 8
 9 3
10 1

There are at least two ways to go about answering the question of whether the coin is a fair 
one. One is to ask what would happen if the coin was fair, and to simulate a series of exper-
iments identical to the one just carried out. That is, if we could repeatedly flip a known fair 
coin ten times, each time recording the number of heads, we would learn just how unusual 
a total of eight heads actually was. If eight heads comes up quite frequently with the fair 
coin, we will judge our original coin to be fair. On the other hand, if eight heads is an 
extremely rare event for a fair coin, we will conclude that our original coin is not fair.

To pursue this idea, suppose you arrange to carry out such an experiment 100 times. 
For example, one might have 100 students in a large class each flip coins that are known 
to be fair ten times. Upon pooling together the results, suppose you find the results shown 
in Table 1.4. We see that eight heads occurred 8% of the time.
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We still need a guideline to tell us whether our observed outcome of eight heads should 
lead us to the conclusion that the coin is (or is not) fair. The usual guideline is to ask how 
likely a result equal to or more extreme than the observed one is, if our initial, baseline 
hypothesis that we possess a fair coin (called the null hypothesis) is true. A common practice 
is to not rule out the null hypothesis if the likelihood of a result at least as extreme as the one 
we observed is more than 5%. Here we would not rule out the null hypothesis of a fair coin 
if our experiment showed that eight or more heads occurred more than 5% of the time.

Alternatively, we wish to reject the null hypothesis that our original coin is a fair one if 
the results of our experiment indicate that eight or more heads out of ten is an uncommon 
event for fair coins. If fair coins give rise to eight or more heads less than 5% of the time, 
we decide to reject the null hypothesis and conclude that our coin is not fair.

In the example above, eight or more heads occurred 12 times out of 100, when a fair 
coin was flipped ten times. The fact that events as extreme, or more extreme than the one 
we observed, will happen 12% of the time with a fair coin leads us to accept the inference 
that our original coin is a fair one. Had we observed nine heads with our original coin, 
we would have judged it to be unfair, since events as rare or more rare than this (namely 
where the number of heads is equal to 9 or 10) occurred only four times in the 100 trials 
of a fair coin. Note, too, that our observed result does not prove that the coin is unbiased. 
It still could be unfair; there is, however, insufficient evidence to support the allegation.

The approach just described is an example of the Monte Carlo method, and several exam-
ples of its use are given in Chapter 10. A second way to answer the inferential problem is 
to make use of the fact that this is a binomial experiment; in Chapter 3, we will learn how 
to use this approach.

1.6 THE NATURE OF STATISTICAL THINKING

The American Statistical Association (1993, cited in Mallows 1998) notes that statistical 
thinking is:

(a) the appreciation of uncertainty and data variability, and their impact on decision 
making, and

(b) the use of the scientific method in approaching issues and problems.

Mallows (1998), in his Presidential Address to the American Statistical Association, argues 
that statistical thinking is not simply common sense, nor is it simply the scientific method. 
Rather, he suggests that statisticians give more attention to questions that arise in the 
beginning of the study of a problem or issue. In particular, Mallows argues that statisticians 
should: (a) consider what data are relevant to the problem; (b) consider how relevant data 
can be obtained; (c) explain the basis for all assumptions; (d) lay out the arguments on all 
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sides of the issue; and only then (e) formulate questions that can be addressed by statistical 
methods. He feels that too often statisticians rely too heavily on (e), as well as the actual 
use of the methods that follow. His ideas serve to remind us that statistical analysis is a 
comprehensive exercise – it does not consist of simply ‘plugging numbers into a formula’ 
and reporting a result. Instead, it requires a comprehensive assessment of questions, alterna-
tive perspectives, data, assumptions, analysis, and interpretation.

Mallows defines statistical thinking as that which ‘concerns the relation of quantitative 
data to a real-world problem, often in the presence of uncertainty and variability. It 
attempts to make precise and explicit what the data has to say about the problem of inter-
est.’ Throughout the remainder of this book, we will learn how various methods are used 
and implemented, but we will also learn how to interpret the results and understand their 
limitations. Too often, students working on geographic problems have only a sense that 
they ‘need statistics’, and their response is to seek out an expert on statistics for advice on 
how to get started. The statistician’s first reply should be in the form of questions: (1) What 
is the problem? (2) What data do you have, and what are their limitations? (3) Is statistical 
analysis relevant, or is some other method of analysis more appropriate? It is important for 
the student to think first about these questions. Perhaps a simple description will suffice to 
achieve the objective. Perhaps some sophisticated inferential analysis will be necessary. But 
the subsequent course of events should be driven by the substantive problems and ques-
tions of interest, as constrained by data availability and quality. It should not be driven by 
a feeling that one needs to use statistical analysis simply for the sake of doing so.

1.7 SPECIAL CONSIDERATIONS FOR SPATIAL DATA

Fotheringham and Rogerson (1993) categorize and discuss a number of general issues and 
characteristics associated with problems in spatial analysis. It is essential that those working 
with spatial data have an awareness of these issues. Although all of their categories are rel-
evant to spatial statistical analysis, among those that are most pertinent are:

(a) the modifiable areal unit problem;

(b) boundary problems;

(c) spatial sampling procedures;

(d) spatial autocorrelation or spatial dependence.

1.7.1 The Modifiable Areal Unit Problem

The modifiable areal unit problem refers to the fact that results of statistical analyses are sensi-
tive to the zoning system used to report aggregated data. Many spatial datasets are aggregated 
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into zones, and the nature of the zonal configuration can influence interpretation quite 
strongly. Panel (a) of Figure 1.9 shows one zoning system and panel (b) another, where the 
solid lines represent regional boundaries. The arrows represent the migration flows of indi-
viduals, and they are identical in each panel. The tail of an arrow represents a migrant’s origin 
and the head represents a migrant’s destination. In panel (a), no interzonal migration is 
reported, while a regional interpretation of panel (b) would lead to the conclusion that there 
was a strong southward movement, since five migrations from one zone to another would be 
reported. More generally, many of the statistical tools described in the following chapters 
would produce different results had different zoning systems been in effect.

The modifiable areal unit problem has two different aspects that should be appreciated. The 
first is related to the placement of zonal boundaries, for zones or subregions of a given size. If 
we were measuring mobility rates, we could overlay a grid of square cells on the study area. 
There are many different ways that the grid could be placed, rotated, and oriented on the study 
area. The second aspect has to do with geographic scale. If we replace the grid with another 
grid of larger square cells, the results of the analysis would be different. Migrants, for example, 
are less likely to cross cell boundaries in the larger grid than they are in the smaller grid.

As Fotheringham and Rogerson (1993) note, GIS technology now facilitates the analy-
sis of data using alternative zoning systems, and it should become more routine to examine 
the sensitivity of results to modifiable areal units.

1.7.2 Boundary Problems

Study areas are bounded, and it is important to recognize that events just outside the study 
area can affect those inside of it. If we are investigating the market areas of shopping malls 
in a county, it would be a mistake to neglect the influence of a large mall located just 
outside the county boundary. One solution is to create a buffer zone around the area of 
study to include features that affect analysis within the primary area of interest. An exam-
ple of the use of buffer zones in point pattern analysis is given in Chapter 10.

Figure 1.9 Two alternative zoning systems for migration data (note: arrows show origins and 
destinations of migrants)

(a) (b)
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Both the size and shape of areas can affect measurement and interpretation. There are a 
lot of migrants leaving Rhode Island each year, but this is partially due to the state’s small 
size – almost any move will be a move out of the state! Similarly, Tennessee experiences 
more out-migration than other states with the same land area in part because of its narrow 
rectangular shape. This is because individuals in Tennessee live, on average, closer to the 
border than do individuals in other states with the same area. A move of given length in 
some random direction is therefore more likely to take the Tennessean outside of the state.

1.7.3 Spatial Sampling Procedures

Statistical analysis is based upon sample data. Usually, one assumes that sample observations 
are taken randomly from some larger population of interest. If we are interested in sam-
pling point locations to collect data on vegetation or soil, for example, there are many ways 
to do this. One could choose x- and y-coordinates randomly; this is known as a simple 
random sample. Another alternative would be to choose a stratified spatial sample, making 
sure that we chose a predetermined number of observations from each of several subre-
gions, with simple random sampling within subregions. Alternative methods of sampling 
are discussed in more detail in Section 5.7.

1.7.4 Spatial Autocorrelation

Spatial autocorrelation refers to the fact that the value of a variable at one point in space 
is related to the value of that same variable in a nearby location. The travel behavior of 
residents in a household is likely to be related to the travel behavior of residents in nearby 
households, because both households have similar accessibility to other locations. Hence, 
observations of the two households are not likely to be independent, despite the require-
ment of statistical independence for standard statistical analysis. Spatial autocorrelation (or 
spatial dependence) can therefore have serious effects on statistical analyses, and hence can 
lead to misinterpretation. This is treated in more detail elsewhere in this book, including 
discussions in Chapters 5 and 10.

1.8 THE STRUCTURE OF THE BOOK

Chapter 2 covers methods of descriptive statistics – both visual and numerical approaches 
to describing data are covered. Chapters 3 and 4 provide the useful background on prob-
ability that facilitates understanding of inferential statistics. Inference about a population 
from a sample is carried out by first using the sample to make estimates of population 
characteristics. For example, a sample of individuals may be asked questions about their 
income; the sample mean provides an estimate of the unknown mean income of the entire 
population under study. Chapter 5 provides details on how these sample estimates can be 
used – to both construct confidence intervals that contain the true population value with 
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a desired probability, and to formally test hypotheses about the population values. The 
chapter also contains details on the nature of sampling and the choice of an appropriate 
sample size.

Chapter 5 also contains descriptions of hypothesis tests designed to determine whether 
two populations could conceivably have the same population characteristic. For example, 
the two-sample difference of means test focuses upon the possibility that two samples could 
come from populations that have identical means (this objective was illustrated in the exam-
ples in sections 1.4.4.1 and 1.4.4.2). Chapter 6 covers the method of analysis of variance, 
which extends these two-sample tests to the case of more than two samples. For example, 
data on travel behavior (e.g., distance traveled to a public facility, such as parks or libraries) 
may be available for five different geographic regions, and it may be of interest to test the 
hypothesis that the true mean distance traveled was the same in all regions. In Chapter 7, 
we begin our exploration of methods that focus upon the relationship between two or more 
variables. Chapter 7 introduces the methods of correlation, and Chapter 8 extends this 
introduction to the topic of simple linear regression, where one variable is hypothesized to 
depend linearly on another. Regression is the most widely used method of inferential sta-
tistics, and it is given additional coverage in Chapter 9, where the linear dependence of one 
variable on more than one other variable (i.e., multiple linear regression) is treated.

One of the basic questions geographers face is whether geographic data exhibit spatial 
patterns. This is important both in its own right (where, e.g., we may wonder whether 
crime locations are more geographically clustered than they were in the past), and in 
addressing the fundamental problem of spatial dependence in geographic data when car-
rying out statistical tests. With respect to the latter, inferential statistical tests almost always 
assume that data observations are independent; this, however, is often not the case when 
data are collected at geographic locations. Instead, data are often spatially dependent – the 
value of a variable at one location is likely to be similar to the value of the variable at a 
nearby location. Chapter 10 is devoted to methods and statistical tests designed to deter-
mine whether data exhibit spatial patterns. Chapter 11 returns to the topic of regression, 
focusing upon how to carry out analyses of the dependence of one variable on others, 
when such spatial dependence in the data is present.

Finally, it is often desirable to summarize large datasets containing many observations and 
large numbers of variables. For example, it is often difficult to know where to begin when 
using census data for many different subregions (e.g., census tracts) to summarize the nature 
of a geographic region, in part because there are so many variables and many different sub-
regions. Chapter 12 introduces factor analysis and cluster analysis as two approaches to 
summarizing large datasets. Factor analysis reduces the original number of variables to a 
smaller number of underlying dimensions or factors, and cluster analysis places the observa-
tions (i.e., the data for particular geographic subregions) into categories or clusters. The 
Epilogue contains some closing thoughts on new directions and applications.
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1.9 DATASETS

1.9.1 Introduction

Some of the exercises at the end of each chapter make reference to various datasets. These 
datasets are available at the website associated with this book. Clearly the exercises consti-
tute only a very small number of the many questions that could be asked, and the reader 
is encouraged to explore these datasets in more detail. The subsequent subsections describe 
these datasets.

1.9.2 Home Sales in Milwaukee, Wisconsin, USA in 2012

The City of Milwaukee (no date) maintains a database of home sales that is available to the 
public. It is accessible at http://assessments.milwaukee.gov/mainsales.html .

The dataset used here is an Excel file consisting of the 1,449 home sales reported in 
calendar year 2012. Each record, or row of the dataset, consists of the following column 
variables: 

 1. number of stories; 

 2. size of house, as measured by the number of finished square feet;

 3. number of bedrooms;

 4. number of bathrooms;

 5. size of lot (in square feet);

 6. date of sale;

 7. sales price, in dollars;

 8.  political district (based on alderman district and represented by a number from 1 
to 15;

 9. age of house;

10. whether there is a full basement – 1 = yes; 0 = no;

11. whether there is an attic – 1 = yes; 0 = no;

12. whether there is a fireplace – 1 = yes; 0 = no;

13. whether the house is air-conditioned – 1 = yes; 0 = no;

14. whether the house has a garage – 1 = yes; 0 = no;

15. x-coordinate of house location;

16. y-coordinate of house location.
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The complete online dataset covers the period from 2002 to present (2013), and includes 
information on a small number of other variables as well (taxkey number, address, style, 
type of exterior, number of half and full baths, and neighborhood number).

1.9.3 Singapore Census Data for 2010

This dataset consists of various census variables for the 36 planning areas of Singapore. The 
variables, which constitute the columns of the dataset, are as follows:

Name of planning area, total population, male population, female population, population 
over 65; Chinese population, Malay population, Indian population; population 5 and over, 
percent 5 and over who speak English, students 5 and over, students 5 and over with a long 
commute; population 15 and over, population over 15 who are in the labor force, unem-
ployment rate, illiteracy rate among those 15 and over, population in various religious 
categories: not religious, Buddhist, Tao, Islam, Hindu, Sikh, Catholic, Other Christian, 
percent of those over 15 with no schooling, percent with university degree; population of 
working persons with monthly income under 1,000 Singapore dollars, population of 
working persons with monthly income over 8,000 Singapore dollars, fraction of those in 
the labor force with a long commute; total households, and percentage of householders 
who rent.

Many more variables are accessible at http://www.singstat.gov.sg/statistics/browse_by_
theme/geospatial.html .

1.9.4 Hypothetical UK Housing Prices

This file is an SPSS formatted file consisting of 500 cases (rows) and 16 variables (col-
umns).  Each row represents a hypothetical home that has been sold, and  variables consist 
of a mixture of regional location, housing attributes, and census attributes for the subregion 
that the house is located in.

1.9.4.1 Definition of variables

 1. region a number between one and six, representing 
the region in which the house is located.

 2. price price the house sold for in £.
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 3. garage a dummy variable which takes the value:

1 if a garage is present

0 if a garage is not present.

 4. bedrooms number of bedrooms.

 5. bathrooms number of bathrooms.

 6. datebuilt year in which house was built.

 7. floor area floor area of the house in square meters.

 8. detached a dummy variable which takes the value:

1 if the house is detached

0 othewise.

 9. fireplace a dummy variable which takes the value:

1 if a fireplace is present

0 if a fireplace is not present.
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10. age<15 percentage of subregional population age less 
than 15.

11. age65+ percentage of subregional population age 65 
and over.

12. nonwhite percentage of subregional population non-
white.

13. unemploy percentage of subregional population 
unemployed.

14. ownocc percentage of subregional housing that is 
owner-occupied.

15. carsperhh average number of cars per household in 
subregion.

16. manuf percentage of subregional population 
employed in manufacturing.

1.9.5 1990 Census Data for Erie County, New York

A 235 × 5 data table was constructed by collecting (from the 1990 US Census) and deriv-
ing the following information for the 235 census tracts in Erie County, New York (variable 
labels are in parentheses):
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(a) Median household income (medhsinc).

(b) Percentage of households headed by females (femaleh).

(c) Percentage of high-school graduates who have a professional degree (educ).

(d) Percentage of housing occupied by owner (tenure).

(e) Percentage of residents who moved into their present dwelling before 1959 (lres).
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