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Preface

Future advanced architectures, such as embedded systems, having a greater 
complexity and new quality requirements, will need a more precise specification and 
better control of their design process. In order to acquire the corresponding 
fundamental knowledge, it is essential to rely upon approaches based on the use of 
adequate system models. In particular, such approaches need to acquire a deep 
understanding of the system, including its local behaviors and its communications, 
based on a well-defined representation of the designed architecture. This 
representation should be used as early as possible to analyze and validate the design. 
The goal of this volume is to present a family of formal specification models, based 
on Petri nets and extensions of Petri nets, because they are defined by simple and 
clear semantics, allow easy modeling of system key mechanisms, and are supported 
by strong analysis methods and tools. Furthermore, this set of models can be used 
for all design aspects, i.e. to specify functional behaviors, and to include temporal or 
stochastic requirements. 

The main results related to this approach are given in this volume, in two parts, 
one presenting the fundamental models, and the other being dedicated to verification 
and applications. We have tried to highlight the important characteristics and the 
main properties of these models, and to show how they lead to the emergence of a 
full design methodology, which is both complete, in terms of all possible functional 
and other analysis, and integrated, because the same basic semantics are used for the 
full design support. We think that this volume should greatly help any designer to 
build the new forthcoming generation of distributed systems. 

Lastly, I would like to thank all the authors who contributed to this book, for 
their expertise, their seriousness, their technical inputs, and for the great job they 
have done. 

Michel DIAZ



This page intentionally left blank



Introduction  

New technologies in processors and networks allow system designers to 
conceive and build advanced and sophisticated parallel and distributed architectures, 
which need to integrate non-functional real time and stochastic constraints with 
functional distributed processing and communication. 

The global behavior of such systems depends first on the local activities and 
data, but also on the messages sent and received by the various interconnected sub-
systems. As a matter of fact, understanding, expressing, specifying and validating 
such global behaviors proves to be a problem of very high complexity, leading to 
many design and implementation difficulties and bugs. For example, when 
considering n connected processors, they can run, at a given instant in time, using  2 
x 2,  3 x 3 communications, etc., or a full communication, in which all n processors 
interact. The sum of the resulting combinations, of the order of 2n, shows the 
complexity of the resulting conceptual problems, and explains in particular the 
increasing difficulty obtained when passing from an interconnection of a few 
processors to an interconnection of a large number of processors: when the number 
of processors varies from 2 to 10, the difficulty coefficient goes from 4 to about 
1,000.

It should then be clearly understood that designing such distributed architectures 
leads to a very complex conceptual task, which has to be based on a well-defined 
methodology to be able to manage all system requirements and behaviors. 

Design and specification

The design process starts by giving the different functions and agents which are 
required, and the way they are structured; second, the designers define the behaviors 
of the various processes and entities, and the way they communicate; then, if they 
want to analyze the correctness of the design as soon as possible, an adequate 
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approach is needed to represent, in an explicit way, the (full) system global 
behavior, in particular to be able to check potential unanticipated sub-behaviors. 

To check the design correctness, it is essential to use a precise model of all 
critical mechanisms, functions, sub-systems, etc., and then, whenever possible, to 
use a formal model, to define a mathematical representation of the system. Checking 
the correctness validation of the design at this step is then conducted by checking 
the behavior of this system model.

Note that, after a given adequate sequence of more or less formal validation steps 
based on models, the system will be defined as ‘fully designed’ and will be 
implemented using adequate tools and languages.

Formal approaches have been used for many years for the verification of 
communication protocols. Two principal approaches have been used., i.e. basic 
formal models, such as automata, Petri nets, process algebras, etc., and formal 
description techniques for protocols, such as Estelle, LOTOS, SDL, etc.

This volume proposes and develops a design and validation methodology that 
relies on the use of a family of basic formal models that are rather easy to 
understand, and able to:

– describe the semantics of all basic building mechanisms;
– clearly specify the interconnection and communication semantics;
– unambiguously describe the resulting behaviors;
– validate the system during the first phases of its design by using support tools.

In general, basic non-language oriented graphical models, that do not include 
language-specific operators and statements, lead to the simplest solutions for 
representing basic mechanisms in a very abstract and integrated way.  

For this reason too, this volume selected a basic, language-independent set of 
models to represent and manipulate the fundamental concepts of communicating 
architectures.

Selecting a model

Several models exist, and each model has particular characteristics, more or less 
relevant for a specific design. Consequently, the choice of the right model depends 
on the designed system and on the properties to be analyzed, as the model must be 
able to describe the design, and also to allow the designer to check the validity of the 
required properties. 
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In general, the designer must have a good understanding of the fundamental 
semantics of the system, i.e. of its basic building mechanisms. Thus, for simple 
architectures, modeling will be able to represent in a faithful way all details of the 
system. However, for complex systems, it will generally be impossible, for economic 
reasons, to represent the details of all existing functions, and it will become 
necessary to select and validate certain building blocks, i.e those most likely to lead 
to erroneous behaviors.

Of all existing models, Petri nets (PN) and their extensions are of undeniable 
fundamental interest, because they: 

– provided the first modeling approaches for the semantics of concurrent 
systems, and were used to model the behaviors of the first parallel and distributed 
basic mechanisms; 

– define easy graphic support for the representation and the understanding of 
these basic mechanisms and behaviors; 

– prove to be, starting from state machines, an easy extension of previous 
approaches and handle, at the same time, the creation and the analysis of models; 

– express very simply the main basic concepts in communication, including 
waiting and synchronization, and furthermore take into account their temporal and 
stochastic parameters; 

– ensure, being unrelated to a particular implementation language, the 
independence of the specification with respect to its implementation. 

Furthermore, many validation methods have been developed, using a great 
number of theoretical results and support tools, able to manipulate functional, 
temporal, and stochastic behaviors. Finally, models based on PNs will help us to 
understand, define and analyze the behavior of these systems, in the preliminary and 
first steps of their design. 

For all these reasons, a set of Petri net models was selected in this book to 
represent and manipulate the fundamental concepts of communicating architectures.

Petri nets

PNs were introduced by A.C. Petri in 1962 to synchronize communicating 
automata, and were then extended to define a large set of models, with increasing 
complexity and capabilities.  

As will be seen, this family of PNs, starting from the simple traditional state 
machines, now allows system designers to handle in an integrated way the 
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functional (qualitative) and the non-functional (e.g. quantitative) temporal and 
stochastic capabilities of systems. 

Extensions of PNs were proposed according to two important axes:
a) for qualitative properties and behaviors, to use simpler and more compact 

models, by high level PNs, for handling generic behaviors (e.g. individual) and data, 
predicates and functions;

b) complementing this first axis, for quantitative properties and behaviors, to 
extend the previous models by integrating quantitative constructs and parameters 
related to temporal and stochastic requirements.

It is significant to note that all first and conceptual studies in these quantitative 
fields were carried out using PN-based models.

Functional qualitative properties

The first PN model, called the Condition–Event PN, was based on the use of 
Boolean values: true or false. It was generalized by Place–Transition PNs, now 
simply called PNs, which can use integers. This volume will begin with their 
presentation and validation. 

Non-functional quantitative properties  

The fundamental contributions of the second axis considers:  
– time PNs, or TPNs, used for systems whose behaviors depend explicitly on 

temporal values; 
– stochastic PNs, or SPNs, for which distributions are attached to the model, in 

particular for performance evaluation and reliability.

Families of PNs

When applied to the modeling of systems, it rapidly becomes apparent that these 
models do not have the same application power, in terms of:

– definition and description of the concepts for parallelism, distribution, and
synchronization;

– understanding and using the temporal and stochastic semantics;
– analyzing the possibly different mechanisms and behaviors, in very different 

contexts and applications.
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Figure 1 represents some of the principal models of this family. In this figure, an 
arrow means that the model at the end of the arrow was proposed after the model at 
the beginning of the arrow, and so gives the steps followed by the research to 
propose and develop these principal PN-based models. 

Place-transition
Petri nets
1962, 1969

Timed
Petri nets

1974

Stochastic
Petri nets
1976, 1980

Timed
stochastic
Petri nets

1984

High level colored
Petri nets
1970, 1981

Well-formed
timed

stochastic
Petri nets

1991

Timed
hierarchical

Petri nets
1990

Well-formed
colored

Petri nets
1990

Time
Stream

Petri nets
1993

Hierarchical
Time

Stream
Petri nets

1995

Time
Petri nets

1975

Figure 1. The main Petri net models 

Figure 2 gives a more conceptual view of these models, by clarifying their 
syntactic and semantic relationships. In this figure, three fields are respectively 
defined by: 

– a discrete state semantics, for non-temporal and non-stochastic nets, behaviors 
being represented by a finite graph of all model states;

– a semantics on continuous time, for extended behaviors based on dense time 
models;

– and stochastic semantics, for behaviors including distributions.



xxii      Petri Nets

Let us emphasize that these models have three models of reference, respectively 
PN, TPN, and SPN. Moreover, each model is a pure extension of a previous one, as 
it can by simplified to become a basic PN model. 

As seen in the figure, the models derived from the reference models: 
– lead to more compact models, i.e. are abbreviations, that do not increase the 

expressiveness of the model, but simplify the model and the system specification;
– or are more powerful in terms of expressive power, i.e. are able to describe 

mechanisms which could not be described by the unextended models (e.g. 
introducing time parameters, stochastic distributions, etc., for real-time or 
dependable systems).

Discrete Semantics
(discrete events )

Stochastic Semantics
(stochastic processes)

Place-transition
Petri nets

Predicate-transition,
Colored, etc. PNs

Stochastic
Colored, etc. PNs

Abbreviations with
equal semantics

Increasing the
modeling power

Extending the semantical
domains

Petri nets
with generalized firing:

inhibitor arcs,
reset arcs, etc.

Petri nets
with extended timing:

multiple intervals,
time streams, etc.

Petri nets with
generalized distributions:

immediate transitions,
phase-type, etc.

Stochastic
Petri nets

Time
Petri nets

Time Semantics
(continuous time)

Figure 2. Semantics domains of the Petri net-based models 

For example:
– PN led to PN with inhibitor arcs (to test the presence of zero token in one
place), PN with reset arcs, etc.;
– TPN led to TPN with streams to compose and synchronize independent 

behaviors with independent temporal constraints, etc.;
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– SPN led to SPN with immediate transitions in order to manage the case where
transition cannot be delayed, etc.

Consequently, many different models exist, of different power and for different 
fields of application, but they follow the same semantics basis, and will allow the 
designers to carry out coherent complementary analyses to validate the correct 
operation of the modeled (and designed) systems.

The semantics of these models and their properties were used to select, define, 
and study the most important members of the PN family in the two parts of this 
volume. 

Table of contents of the volume

Part 1 is dedicated to fundamental models and contains 11 chapters. Part 2 
addresses verification and applications, and contains the last 7 chapters. 

Part 1

Chapter 1 introduces Place–Transition PNs, more simply called Petri Nets (PNs). 
It gives their fundamental definitions, presents some basic models and clarifies their 
interest.  

Chapter 2 illustrates an application in a very important area: communication 
protocols; simple PN examples show at the same time the power of the model and 
the interest of the formal analysis.  

Chapter 3 first introduces the general properties that can be checked using PNs 
(blocking, reachability or accessibility, etc.) and the verification approach that uses 
the graph of the reachable (or accessible) states. The set of reachable (or accessible) 
states is the set of states that are reachable or accessible from a given initial state. 
Two optimization methods of analysis are then presented, one based on linear 
algebra techniques, and the other one exploiting the topological structure of the PNs.  

Chapter 4 deals with the decidability and complexity problems related to 
checking these general properties.  

Chapters 5 and 6 consider models and behaviors based on explicit values of time, 
and show how to model temporal mechanisms.  
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Chapter 5 presents the general model, Time PN or TPN, which associates a given 
interval (minimum, maximum) to each transition; this gives the first semantics for 
handling time and verifying temporal behaviors.  

Chapter 6 presents a general model for composing temporal behaviors and 
systems. It gives the semantics of temporal composition by a new model, Time 
Stream PN, for composing autonomous (temporal) flows. It emphasizes their 
interests and applications for systems having independent temporal constraints, 
which sometimes interact. 

Chapters 7 and 8 again consider PNs, i.e. non-temporal PN models, but define an 
abbreviation of a PN by a general model, which becomes able to represent, in a very 
compact way, a given set of similar parallel behaviors. The problems associated with 
this abbreviation are, on the one hand, to define a compact formalism and, on the 
other hand, to propose new validation techniques to handle this model, i.e. to avoid 
the obvious solution that consists of unfolding it into a very large PN.  

Chapter 7 presents the main PN abbreviations, while concentrating on Colored 
PNs, which is the most frequently used model.  

Chapter 8 gives one well-defined version of this formalism, Well-formed 
Colored PNs, which allows the development of efficient analysis techniques. 

Chapters 9, 10 and 11 introduce distributions, which take into account 
probabilistic properties of systems. They introduce stochastic PNs, or SPNs, and 
define their semantics in terms of stochastic processes, and, for some classes of 
models, their relationships with Markov chains. The principal methods of analyzing 
SPNs are then presented. Chapter 9 introduces stochastic PNs.  

Chapter 10 introduces well-formed SPNs by combining the formalisms presented 
in Chapter 7 (Well-formed Colored PNs) and Chapter 9. Modeling a multiprocessor 
architecture illustrates the expressivity of this formalism and its interest for 
performance evaluation. Chapter 11 develops a tensorial composition of classical 
and well-formed SPNs, showing that such a compositional approach reduces the 
complexity of the corresponding validation. 

Part 2 

The second part of this volume presents important advanced analysis techniques 
and finally gives some significant and illustrative case studies.

Chapters 12 and 13 address checking and verifying non-temporal behaviors. 
They present the main approaches that are based on building and manipulating the 
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(system) accessibility or reachability graph, i.e. the graph representing all possible 
behaviors of the model. Checking these properties, by algorithms applied to the 
accessibility graph, suffers from the problems of combinatorial explosion. The 
general problems to be solved to control such an increase in the number of states, as 
well as general solutions, are then given. Three specific techniques, based 
respectively on the unfolding of the colored PNs, on symmetries, and on partial 
orders, are then presented. 

Chapters 14 and 15 focus on the temporal validation of behaviors. Chapter 14 
analyzes the relationships existing between symmetry and temporal logic for the 
verification of properties that depend on the specificities of the system. Chapter 15 
introduces a parallel–serial hierarchy of temporal behaviors. This hierarchy 
simplifies the description of complex systems and is very well adapted for modeling 
complex multimedia and hypermedia objects, documents, and systems.  

Chapter 16 presents how to use the main relationships that exist between linear 
logic and Petri nets for specification and validation. Logical reasoning is constructed 
based on the behavior of PNs that does not need to produce the reachability graph. 
The interest of linear logic is illustrated by showing in particular how to handle 
symbolic temporal intervals (minimum, maximum). 

Chapters 17 and 18 present two important case studies that are illustrative while 
being manageable and easily understandable. Chapter 17 is devoted to the modeling 
and design of a multilayered, multimedia architecture that is able to guarantee 
temporal properties at the application level. Chapter 18 presents the application of
PN-based models to performance evaluation in the field of computer-integrated 
manufacturing systems.

Finally, a conclusion summarizes the contents of this volume.  
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Part 1 

Fundamental Models
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Chapter 1 

Basic Semantics

1.1. Automata or state machines 

1.1.1. Automata and state machine models 

The first models for numerical systems led to the definition of automata, or state 
machines. Automata or state machines are based on three fundamental assumptions, 
often implicitly given. 

The first two assumptions are as follows:  

– There exist, for the considered systems, a concept of global state, a set of these 
global states, and an explicit representation of these states (i.e. they can be precisely 
defined).  

– There exists a global initial state, and the behavior (operational behavior) of 
the system starts from this global initial state: 

- the behavior moves from the initial state by a set of transitions and goes to 
other global states, one per transition, called “next states”, 

- this behavior can be fully described by all the transitions that go from each 
global state to the next, one per transition, also called next states. 

Such a transition between two states will take place when a given enabling event 
occurs during the evolution of the system. 

Chapter written by Michel DIAZ.
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The description of the transition (of the corresponding system behavior) will be 
represented in the model by an arc starting from a “before the event” state and going 
to a next “following the arrival of this event” state. 

As a consequence, the full behavior of the model will be described by a global 
graph that represents the way the system operates, and defines all possible global 
states (represented by circles) and all possible transitions (represented by arcs) that 
exist between these states.  

Note that this (behavioral) model is built step by step, starting from a state called 
“the initial state”, a well-defined and specific state from which the behavior starts.  

The two preceding assumptions are complemented by a very important one 
needed to construct the graph, the indivisibility of the transition between two states: 

– when one event occurs in a given state and triggers a transition between two 
states, the transition has to be completed before another trigerring  event can occur.  

This means there is no state between the present state and the next state, as the 
system leaves the present state and reaches the next state indivisibly (the state 
reached when this transition occurs).  

In general, automata and sequential machines are related to their environment by 
inputs and outputs: the evolution of the model depends on the values of the inputs. 
In particular, the transitions between two states depend on the values of the inputs. 
In each state, a value of the inputs can trigger or enable the execution of one 
transition (each input being able to trigger or enable one transition). The outputs are 
produced either in a state or during a transition (i.e. a pair state/input or a pair 
arc/output).

As soon as one input in a given state enables a transition, the transition is 
executed: its execution starts from the present state and leads to the next state, and 
produces new values for the outputs.  

In this model, the assumption of indivisibility implies: 

– first, that the transition is executed when the significative input of the automata 
enables the transition; and  

– second, that the next state has to be reached before a new input enables a 
transition in the next state (of the automata or state machine).  
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Indivisibility with inputs and outputs means that a transition and its outputs (the 
actions coming from this transition) must be completed before reaching the next 
state, i.e. before the arrival of an event that can enable one of the transitions starting 
from the next state (the state newly reached). 

Thus, a global behavior of the model can be defined by considering, one after the 
other, the set of the inputs, transitions, and outputs that define the system execution. 

Furthermore, note that the assumption of indivisibility implies that when 
complex actions (e.g. related to many outputs or to computations) are associated 
with a transition, these actions must be completed before reaching, and thus 
defining, the next state.  

As a consequence, whatever the actions are, only two global states exist: 

– one before the transition, i.e. the starting global state — having for values all 
values existing at the instant before the transition is executed; 

– one after the execution of the transition, the next global state; it has for values 
the new values of the automata or state machine, i.e. the values either left unchanged 
by the transition, or modified by the complete execution of all actions associated 
with the transition. 

Of course, for these models to represent behaviors correctly, the real behavior of 
the modeled system must satisfy the assumption of indivisibility, i.e. the behavior of 
the system must fulfill the indivisibility assumption, to be coherent with the 
behavior of the model.  

Thus, modeling must represent the real indivisibility that exists in systems. 
Conversely, if some sub-behaviors are not indivisible, they cannot be represented by 
only one transition, and must be represented by a set of transitions, each of which 
represents the various indivisible sub-behaviors. 

1.1.2. Tasks and processes 

Of course, a program or a process can be represented by a state machine: 

– the initial state is given by the value of the program counter and of the 
program variables immediately after their initialization; 

– the execution of a transition is defined by the set of actions that is the execution 
of the program instruction or intructions associated with this transition; 
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– the execution leads to a next state that includes the new values of the program 
counter and of all program variables that have been modified by this transition. 

The assumption of indivisibility can make modeling difficult, and the model 
must be built carefully: modeled transitions must indeed be indivisible in the real 
system for the model to represent the real behavior.  

Again, any divisible behavior of the system must be broken up into indivisible 
sub-behaviors, and each of these indivisible sub-behaviors can be represented by a 
transition. For example, some instructions can be suspended, and their model may 
have to account for them, depending on the level of modeling, by breaking them up 
into indivisible subinstructions. 

1.1.3. Some models 

Let us consider the partial and full state machines given in Figure 1.1a, 
composed of circles for the states and of arcs for the transitions between the states. 

Each transition has only one starting state, and only one following state.  

Let us suppose that to mark the initial state at the initial instant a token is drawn 
in the state (note that sometimes the initial state is marked by an arrow entering it 
and coming from no other state). 

When a transition is executed, after being enabled by an event, the fact of going 
from the present state to the next state will be called executing or firing a transition, 
and this firing can be represented graphically by passing the token from the present 
(starting) state to the next (following) state. Note that,for a transition to be firable the 
token must be in the place which is at the “input of the transition”.  

A token always exists in the graph, and indicates the present state of the behavior 
(of the automata or of the state machine), and each state represents a global state of 
the model (and of the modeled behavior), i.e. a global sequential activity. 

In this figure, the notation “A; B” means that “A” is an input and that “B” is an 
ouput.  

From what has been said before, this means that when the token is in the input 
state of the transition, the arrival of the input event “A” causes the execution of the 
transition from the present state to the next state, and the firing of this transition 
produces the output action “B”. 
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e1; o1 ej; oj

with, from all states, ei)=
from s0, the initial state, e1…ej)=

s2

s1

Label:
P(X); F(X)
with
P(X) : Predicate,
X’ = F(X) : Action

……..

s0

s1 sj

0; 01
1; 11

0; 00
1; 10

1; 010; 01
1; 11

0; 00
1; 10

1; 01

a) State machines

b) Extended state machine
with X, a set of variables,

and for each transition,
P, a Predicate, and F, an Action

dd

Figure 1.1. Simple and extended state machines. a) State machines with:  (ei) = , and s0 
being the initial state; b) extended state machines with variables X (with indivisible 

semantics), Predicate: P(X); Action: X'  F(X) 

Figure 1.1a represents first the general case of a state having a set of next states, 
each one being enabled by an input ei, and the firing of the transition producing the 
output oi; second, it gives a very simple automaton, having three states, with one 
input (0 or 1), and two outputs, also binary. Note that in one state the transition 
enabled by (the input value) 0 is not given, i.e. it is not specified; the next state is the 
same state. 

Figure 1.1b models a complex transition of an extended state machine with a 
logical condition, e.g. a step of a program, having the following behavior:  

– If, when s1 is marked, predicate P(X) is true, then the transition is enabled, it 
can fire, and, when it fires, the program progresses towards its next state, s2. Firing 
produces the output action, here executing the procedure F(X), producing X’, the 
new set of program variables (the new data values). Let us note that P represents the 
enabling condition of evolution (of firing) and F gives the action of firing the 
transition for the program variables (new values). 
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1.2. State machines and Petri nets (PN) 

1.2.1. Composing state machines 

Let us consider an extension of the concept of transition, given in Figure 1.2. 
Such a transition, ti, will be denoted by a bar or by a rectangle and can have several 
input (ingoing) arcs and several output (outgoing) arcs at the same time: such a 
transition represents the basic transition of a PN.  

Note that the circles do not represent global states, but local state: they are 
called the places of the PN. The tokens in the places also represent local 
information. 

We will see that such a simple extension proves to be particularly powerful for 
expressing and analyzing parallel and distributed behaviors. 

The two main consequences of such a transition are: 

– several tokens can exist in the model at the same time (for instance, one per 
automaton in the simple case of composing basic automata);  

– there are no more explicit global states, and the global state of the system is 
now the set of all places and tokens (partial states): the set of all these places (and in 
particular the ones with tokens) constitutes the global state of the PN. 

Figure 1.2. From state machines to PN: a) arc of a state machine; b) arc of the simplest Petri 
net, a state machine; c) transition in a Petri net (as seen later, with weight 1) 

As a consequence, PNs will be graphically represented by a graph having two 
types of nodes — transitions and places — these nodes being connected between 
them by arcs from places to transitions and from transitions to places. Note that the 
arcs never connect two similar nodes. 

Places having arcs which connect them to a transition T, i.e having arcs 
connecting these places to T, will often simply be called the input places of T; 
similarly, the places connected to a transition by arcs going from T to these places 
will be called output places of the transition.  
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Input transitions and output transitions of a place are defined by the same 
method. 

The global state of a PN can be defined by the set of its places, some of them 
being marked, i.e. having one or, more generally, several tokens, and some others 
not being marked, i.e. having zero tokens. Each of these places becomes a 
component of the global state, and is a substate or a partial state of the global state of 
the system. 

The corresponding token distribution in all places is called the marking of a PN.

In other words, a PN is a model defined by: 

– a set of places, denoted graphically by circles; 

– a set of transitions, denoted graphically by bars or rectangles; 

– a set of arcs, denoted by arrows, joining places to transitions, and transitions to 
places; and 

– by a distribution of tokens in the places. 

Figure 1.3. PN having weights different from 1 on the arcs; firing is indivisible 

Places are denoted by pi or pi or p and transitions by ti or ti or T, according to the 
context. 

Furthermore, weights defined by integers can be associated with the arcs. 

By convention, when nothing is attached to the arc, an arc will have a weight of 
value 1; more generally, the weight of an arc can be an integer higher than 1, and its 
value will be explicitly indicated on the corresponding arc. 

Figure 1.3 represents such an extended basic PN, consisting of a transition ti and 
of five places: two input places, and three output places. 
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1.2.2. Composition and synchronization 

The behavior of a PN, i.e the transition between two markings, is defined when a 
transition can be executed, or fired, from one marking to a next marking, i.e. when it 
is enabled. 

The definition of firing a transition is as follows: PNs can go from a marking to a 
next arcing when all the input places of a transition contain a sufficient number of 
tokens, and, more precisely, when the number of tokens in each input place of a 
transition is greater than or equal to the weight of the arc joining this place to the 
transition: then the transition becomes firable. When it is fired, its firing will define 
the following marking of the PN. 

Transition firing thus depends on the presence of tokens.  

By definition, the first marking, corresponding to the initial state, will be defined 
by a distribution of the tokens in the different places of the PN at the initial instant 
(considered to be the start instant of the behavior): this defines the initial marking, a 
set of partial states defining the starting condition of the system. 

In the simplest case, a place will represent a presence or an absence, e.g. related 
to a condition of operation. For example, a place can mean that the system is 
“ready”, e.g. the place means the system is in the partial state “ready before sending 
a message”. Then the place will contain a token. 

In the general case, a place can represent the status of some compoments of 
systems, for example the existence of messages or resources: to describe one 
resource having two or n elements, this will be simply done by putting in the place 
“resource” not one, but two or n tokens. Using more than one token in a place, 
defined together with the weights on the arcs, makes the model able: 

– first, to define the enabling of a transition by the presence of n tokens in a 
place, and this value n has to be greater than the weight k of the arcs connected to 
this place; 

– second, to consume k resources, during a firing, by withdrawing from the input 
places of the transition the number of tokens corresponding to the weights of the 
input arcs of the transition; 

– third, to produce m resources during a firing, by adding to the output place of 
the transition the number of tokens corresponding to the weight of the output arcs of 
the transition; for instance, these tokens can specify several resources produced by 
the system at that moment. 
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In fact, handling an integer number of tokens proves to be easy. These values 
will bind the firing of the transitions at the same time to the numbers of tokens 
contained in the places and to the weights associated with the arcs.  

This capability leads to the first important PN model of the family, place–
transition PNs or PN. As a consequence, they are often called, and are called here, 
simply PNs. 

1.3. Concepts and definitions 

DEFINITION 1.1 A PN R is defined by the tuple {P, T, Pre, Post}, with: 
P = {p1, p2,…, pn} is a set of places, denoted as pi or pi or p, 
T = {t1,…, tn}, a set of transitions, with P T = Ø, denoted ti or ti or T, 
Pre: P T , an application of precedence, and 
Post: P  T , an application of incidence: 
Pre(pi, tj) contains the weights associated with the arcs going from pi to tj, and 
Post(pi, tj) contains the weights associated with the arcs going from tj to pi. 

DEFINITION 1.2 A marked PN is defined by a couple {R, M}, in which R is a PN and 
M: P is an application called a marking. 
m(R), more simply denoted by m when the PN is known, defines the marking of the 
PN and m(p) or mp indicates the marking of place p, i.e. the integer number of 
tokens contained in place p.  
The initial marking is denoted m0, and gives the initial value of the tokens in all 
places and specifies the global initial state of the system.  

Starting from an initial marking, PNs can progress and the corresponding 
behavior will be seen later. 

In Figure 1.3, ordering the places in the sequence pi1, pi12, po1, po2, po3 leads 
to Table 1.1. 

ti ti

Pre pi1 1 Post pi1 0 m0 2
pi2 5  pi2 0  5 
po1 0  po1 1  0 
po2 0  po2 2  0 
po3 0  po3 1  0 

Table 1.1. 
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1.3.1. Local states and enabling 

DEFINITION 1.3 For a marking m, a transition T is enabled, and for a PN is firable, if 
and only if:  pi  P, m(pi) Pre(pi, T). 

Figure 1.4. Non-firable transitions 

The condition of firing, related to Pre(pi, T), means that for all input places pi of 
T, i.e for all places with arcs leaving them and connected to T, the number of tokens 
in pi, m(pi), is greater than or equal to the weight of the arcs connecting pi to T, 
Pre(pi, T). 

This means that the conditions of progress are met at this instant: the number of 
tokens (the number of conditions) in the input places of the transition is, for all these 
places, greater than or equal to the weights associated with the arc input of the 
transition. 

The enabling of a transition T is denoted as: m[T > or m t Let us consider 
the PN given in Figure 1.4. In these two cases, transition ti is not firable, because the 
number of tokens in the places is not sufficient: 

– in pi1, m(pi1) < 1, and 

– in pi2, m(pi2) < 5. 

1.3.2. Definition of the semantics of parallelism 

a) The semantics problem

In automata, only one transition is firable at a given instant. As PNs have several 
tokens in the general case, there is no reason for having only one transition firable. 
Indeed, several transitions can be enabled, simultaneously, depending on the 
distribution of the tokens. 
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This leads to a fundamental question: when several transitions become firable in 
the same marking, therefore firable in parallel, how is the next state defined? 

In fact, this choice is called and defined the “semantics of parallelism”. 

b) The traditional choice: interleaving

Several possibilities exist for defining the next marking, for example: 

– all transitions are fired at the same time; 

– only one transition is fired at a time; 

– a subset of the enabled transitions is fired; 

– all possible subsets of the set of transitions are fired. 

It is clear that the first and the last cases are extremes, as:  

– in the first one, only one next marking is obtained;  

– in the last one, 2n  1 markings are obtained, one for each subset of the set (each 
transition, then 2 amongst n, then 3 amongst n, etc). 

Most importantly, in the second case, each enabled transition will lead to a 
marking (with n next markings for n enabled transitions). In fact, this second 
solution provides the usual choice taken for defining the semantics of parallelism: it 
is called “interleaving semantics”. In interleaving semantics, the next markings are 
obtained by considering all the possible firings of all transitions, one after the other, 
starting from the same state, and leads to n next markings when n transitions are 
enabled in parallel.  

This choice is also fully justified for PNs, as we will see later, because:  

 it leads to a small number of next markings, which simplifies the model of 
behavior; and 

 in spite of this simplification, it provides all possible behaviors. 

Nevertheless, such a choice still leads to an exponential number of markings for 
very parallel behaviors, as will be seen later.  

1.3.3. Firing transitions 

DEFINITION 1.4 In PNs, given a marking m(p), any enabled transition ti can be fired 
and its firing leads to a next marking m’, defined by:
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p, m’(p) = m(p) Pre(p, ti) + Post(p, ti).

The firing rule, related to m, Pre, and Post, means that the new marking m’(p) 
will be obtained from m(p), first by removing in the input places of T, the number of 
tokens indicated by the weights on the input arcs of ti, i.e. by “  Pre(p, ti)”, and 
second, by adding to each output place of ti the number of tokens corresponding to 
the weight indicated on the output arcs of ti (from ti to p), by “+ Post(p, ti)”. 

The firing of transition ti will be denoted as: m[ti > m’ or m ti m’

Figure 1.5. Firing a transition. a) Marking before firing ti; b) marking after firing ti

In Figure 1.5, m0(p) = (2 5 0 0 0), in transposed notation, marking being ordered 
as (pi1 pi2 po1 po2 po3). ti in Figure 1.5a is firable. Firing ti leads to Figure 1.5b. Thus, 
firing can be written as: m’(p) = m(p)  Pre(p, ti) + Post(p, ti), and m0–ti m’ is 
here (2 5 0 0 0)–ti  (1 0 1 2 1). 

Let us emphasize that this definition is able to express the most common basic 
synchronization mechanisms, such  as: 

– causality, which indicates that an event T always precedes another event T’ 
(i.e. the firing of T always precedes the firing of T’) and parallelism, which indicates 
that two transitions T and T’ are simultaneously enabled, thus parallel; 

– waiting, which comes from the absence of tokens or from having too few 
tokens in at least one input place of the transition (e.g. missing condition or  
inadequate number of resources); 

– increasing and reducing parallelism and/or resources, respectively by 
increasing and decreasing the number of tokens by a firing (note that increasing the 
number of tokens can lead to new independent behaviors); 
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non-determinism, where, when multiple possible firings exist, all of them are 
considered as independent of the other and fired; 

 and finally conflicts between transitions for certain markings, i.e. for markings 
having several enabled transitions and for which the firing of one of these (firable) 
transitions makes some of these transitions no longer firable. 

Lastly, in agreement with the basic assumption of automata, firings in PNs also 
rely on the fundamental assumption of indivisibility: firing one transition in a PN is 
executed in an indivisible way; there are two markings, the one before the firing and 
the one after the firing, having the values given in definition 1.4.

1.4. Accessibility graph or marking graph 

DEFINITION 1.5 The set of all accessible markings, the accessibility graph or the 
marking graph, A(R, m0) or A, is defined by the smallest set such that: 

m0  A and

if m  A and m[ti>m’, then m’  A 

A defines the set of all markings that are reachable by the model. Note that we 
need to define “the smallest set” because, if not, any extension that includes A would 
also fulfill the proposed definition. 

DEFINITION 1.6 The graph of accessible markings, G(R, m0) or G, or the 
accessibility graph, or the reachability graph, or the marking graph, is defined as 
the graph whose nodes are markings from A and whose arcs, labeled by the names 
of the transitions, are defined by the firings between markings: for m, m’ A,  there 
exists one arc m m’  G iff m[ti > m’. 

Therefore, if m[ti > m’, transition ti labels the arc of G which connects the 
marking m to its next marking m’.

As we will see in a more detailed and formal way in Chapter 3, G is obtained as 
follows: 

 for each m, starting from m0, find all enabled transitions ti;

 for each ti (starting from the same marking), compute its next marking m’;

 build the new node if it is different from those already obtained, and draw the  
corresponding arc between the present and next marking; 
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 continue as long as there are markings and transitions which have not been 
considered. 
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Figure 1.6. PN and its graph of marking: a) a simple example PN, where the places are 
named by integers; b) its reachability graph 
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Let us consider Figure 1.6, which gives a simple PN in a) and its marking graph 
in b), starting from the initial marking.  

In the graph, for simplification, markings are denoted by the numbers of the 
places having one token, bound by a plus sign; thus “1 ” and “ 2 3 4 ” mean that, 
in these two markings, respectively, only place 1 is marked and only places 2, 3 and 
4 are marked. 

This behavior and the node are as follows: 

 in “1 ” only transition t1 is firable: its firing  leads to “ 2 3 4 ”;

 starting from marking “ 2 3 4 ” three transitions are firable (t2, t3 and t4), 
leading respectively to the 3 (different) next states, etc. 

This example shows that the enabled transitions are fired one by one, from the 
same marking. Note that this graph is cyclic (the initial marking is reached again). 

Figure 1.7 shows that the reachability graph or marking graph can be infinite, 
because there is a sequence of firing such that the number of tokens in p2 increases 
indefinitely: the loop containing t1 followed by t2 can be fired an infinite number of 
times and thus the number of tokens in p2 is able to grow infinitely. 

Figure 1.7. PN with an infinite graph of markings 

It will be seen in the following chapters how these graphs constitute a very 
powerful way of analyzing PNs and consequently analyzing the systems represented 
by these models.

Before developing the properties of PNs and their analysis techniques, let us first 
present some fundamental models that describe the basic mechanisms existing in 
parallel and distributed systems. They will, on one hand, illustrate the interest, 
simplicity, concision, and power of the basic models, and on the other hand, show 
the elegance of these corresponding models and semantics. 
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1.5. Some basic models  

1.5.1. Co-begin (parallel start) and co-end (synchronized termination) 

Figure 1.8. Co-begin and co-end 

Figure 1.8a models the starting in parallel, at the same instant, of three actions, 
e.g. Pa, Pb and Pc. The model indicates that these actions are launched by a statement 
of the type “Co-begin(Pa, Pb, Pc) during the firing of transition t1: firing t1
corresponds to the execution of the order. Then, these actions are executed when the 
three places 2, 3 and 4, are marked. 

In the same way, Figure 1.8b defines a statement of the type “Co-end(Pa, Pb,
Pc)”. The firing  of t2 represents the event that occurs at the end of all these three 
actions, places 5, 6 and 7 respectively representing the end of actions Pa, Pb, Pc.

1.5.2. Synchronization by a signal 

Figure 1.9 models a mechanism of synchronization using a signal. Task Ta, by 
transition e, sends a signal S. Place S, when marked, indicates that the signal was 
sent by Ta and is not yet received by (the receiving task) Tb. 

When Ta executes the instruction of sending the signal, corresponding to firing 
transition e, place S and the place that is after the other output arc of e are marked. 
Then, when in Tb place AT is marked (Tb is in a state waiting for the signal), Tb can 
progress when S receives the token and fires r (because Ta sent the synchronization 
signal).  
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Figure 1.9. Synchronization by a signal 

On the other hand, if Tb arrives in place AT before sending S, then place AT 
(which is waiting for the signal) is marked but S is not: Tb will wait until the firing 
of e and the arrival of a token in place S. Let us note that the behavior is not 
symmetric, as Ta never waits, and can always fire e and send S. 

1.5.3. Mutual exclusion 

Let us model the mutual exclusion problem for shared resources, when these 
resources are requested by parallel actions located in several processes. First, Figure 
1.10 gives the required models of the (resource sharing) actions: 

 (a) represents the basic model, in which the action, for example a procedure, is 
defined by two events — its beginning, dp, and its end, fp — and a place, PRO, 
indicating that the action or procedure is being executed. 

– (b) gives a more general model (event driven), namely: a request of resources, 
rp, an allocation of the resources, Alloc, and a release, lp. This is because to run the 
action or the procedure it is now necessary to request the resources, by rp, and to 
wait for an authorization, before Alloc (in an unnamed place); when the 
authorization to use the resource is received, the computation using the resources 
starts and runs in PRO (PRO is marked); after the end of the action or procedure, the 
resources are released, by lp. 

Note that in case (b), place PRO can be seen as a contraction of the sequence “dp  
 PRO  fp” of case (a). Indeed, in case (b), dp and fp would be redundant, 

because they would be respectively located after Alloc and before lp (the 2 places in 
sequence have no  useful meaning). 
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Figure 1.10. The states of complex procedures 

The general and clear specification of mutual exclusion is given in Figure 1.11. 
The execution of the request and release primitives is indicated for Ta and Tb by the 
two  transitions r* and of l*, and firing Alloc-S* allows the processes to enter the 
critical section SC*. 

Note that the actions (e.g. program instructions) that exist in and after the critical 
section are not given, as they are independent of the mechanisms considered in this 
section. Indeed, these actions are not relevant for the mutual exclusion model (e.g. 
the updates in a database) and they do not influence the mechanism of mutual 
exclusion.  

Figure 1.11. Mutual exclusion for all tasks Ti 
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In Figure 1.11a the condition that specifies waiting, for the two tasks, is the 
existence of a token in the ExclMut place. This token, when present in the place, 
means that the resource is free, allows one task to fire its Alloc-S* transition, and 
thus to enter the critical section: the marking of the places SC* (SCa or SCb) 
indicates when a task is in the critical section. 

The ExclMut resource is released and made available again when the task leaves 
the critical section by the firing  of la-SC or lb-SC. Note that exclusion follows from 
the presence of one and only one token in place ExclMut. 

The general mechanism of mutual exclusion can be represented in a very elegant 
way by the PN of Figure 1.11b, with three main places, ExclMut, ATT and SC, and 
three transitions, Ri-SC (request for entering the critical section by task Ti), Alloci-
SC (for Ti to enter the critical section) and li-SC (the critical section is released by 
Ti).

Each task fires Ri-SC to request access to the critical section, and thus as many 
tokens as the number of waiting processes are in ATT (this number represents the 
number of processes that need the critical section and were not allowed to enter it). 

Moreover, these tokens are identical, which means that all of them will be treated 
in an equivalent way: we do not know specifically which process will be selected, or 
when Alloci-SC will fire, to enter the critical section: the choice is non-
deterministic. As the tokens are equivalent, one of them will be chosen and removed 
from place ATT when firing Alloci-SC.  

We will later consider a model to characterize each of the tokens (by coloring the 
tokens), for instance to identify each of the processes. 

1.5.4. The reader and writer mechanisms 

Readers and writers need to be synchronized for updating their common data. 
The corresponding fundamental mechanism is defined by the three following 
conditions: 

– the writing processes must operate in mutual exclusion, because their 
procedures can modify part of the data; 

– the reader and writer processes are also in mutual exclusion, because the 
readers must read a coherent set of data (in general, data cannot be modified in the 
middle of a reading);  
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– the readers can read in parallel, because the procedures of reading do not 
modify the data and thus can run freely (in parallel, without exclusion). 

Figure 1.12 gives a very subtle, integrated, and clever model of the reader and 
writer synchronization mechanism. 

In the figure, the marking of place RES with the integer value N, defines the 
number of readers that can read in parallel. Note that, by definition, the maximum 
number of possible parallel readers has to be given, but this value can be as large as 
necessary (but finite), which ensures the generality of the specification. 

A reader is authorized to read when Alloc-lec is fired, and this action removes a 
token from RES and adds it to LEC: Alloc-lec can be fired N times, which means 
that N readers can read in parallel. 

Then, when at least one reader reads, at least one token has been removed from 
RES, and the marking of RES is strictly lower than N: the transition authorizing the 
writings, Alloc-ecr, cannot be fired (because its firing  requires N tokens in RES, the 
arc joining this place to the transition has a weight of N), and this ensures the 
exclusion between the readers and the writers (when one or more readers are 
reading). 

Figure 1.12. Readers and writers 
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Now, if there is no reading in progress, then Alloc-ecr can be fired and the N
tokens are removed from RES, and RES = 0: transition Alloc-lec becomes unfirable, 
preventing the readers from reading and enforcing mutual exclusion between readers 
and writers; in the same way transition Alloc-ecr can no longer be fired as RES = 0, 
which ensures the mutual exclusion of the writers between themselves. 

Let us note that readers and writers make the requests when places DEL and 
DEE are marked, by the requests r-lec and r-ecr, then waiting for the authorizations 
in ATT-L and ATT-E.  

Finally, note that when (exclusive) writing is completed, firing l-ecr gives back 
N tokens in RES, which re-initialize the reader and writer mechanisms. 

Let us emphasize the compactness and the power of this model, which gives a 
very high level and very easily understood specification. 

As we saw earlier for  mutual exclusion, note that there is no priority given to the 
readers or to the writers (to places ATT-L and ATT-E). For example, if several 
processes of the two classes are waiting for authorization to enter the critical 
exclusion section at the same time, one of them will be selected in a non-
deterministic way (we will see in Chapter 7 that it is possible to express token 
identity and conditions using colored PNs). 

1.5.5. Bounded buffers 

A model of the bounded buffer is given in Figure 1.13. In its initial state, the 
producer produces its information (e.g. a message), when firing transition prod, and 
then can store the information in the buffer by firing transition deposit. This pair of 
actions can be repeated up to a maximum of N times, i.e. as long as there are tokens 
in place FREE: the marking of place FREE is then equal to the maximum length of 
the buffer, or the number of possible writings (N in the initial state). Then, consumer 
Tb has the authorization to read one piece of information (e.g. a message) as long as 
there is at least one token in OCC, i.e. as long as there is at least one piece of 
information stored in the buffer: consumption is allowed as long as place OCC has 
at least one token. When all information has been consumed, or at the initial state 
when there is no information stored, OCC = 0 and the action “consume” is 
impossible.  
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Figure 1.13. A bounded buffer 

1.6. Conclusion 

This chapter introduced place-transition PNs, the basic PN model. Fundamental 
and very elegant examples of how to model the specification of important 
synchronization and communication mechanisms were also given. 

Let us emphasize that proposing a specification model is extremely easy, but 
defining a “good” model, i.e. a simple, clear and easily understood model, able to 
specify in a very concise way the considered mechanism, often proves to be 
extremely difficult.  

Moreover, after having developed many models, it will be understood that the 
ones described in this chapter came after many proposals, and they show a powerful 
conceptualization of the corresponding mechanisms.  

In the next chapter, before formally studying the properties of PNs, we will 
consider some more illustrative examples in communications protocols, an 
important field of application. 
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Chapter 2 

Application of Petri Nets to
Communication Protocols

2.1. Basic models 

Communications protocols define the set of rules of various degrees of 
complexity that are needed to exchange messages between two or several 
communicating entities. Because of their importance in distributed systems, this 
chapter presents two basic reference examples for modeling and analyzing 
protocols.

Let us first consider a simple exchange of messages between two entities. In this
case, the global communication model must define, in a precise way:

– the behaviors of the two entities (e.g. programs) that exchange messages;  

– the exchange semantics between the sending and the reception of each 
message.

Figure 2.1, where “!” and “?” respectively denote the sending and the reception 
of a message, considers two processes, P1 and P2, that need to send and receive a 
message (or more simply a signal) E. This figure presents the two actions in the 
processes P1 and P2, and the three simplest solutions that can be used to model the 
exchange between the two entities, while passing information or not, i.e.:

– (a) transition merging, i.e. merging the sending and receiving transitions, this 
model being symmetric;

Chapter written by Michel DIAZ.
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– (b) using a shared place, now an asymmetric model; and 

– (c) acknowlegdement communication, also asymmetric. 

Process P1

!m ?m

Process P2Process P1

!m ?m

Process P2

P2P2
P1

P1
P2

P1 P2P2

b) Shared place

c) Request-
acknowledgement

a) Merging E

ackE

E
E

Figure 2.1. Interconnections of automata and PN, with process P1 and process P2: a) 
merging; b) shared place; c) request acknowlegdement 

Transition merging (Figure 2.1a) is a model that defines a strong synchronization 
mechanism between two entities, because the behaviors of each of these entities 
must be in the same (precise) state, i.e. waiting, before exchanging the message. 
Note that at the instant of this synchronization, a passage of values can take place, 
but it is not represented in the model given in Figure 2.1a; if we want to represent it, 
its model must be added explicitly (using the model given in Chapter 7). 

The communication model using a shared place (Figure 2.1b), explicitly shows 
two actions: the sending of a message by an entity and the reception of this message 
by the other. When the shared place E is marked, this means that the transmitted 
message has been sent, but has has not yet been received, i.e. is in transit in the 
medium or in the communication network. Also, note that the message can be 
without data content as in the given model, and the passage of values has to be 
added if needed. 
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Figure 2.2. A simple example of communication connection establishment 

Finally, request–acknowlegdement (Figure 2.1c) explicitely expresses that the 
transmitter, before continuing its processing, has to wait for an acknowlegdement 
(sent by the receiver) that acks the message reception. By extension, sending a 
signal or information has to be followed by the reception of an acknowledgment 
(again, the representation of data is not given).

2.2. A simple establishment of a connection 

In order to illustrate the interest of these models and of their properties, let us 
consider Figure 2.2, which represents a simple protocol for connection management:
process P1 on the  left can open a connection by sending message A1, and process 
P2 can also open the connection by sending message A2; nevertheless, only P1 has 
the right to close the connection, by sending message B. 

2.2.1. Different global semantics 

In order to analyze the behavior of these two simple architectures, we must 
connect P1 and P2 and define their interactions. This means that we must specify the 
semantics of the exchanges, i.e. the semantics which precisely and explicitly express 
the way a sending transition is connected to its corresponding receiving transition.

For simplification, let us assume in this example that the communication or 
interaction semantics are the same for all the send–receive transition couples (note 
that this assumption is not true in the most general case, in which each couple can 
have a particular semantics, but it is quite often used in real systems).

Now let us consider, for Figure 2.2, the three possibilities given in Figure 2.1, i.e. 
transition merging, shared place and request–acknowlegdement. Then, Figures 2.3a, 
2.3b and 2.3c present the corresponding three global models, i.e. the models 
obtained by replacing the three send–receive pairs in Figure 2.2 by the three models 
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in Figure 2.1. It clearly appears that the corresponding global PNs are different, so 
they may have different behaviors.

Figure 2.4a gives the reachability graph G of Figure 2.3a, and Figures 2.4b and 
2.4c give a subset of the G graph in Figures 2.3b and 2.3c. It is interesting to note 
that:

– G in Figure 2.4a behaves correctly;

– G in Figure 2.4b shows that places A1 and B can receive an arbitrarily large 
number of tokens, which are generated by the firable sequence, which can be 
infinite: !A1; !B; !A1; !B; !A1; !B; !A1; …. As all real implementations are finite, 
this behavior is likely to go beyond the allocated real resources, and it is said that it 
is not bounded, so incorrect; 

– G in Figure 2.4c contains a behavior that, by firing ( in any order) !A1 and 
!A2, leads to the marking in which the places AT1, A1, AT2 and A2 are marked. In 
this (global) marking, no transition is firable; in fact, the PN has now no firable 
transition, and thus the model (and the modeled system) is fully blocked, and said to 
be in deadlock. Of course, such a behavior is incorrect and has to be checked and 
avoided. 

2.2.2. Conclusion 

Two quite important conclusions can be derived from this example. 

1. For such a very simple protocol, according to the communication models, the 
resulting global analysis leads to three different graphs (and behaviors), that show 
very different properties, defined later as:  

(a) having a limited (bounded) number of tokens in each place (later called 
boundedness) and where all transitions can always be fired (later called liveness); 
when the maximum number of tokens in a place is  equal to 1, the PN will be said to 
be safe;

(b) being not bounded (able to have an unlimited number of tokens) and live;

(c) bounded and with some transitions no longer firable (called not live), and 
furthermore in this example transition can no longer be fired (called in deadlock).  

Let us emphasize that, as the last two cases can lead to potential and real 
implementation problems, the knowledge resulting from defining and analyzing the 
full behavior shows why there is interest in global models.
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Figure 2.3. The global PNs: PN1, PN2 and PN3 
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Figure 2.4. G  or subsets of G for PN1, PN2 and PN3 

2. As the global model, and thus the global behavior, is deduced from the entity 
models and from the interconnection model, it appears obvious that this global 
model must represent the true and real behavior of the system, in order to lead to an 
analysis that represents the reality. This underlines the interest of the approach and 
the need to use adequate models of the reality, as the global model must represent 
the real behavior of the considered systems.

2.3. The alternating bit protocol (ABP): model and verification 

Let us now consider a basic communication protocol, the alternating bit
protocol. In this protocol, each data message is transmitted with a bit of control,
successively 0 and 1: the first data message is transmitted associated with a control 
bit set to 0, the following one with a bit set to 1, then again with a bit set to 0,…. 
This solution, the simplest (and the slowest), defines a protocol which eliminates 
faulty exchanges in the presence of losses and duplications of messages.
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The first global modeling of the communication given in Figure 2.5 makes 
explicit:

1. The behavior of the sending process, which sends the data with a control bit 0
(mess0), waits for the reception of the acknowledgment related to this bit 0 (ack0), 
then sends a message with bit 1 (mess1), then waits for the ack related to bit 1 
(ack1), then again sends a data message with bit 0 (mess0),…

2. The behavior of the receving process, which first waits for the first data 
message associated with a bit 0 (mess0), then sends the ack related to this bit 0 
(ack0), then waits for the message associated with bit 1 (mess1), then sends the ack 
related to bit 1…

3. The shared place semantics, selected to interconnect the sending and receiving 
transitions, as it will represent the transit of the messages in the communication 
medium.

2.3.1. Loss of messages 

This model works properly, but it does not take into account the losses that can 
occur during communication, and, for example, if the resulting behavior does not 
become live or have a deadlock. Note that these wrong behaviors can occur after the 
loss of a message, or can result from a design error in the protocol logic.  

In fact, in general, losses can occur, leading to more complex behaviors and 
more complete specifications. Thus, the PN models must represent the 
corresponding potential errors and be able to analyze their effects. 

Figure 2.5. First model of the alternating bit protocol 
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To handle losses, Figure 2.6 represents a shared-place communication with a 
possible loss of the message in the communication medium. Indeed, when place 
Mess is marked, it allows the firing of two transitions ?R and ?loss. Firing transition 
?R means the message is received (correct operation). Firing transition loss, 
represents losing the token, and as a consequence its non-possible reception (case
with error). Firing transition loss removes the token from place Mess and, as no exit 
place is connected to the transition, the token disappears: this well expresses that the 
message (represented by the token) can be lost and disappears between its sending 
and its reception, i.e. during its transit in the medium. 

t1
Mess

!e

?R t2

Loss

Figure 2.6. Loss in a medium 

More generally, this model provides a very simple and elegant model of a 
datagram, the datagram being the basic mechanism of many communication 
protocols (simple sending and reception of a message), used in the most widespread 
protocols, e.g. Ethernet, IP and UDP.

Thus, this simple model can be regarded as one axiom of the specification of 
protocols and communications in distributed architectures, i.e. a basic model which 
can be used as a starting point for building increasingly sophisticated models by 
increasing the complexity. 

2.3.2. Modeling losses 

Figure 2.7 models the behavior of the ABP in the presence of losses. Note that 
the losses of the data and ack messages have to be be modeled in an identical way: 
indeed, it is not possible for the transmitter to know which of the messages (data or 
ack) was lost. 
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The model shows that, after losing a data message associated with bit 0, by firing 
pd0, then place loss0 of Figure 2.7 is marked, which indicates that this data message 
was lost. This place is essential for the model, in order to re-send the lost message 
with the same value 0 of the control bit. Indeed, a condition must exist which allows 
the transmitter to consider that there was a loss, and this is represented by place 
loss0 (a real implementation will use a time-out, and thus a model without time does 
not allow an exact representation of the reality: the exact temporal model, which 
requires an explicit representation of time, will be presented later in Chapter 6). 

As already noted, the system cannot know whether the data or the ack messages 
have been lost: the  loss of ack0 leads to the same place, loss0. 

The same model mechanism holds for the control value 1. 

Now, let us define a second model by adding to the first model in Figure 2.5, two 
places, lossi, and six transitions, pdi, pai and redi, with i=0 and i=1. Analyzing the 
resulting behavior, from its graph of accessibility, shows the existence of two 
deadlock states.

The third and complete PN model of the ABP is given in Figure 2.7. Its graph G 
is at the same time bounded and live (without blocking), so behaves correctly, but 
obtaining this good behavior has required the addition of two more transitions:

– one, rea0, to represent the reception of a second sending (a duplication) of
Data0 (already received), consecutively to successively give loss of Ack0 (by firing 
the sequence “e0; r0; sending ack0; pa0”) and re-sending of Data0 by the sequence 
“red0; e0” (let us stress that this new data, Data0, could lead to data being received 
twice if it were received by the receiver; as a consequence, it will not be memorized 
this second time and must be deleted when firing rea0;

– the other, rea1, to represent, in a similar way, the reception of a duplication
Data1, following the loss of Ack1, and also re-sending of Data1.

This clearly shows how it is possible, by analysis of the different PNs, to design, 
after several specification and validation steps, a correct protocol (in particular 
without deadlock and unspecified receptions), i.e. whose behavior is without error, 
in particular in the presence of loss of messages. More about verification will be 
given in the next chapter. 

Let us emphasize now that this final global model, now correct, will be used for 
writing the software that will implement the ABP, and, more precisely, the code of 
the two sending and receiving state machines of the sending and receiving entities. 
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Figure 2.7. The BA protocol: loss0; loss; Replace:  
“Don0" by "Data0"; and “Don1" by “Data1" 

2.4. Communicating state machines and PNs 

With Petri nets, communicating state machines, i.e. the communicating state 
machine model, played an important role in the theory of communications protocols, 
because it provided the first semantics support for obtaining their undecidability 
properties. The communicating state machine model is defined, for two 
communicating processes, by:

– two state machines, in which a transition between two (internal) states is
conditioned by a process internal action, sending of a message or  reception of a 
message; and 

– a set of FIFO queues connecting the state machines, one at the input of each 
state machine; these automata are then connected by two FIFOs of infinite length, 
one in each direction: thus, if A and B are two communicating state machines, they 
are connected by two FIFOs, one in B receiving all messages sent by A to B (from A 
to B) and the other in A, receiving all messages sent by B to A. 
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The transitions in the state machines are either not labeled (the ones that have 
internal locations, not seen from the outside), or have the name of the sent message, 
or the name of the received message. In the first case, firing the transition does not 
produce any action. In the second case, firing the transition adds the message, 
named by the label of the transition, at the end of the corresponding FIFO (in the 
receiving state machine). In the third case, the firing requires two conditions:

– the state machine must of course be in the state to which the receiving 
transition is connected (enabling the receiving transition); and

– the message that labels the transition must be the first message (at the head) of 
the FIFO (and, if not, firing does not occur); then, finally, the effect of the firing is 
that the message is consumed, i.e. removed from the head of FIFO.

Let us note that PNs cannot directly model communicating state machines, and 
that modeling them needs two extensions, i.e. considering FIFOs and the identity of 
the first element of the file. PN extensions allowing such representations will be 
given later and furthermore will allow the designers to model still more complex 
behaviors.

2.5. Conclusion

After having given the three basic models of interprocess communication, this 
chapter presented two simple examples. The first specified and analyzed one very  
simple communicating system, the establishment of a connection between two 
processes. The second one discussed how to model and validate the alternating bit 
protocol before its implementation. 

It has been shown that modeling begins with a representation of adequate 
mechanisms, and is, after each step, followed by a validation. Then, different 
behaviors can be represented, step by step, and their global behavior evaluated. In 
the case of protocols, the effects of the losses of messages, whatever they are, can 
and have to be modeled and analyzed. 

The design of a protocol will be considered to be correct, when, after validation, 
the general properties of the model, i.e. of its graph G, are correct (e.g. the graph is 
bounded and live). 

Note that, more generally, different and other validations can be carried out, 
related to the necessary study of a given set of properties of given systems, which 
will be seen later. These properties will have to be validated. A set of methods and 
properties, which are considered to be the most important ones, will be presented in 
the next chapter. 
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Chapter 3

Analysis Methods for Petri Nets

3.1. Introduction

One of the main advantages of formal models is that they enable us to define the
behavior of a system unambiguously, develop algorithms for verifying properties and
integrate them in a dedicated software tool.

The firing rule of Petri nets associates a (finite or infinite) reachability graph with
a net. This graph constitutes a formal representation of the net’s behavior. Thus we
will first define the general and more relevant properties of the net with respect to
this graph (such as liveness or the existence of deadlock). When it is finite, it can be
scanned in order to check these properties. The methods based on the construction and
exploration of the whole graph, or of some part of it, are called behavioral methods.
In spite of their relative simplicity and their wide applicability, these methods present
some drawbacks: they are only applicable to nets with a finite number of states, their
temporal and spatial complexity depends on the size of the graph (much bigger than
the size of the net) and they require knowledge of the initial marking.

In the next section, we will examine families of alternative methods that take
advantage of the net structure in order to decrease the complexity of the analysis,
or which apply to a net independently of its initial marking. We will describe in depth
three of these methods, called structural methods.

The state change equation corresponds to the fact that the update of a marking by a
firing sequence is exactly the product of the incidence matrix by the vector of transition
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occurrences in this sequence. By adapting linear algebra techniques, we compute
generative families of linear invariants over places or transitions. In the case of places,
an invariant is a weighted sum of place markings invariant by transition firing. In the
case of transitions, an invariant is an occurrence vector of a firing sequence which
does not modify the marking. In addition to this interpretation, this computation has
numerous applications; some of them will be detailed in other chapters of this book.

The reduction technique consists of substituting in a net a smaller one whose
behavior is equivalent with respect to a set of relevant properties. A reduction is
defined by structural conditions and a transformation method. This technique should
be applied before any other, thus decreasing the subsequent computational complexity.

Since the net is a bipartite graph, its analysis provides interesting information
on the behavior of the net. Furthermore, within the framework of specific modeling
(e.g. manufacturing systems) the structure of the resulting graph is specific and we
can associate structural characterizations with behavioral properties. We will briefly
describe some of these models and more particularly the free choice Petri nets for
which numerous efficient verification algorithms have been designed.

In this chapter, we do not seek to provide an exhaustive overview of analysis
methods. For instance, we skip analysis by net decomposition; some of these methods
will be illustrated in the chapters devoted to stochastic Petri nets. We also skip methods
that take advantage of the structure of the net in order to build smaller representations
of the reachability graph: they will be illustrated in other chapters. Finally, verification
methods for unbounded nets are described in the next chapter.

We have chosen to present the proofs of propositions whenever their size
remains reasonable; these will highlight the foundations of the method. We restrict
the presentation of results without proofs to central ones. The references should
enable the reader to access more complex theories in specialized books or research
communications.

General notation

1 Sets and numbers

– N is the set of natural integers, Z is the set of relative integers, Q is the set of
rational numbers and R is the set of real numbers.

– Let X be a set of numbers; X+ denotes the subset of X restricted to
non-negative items. Max(X) denotes its smallest upper bound (possibly ∞) and
Min(X) denotes its greatest lower bound (possibly −∞).

– Let E be a set; |E| denotes its cardinality.

2 Vectors and matrices

– Let E be a set; a vector v with dimension E and natural integer coefficients
is an application from E to N. For e ∈ E, v(e) denotes the e-component of this
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vector. The set of vectors is denoted by NE . This can be generalized to every set
of numbers (ZE , (Q+)E , . . .). This is also applicable to matrices. For instance, the
incidence matrix C ∈ ZP×T .

– Let e ∈ E; the vector −→e of NE is defined by −→e (e) = 1 and −→e (e′) = 0 for
e′ �= e.

–
−→
0 denotes the zero vector whose dimension is fixed by the context.

– Let (E,<) be a totally ordered set; the (total) lexicographical order of XE

(where X is a set of numbers) is defined by:

v ≺ v′ ⇔ ∃ e ∈ E, v(e) < v′(e) and ∀ e′ < e, v(e′) = v′(e′).

– Let A be a matrix with dimension E × F , then At is the transposed matrix
with dimension F × E, defined by At(i, j) = A(j, i). When E ∩ F = ∅, we denote
e ∈ E (resp. f ∈ F )as A(e) (resp. A(f)) the row (resp. column) vector of A indexed
by e (resp. f ). We apply this notation mainly to matrices Pre, Post and C.

– A vector with dimension E can also be viewed as a matrix with dimension
E × {1}. So the transposition equally applies to vectors.

– Let v be a vector with dimension E; we define the support of v, denoted ‖v‖
by: ‖v‖ = {e ∈ E | v(e) �= 0}.

– Let v1, v2 be two vectors with the same dimension; we denote v1 ≤ v2 iff ∀ e,
v1(e) ≤ v2(e) and v1 < v2 iff (v1 ≤ v2 and v1 �= v2). Sup(v1, v2) denotes the vector
defined by Sup(v1, v2)(e) = Max(v1(e), v2(e)).

3 Sequences and languages

– Let Σ be an alphabet (i.e. a finite set); Σ∗ denotes the set of finite words of Σ
and Σ∞ denotes the set of infinite words of Σ.

– Let σ ∈ Σ∗ and σ′ ∈ Σ∗ ∪ Σ∞; σ · σ′ denotes the concatenation of the two
words.

– Let σ ∈ Σ∗, σ∞ denotes the word (infinite except if σ is the empty word
denoted λ) obtained by infinite repetition of σ.

– Let Σ′ be a subalphabet of Σ and σ be a word of Σ; the projection of σ on Σ′,
denoted σ�Σ′ , is recursively defined by:

λ�Σ′ = λ and (σ · a)�Σ′ = If a ∈ Σ′ then σ�Σ′ · a else σ�Σ′ .

– Let σ be a word, then σ̃ is the inverse word recursively defined by:

λ̃ = λ and (̃σ · a) = a · σ̃.

– We denote as m
σ−−→P ′ m′ a firing sequence where the firability condition

is restricted to the subset of places P ′. When we want to specify the net R of a
firing sequence, we denote it by: m

σ−−→R m′. The notations can be combined:
m

σ−−→R,P ′ m′.
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4 Nets

– Let s be an item of P ∪ T , then •s denotes the set of predecessors of s in
the net and s• denotes the set of successors of s in the net. Stated another way, if
s is a transition then •s = ‖Pre(s)‖ and s• = ‖Post(s)‖ and if s is a place then
•s = ‖Post(s)‖ and s• = ‖Pre(s)‖.

– This notation can be extended to subsets of vertices: •S = {t | ∃ s ∈ S
t ∈ •s} and S• = {t | ∃ s ∈ S t ∈ s•}.

– We abuse the language slightly: a Petri net denotes both the structure R and
the marked net (R,m0). The context will allow us to deduce which object is denoted.

– In figures representing Petri nets, the double arrow represents superimposed
arcs Pre and Post.

We assume that the reader already knows the basics of graph theory [AHO 74,
EVE 79]. The main ideas that we will discuss are connectivity, strong connectivity,
(initial, terminal) strongly connected components, paths, elementary circuits, and
trees.

Finally, the theoretical complexity of methods will be discussed, anticipating the
next chapter where the basics of complexity are presented. The reader can refer to it
when necessary.

3.2. Behavioral analysis of Petri nets

3.2.1. Semantics of a net

The simplest way to define the behavior of a net is to consider the set of markings
reachable from the initial marking.

DEFINITION 3.1 (Reachability set). Let (R,m0) be a Petri net; the reachability set of
the net denoted A(R,m0) is the set of markings reached by a firing sequence:

A
(
R,m0

)
=
{
m | ∃σ ∈ T ∗ t.q. m0

σ−−→ m
}
.

A more complete method takes into account the immediate reachability relation
between markings throughout the reachability graph.

DEFINITION 3.2 (Reachability graph). Let (R,m0) be a Petri net; the (directed)
reachability graph of the net denoted by G(R,m0) is defined by:

– the set of vertices A(R,m0);

– the set of arcs (an arc labeled by t joins m to m′ iff m
t−→ m′).
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If the observation of events is more important than the internal state of the
system (represented by the marking) then the language of firing sequences is more
appropriate. Often, different transitions model the same event or a transition models
an internal action. It is then judicious to introduce labeling of transitions.

DEFINITION 3.3 (Language of a net). Let (R,m0) be a Petri net, Σ be an alphabet
and l be a labeling mapping from T to Σ∪λ (the empty word). The labeling is extended
to sequences by l(λ) = λ and l(σ · t) = l(σ) · l(t). Let Term be a finite set of final
markings. The language of the net denoted L(R,m0, l, Term) is defined by:

L(R,m0, l, Term) =
{
w ∈ Σ∗ | ∃σ ∈ T ∗, ∃mf ∈ Term, m0

σ−−→ mf ∧ w = l(σ)
}

Other definitions for Petri net languages are possible. For instance, the kind of
labeling can be restricted or the final markings can be omitted.

3.2.2. Usual properties

3.2.2.1. Definition of properties

The interest of a model lies in the possibility of formally defining properties of the
modeled system and checking these properties by algorithms or heuristics. In the case
of Petri nets, the usual properties are related to the activity of a parallel system. These
properties can be specific to the parallelism or simply related to dynamicity.

We illustrate these properties on the net in Figure 3.1. This net models two
anonymous processes initially in the state Idle. Any process may choose between two
behaviors: either get the resource A (modeled by PickA), and then the resource B
and finish (PickAB is an abstraction of these two events), or get the resources in the
reverse order.

Figure 3.1. Two processes sharing two resources
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The first issue with such a system is whether its behavior is finite. In other words,
we are looking for an infinite firing sequence.

DEFINITION 3.4 (Existence of an infinite sequence). A Petri net (R,m0) has an
infinite sequence σ ∈ T∞ if for every σ′ finite prefix of σ, σ′ is a firing sequence
of (R,m0).

EXAMPLE 3.1. (PickA · PickAB)∞ is an infinite sequence of the net in Figure 3.1.

When a net has no infinite sequence, we say that it fulfills the termination property.

An interesting issue is to determine whether the system ever stops. For instance,
an operating system must never stop whatever the behavior of its users, i.e. from any
reachable marking at least one transition can be fired.

DEFINITION 3.5 (Pseudo-liveness). A Petri net (R,m0) is pseudo-live if:

∀m ∈ A
(
R,m0

)
∃ t ∈ T s.t. m

t−→

When a marking has no firable transition, we say that it is a dead marking.

EXAMPLE 3.2. The sequence PickA·PickB leads to the dead marking
−−−→
WaitA+

−−−→
WaitB.

A frequent error in modeling is to design a net with a transition which is never
firable. It is important to eliminate such errors.

DEFINITION 3.6 (Quasi-liveness). A Petri net (R,m0) is quasi-live if:

∀ t ∈ T ∃m ∈ A
(
R,m0

)
s.t. m

t−→

EXAMPLE 3.3. Starting from the initial marking, we can fire the sequence:

PickA · PickAB · PickB · PickBA

where every transition occurs.

The two previous properties ensure some correctness of the system but they cannot
ensure that in every reachable marking the system keeps all its functionalities. In other
words, we do not know whether every transition can be fired in some future of every
state.

DEFINITION 3.7 (Liveness). A Petri net (R,m0) is live if for every marking m ∈
A(R,m0), the net (R,m) is quasi-live. In other words:

∀m ∈ A
(
R,m0

)
∀ t ∈ T ∃m′ ∈ A(R,m) s.t. m′ t−→
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EXAMPLE 3.4. From the dead marking
−−−→
WaitA+

−−−→
WaitB, no transition is firable. Hence

the net is not live.

Another interesting property is the possibility of always returning to some state
corresponding, for instance, to the reinitialization of the system. When this marking is
the initial one, reinitialization is identical to initialization.

DEFINITION 3.8 (Existence of a home state). A Petri net (R,m0) has a home state
ma if:

∀m ∈ A
(
R,m0

)
, ∃σ ∈ T ∗ s.t. m

σ−−→ ma

EXAMPLE 3.5. From any reachable marking, the dead marking is reachable. Hence
the net has a home state.

Modeling open systems is somewhat different from modeling closed systems. For
instance, it may be necessary to model the arrival of an unbounded number of clients
leading to the following definition.

DEFINITION 3.9 (Boundedness of a net). A Petri net (R,m0) is unbounded if:

∀n ∈ N, ∃m ∈ A
(
R,m0

)
, ∃ p ∈ P t.q. m(p) > n

R is structurally bounded if it is bounded for every initial marking.

EXAMPLE 3.6. Places contain either resources or processes. Hence the net is bounded.

If the net is unbounded, at least one place may contain the greatest possible number
of tokens. Such places are said to be unbounded. If the net is bounded, a bound of
the net is an integer greater than or equal to any possible marking of a place. As
will be seen during the study of monotonicity, it is often interesting to modify the
initial marking in order to analyze its impact on behavior. This explains the interest of
structural boundedness.

3.2.2.2. Relations between properties

We now establish simple relations between the different properties.

PROPOSITION 3.1. If (R,m0) is pseudo-live or unbounded then (R,m0) has an
infinite sequence.

Proof. If the net is pseudo-live then we build the infinite sequence by iteratively firing
any transition (there is always at least one). The second part of the proposition will
be proved with the help of characterization of properties by the existence of particular
sequences.
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PROPOSITION 3.2. If (R,m0) is live then (R,m0) is quasi-live and pseudo-live.

Proof. Assume that the net is live; m0 ∈ A(R,m0) so by definition (R,m0) is
quasi-live. Let t be a transition of T and m ∈ A(R,m0), by definition (R,m) is

quasi-live, so ∃σ ∈ T ∗ m
σ.t−−−→. Hence m is not dead. Consequently the net is

pseudo-live.

PROPOSITION 3.3. If (R,m0) is quasi-live and has m0 as a home state then (R,m0)
is live.

Proof. In order to fire a transition t from a reachable marking, we first return to m0

(home state) and then fire a sequence ended by t (quasi-liveness).

3.2.2.3. Monotonicity of properties

During modeling, once the structure of the net is defined, the designer modifies
the initial marking in order to examine different hypotheses. Often this modification
consists of adding tokens in places. So it is interesting to determine whether a property
remains fulfilled in the new marked net.

DEFINITION 3.10. Let π be a property of Petri nets; π is said to be monotonic iff:

∀R ∀m0 ≤ m′
0, π is fulfilled by

(
R,m0

)
⇒ π is fulfilled by

(
R,m′

0

)
.

The next lemma justifies the study of monotonicity.

LEMMA 3.1 (Lemma of monotonicity). Let R be a Petri net,

– ∀m1 ≤ m′
1 m1

σ−−→ m2 ⇒ m′
1

σ−−→ m′
2 with m2 ≤ m′

2;

– Furthermore if there is a place p, m1(p) < m′
1(p) then m2(p) < m′

2(p).

Proof. The result is obtained by a straightforward recurrence, starting from the case
where the sequence σ is reduced to a single transition. In the case of a single transition,
it is a simple consequence of the firing rule.

Let us examine among the previously defined properties which ones are
monotonic.

PROPOSITION 3.4. Let (R,m0) be a Petri net:

– “(R,m0) has an infinite sequence” is a monotonic property.

– “(R,m0) is pseudo-live” is not a monotonic property.

– “(R,m0) is quasi-live” is a monotonic property.

– “(R,m0) is live” is not a monotonic property.
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– “(R,m0) has a home state” is not a monotonic property.

– “(R,m0) is unbounded” is a monotonic property.

The properties which are characterized by the existence of firing sequences starting
from the initial state are monotonic. For the others, we can demonstrate elementary
counter-examples.

EXAMPLE 3.7. The net of Figure 3.1 is live for the initial marking
−→
Idle +

−→
A +

−→
B

lower than the original initial marking for which the net is not even pseudo-live.

3.2.2.4. Characterization of properties with the help of a finite reachability graph

The easiest way to check the properties consists of examining the reachability
graph whenever it is finite. Hence our first characterizations rely on this graph.

We will illustrate these characterizations for the net in Figure 3.1, whose
reachability graph is presented in Figure 3.2.

Figure 3.2. A reachability graph

PROPOSITION 3.5. Let (R,m0) be a Petri net, (R,m0) is bounded iff A(R,m0) is
finite.

Proof. Assume (R,m0) is bounded and let n be a bound, then A(R,m0) is included
in {m | m ≤ ∑p∈P n · −→p }. Now this set is finite. Assume A(R,m0) is finite, then
Max({m(p) | p ∈ P and m ∈ A(R,m0)}) is finite and constitutes a bound of the
net.

In the remainder of this section, we will specify whether the characterization
depends on the finiteness of A(R,m0).

PROPOSITION 3.6. Let (R,m0) be a bounded Petri net; (R,m0) has an infinite
sequence iff G(R,m0) has a circuit.
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Proof. Assume that (R,m0) has an infinite sequence σ, then this sequence
goes through some markings at least twice. Hence σ = σ′.σ′′ , σ′ = u.v with
m0

u−−→ m
v−−→ m. So m

v−−→ m is a circuit of the graph. Assume that G(R,m0) has
a circuit m

v−−→ m; m is reachable so u exists such that m0
u−−→ m. Consequently,

u.v∞ is an infinite sequence of (R,m0).

EXAMPLE 3.8. The reachability graph of Figure 3.2 has two elementary circuits,
hence the Petri net has an infinite sequence.

PROPOSITION 3.7. Let (R,m0) be a Petri net; (R,m0) is pseudo-live iff every vertex
of G(R,m0) has a successor.

Proof. (R,m0) is pseudo-live iff every reachable marking of (R,m0) enables firing
of a transition iff every vertex of G(R,m0) has a successor.

EXAMPLE 3.9. The reachability graph has a vertex without a successor, so the Petri
net is not pseudo-live (and not live).

PROPOSITION 3.8. Let (R,m0) be a Petri net; (R,m0) is quasi-live iff every
transition labels an arc of G(R,m0).

Proof. (R,m0) is quasi-live iff every transition is firable from a reachable marking iff
every transition labels an arc of G(R,m0).

EXAMPLE 3.10. Every transition occurs on the reachability graph, so the net is
quasi-live.

The last two properties are characterized with the help of strongly connected
components (s.c.c.) of the reachability graph.

PROPOSITION 3.9. Let (R,m0) be a bounded Petri net; (R,m0) is live iff for every
terminal s.c.c. C of G(R,m0), every transition labels an arc of C.

Proof. Assume (R,m0) live and let m belong to a terminal s.c.c. C. By definition
(R,m) is quasi-live, hence every transition labels an arc of G(R,m) which is exactly
C since C is terminal.

Now let m be any reachable marking. A path exists from m to m′ belonging to
a terminal s.c.c. C (property of finite graphs). Since C is included in G(R,m), every
transition labels an arc of G(R,m). So (R,m) is quasi-live.

PROPOSITION 3.10. Let (R,m0) be a bounded Petri net; (R,m0) has a home state
iff there is a single terminal s.c.c. of G(R,m0).
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Proof. Let m be a home state of (R,m0) and C its s.c.c., then a path exists from every
reachable m′ to m. Let C′ be the s.c.c. of m′. If C′ is different from C, then C′ is not
terminal. In addition, C is terminal since we can always return to m.

Let C be the single terminal s.c.c. of G(R,m0). For every m′ ∈ A(R,m0), there
exists a path from m′ to C. Hence every marking of C is a home state.

EXAMPLE 3.11. There are two s.c.c.s in the graph, one is initial (including the initial
marking) and the other is terminal (reduced to the dead marking). So this marking is
a home state.

3.2.2.5. Characterization of properties with the help of particular finite sequences

For at least two reasons, we want to obtain characterizations that do not rely on the
reachability graph. Firstly, these characterizations are only effective when the graph is
finite, and secondly even in this case the size of the graph may forbid verification. In
this section, we take advantage of some general lemmas that we now recall.

LEMMA 3.2 (Koenig lemma). Let A be a tree of finite degree (i.e. every vertex has a
finite number of successors) and with an infinite number of vertices. Then A has an
infinite branch.

Proof. We demonstrate the infinite branch as follows. Starting from the root, we select
one successor of the root whose subtree has an infinite number of vertices. There must
be at least one, since the number of successors is finite. Iterating this process at the
level of the current subtree, we build an infinite branch.

LEMMA 3.3 (Extraction lemma). Let m0,m1, . . . be an infinite sequence of vectors of
N{1,...,k}, then this sequence has a largely increasing sequence.

Proof. We prove this by recurrence on k. If k = 1, then this is a sequence of natural
integers. So we select as the first index of the subsequence the index of one minimum
item of the sequence. We then iterate the process starting from the truncated sequence
starting from this item. Assume the result holds for k − 1; starting from a sequence
of N{1,...,k}, we extract an increasing subsequence on the first k − 1 components.
Applying the process used for k = 1 to the last component of the intermediary
subsequence, we obtain the desired subsequence.

We immediately apply these lemmas to the characterization of two properties.

PROPOSITION 3.11. (R,m0) has an infinite sequence iff (R,m0) has a firing
sequence m0

σ1−−→ m1
σ2−−→ m2 with m1 ≤ m2.

Proof. Assume first that the net has an infinite sequence and consider the infinite
sequence of encountered markings. Using lemma 3.3, we extract an increasing
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subsequence. Let us denote the first two items of this sequence m1 and m2, then the
finite sequence which reaches m2 is the one we look for.

In the reverse direction, since m1 ≤ m2, applying the monotonicity lemma, σ2

may be fired from m2, leading to a marking m3 ≥ m2. Iterating this process, we
obtain the infinite sequence σ1.σ

∞
2 .

PROPOSITION 3.12. (R,m0) is unbounded iff (R,m0) has a firing sequence
m0

σ1−−→ m1
σ2−−→ m2 with m1 < m2.

Proof. Assume first that the net is unbounded and let us consider an infinite tree built
starting from the initial marking and such that we add a son to a marking if we can fire
a transition from this marking leading to a marking not yet present in the tree. There
can be several possible trees, but all have exactly as a set of vertices the set of reachable
markings. This tree has a finite degree since T is finite, so, using lemma 3.2, it contains
an infinite branch corresponding to an infinite firing sequence. Using lemma 3.3, we
extract an increasing subsequence. Let us denote as m1 and m2 the first two items of
this sequence; then the finite sequence that reaches m2 is the one we look for. Indeed,
m2 > m1 since all the markings are different in the tree.

In the reverse direction, we note that since m1 ≤ m2, σ2 can be fired from m2,
leading to a marking m3 ≥ m2. Iterating this process, we obtain the infinite sequence
σ1 · σ∞

2 . Now, let p be a place such that m1(p) < m2(p), then m2(p) < m3(p).
Consequently the sequence infinitely increases the number of tokens in p.

These two characterizations straightforwardly establish the proof of the second
part of proposition 3.1. We now introduce some of the types of sequence we meet in
the analysis of nets.

DEFINITION 3.11 (Repetitive sequences). Let R be a Petri net, σ be a sequence of
transitions, and let m be a marking such that m

σ−−→ m′, then:

– If m ≤ m′, σ is said to be repetitive.

– If m = m′, σ is said to be repetitive stationary.

– If m < m′, σ is said to be repetitive increasing.

This definition does not depend on the choice of m and so it is sound.

3.3. Analysis of nets by linear invariants

3.3.1. Definitions and first applications

The state change equation that we give below has the following interpretation: the
effect of a firing sequence is determined by the incidence matrix and the vector of
transition occurrences in the sequence.
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DEFINITION 3.12. Let σ ∈ T ∗ be a sequence of transitions; its occurrence vector
−→σ ∈ NT is defined by: −→σ (t) is the number of occurrences of t in σ.

PROPOSITION 3.13 (State change equation). Let R be a Petri net and let m
σ−−→ m′

be a firing sequence, then:

m′ = m + C · −→σ

where C, the incidence matrix, is defined by C = Post−Pre.

Proof. We prove this by recurrence on the length of the sequence. In the case of an
empty sequence, the result is immediate. The recurrence step is a consequence of the
firing definition.

We are looking for invariant quantities with the help of this equation, so it is related
to the cancellers of matrix C.

DEFINITION 3.13 (Flows of a net). The different cancellers that we consider are:

– A P -flow is a non-zero vector v ∈ ZP which fulfills vt · C =
−→
0 .

– A P -semiflow is a non-zero vector v ∈ NP which fulfills vt · C =
−→
0 .

– A T -flow is a non-zero vector v ∈ ZT which fulfills C · v =
−→
0 .

– A T -semiflow is a non-zero vector v ∈ NT which fulfills C · v =
−→
0 .

A P -flow (resp. a P -semiflow) is a weighted sum of places with integer
coefficients (resp. natural integers). A P -flow provides mappings from markings to
integers by weighting the place markings and summing them. A T -semiflow could
be obtained as the occurrence vector of a transition sequence, while a T -flow could
be obtained as the difference of two occurrence vectors. This yields the first results.
Examples will be given later.

PROPOSITION 3.14. Let R be a Petri net:

– let v be a P -flow and m
σ−−→ m′ be a firing sequence; then:

vt ·m = vt ·m′

– let v be a T -semiflow and σ be a firing sequence such that −→σ = v; then:

m
σ−−→ m′ =⇒ m = m′

in other words, σ is a repetitive stationary sequence:

– let v be a T -flow and σ1, σ2 two transition sequences such that −→σ1 − −→σ2 = v;
then:

m
σ1−−→ m′ and m

σ2−−→ m′′ =⇒ m′ = m′′
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Proof. These assertions are trivial consequences of the state change equation. For
instance, the proof of the first point is as follows: vt ·m′ = vt ·m+vt ·C ·−→σ = vt ·m.

DEFINITION 3.14 (Linear invariants). Let (R,m0) be a marked net, a linear invariant
denotes the equation:

∀m ∈ A(R,m0), vt ·m = vt ·m0

where v is a P -flow. In the case of a P -semiflow, we say that it is a positive invariant.

The positive invariants have numerous applications. For instance, every place
belonging to the support of a P -flow v is bounded whatever the initial marking, since
m(p) ≤ v(p)−1 · vt ·m0. Similarly, from an invariant m(p) + m(q) + · · · = 1, we
deduce that p and q cannot be simultaneously marked.

More generally, invariants are the basis of numerous necessary and/or sufficient
conditions of behavioral properties. In order to develop this point, we introduce two
structural properties of a Petri net.

DEFINITION 3.15 (Conservative nets, consistent nets). Let R be a Petri net:

– R is conservative if there is a P -semiflow v such that ‖v‖ = P .

– R is consistent if there is a T -semiflow v such that ‖v‖ = T .

We illustrate this section with the net presented in Figure 3.3. Two processes (A
and B) repeatedly execute one of the two local procedures (H or V ), then synchronize
themselves to exchange their results. The synchronization is only possible if both
processes have chosen the same procedure. Observe that the net is bounded (exactly
two tokens in every reachable marking) and not live, since different choices lead to a
deadlock. We are going to examine information provided by the linear invariants.

Figure 3.3. Non-deterministic synchronization of processes
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We now recall a useful lemma for the analysis of nets using the techniques of linear
algebra.

LEMMA 3.4 (Duality lemma). Let p be a place:

∃ v ∈ NP , vt · C =
−→
0 ∧ v(p) > 0 ⇐⇒ � w ∈ ZT , C · w ∈ NP ∧ (C · w)(p) > 0

Proof. Assume the simultaneous existence of v and w as described in the lemma, then
∀ p′ ∈ P, v(p′) · (C ·w)(p′) ≥ 0 and v(p) · (C ·w)(p) > 0. Hence vt ·C ·w > 0, but
vt · C · w =

−→
0 t · w = 0, so there is a contradiction. It remains to be shown that one

of these vectors always exists.

We prove this by recurrence on |P |.

|P | = 1. Then if C is the zero matrix v = −→p is appropriate. If C is not zero then
∃ t ∈ T,C · −→t �= 0. If C · −→t > 0 then w =

−→
t is appropriate, otherwise w = −−→t is

appropriate.

|P | = n + 1 and the lemma holds for |P | = n. We will try to obtain v or w in two
ways.

First attempt. Let p1 be a place different from p, and let P1 = P \ {p1} and C1 be
the matrix obtained from C, by deleting the row indexed by p1. Using the recurrence
hypothesis:

– either ∃ v1 ∈ NP1 , vt
1 ·C1 = 0∧ v1(p) > 0. In this case, v defined by ∀ p′ ∈ P1,

v(p′) = v1(p′) ∧ v(p1) = 0 is appropriate;

– or ∃w ∈ ZT , C1 · w ∈ NP ∧ (C1 · w)(p) > 0. If C · w(p1) ≥ 0 then w is
appropriate. The unfavorable case is where C · w(p1) < 0.

Second attempt. Let W be the vectorial subspace of QP generated by the set
{C(t)}t∈T . W can be described by a linear equation v.D = 0, where the columns of
D are the basis of the orthogonal of W which is exactly the set of P -flows. Moreover,
D can be chosen with integer coefficients by multiplication. We apply the recurrence
hypothesis to D1, the matrix obtained from D by deleting the row D(p1). Then:

– either ∃ v1 ∈ NP1 , v1 ·D1 = 0∧v1(p) > 0. Observe that v defined by ∀ p′ ∈ P1,
v(p′) = v1(p′) ∧ v(p1) = 0 fulfills v · D = 0. So v is generated by {C(t)}t∈T , i.e.
v =

∑
t∈T λt ·C(t) with λt ∈ Q. Multiplying the λt by the least common multiple of

their denominator, we obtain a vector v′ = C · w ∈ NP with w ∈ ZT and v′(p) > 0.
Hence w is appropriate;

– or ∃w,D1 · w ∈ NP1 ∧ (D1 · w)(p) > 0. Define v = D · w, by construction
vt · C = 0. If v(p1) ≥ 0 then w is appropriate. The unfavorable case is where
v(p1) < 0.
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Assume that the two unfavorable cases occur simultaneously. This means that:

– ∃w ∈ ZT , ∀ p′ /∈ {p1, p}, (C ·w)(p′) ≥ 0∧ (C ·w)(p) > 0∧ (C ·w)(p1) < 0;
and

– ∃ v ∈ ZP , vt · C = 0 ∧ ∀ p′ /∈ {p1, p}, v(p′) ≥ 0 ∧ v(p) > 0 ∧ v(p1) < 0.

Let us compute vt ·C ·w in two ways. First, vt ·C ·w = (vt ·C) ·w = 0. Second,
vt ·C ·w =

∑
p′ /∈{p1,p} v(p′) · (C ·w)(p′) + v(p1) · (C ·w)(p1) + v(p) · (C ·w)(p).

This sum is composed of non-negative terms the last two of which are positive, hence
vt · C · w > 0. This contradiction completes the proof.

LEMMA 3.5 (Other kinds of duality). This duality has numerous features:

1) � v ∈ NP ‖v‖ = P and vt · C =
−→
0 ⇔ ∃w ∈ ZT s.t. C · w >

−→
0 .

2) � v ∈ NP ‖v‖ = P and vt · C ≤ −→0 ⇔ ∃w ∈ NT s.t. C · w >
−→
0 .

Proof. The first equivalence is a straightforward consequence of the previous lemma.
∃w ∈ ZT , t.q. C · w >

−→
0 ⇔ ∃ p ∈ P , ∃w ∈ ZT , t.q. C · w ≥ −→

0 ∧
(C ·w)(p) > 0 ⇔ ∃ p ∈ P , � v ∈ NP , vt ·C =

−→
0 ∧v(p) > 0 (using lemma 3.4). The

equivalence of this last assertion with the left term of the first equivalence remains to
be shown.

– Obviously, ∃ p ∈ P , � v ∈ NP , vt · C =
−→
0 ∧ v(p) > 0 ⇒ � v ∈ NP , ‖v‖ = P

and vt · C =
−→
0 .

– Assume ∀ p ∈ P , ∃ vp ∈ NP , vt
p · C =

−→
0 ∧ vp(p) > 0, then defining

v =
∑

p∈P vp, we have v ∈ NP , ‖v‖ = P et vt · C =
−→
0 .

We establish the second equivalence using the first one. Let us first show that v
and w cannot exist simultaneously. Assume the contrary and compute vt ·C ·w in two
ways:

– vt · C · w = vt · (C.w) > 0 since the support of v is P ; and

– vt · C · w = (vt · C) · w ≤ 0, leading to a contradiction.

Define T ′ ⊆ T by: T ′ = {t ∈ T | ∃w ∈ NT C · w =
−→
0 ∧ w(t) > 0}. Let us

call wt the vector which witnesses that t belongs to T ′. Then w0 =
∑

t∈T ′ wt ∈ NT

fulfills C.w0 =
−→
0 and ‖w0‖ = T ′. Let us denote T ′′ = T \ T ′ and introduce the

matrix CT ′′ ∈ Z(P∪T ′′)×T , defined by C ′(p, t) = C(p, t); if t′ = t then C(t′, t) = 1
otherwise C(t′, t) = 0.

Assume now that � v ∈ (N)P ‖v‖ = P , fulfilling vt · C ≤ −→0 .

Then, a fortiori, by construction of CT ′′ , � v ∈ (N)P∪T ′′‖v‖ = P ∪ T ′′, fulfilling
vt · CT ′′ =

−→
0 .
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Using the first equivalence: ∃w1 ∈ ZT , fulfilling CT ′′ · w1 >
−→
0 , which can be

expressed by C · w1 ≥
−→
0 , ∀ t ∈ T ′′, w1(t′′) ≥ 0 and:

– either C ·w1 >
−→
0 . Then for large enough values of λ ∈ N, w = w1+λ·w0 ∈ NT

and also C · w = C · w1 + λ(C · w0) >
−→
0 . Hence w is an appropriate vector;

– or ∃ t ∈ T ′′, w1(t) > 0. Then for some large enough values of λ ∈ N,
w = w1 + λ · w0 ∈ NT and also C · w = C · w1 + λ(C · w0) ≥

−→
0 , since t ∈ ‖w‖,

C · w �= −→
0 . Hence C · w >

−→
0 and w is an appropriate vector.

This completes the proof.

The next proposition points out the relations between behavioral properties
(liveness and boundedness) and structural properties (conservation and consistency).

PROPOSITION 3.15. Let R be a Petri net:

– ∃ v ∈ NP ‖v‖ = P and vt · C ≤ −→0 ⇔ R structurally bounded. In particular,
R conservative⇒ R structurally bounded.

– (R,m0) bounded and live⇒ R consistent.

The net in Figure 3.3 illustrates that the second implication is not an equivalence.
It is conservative (see the invariant computation below) and consistent (sequence
ACH ·BCH ·RVH ·ACV ·ACV ·RCV) but it is not live (whatever the initial marking
as we will see later).

Proof. If v fulfills the hypothesis of the first assertion then ∀m ∈ A(R,m0),
vt ·m ≤ vt ·m0 and consequently for every place p, m(p) ≤ v(p)−1 · vt ·m0. R is
structurally bounded.

If v fulfilling this hypothesis does not exist then this is equivalent to ∃w ∈ NT s.t.
C · w >

−→
0 (lemma 3.5). w is then the occurrence vector of the increasing repetitive

sequence σ. Let m0 be a marking such that m0
σ−−→; then (R,m0) is bounded so R is

not structurally bounded.

Let (R,m0) be a live net. We build an infinite sequence as follows: we fire a
sequence ending with the first transition (liveness), then we apply the same process
to every transition, and start again with the first transition. Consider the sequence of
markings obtained after every iteration. Using lemma 3.3, we can extract two markings
of this sequence such that the second is greater than or equal to the first. Hence we
have m0

σ0−−→ m1
σ1−−→ m2 with m1 ≤ m2 and ‖−→σ1‖ = T . If m1 �= m2 then the

net is unbounded using proposition 3.12. Consequently m1 = m2, σ1 is a stationary
repetitive sequence and −→σ1 is a T -semiflow, which establishes the consistency.
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Note that the test of the second assertion stated in the duality lemma is reduced
to |P | problems of linear programming: Pb(p) : ∃w ∈ NT t.q. C · w ≥ −→

0 ∧
(C · w)(p) ≥ 1. Hence the structural boundedness of a net is a problem which can be
solved in polynomial time [ROO 97].

3.3.2. Flow computations

We only present the flow computation for P -flows since it is enough to consider
the transpose of the incidence matrix to obtain T -flows. Observe first that if the net
has a flow then it has an infinity of them (by multiplying the flow by any scalar). Thus
we focus on the computation of a generative family of flows.

DEFINITION 3.16. Let R be a Petri net, {v1, . . . , vn} a family of flows; this family is
generative if:

∀ v flow ∃
{
λ1, . . . , λn

}
∈ Qn s.t. v =

n∑
i=1

λi · vi

It is the smallest family if it is minimum with respect to the number of items among the
generative families.

As the coefficients are in Q, we are looking for a basis of the vectorial subspace of
left cancellers of C. Thus we can compute this family by some variant of the Gauss
elimination.

GAUSS ELIMINATION. The algorithm proceeds transition by transition: it starts from
a generative family of flows for the matrix reduced to the k first transitions and builds
a generative family for the matrix reduced to the k + 1 first transitions.

Initially (k = 0); there is no condition and the generative family is defined by
{−→p }p∈P .

Let t be the next transition to be examined and {v1, . . . , vn} the current family.

Case 1. ∀ vi vt
i · C(t) = 0.

In this case, the family of flows is unchanged.

Case 2. ∃ vi0 vt
i0 · C(t) �= 0.

In this case the flow vi0 will play the role of pivot to constitute the new generative
family {v′i}i�=i0 with:

v′
i =
(
vt

i0 · C(t)
)
· vi −

(
vt

i · C(t)
)
· vi0
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So during each transition elimination, either the generative family is unchanged,
or its cardinality is decreased by one unit. In practice, at each iteration matrix C is
transformed to represent the incidence matrix of the current family of flows on the
remaining transitions. The number of arithmetical operations is polynomial since
there are |T | eliminations and during each elimination the number of operations
is bounded by 3 · |P | · (|P | + |T |). Nevertheless the coefficients of flows could
exponentially increase in theory. So we divide the coefficients of a new flow by
their greatest common divisor. With this simplification we can prove the memory
size of the coefficients remains polynomial since every coefficient is a fraction of
determinants of submatrices of C (the memory size of a determinant is polynomial
with respect to the memory size of the matrix).

EXAMPLE 3.12. We apply Gauss elimination to the incidence matrix of the net in
Figure 3.3.

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ACH BCH ACV BCV RV H RV V

−1 0 −1 0 1 1

1 0 0 0 −1 0

0 0 1 0 0 −1

0 −1 0 −1 1 1

0 1 0 0 −1 0

0 0 0 1 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−→
A

−−−→
AAH
−−−→
AAV
−→
B

−−−→
BAH
−−−→
BAV

In the first column, two items are non-zero: those of
−→
A and

−−−→
AAH . We choose

−→
A

as the pivot. This row is deleted and the row indexed by
−−−→
AAH is combined with the

row of the pivot to produce a new row. Other rows are unchanged. The second column
is similarly handled with the rows indexed by

−→
B and

−−−→
BAH . We obtain the matrix

presented below. Note that the current family indexes the rows of this matrix (on the
right of the matrix).

⎛⎜⎜⎜⎜⎜⎜⎝

ACV BCV RV H RV V

−1 0 0 1

1 0 0 −1

0 −1 0 1

0 1 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠
−→
A +

−−−→
AAH

−−−→
AAV

−→
B +

−−−→
BAH

−−−→
BAV

We now proceed to the elimination of the first and second columns of the above
matrix. In the first column, only two components are non-zero: those of

−→
A +

−−−→
AAH
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and
−−−→
AAV . As before, we combine the rows. The second row is similarly handled and

leads to the matrix presented below.

⎛⎝
RV H RV V

0 0

0 0

⎞⎠ −→A +
−−−→
AAH +

−−−→
AAV

−→
B +

−−−→
BAH +

−−−→
BAV

This matrix is zero. Thus the current family is a generative family of flows. The
associated invariants express the state of processes A and B.

3.3.3. Semiflow computation

We define the idea of smallest generative family of semiflows with respect to linear
combinations with non-negative rational coefficients.

DEFINITION 3.17. Let R be a Petri net, {v1, . . . , vn} be a family of semiflows; this
family is generative if:

∀ v semiflow ∃
{
λ1, . . . , λn

}
∈
(
Q+
)n

t.q. v =
n∑

i=1

λi · vi

It is a smallest generative family if it is minimum with respect to the number of
items in the family.

FARKAS ALGORITHM. In order to compute a generative family, we again proceed by
transition elimination. The initial family is the same as that of the flow computation.
Let us examine the way to produce a new generative family during the elimination of
t. We split the semiflows into three categories:

– F+ = {v | vt · C(t) > 0}.
– F− = {v | vt · C(t) < 0}.
– F 0 = {v | vt · C(t) = 0}.

Every vector of F 0 belongs to the new generative family. In order to obtain new
semiflows, we must cancel the incidence with respect to t by positive combinations. So
it is obvious that every combination must include at least a vector of F+ and a vector
of F−. Thus we take every such pair to produce new items of the family denoted as
F ′:

F ′ = F 0 ∪
{
w | ∃ v+ ∈ F+, ∃ v− ∈ F−w =

(
vt
+ · C(t)

)
· v− −

(
vt
− · C(t)

)
· v+

}
The minimality of the family is ensured by keeping only one semiflow per

minimum support [COL 91]. It is more efficient to minimize the family after each
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elimination since combinatory explosion of the number of semiflows often occurs. In
the worst case, the size of a minimum generative family (independent of the family)
is exponential with respect to the number of places.

The reader can consult the same paper for an in-depth discussion of efficient
implementations of this algorithm, called the Farkas algorithm.

EXAMPLE 3.13. We apply the Farkas algorithm to the incidence matrix of the net
in Figure 3.3. In order to illustrate the different steps of the computation, we have
modified the order of the columns.

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

RV H ACH BCH ACV BCV RV V

1 −1 0 −1 0 1

−1 1 0 0 0 0

0 0 0 1 0 −1

1 0 −1 0 −1 1

−1 0 1 0 0 0

0 0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−→
A

−−−→
AAH
−−−→
AAV
−→
B

−−−→
BAH
−−−→
BAV

The column indexed by RV H has two positive components and two negative
components. We combine the corresponding rows in pairs, cancelling their
components relative to RV H . The other rows are unchanged. Thus we obtain the
matrix presented below.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ACH BCH ACV BCV RV V

0 0 −1 0 1

−1 1 −1 0 1

0 0 1 0 −1

1 −1 0 −1 1

0 0 0 −1 1

0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−→
A +

−−−→
AAH

−→
A +

−−−→
BAH

−−−→
AAV

−→
B +

−−−→
AAH

−→
B +

−−−→
BAH

−−−→
BAV

The column indexed by ACH includes a negative component and a positive
component. Combining the corresponding rows, we obtain the vector:

−→
A +

−−−→
BAH +−→

B +
−−−→
AAH . Its support is not minimum. For instance, it strictly includes the support

of
−→
A +

−−−→
AAH . This new vector is thus deleted. Then the algorithm goes on (in this
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particular case) as a Gauss elimination and the family of semiflows is identical to the
family of flows.

3.3.4. Application of invariants to the analysis of a net

Here we apply the previous techniques to the problem of readers/writers in
a database. We consider an abstraction of this problem and we focus on the
synchronization constraints between the operations “read” and “write” described in
Table 3.1. As discussed in Chapter 1, the capacity of the reading room is limited to k
readers (C1); at any time at most one write is possible on the database (C2) and the
operations read and write are mutually exclusive (C3).

C1: At most k simultaneous read
C2: At most one write
C3: No simultaneous read and write

Table 3.1. Synchronization conditions between readers and writers

In the real world, we must additionally maintain the consistency of data and, for
instance, ensure that if a value is read, it corresponds to the last written value.

3.3.4.1. Modeling of the readers/writers problem

Figure 3.4 presents modeling of this problem by a Petri net. This modeling is
parametrized to some extent since the capacity of the lecture room is represented by a
variable, the positive integer k. It appears both in the initial marking of the net (place

Figure 3.4. Problem of readers/writers (k ≥ 1)
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M ) and as a valuation of arcs between place M and transitions EnE and SoE. The
database system includes two waiting rooms: one for the readers (AL) and the other
for the writers (AE), one reading room (L) and one writing room (E). The left part
of the net describes the management of readers, while the right part relates to the
management of writers. The central part (place M ) ensures synchronization between
readers and writers.

We detail below the dynamic features of the model.

Readers. Transition ArL represents the arrival of new readers in the system. They
wait in place AL. Transition EnL represents the beginning of a read operation. Place
L counts the number of active read operations. Finally, transition SoL corresponds to
the end of a read operation.

Writers. Without taking synchronization into account, the management of writers is
similar to that of the readers. Geometrically, this analogy is represented by a vertical
symmetry axis through place M .

Synchronization. Place M , with shared precondition of transitions EnL and EnE,
performs the synchronization between read and write operations:

– The reading room capacity is represented by the marking of place M : activation
of a new read is only possible when there is still at least one token in M (m(M) ≥ 1).
At the end of a read operation (transition SoL), the marking of M is increased.

– To activate a write operation the reading room must be empty (m(M) =
Pre(M,EnE) = k). This activation consumes the k tokens of place M and produces
a token in place E. The end of a write operation (transition SoE) increases by k the
marking of place M .

3.3.4.2. Verification synchronization constraints

Expression of properties. The first step consists of translating the modeling net
properties of the formulae in Table 3.1. More precisely, these properties are relative to
the marking of places L and E. Table 3.2 presents the corresponding formulae. These
formulae are non-linear invariants that must be fulfilled by every reachable marking.

∀m ∈ A(R,m0),
C1: m(L) ≤ k At most k read simultaneously

C2: m(E) ≤ 1 At most one write

C3: m(E) ·m(L) = 0 No simultaneous read and write

Table 3.2. Translation of synchronization conditions of Table 3.1
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P -flows computation. We apply the computation of flows to the incidence matrix
described below. Introduction of parameters like k does not raise serious difficulties
for Gauss elimination. Instead of operating in the rational field, it operates on a
polynomial ring whose variables are the parameters of the net. The single relevant
modification consists of maintaining a polynomial “condition” (product of the
successive pivots) which ensures that whenever the values of the parameters they do
not cancel the polynomial; the family of flows is a generative family.

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ArL EnL SoL ArE EnE SoE

1 −1 0 0 0 0

0 1 −1 0 0 0

0 −1 1 0 −k k

0 0 0 1 −1 0

0 0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−→
AL
−→
L
−→
M
−→
AE
−→
E

The elimination of columns ArL and ArE, respectively, deletes the vectors
−→
AL

and
−→
AE. The elimination of column SoL combines

−→
M and

−→
L in a partial flow

−→
L +

−→
M .

The elimination of column SoE combines it with
−→
E to produce the flow:

−→
L +

−→
M + k · −→E

The remaining columns are zero and this flow constitutes the generative family.
In this particular case, the polynomial condition is the constant 1, which means that
the family is valid for every value of the parameter. Applying this flow to the initial
marking, we obtain:

∀m ∈ A
(
R,m0

)
, m(L) + m(M) + k ·m(E) = k

Proof of synchronization constraints. Using the computed invariant, let us prove that
the conditions of Table 3.2 are fulfilled.

C1. Isolating m(L) in the invariant, we obtain:

m(L) = k − (m(M) + k.m(E)) ≤ k

C2. Isolating m(E) in the invariant, we obtain:

k ·m(E) = k −
(
m(M) + m(L)

)
≤ k

k �= 0 =⇒ m(E) ≤ 1

C3. C3 can be rewritten m(L) �= 0 ⇒ m(E) = 0. Assume m(L) �= 0, then:

k ·m(E) = k −
(
m(M) + m(L)

)
< k

k �= 0 =⇒ m(E) < 1 =⇒ m(E) = 0
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3.3.4.3. Discussion

Observe that the computation of flows has operated on a parametrized net (this is
not the case with most other methods of analysis). So we have established the property
for a family (indexed by k > 0) of marked nets. For instance, an exhaustive approach
based on the construction of the reachability graph, or here of the covering tree of Karp
and Miller (see the next chapter), since places AL and AE are unbounded, would
prove it for a fixed value of the parameter k.

Computation of invariants is an efficient approach for verification of safeness
properties. This class of properties can be informally described by the statement
“Nothing bad will happen”. In the example, the bad event is the violation of
synchronization conditions.

In practice, model validation requires the satisfaction of liveness properties. This
class of properties can be informally described by the statement “something good
must happen”. In the example, we could check whether or not a reader will wait
infinitely. The net does not fulfill this property: starting from the reachable marking−→
AL + k · −→M (one waiting reader) sequence σ1 = (ArE · InE · SoE)∞ is possible
and leads to an infinity of write operations while the reader is waiting. The infinite
sequence σ2 = ArE∞ is also possible from this marking. T -semiflows may provide
partial clues about such behaviors. For instance, the support of σ1 is the T -semiflow−−→
ArE +

−−−→
EnE +

−−→
SoE. Unfortunately the support of σ2 is not a T -semiflow. However,

it is an increasing repetitive sequence and its support could be computed by an
adaptation of the T -semiflow computation.

3.4. Net reductions

A reduction is a net transformation which reduces its size such that, for a set of
properties, the reduced net is equivalent to the initial net [BER 87]. A reduction is
characterized by:

– its application conditions;

– the net transformation;

– the preserved properties (i.e. those whose verification can be performed on the
reduced net).

From a theoretical point of view, definition of a reduction raises some
methodological problems:

– In order to be satisfied in many cases, the application conditions must correspond
to a behavioral pattern frequently used in modeling. So we must find structural
conditions that ensure that the behavior of the net fulfills the pattern. For instance, we
forbid the case where checking a condition requires the construction of the reachability
graph.
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– The effect of the transformation must be really efficient. In other words, what is
relevant is the potential reduction of the reachability graph rather than the reduction
of the net.

– Finally, among the properties we wish to include are boundedness and liveness,
which are the more relevant with respect to the behavior.

In [BER 83] a set of 10 reductions is proposed. We only present three of them
since, on the one hand, their application conditions are fully structural, and, on the
other hand, they cover useful patterns. Other sets of reductions have been defined
in [COL 86, HAD 87, SCH 00]. Two of these reductions are related to transitions,
pre-agglomeration and post-agglomeration, and the last one is the deletion of
redundant places.

In this section, we denote by Prop the following set of properties: existence of
infinite sequence, pseudo-liveness, quasi-liveness, liveness, existence of a home state,
boundedness.

3.4.1. Pre-agglomeration of transitions

This reduction is related to a transition h whose firing is necessary to the firing
of a set of F via a place p. The principle of pre-agglomeration consists of a reduced
net where we only consider sequences in which firing of h is immediately followed
by firing of a transition f ∈ F . In the reduced net, h and F are deleted and a set of
transitions h · f (one per transition of F ) is added. The structural conditions of the
next definition ensure that:

– in a firing sequence where an occurrence of h is later followed by an occurrence
of f , we can postpone the occurrence of h until that of f ;

– in a firing sequence where an occurrence of h is not later followed by an
occurrence of f , we can delete the occurrence of h.

These two properties (and some additional ones) ensure the equivalence of the two
nets with respect to Prop.

DEFINITION 3.18 (Pre-agglomerable transitions). Let (R,m0) be a Petri net; a set of
transitions F is pre-agglomerable with a transition h /∈ F iff the following conditions
are fulfilled:

1) There exists a place p modeling an intermediate state between the firing of h

and that of a transition of F : m0(p) = 0, Post(p) =
−→
h and Pre(p) =

∑
f∈F

−→
f .

2) h only produces a token in p: Post(h) = −→p .

3) h does not share its inputs with any other transition: ∀ t′ �= t, •t′ ∩ •t = ∅.
4) h has at least one input: •h �= ∅.
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The first hypothesis synchronizes firings of the transitions of F with those of h. In
a marking, m(p) represents the difference between the number of firings of h and the
number of firings of transitions of F . The second hypothesis ensures that firing of h is
only useful for the firing of transitions of F . The next hypothesis implies that if h is
firable then it cannot be disabled. The last hypothesis is required for the equivalence
of boundedness of the original net and that of the reduced net.

DEFINITION 3.19 (Pre-agglomeration of nets). Let (R,m0) be a pre-agglomerable
Petri net, then (R′,m′

0) the reduced net is defined by:

– P ′ = P \ {p} and T ′ = T \ (F ∪ {h}) ∪ {h · f | f ∈ F}.
– ∀ t ∈ T ′ ∩ T, Pre′(t) = Pre(t) and Post′(t) = Post(t).
– ∀ f ∈ F, Pre′(h · f) = Pre(h) + Pre(f)−−→p and Post′(h · f) = Post(f).
– ∀ p′ ∈ P ′, m′

0(p
′) = m0(p′).

Figure 3.5 shows the conditions of pre-agglomeration and the transformation of
the net.

h

f1 f2

p

h.f1 h.f2

0

Figure 3.5. Pre-agglomeration of transitions

The theory of reductions establishes that the reachability set of the new net is
isomorphic to the reachability set of the original net such that p is unmarked. We
empirically observe that this reduction divides the size of the reachability set by
approximatively 2. So n consecutive reductions divide this size by approximatively
2n. This applies equally to the next reduction. Using the application conditions, we
obtain:

PROPOSITION 3.16 (Preservation of properties). Let (R,m0) be a pre-agglomerable
net and π be a property of Prop: (R,m0) fulfills π if (R′,m′

0) fulfills π.
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3.4.2. Post-agglomeration of transitions

This reduction is related to a set of transitions H whose firing of any of these
transitions is necessary and sufficient for the firing of any of transitions of a set F via
a place p. The principle of post-agglomeration consists of considering in the reduced
net only sequences in which a firing of a transition h ∈ H is immediately followed by
the firing of any f ∈ F . In the reduced net, H and F are deleted and a set of transitions
h.f (one per pair of transitions of H × F ) is added. The structural conditions of the
next definition ensure that:

– in a firing sequence where an occurrence of h is later followed by an occurrence
of f , we can anticipate the occurrence of f immediately after that of h;

– in a firing sequence where an occurrence of h is not later followed by an
occurrence of f , we can add an occurrence of f .

These two properties of sequences (and some additional properties) ensure the
equivalence of the two nets with respect to Prop.

DEFINITION 3.20 (Post-agglomerable transitions). Let (R,m0) be a Petri net; a set
of transitions F is post-agglomerable with a set of transitions H disjoint from F iff
the following conditions are fulfilled:

1) There is a place p which models an intermediate state between the firing of h
and that of a transition of F :

m0(p) = 0, Post(p) =
∑
h∈H

−→
h and Pre(p) =

∑
f∈F

−→
f .

2) Transitions of F have no other input than p: ∀ f ∈ F, Pre(f) = −→p .

3) There is a transition f of F with at least one output: ∃ f ∈ F, f• �= ∅.

As for pre-agglomeration, the first hypothesis synchronizes the firing of transitions
of H and those of F . The second hypothesis ensures that every transition f ∈ F is
firable as soon as p is marked. The last hypothesis is required for the equivalence of
the boundedness of the reduced net and that of the original net.

DEFINITION 3.21 (Post-agglomeration of nets). Let (R,m0) be a post-agglomerable
Petri net; (R′,m′

0) the reduced net is defined by:

– P ′ = P \ {p} and T ′ = T \ (F ∪H) ∪ {h · f | f ∈ F, h ∈ H}.
– ∀ t ∈ T ′ ∩ T, Pre′(t) = Pre(t) and Post′(t) = Post(t).

– ∀ f ∈ F, ∀h ∈ H, Pre′(h · f) = Pre(h) and Post′(h · f) = Post(h) +
Post(f)−−→p .

– ∀ p′ ∈ P ′, m′
0(p

′) = m0(p′).
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Figure 3.6 shows the condition of post-agglomeration and the transformation of
the net.

h1

f1 f2

p0

h2

h1.f1 h1.f2 h2.f1 h2.f2

Figure 3.6. Post-agglomeration of transitions

Here again we have:

PROPOSITION 3.17 (Preservation of properties). Let (R,m0) be a post-agglomerable
net and π be a property of Prop: (R,m0) fulfills π iff (R′,m′

0) fulfills π.

3.4.3. Deletion of redundant places

The deletion of redundant places consists of deleting in the net a place which
never disables the firing of transitions on its own. Usually, this place witnesses
some activities without perturbation of the behavior of the net. The existence of a
redundant place is characterized by the existence of some particular linear invariant.
This reduction does not change the size of the reachability set but very often other
reductions become applicable which reduce this size.

DEFINITION 3.22 (Redundant place). Let (R,m0) be a Petri net. A place p0 is
redundant if:

1) There exists a P -flow v =
∑

p∈P λp.
−→p with λp0 > 0 and ∀ p �= p0, λp ≤ 0.

2) ∀ t ∈ T, vt ·m0 ≥ vt · Pre(t).

The second hypothesis ensures that initially a redundant place cannot disable the
firing of a transition on its own. The first condition ensures that this hypothesis is valid
for every reachable marking.
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DEFINITION 3.23 (Deletion of a redundant place). Let (R,m0) be a Petri net where
p0 is a redundant place; then (R′,m′

0), the reduced net, is defined by deleting p and
the adjacent arcs.

Figure 3.7 shows the case of a redundant place and the transformation of the net.
The P -flow of the definition here is: −→p −−→q −−→r .

p

q

r

Figure 3.7. Deletion of a redundant place

Again, we obtain:

PROPOSITION 3.18 (Preservation of properties). Let (R,m0) be a Petri net with a
redundant place and π be a property of Prop: (R,m0) fulfills π iff (R′,m′

0) fulfills π.

A complete analysis of a net with the help of reductions will be developed in the
chapter on high level nets.

3.5. The graph of a Petri net

A Petri net can be viewed as a bipartite graph whose arcs are labeled by integers.
In this section, we take advantage of graph analysis in order to obtain clues to the
behavior of the net. We begin with general results applicable to every net. Then we
restrict our attention to subclasses of nets for which a structural analysis gives deeper
results.

3.5.1. General results

Let us first examine the influence of (strong) connectivity on the behavior of the
net. If the net is not connected, every connected component is an independent net.
So, without loss of generality, we will restrict our attention to connected nets. Before
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presenting the classical result on strong connectivity, let us examine the two following
nets:

– A net constituted by a place input of a transition: this net (not strongly connected)
is bounded and not live.

– A net constituted by a transition input of a place: this net (not strongly connected)
is not bounded and live.

These two elementary examples suggest the following proposition.

PROPOSITION 3.19. Let (R,m0) be a Petri net, live and bounded; then R is a strongly
connected graph.

Proof. Assume that R is not a strongly connected graph; then there exists an initial
s.c.c. C which has (at least) an arc leading to another s.c.c. C′. Assume additionally
that (R,m0) is live. The proof depends on the type of this arc.

This arc is an arc t → p. Since C is initial, the net restricted to C is live. So there
is a firing sequence of C with an infinity of occurrences of t. By definition, place p is
not the input of any transition of C. Its marking infinitely increases during this firing
sequence, thus (R,m0) is unbounded.

This arc is an arc p → t. There is a firing sequence of (R,m0) including an infinity
of occurrences of t. If we project this sequence on transitions of C, then again, since C
is initial, this projected sequence is a firing sequence. By definition, no transition other
than those of C provides tokens to p. Let us denote by σn a finite subsequence of the
initial sequence including n firings of t, mn the reached marking, σ′

n the projection
of σn on transitions of C and m′

n the reached marking. Then since t consumes at least
one token of p, m′

n(p) ≥ mn(p) + n ≥ n. So the net is unbounded.

EXAMPLE 3.14. Again the non-live net in Figure 3.3 fulfills the condition of strong
connectivity.

The next result is another necessary condition for boundedness and liveness of
a net. The interest of this proposition is twofold. First, it is obtained by combining
graph analysis and linear algebra techniques. Moreover, it highlights the reason
why numerous results have been obtained for the subclasses we present later. We
follow [TER 94] for the development of the proof.

Let us recall some elementary ideas of linear algebra.

DEFINITION 3.24 (Independent family, rank of a matrix). Let {v1, . . . , vn} be a family
of vectors of QE; this family is linearly independent if:

∀
{
λ1, . . . , λn

}
∈ Qn

(
n∑

i=1

λi · vi = 0 =⇒ ∀ i λi = 0

)
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Let A be a matrix. The rank of A, denoted rank(A), is defined as the size of the
greatest family of its linearly independent column vectors.

We prove that this is equivalent to defining the rank with respect to row vectors.

Observe that if the net is consistent, then rank(C) < |T |. Using proposition 3.15,
we deduce that if a net is bounded and live then this condition is fulfilled. We improve
this upper bound with the help of an equivalence relation between transitions.

DEFINITION 3.25 (Relation of equal conflict). Let R be a Petri net. Two transitions t
and t′ are in a relation of equal conflict if: Pre(t) = Pre(t′).

This relation is an equivalence relation. We denote by Θ the set of equivalence
classes.

The key point of this relation is that the transitions of an equivalence class are
always simultaneously firable. We will transform the net in such a way that the
equivalence classes are singletons. We proceed iteratively.

DEFINITION 3.26. Let R be a Petri net, let E = {t0, . . . , tk−1} be an equivalence
class of Θ with k > 1. The net RE is defined by:

– PE = P ∪ {p0, . . . , pk−1}, where pi are new places.

– TE = T .

– ∀ p ∈ P PreE(p) = Pre(p), PostE(p) = Post(p).

– ∀ 0 ≤ i < k PostE(pi) =
−−−−−−−→
t(i−1) mod k, PreE(pi) =

−→
ti .

Informally, we superimpose on the initial net a circuit constituted alternately by
transitions ti and places pi. The next lemma justifies the transformation.

LEMMA 3.6. If (R,m0) is live and bounded then:

– ∃m′
0 such that (RE ,m′

0) is live and bounded.

– rank(CE) = rank(C) + |E| − 1.

Proof. Let m be a reachable marking of (R,m0) and t be a transition. Since (R,m0)
is live, a sequence σ exists such that m

σ·t−−−→. Define Δ(m, t) as the number of
occurrences of transitions of E in σ and Δ as the maximum of Δ(m, t) for every
reachable m and t ∈ T (a finite enumeration since the net is bounded). We define m′

0

by:

∀ p ∈ P m′
0(p) = m0(p) and ∀ 0 ≤ i < k m′

0(pi) = Δ
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Let m′ be a reachable marking of (RE ,m′
0) with the corresponding sequence

m′
0

σ−−→ m′. We first show that we can reach a marking where places pi have their
initial marking. Let us call s( ) the mapping which associates with the transition ti the
sequence of transitions in E: t(i+1)mod k . . . t(i−1) mod k. The effect of this sequence
is to put again in pi a token “moved” by a firing of ti. In other words, on the set of
places {pj}, sequence s(ti) cancels the effect of ti. This mapping can be extended
to sequences in the usual way. Let σ�E be the projection of σ on transitions of E.

Define σ1 = s(σ̃�E). Obviously, m′ σ1−−→{pj}0≤j< k
since one cancels the effect of

every transition firing in E beginning with the last transition fired. m′ restricted to
P is a reachable marking of (R,m0). So a shortest sequence σ2 exists in this net in
order to fire a transition of E. σ2 does not include transitions of E and can be fired in
(RE ,m′), leading to a marking where the first transition of σ1 is firable. It is fired and
the process is iterated until all transitions of σ1 have been fired. The reached marking
m′′ is identical to the initial marking on places {pj}0≤j<k and corresponds on P to a
reachable marking m∗ of (R,m0). Now pick any transition t; we can fire in (RE ,m′′)
the sequence ended by t corresponding to Δ(m∗, t) occurrences of transitions of E.
So (RE ,m′

0) is live.

(RE ,m′
0) is bounded since, on the one hand, the projection on P of a reachable

marking is a reachable marking of (R,m0) (bounded net) and, on the other hand,
places {pj} are bounded due to the semiflows −→p0 + · · ·+−−→pk−1.

Let us study the rank of CE . We reason on the row vectors (i.e. the incidence
of places) of CE . Observe first that CE has |E| additional rows corresponding to
{pj}0≤j<k but the associated vectors are not linearly independent due to the semiflow
−→p0 + · · ·+−−→pk−1. We conclude that rank(CE) ≤ rank(C)+ |E|−1. We can delete any
such row and keep the same rank. Let us delete the one indexed by p0. In order to have
a strict inequality, a row vector indexed by some pi should be a linear combination of
the other row vectors. In other words:

CE

(
pi

)
=
∑
p∈P

λp · C(p) +
∑

pj �=pi,p0

λj · CE

(
pj

)
Since (R,m0) is live, there is a shortest sequence for firing any transition of E; we
fire it followed by t0, then we do it again with t1, and again, until ti−1, where we start
again with t0. Let σn be the sequence including n steps of this process and −→σn be its
occurrence vector, then:

– CE(pi)t · −→σn =
∑

p∈P λp · C(p)t · −→σn +
∑

pj �=pi,p0
λj · CE(pj)t · −→σn.

– CE(pi)t · −→σn = n.

– ∀ pj �= pi, p0 CE(pj)t · −→σn = 0.

– ∀ p ∈ P, −m0(p) ≤ C(p)t · −→σn ≤ B − m0(p), where B is a bound of net
(R,m0).
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However if n goes to infinity, the left hand side of the first equality goes to infinity,
while the right hand side remains bounded, so the equation between ranks is fulfilled.

We can now state a new necessary condition for simultaneous boundedness and
liveness.

PROPOSITION 3.20. If (R,m0) is live and bounded then rank(C) < |Θ|.

Proof. We apply the previous construction to all equivalence classes of size
greater than 1. Let (R′,m′

0) be the obtained net; due to the necessary condition of
consistency stated in proposition 3.15: rank(C ′) < |T ′| = |T | and also rank(C ′) =
rank(C) +

∑
E∈Θ(|E| − 1) = rank(C) + |T | − |Θ|. Substituting rank(C ′) in the

inequality by its expression, we obtain the result.

EXAMPLE 3.15. This condition is more discriminating. For instance, the bounded and
non-live net in Figure 3.3 does not fulfill this condition. In fact the rank of matrix C
is 4 (a generative family of 2 P -flows for 6 transitions) and |Θ| = 4 ({ACH,ACV },
{BCH,BCV }, {RV H} and {RV V } are the different equivalence classes). Since
this condition is independent from the initial marking, and since the net is structurally
bounded, we deduce that an initial marking such that the net would be live does not
exist.

3.5.2. State machines

We present three subclasses in increasing order of complexity: state machines,
event graphs, and free choice nets. For these classes, several behavioral properties
are characterized by structural conditions. The verification of these characterizations
is performed by algorithms which are compared to the state-based algorithms such
as those that rely on the reachability graph. As previously, we assume that the net is
connected.

A state machine can be viewed as a finite automaton shared by several anonymous
processes. Places describe states, transitions represent state changes, and the
marking of a place indicates the number of processes in the corresponding state (see
Figure 3.8).

Figure 3.8. Constraints of state machines
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DEFINITION 3.27 (State machine). R, a Petri net, is a state machine if: ∀ t ∈ T ,
∃ pin, pout with Pre(t) = −→pin and Post(t) = −→pout.

The flow of tokens is extremely simple since consumption of a token is followed
by the production of another token. So we obtain:

PROPOSITION 3.21. Let R be a state machine; then
∑

p∈P
−→p is a P -semiflow. In

particular R is conservative, thus structurally bounded.

Verification of liveness is also easy and is performed in linear time with respect to
the size of the net with the help of the Tarjan algorithm [AHO 74].

PROPOSITION 3.22 (Liveness of a state machine). If R is a state machine then:(
R,m0

)
is live iff R is strongly connected and m0 �=

−→
0 .

Proof. Assume the net is live, so some transition is initially firable, hence m0 �=
−→
0 .

Furthermore, since the net is bounded, applying proposition 3.19, we deduce that the
net is strongly connected.

Assume that the net is initially marked and strongly connected; since the net is
conservative, every marking m has at least one token in place p. Let t be any transition;
a path exists from p to t (strong connectivity). The transitions of this path are fired
successively, ending with t.

3.5.3. Event graph

An event graph [COM 71] is a net when transitions never conflict, since a place is
the input (and output) of a single transition. In other words, there are no real choices
in these nets, but rather different schedulings. When one precondition of a transition
firing is fulfilled, it remains fulfilled until its firing (see Figure 3.9).

Figure 3.9. Constraints of event graphs
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DEFINITION 3.28 (Event graph). R, a Petri net, is an event graph if: ∀ p ∈ P , ∃ tin, tout

with Pre(p) =
−→
tout and Post(p) =

−→
tin.

Recall that an elementary circuit is a path in a graph such that only the first and
last vertices are identical. Observe first that the number of tokens of an elementary
circuit in an event graph is invariant since there are neither input transitions nor output
transitions. So places of an elementary circuit constitute a P -semiflow. This fact is the
starting point of the theory of event graphs.

PROPOSITION 3.23 (Liveness of an event graph). If R is an event graph, then:

(R,m0) is live iff every elementary circuit of R includes an initially marked place.

Proof. Assume that an elementary circuit is initially unmarked. Then no transition of
the circuit will ever be fired. Hence the net is not live.

Assume that every elementary circuit is initially marked. Then, for every reachable
marking m, they are still marked (see the previous remark). Pick such a marking m;
we define the relation t helps t′ iff there is an unmarked place output of t and input
of t′, and define the relation t precedes t′ as the reflexive and transitive closure of
helps. Let us prove that precedes is a (partial) order. Assuming the contrary, we then
have two transitions t and t′ such that t precedes t′ and t′ precedes t. By definition of
precedes, there exist paths from t to t′ and from t′ to t where all places are unmarked.
Combining these, we obtain a circuit from which we extract an unmarked elementary
circuit, which is impossible. This partial order can be extended to a total order. Let

t1, . . . , tn be the ordered sequence of transitions. We claim that m
t1·····tn−−−−−−→. In fact

t1 is firable since all the input places are marked and if m
t1·····ti−−−−−→ m′ then all input

places of ti+1 are marked in m′. Hence the net is live.

To check the liveness, we delete the marked places and check the existence of a
circuit in the obtained graph. The time complexity of this search is linear with respect
to the size of the graph. Also observe that during the proof, we have shown that
liveness is equivalent to the existence of a firing sequence starting from the initial
marking including exactly one occurrence of every transition. Moreover this sequence
is repetitive stationary, since by definition of an event graph

∑
t∈T

−→
t is a T -semiflow.

Let us study the structural boundedness.

PROPOSITION 3.24 (Structurally bounded event graph). If R is an event graph then:

R is structurally bounded iff R is strongly connected.

Proof. If R is strongly connected, every place is covered by a circuit. So the sum
of the associated P -semiflows ensures that the net is conservative, hence structurally
bounded.
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Assume that R is not strongly connected. There is an initial s.c.c. C with a s.c.c
successor C′. In other words, there is a vertex x ∈ C and a vertex x′ ∈ C′ such that the
arc (x, x′) belongs to R. If C is reduced to x, then x is a transition (since every place
has an input) without input and with an output x′, so R is unbounded. Otherwise every
vertex of C belongs to an elementary circuit. So, x has at least two outputs and it is a
transition; x′ is a place.

Let us pick the net restricted to C. This subnet is an event graph (since every place
belongs to a circuit). Let us choose an initial marking of the subnet with every circuit
marked. This subnet is live, so we can fire an infinite sequence including an infinity
of occurrences of x. This sequence is also a firing sequence of the initial net which
infinitely increases the number of tokens in x′. So R is not structurally bounded.

We achieve the analysis of event graphs by characterization of simultaneous
liveness and boundedness (we have already established the necessary conditions for
ordinary nets).

PROPOSITION 3.25 (Live and bounded event graph). If R is an event graph, then the
following assertions are equivalent:

1 (R,m0) is live and bounded.

2 R is strongly connected and every elementary circuit is initially marked by m0.

3 R is strongly connected and there a firing sequence including exactly one
occurrence of every transition exists.

Proof. We have already obtained the equivalence of points 2 and 3 and the implication
2 ⇒ 1. For the implication 1 ⇒ 2, it is enough to modify the last part of the previous
proof, choosing for the initial marking of C the restriction of m0 to this component.

3.5.4. Free choice net

In a free choice net, when a place is the input of several transitions, all
these transitions have the same inputs reduced to this place and thus are always
simultaneously firable, justifying the name of the subclass (see Figure 3.10). Observe
that the net in Figure 3.3 is also a free choice net.

Figure 3.10. Constraints of a free choice net
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DEFINITION 3.29 (Free choice net). R, a Petri net, is a free choice net if: ∀ t ∈ T

– ∃Pin, Pout ⊂ P with Pre(t) =
∑

p∈Pin

−→p and Post(t) =
∑

p∈Pout

−→p
– ∀ t′ ∈ T , •t ∩ •t′ �= ∅ ⇒ |Pin| = 1 and Pre(t) = Pre(t′)

We first give a definition of liveness of free choice nets. With this aim, we define
two properties of a set of places.

DEFINITION 3.30. Let R be a Petri net and P ′ a non-empty subset of places then:

– P ′ is a deadlock if its inputs are included in its outputs,

∪p∈P ′•p ⊂ ∪p∈P ′p•

– P ′ is a trap if its outputs are included in its inputs,

∪p∈P ′p• ⊂ ∪p∈P ′•p

When a deadlock is unmarked, it will always remain unmarked and every
transition output of the deadlock will never fire. When a trap is marked, it will always
remain marked. In other words, an unmarked deadlock is a sufficient condition for
non-liveness and this cannot happen if the deadlock contains an initially marked trap.
This is the starting point of the characterization of liveness. With this aim, we first
define a device for emptying places.

Let p be a place of a (not necessarily free choice) Petri net which does not belong
to any trap of the net. Then, there exists a sequence of disjoint non-empty subsets of
places, P1, . . . , Ph (determined in a single way by the following construction) such
that: Ph = {p} and ∀ p′ ∈ Pi, ∃ t ∈ p′• such that t• ⊂ ∪j<iPj .

The construction proceeds as follows. Let us denote as Succ(p) the set of places
reachable from p by a path in the net (observe that p ∈ Succ(p)). Since Succ(p) is
not a trap, the subset of places which have an output transition without output is not
empty. If p is such a place, we define P0 = {p} and stop. Otherwise P0 is this subset
of places and we consider the subset Succ(p) \ P0. This set is not a trap, so the subset
of places which have an output transition all of whose outputs are in P0 is not empty.
If p is such a place, we define P1 = {p} and stop. Otherwise P1 is this subset and
we iterate the process with Succ(p) \ (P0 ∪ P1). Since the set of places is finite, the
process must stop.

By construction, every place p ∈ Pk does not belong to any trap. Given a place p
which does not belong to any trap, we denote by h(p) the number h of the construction.
We also define empty(p) as one output transition of p which has all its outputs
∪j<h(p)Pj . Observe that for a place p′ ∈ ∪j<h(p)Pj h(p′) < h(p). We now establish
the characterization of live free choice nets.
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THEOREM 3.1 (Commoner condition [HAC 72, COM 72]). Let R be a free choice
net; then (R,m0) is live iff every deadlock of R includes an initially marked trap.

EXAMPLE 3.16. The net in Figure 3.3 has a deadlock which does not include a trap:
{A,B,AAH,BAV }. So this is a new proof that it cannot be live whatever its initial
marking.

Proof. Assume (R,m0) is not live, and let t be a transition that can never be fired
from a reachable marking m. Necessarily, from a marking m′ reachable from m, one
of the input places of t, p will always remains unmarked. Indeed, either t has a single
input and the firability of t is equivalent to the fact that p is marked, or t has several
outputs but does not share it (free choice), which implies that the number of marked
input places of t can only increase and then we pick a marking m′ for which this value
is maximum. We build a set of unmarked places, initialized to {p}. Since from m′, p is
never marked, all its input transitions are never firable. We iterate the previous process
and obtain for all these transitions an input place (possibly p) such that p and these
places will remain unmarked from a reachable marking m′′. We iterate the process for
the new places. Again this process must stop and when it stops all the selected input
places are already present in the current (and final) set of places. By construction,
this set is unmarked in a reachable marking and it is a deadlock. Using a previous
observation on traps, we conclude that it cannot include an initially marked trap.

Assume now that (R,m0) is live and that there exists a deadlock V which does
not contain a marked trap. We will obtain a contradiction. First, V must be initially
marked. Let E be the set of places of V which do not belong to any trap included in
V (this set includes the marked places of V ). We consider the subnet generated by the
places of V and we order the places of V , beginning with the places of V \ E and
ending with the places of E; such a place, say p, is ordered by increasing the order of
h(p) where h is relative to the subnet. Observe that different orders are possible. Once
this order is chosen, we order the vectors of NV lexicographically. We are going to
prove that we can always decrease the marking restricted to places of V with respect
to the lexicographic order by a firing sequence. In particular, places of V \ E will
always remain unmarked during the process.

Starting from m0, we fire every possible transition empty(p) for p ∈ E. Any
firing consumes (at least) one token of p and produces one token in places p′ ∈ E
with h(p′) < h(p) or in places p′ ∈ P \ V . The submarking with respect to V
decreases after every firing until it reaches a marking m1 where no transition
empty(p) is firable. Let σ be the shortest sequence which enables the firing of a
transition empty(p) (m1

σ−−→ m2). This sequence cannot provide tokens to V . Indeed
by definition of a deadlock, it must consume tokens of the deadlock. But all tokens
of the deadlock are in input transitions places empty(p) which are not firable and so
these transitions have several inputs. The free choice hypothesis implies that these
places are not inputs of another transition. Thus the submarking of V is unchanged
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during the firing of σ. From m2 the transition empty(p) is fired, which becomes
firable, decreasing the submarking of V , and we iterate the process. But there are no
infinite strictly decreasing sequences in NV with lexicographic order, which shows
the contradiction.

Using the theorem, it is straightforward to design a test algorithm for non-liveness
in NP . We choose non-deterministically a subset of places, then check that it is a
deadlock and compute in polynomial time its maximum trap [MIN 90] (union of traps
included in the deadlock) and verify that it is unmarked.

Using a (quite simple) reduction of the satisfiability problem for a formula in
conjunctive normal form, we prove that the problem of non-liveness is NP-complete
[JON 77]. We let the reader prove that the net in Figure 3.11 is not live iff the formula
stated under the net is satisfiable. Intuitively, the formula is satisfiable if the three
negations of its clauses can be simultaneously false. In this case, we can fire three
transitions among {x1, notx1, x2, notx2, x3, notx3}without enabling any of the three
transitions {notc1, notc2, notc3}.

Figure 3.11. From satisfiability of a formula to non-liveness of a free choice net
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We end this study by establishing a definition of live and bounded free choice nets.
First, boundedness ensures the equivalence of some behavioral properties.

PROPOSITION 3.26. Let (R,m0) be a free choice net strongly connected and bounded
then:

(R,m0) is live iff (R,m0) is pseudo-live.

Proof. We have to prove that pseudo-liveness implies liveness. Assume that (R,m0)
is not live; then a reachable marking m and a transition t exist such that t is never
firable in (R,m). Let p be an input place of t; the marking of p cannot decrease since
if p is an input of another transition, these transitions also never fire. Necessarily, the
input transitions of p can only occur a finite number of times in an infinite sequence
(otherwise p would be unbounded). Starting from m, we can reach a marking m′

where these transitions never fire. Iterating this process, we obtain a marking where
all transitions with a path to t never fire. Since R is strongly connected, this set of
transitions is T and this marking is dead.

The necessary condition of simultaneous liveness and boundedness about the rank
of C in Petri nets can be refined for free choice nets.

PROPOSITION 3.27. Let R be a free choice net, then:

(R,m0) is live and bounded =⇒ rank(C) = |Θ| − 1

Proof. We reason on the live and bounded net (R′,m′
0) of proposition 3.20 obtained

after superimposing on (R,m0) a circuit for every equivalence class of Θ different
from a singleton. In this net, we already know that rank(C ′) ≤ |T |−1 and additionally
that there exists a T -semiflow v such that ‖v‖ = T (proposition 3.15). In order to
prove the proposition, we must show that the inequality is an equality. If the inequality
is strict, there is a second T -flow v′ (with v, v′ linearly independent).

W.l.o.g. we assume that there is at least one transition t such that v(t) > 0.

Among such transitions, let t0 be a transition that fulfills: v′(t0)
v(t0)

= Max({ v′(t′)
v(t′) |

t′ ∈ T ′, v′(t′) > 0}). Then v′′ = v′(t0).v − v(t0).v′ is a T -semiflow whose support
is strictly included in T .

Let t be a transition belonging to the support of a T -semiflow of R′. Due to the
additional circuits, every transition of the equivalence class of t′ in R also belongs to
the support of the T -semiflow. Indeed if this class is not reduced to t, then t produces
a token in a place of the circuit only consumed by the next transition of the circuit.
Thus this transition must appear in the support of the T -semiflow. By iteration, every
transition of the circuit must appear in the support.
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Since (R,m0) is live and bounded, R is strongly connected. Let t be a transition of
the support of v′′, t′ be any transition, and consider a path in R from t to t′. We claim
that every transition on the path belongs to the support of v′′. By hypothesis, t belongs
to the support. Let t1 �= t′ be a transition of the path that belongs to the support, let p
be the place which follows t′ on the path, and t2 the next transition. One of the output
transition of p, say t3, must belong to the support of v′′ and so every transition of its
equivalence class must also belong to the support. But t2 belongs to this class (here we
have used the hypothesis of the free choice) so it also belongs to the support. Hence
any t′ belongs to the support of v′′, which contradicts the fact that the support of v′′

does not contain every transition.

We establish another necessary condition of simultaneous boundedness and
liveness of a free choice net starting from the characterization of liveness. With this
aim, we introduce the idea of a subnet and of covering of a net.

DEFINITION 3.31. Let (R,m0) be a Petri net.

– Let P ′ be a subset of places; then (R[P ′],m0[P ′]) is the subnet defined by the
subset of places P ′, the subset of transitions •P ′ ∪ P ′•, and the incidence matrices
and the initial marking of (R,m0) restricted to these subsets.

– R is covered by marked state machines if every place belongs to a subset P ′ such
that (R[P ′],m0[P ′]) is a marked state machine.

We say that a deadlock is minimal if it does not contain a strictly smaller deadlock.

LEMMA 3.7 (Characterization of a minimal deadlock). Let (R,m0) be a free choice
net and let V be a deadlock then:

V is minimal iff ∀ p, p′∈V there is a path from p to p′ in R[V ] and ∀ t transition
of R[V ], |•t| = 1.

Proof. Let V be a minimal deadlock and let C be an initial s.c.c. of R[V ]; C is not
reduced to a transition, otherwise V would not be a deadlock. By construction, places
of C constitute a deadlock, thus this set is V , which establishes the first condition.
Assume that t a transition of R[V ] has two inputs. These two places are only inputs
of t and deleting any such place creates a new deadlock. Any t of R[V ] has an input
since V is a deadlock.

Assume that V fulfills the characterization of minimality but that there is V ′ a
deadlock strictly included in V . Let p be a place of V \ V ′ and p′ be a place of V ′.
There is a path in R[V ] from p to p′. Let p′′ be the last place belonging to V \ V ′ on
the path. The transition which follows p′′ is an input of V ′ and its single input in V ,
p′′, does not belong to V ′. Hence V ′ is not a deadlock.



Analysis Methods for Petri Nets 83

LEMMA 3.8 (Minimal deadlock of a live and bounded net). Let (R,m0) be a live and
bounded free choice net and let V be a minimal deadlock then:

R[V ] is a marked state machine.

Proof. Since the net is live, V contains a marked trap Tr. Assume that Tr is different
from V , then, since Tr cannot be a deadlock, there is a transition t of R[Tr] which
has no input. Let us examine the sum of place markings of Tr; this sum cannot
decrease since every transition of R[Tr] has at least one output and at most one
input. Furthermore the firing of t increases this sum. Since (R,m0) is live, we can
build an infinite sequence including an infinity of occurrences of t, contradicting the
boundedness of the net. Hence Tr = V , V is marked and every transition of R[V ] has
at least one output and exactly one input. Using the same reasonning as for the trap,
we establish that no transition has two outputs and so R[V ] is a state machine.

LEMMA 3.9 (Minimal deadlock of a strongly connected net). Let R be a strongly
connected free choice net and let p be a place of P then:

p is contained in a minimal deadlock.

Proof. Let p be a place; if P = {p} the result is obvious. Otherwise, let t ∈ •p.
This set is non-empty since the net is strongly connected. There is an elementary path
from p to t whose length is minimal. We build the minimal deadlock starting from
the circuit places that we have obtained. We note the current subset of places P ′. R′

is the net restricted to P ′ and P ′•. P ′ fulfills at each step the minimality conditions
of a deadlock (without necessarily being a deadlock). Initially, the circuit ensures the
strong connectivity between places. Furthermore, no transition can have two places of
the circuit as inputs due to the minimality of the path. Suppose that the current subset
is not a deadlock of R. Then there is a transition t′ ∈ •P ′ \P ′•. Let p′ ∈ •t′; since the
net is strongly connected, there is an elementary path from any vertex of R′ to p′. Let
us a choose a path with minimal length; only the first vertex belongs to R′ and (due
to the minimality of the path) no place of the path shares its output transitions either
with the other places of the path or with the places of P ′. P ′ is updated with these new
places. We iterate this process, which must stop since T is finite. By construction, the
final subset P ′ is a minimal deadlock.

PROPOSITION 3.28. Let R be a free choice net, then:

(R,m0) is live and bounded implies

(R,m0) is covered by marked state machines.

Proof. Using proposition 3.19 the net is strongly connected. Using the previous
lemma, every place p belongs to a minimal deadlock. This deadlock is a marked state
machine due to lemma 3.8.
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It turns out that the conjunction of the necessary conditions previously established
is a sufficient condition, giving the fundamental theorem about the behavior of the free
choice net called the rank theorem.

THEOREM 3.2 (Rank theorem [ESP 92]). Let R be a free choice net; then (R,m0) is
live and bounded iff the following conditions are met:

– R is strongly connected.

– R is covered by state machines.

– Rank(C) = |Θ| − 1.

– Every deadlock of R is initially marked.

Proof. Using the previous results, we have only to prove that the condition is
sufficient. Since the net is covered by state machines, it is conservative and so
structurally bounded.

Let m1 be a marking that marks every trap of the net; we show that (R,m1) is live.
Suppose the contrary. Using proposition 3.26 (R,m1) is not pseudo-live. Let m2 be a
dead marking; every equivalence class of Θ has (at least) one input place unmarked in
m2. We choose such a place per class and we note P ′, this subset of places.

Since |P ′| = |Θ| and rank(C) < |Θ|, there is a flow v whose support is included
in P ′. Let us denote v = v1 +v2 where v1 is constituted by the positive coefficients of
v and v2 = v − v1. W.l.o.g., we suppose that v1 �=

−→
0 . The choice of P ′ implies that

every transition t has a single input in P ′. If this input is not in ‖v1‖ then vt
1.C(t) ≥ 0.

Otherwise this input is not in ‖v2‖, but then vt
1.C(t) = −vt

2.C(t) ≥ 0. In conclusion,
vt
1.C ≥ −→0 . However, this is possible only if ‖v1‖ is a trap. Due to the choice of m1

every trap is marked, which is contradictory.

Since (R,m1) is live and bounded, every minimal deadlock of R is a trap (see
lemma 3.8). Since in (R,m0) every deadlock is marked, every deadlock contains
a marked trap (i.e. one of its minimal deadlock). Using the Commoner condition,
(R,m0) is live.

This result has two outstanding features.

On the one hand, it only relies on the graph structure, the incidence matrix, and the
initial marking.

On the other hand, we deduce an algorithm which checks the simultaneous
boundedness and liveness in polynomial time. The strong connectivity can be
checked with Tarjan’s algorithm. The rank of the matrix is computed by a variation
of the Gauss elimination. In order to test the covering by state machines, we build
a minimal deadlock containing every place following the proof of lemma 3.9 and
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then check that it is a state machine. Finally, to check that there is not an unmarked
deadlock, we restrict the net to the unmarked places and test whether the maximum
deadlock exists (union of all deadlocks).

Numerous works are relevant to generalizations of characterizations to extensions
of free choice nets [GRI 80, TER 93, TER 94, BAR 95]. Similarly, other behavioral
properties of free choice nets have been analyzed [LEE 95, ESP 98]. The reader
interested in this can refer to a book devoted to this [DES 95].
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Chapter 4

Decidability and Complexity
of Petri Net Problems

4.1. Introduction

In the previous chapter we emphasized that, on the one hand, the efficiency of
methods based on the reachability graph strongly depends on its size and, on the other
hand, that these methods are only applicable to bounded nets. So, in this chapter, we
will evaluate the complexity of the reachability graph and we will design verification
methods applicable when the graph is infinite.

We begin with a summary of the main concepts of decidability and complexity
which will be used in the other sections. Then we recall negative results concerning
the reachability graph both with respect to decidability when the graph is infinite and
with respect to complexity in the finite case.

We will then develop common methods for the case of infinite graphs. The
first method, called the construction of a covering graph, is an adaptation of the
construction of the reachability graph. This algorithm substitutes an infinite value
(denoted ω) at the marking of a place p when it detects the possibility of reaching
markings greater than the current marking with arbitrarily large values of p. This
finite graph is an abstraction of the reachability graph which allows us to determine
some generic properties. The second method relies on the computation of a bound
of the length of the shortest paths witnessing some property. Then it is sufficient to
look for the existence of a path with a bounded length in order to check whether

Chapter written by Serge HADDAD.
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the property holds. The third method starts from a target marking, and performs
backward firings from a set of markings in order to reach the initial marking. The
underlying procedure ensures the termination of the algorithm. We illustrate both
methods on the covering property (i.e. the reachability of a marking greater than or
equal to a given marking).

None of the previous methods solves the reachability problem: given two markings
of a net, decide whether the second marking is reachable from the first one. So we will
informally describe an algorithm for the reachability problem. The importance of this
algorithm is twofold. It is a very complex algorithm and in addition it seems to be a
limiting result for decidability in Petri nets.

The last two sections are devoted to the expressive power of the Petri net model.
Knowing that this model is less expressive than the model of Turing machines, it is
tempting to introduce new control mechanisms and to adapt the verification methods
to these extended models. We present three relevant extensions of Petri nets. Nets with
inhibitor arcs allow us to forbid the firing of a transition if the marking of a place is
greater than some value. In a self-modifying net, a transition produces or consumes
a number of tokens that depends on the current marking. A recursive net contains
abstract transitions whose firing leads to a state consisting of a dynamic tree of marked
nets. For each model, we point out the impact of the extension on the verification of
properties.

A common way of comparing models with respect to their expressive power is
the study of the languages generated by firing sequences. We end the chapter with a
description of the properties of Petri net languages and a comparison of this family of
languages with the standard hierarchy of families of languages.

Interested readers will find in [ESP 94] a detailed overview of decidability and
complexity results in Petri nets. They can also refer to [ESP 98], which covers features
complementary to those discussed here.

The notations of the previous chapter also apply here. For ease of readability we
recall below some results from the previous chapter which we use intensively in this
chapter.

LEMMA 4.1 (Monotonicity lemma). Let R be a Petri net.

1) ∀m1 ≤ m′
1 m1

σ−−→ m2 ⇒ m′
1

σ−−→ m′
2 with m2 ≤ m′

2.

2) Furthermore, let p be a place such that m1(p) < m′
1(p) then m2(p) < m′

2(p).

LEMMA 4.2 (Koenig lemma). Let A be a tree with finite degree (i.e. every vertex has a
finite number of successors) and including an infinite number of vertices; then A has
an infinite branch.
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LEMMA 4.3 (Extraction lemma). Let m0,m1, . . . be an infinite sequence of vectors of
N{1,...,k}; this sequence has a (largely) increasing subsequence.

PROPOSITION 4.1 (Characterization of a bounded net). Let R be a net:

(R,m0) is unbounded iff (R,m0) has a firing sequence m0
σ1−−→ m1

σ2−−→ m2

with m1 < m2.

4.2. Decidability and complexity notions

The summary given here is enough to understand the remainder of the chapter but
cannot replace a more in-depth discussion of these topics. The interested reader can
refer to specialized books (e.g. [PAP 94]).

DEFINITION 4.1 (Concept of a problem). A problem is a partial function f from A
to B. The items of A and B have at least one finite representation able to be read or
written by a machine or a program. In the case where B is the Boolean domain, we
say that it is a decision problem.

Informally an item a of A is an instance of the problem and f(a) is the result of
this problem for this instance. Here are two simple examples:

– The construction of the reachability graph is a problem where A is the set of
Petri nets and B is the set of finite graphs. f is the partial function which associates
a bounded net with its reachability graph.

– The liveness of a net is a problem where A is the set of Petri nets and B is
the Boolean domain. f is the total function which associates with a net a Boolean
witnessing whether the net is live.

To be more precise, we should indicate the chosen representation for the input
and the result since in some cases this choice has an impact on the complexity of
the problem (e.g. unary representation of integers). We will assume a reasonable and
“standard” representation of the objects we study.

Our goal is to solve problems using programs. Following the Church thesis, we do
not specify the programming language, assuming that it has the basic constructors: if
then else, while, for, . . .

DEFINITION 4.2 (Recursive problem). A problem f from A to B is recursive if there
exists a program which takes as input an item a ∈ Domain(f) ⊆ A and terminates
and produces (or prints) f(a). When B is the Boolean domain, we say that the problem
is decidable.

Once we know that a problem is recursive, i.e. an algorithm for solving it exists,
we need to measure the efficiency of the computation. The main difficulty is the
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constructor while. Indeed, even if we can prove that the program will eventually exit
the loop, it is sometimes impossible to predict the number of times that the loop block
will be executed. Let us call a primitive program a program that has only constructors
for, if then else and the concatenation, and which has one variable initialized with the
size of the input and the other variables initialized with zero.

DEFINITION 4.3 (Primitive recursive problem). A problem f is primitive recursive
if there is a primitive program which takes as input an item a ∈ Domain(f) ⊆ A,
terminates and produces (or prints) f(a).

Informally we can say that a non-primitive recursive problem can be solved but
that its complexity is unknown. Thus we try to design primitive programs, or at least
programs that we can transform later into primitive programs, in order to measure their
complexity. The two complexity criteria used most often are time complexity (number
of instructions performed) and space complexity (size of the required memory). In the
second case, the input and the output are supposed to be on a secondary memory and
do not count in the measure.

DEFINITION 4.4. Let Comp be a function from N to R, f be a problem, and prog be
a program that solves f . We denote by |a| the size of an object a, then: prog is time
(resp. space) bounded by Comp if for every a ∈ Domain(f), prog performs (resp.
uses) at most Comp(|a|) instructions (resp. memory cells).

This very precise complexity measure depends on both the choice of the
programming language and on the size of the memory cells. In fact, we need to
characterize complexity classes related to a family of functions, for instance:

– P , the class of polynomial functions;

– EXP , the class of functions that can be written 2Comp with Comp ∈ P;

– LOG, the class of functions that can be written log(Comp) with Comp ∈ P .

Thus we obtain a more robust idea of the degree of complexity.

DEFINITION 4.5 (Complexity classes). Let C be a class of functions from N to R and
f be a problem:

– f belongs to Ctime or more simply to C, if there exists a program whose execution
time is bounded by Comp, a function from C.

– f belongs to Cspace, if there exists a program that solves f and whose memory
size is bounded by Comp, a function from C.

Numerous decision problems can be solved using non-deterministic choices (e.g.
choice of a firable transition) and by backtracking when the choice leads to a dead end
(i.e. a negative answer). In other words, the execution can be visualized as a tree where
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every branch represents an execution sequence and where the algorithm returns true if
at least one execution returns true. Assume that we could use an imaginary machine
which after every non-deterministic choice can simultaneously execute the different
alternatives; the time complexity would be equal to the execution time of the longest
branch.

Formalizng this, given a class C we denote by NCtime, or more simply NC, the
set of problems decidable by a program including non-deterministic choices such
that a function of C bounds the execution time of every execution. This idea is also
applicable to space complexity.

REMARKS:

– Clearly a deterministic program can occupy at most a number of memory cells
proportional to the number of performed instructions. Hence Ctime ⊂ Cspace.

– Using the Savitch procedure [AHO 74], every program can be transformed into
a deterministic one that uses a memory size quadratic with respect to the memory size
of the original program. Hence NCtime ⊂ Cspace as soon as P ⊆ C.

– A deterministic program is a particular non-deterministic program. Hence
Ctime ⊂ NCtime.

We summarize below the relations between the most common complexity classes
which will be used in this book.

NLOGspace ⊆ P ⊆ NP ⊆ Pspace ⊆ EXP ⊆ NEXP ⊆ EXPspace

Some inclusions are strict (e.g. P �= EXP and Pspace �= EXPspace), while for
some others the problem remains open (e.g. P �= NP? and NP �= Pspace?).

The complexity that we have described until now is focused on upper bounds for
the complexity of a problem. The search for lower bounds is also interesting, since on
the one hand it avoids a useless search of (over) efficient algorithms, and on the other
hand it allows us to define the idea of optimality for some algorithms.

To formalize the concept of lower bound, we first define the idea of reduction.

DEFINITION 4.6 (Problem reduction). Let f be a problem from A to B and g be
a problem from A′ to B. f reduces to g with complexity Ctime (resp. Cspace) if a
program exists:

– which takes as input an object a ∈ Domain(f) and provides a result a′ ∈
Domain(g),

– such that g(a′) = f(a),
– and is time (resp. space) bounded by a function of C.
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The two main types of reductions are Ptime reductions (sufficient for classes
including Ptime) and LOGspace reductions (for smaller classes than Ptime).

DEFINITION 4.7 (Hard and complete problems). Let f be a problem.

– f is C-hard if every problem of C is reducible to f .

– f is C-complete if f is C-hard and f belongs to C.

When a problem is C-hard, it is useless to look for an algorithm which belongs to
a smaller class than C. A C-complete problem is one of “the most complex problems
of class C”. For instance, the reachability of a vertex starting from another vertex in a
graph is a NLOGspace-complete problem and the simultaneous satisfaction of a set
of disjunctive propositional clauses is a NP-complete problem.

4.3. Theoretical results about the reachability graph

Given two Petri nets which have the same set of places, it is interesting to compare
their reachability set. For instance, we wish to compare the reachability set of a safe
system to that of a system that we want to certify. Unfortunately, we have here the first
negative results.

PROPOSITION 4.2 (Comparison of reachability sets [HAC 75]). Given two Petri nets
over the same set of places, the problems of equality and inclusion reachability sets
are undecidable.

When restricting these questions to bounded nets, they obviously become
decidable. But what is their complexity? Before answering this let us first examine
the complexity of the construction of reachability graphs for bounded nets.

PROPOSITION 4.3 (Complexity of the reachability graph). Given a bounded Petri net,
the problem of construction of the reachability graph (or set) is not primitive recursive.

Proof. We show that a family of marked bounded nets indexed by N exists such that
the size of a marked net is proportional to its index and the size of its reachability
graph is not a primitive recursive function of the index.

We first compute an upper bound fn(x) of the absolute value of a variable after
execution of a primitive program including n constructors and whose variables are
initialized with absolute values less than or equal to |x|. W.l.o.g., we consider the
case x ≥ 2. More precisely, the programming language has a basis instruction, the
assignment of a sum of variables x = y(+/−)z and three constructors: the choice if
then else with the restriction that the test does not modify the value of variables, the
concatenation, and the loop for whose number of rounds is fixed by the value of a
variable. Let us show that the functions fn defined below are appropriate:

– f0(x) = 2 · x
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– fi+1(x) = f
(x)
i (x), where f

(x)
i denotes the composition x times repeated of fi

Using an immediate recurrence, we check that the functions fi are strictly increasing
and that fi+1(x) > fi(x).

If a program does not include constructors, it has exactly one basis instruction and
the value of the affected variable cannot exceed 2.x. Assume that the upper bound has
been proved for i constructors and let us study a program with i + 1 constructors. If
the more external constructor is the choice then the execution is one of its branches.
Hence fi(x) bounds the content of variables. If the more external constructor is the
concatenation then the execution is the one of a program with at most i constructors
taking as inputs variables computed by a program with at most i constructors whose
variables are initially less than or equal to x with respect to the absolute value. Hence
fi(fi(x)) bounds the content of variables. If the more external constructor is the loop
for then there are at most x rounds and this program is equivalent to at most x − 1
concatenations of programs with at most i constructors. Hence f

(x)
i (x) bounds the

content of variables.

Applying the usual diagonalization technique and defining f(x) = fx(x), we
prove that f is not a primitive recursive function since it cannot be bounded by any
function fn.

Let Ri be the family of nets described in Figure 4.1. Define mi = i · −→ci +
−→
bi .

We prove that (Ri,mi) is bounded and that ci can reach any value between 0 and
f(i). Since the size of the marked net is proportional to its index, this achieves the
demonstration.

Figure 4.1. A family of bounded nets
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In order to obtain this result without entering the details, we establish (for i > 1)
the following points by recurrence:

– Ri has a P -semiflow zi = bi+vi+ei+bi−1+vi−1+ei−1+· · ·+b0+v0+u0+e0.

– Given an initial marking m such that zt
i ·m = m(bi) = 1 the maximal sequences

of Ri have the following pattern:

σ = prepp
i · begi · σ1 · repi · σ2 · · · · · repi · σq · abi · transr

i · endi

where:

- p ≤ m(ci) + m(c′i)
- q ≤ p

- σ1 is a sequence of Ri−1 beginning with marking m1 fulfilling a condition
like that of m and such that:

m1

(
ci−1

)
+ m1

(
c′i−1

)
+ · · ·+ m1

(
c0

)
+ m1

(
c′0
)

= m
(
ci−1

)
+ m

(
c′i−1

)
+ · · ·+ m

(
c0

)
+ m

(
c′0
)

+ p

- for 1 < q′ ≤ q σ′
q is a sequence of Ri−1 beginning with a marking mq′

fulfilling a condition like that of m and such that:

mq′
(
ci−1

)
+ mq′

(
c′i−1

)
+ · · ·+ mq′

(
c0

)
+ mq′

(
c′0
)

≤ f
(q′−1)
i−1

(
m
(
ci−1

)
+ m

(
c′i−1

)
+ · · ·+ m

(
c0

)
+ m

(
c′0
)

+ p)

- r ≤ f
(q)
i−1(m(ci−1) + m(c′i−1) + · · ·+ m(c0) + m(c′0) + p)

- for every m′ reached from m during σ

m′(ci

)
+ m′(c′i)+ · · ·+ mq

(
c0

)
+ mq

(
c′0
)

≤ fi

(
m
(
ci

)
+ m

(
c′i
)

+ · · ·+ m
(
c0

)
+ m

(
c′0
))

.

– We demonstrate a sequence σ that reaches any possible value of m′(ci).

This proposition means that every method based on the reachability graph
construction has an unpredictable complexity. This justifies the interest in structural
methods presented in the previous chapter. The following proposition states that no
other method can provide significantly better results.

PROPOSITION 4.4 ([MAY 81]). Given two bounded Petri nets over the same set of
places, the problem of equality and inclusion of reachability sets is not primitive
recursive.
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4.4. Analysis of unbounded Petri nets

Verification methods for unbounded Petri nets must either adapt or omit the
construction of the reachability graph. Since we illustrate three such methods for the
covering problem, let us recall its definition.

DEFINITION 4.8 (Covering of a marking). Let (R,m0) be a Petri net and mc be a
marking. The net covers mc if m ∈ A(R,m0) exists such that m ≥ mc.

This problem presents (at least) two points of interest. First, it has numerous
applications. For instance, if we want to check whether two places are in mutual
exclusion, we try to cover the marking consisting of a token in every place.
Furthermore, among the decision algorithms of generic properties, those relative to
the covering problem are the simplest ones and can be more easily adapted to some
extensions of Petri nets.

4.4.1. Construction of the covering graph

Let us look for a construction of the reachability graph that can detect (on-the-fly)
that the net is unbounded and stop the construction. We build a tree with every vertex
labeled by a marking as follows:

1) The root is labeled by the initial marking.

2) Every processed vertex has for sons a set of vertices whose labels are the
markings reachable by a transition firing from the marking of that vertex.

3) The processing of a new vertex is only planned if its marking is different from
every marking which is present at the time of its creation.

4) The construction is aborted if on a branch that leads to a new vertex there is a
vertex whose marking is strictly smaller than the marking of the new vertex.

5) If the construction terminates, the vertices with same markings which yield the
reachability graph are identified.

Lemmas 4.2 and 4.3 ensure that an unbounded net will be detected by point 4 and
proposition 4.1 ensures that the construction of a bounded net is not aborted.

We want to modify the previous procedure in order to check the covering of a
marking by a net. This leads to the idea of a covering tree AC(R,m0), proposed by
Karp and Miller [KAR 69]. With this aim, we introduce a new set by adding to N
a greatest element denoted ω: Nω = N ∪ {ω} and we extend the order < and the
operations + and − as follows (n− ω is not defined):

∀n ∈ N : n < ω, n + ω = ω + n = ω, ω − n = ω
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We similarly extend +,−, < to (Nω)P , called the set of ω-markings. Given an
ω-marking we call a place with marking ω, an ω-component or a finite component.

The search result is the following equivalence.

PROPOSITION 4.5. (R,m0) covers mc ⇔ ∃ a vertex of AC(R,m0) labeled by mω

s.t. mc ≤ mω

If we examine an increasing repetitive sequence m0
σ1−−→ m1

σ2−−→ m2 with
m1 < m2, it is clear that repeating the sequence, the marking of every place for
which the markings m1 and m2 are different will infinitely increase. Let m2,ω be
the ω-marking obtained by substituting in m2 the marking of such places by ω; then
every marking less than m2,ω is covered by the net. This is the underlying idea of the
algorithm.

KARP AND MILLER ALGORITHM. Every vertex of the covering tree is labeled by a
ω-marking and every arc is labeled by a transition. AC(R,m0) is initialized with a
root r labeled by m0. We manage in T OHANDLE (initialized with r) a subset of
leaves of the current tree that must be examined.

While T OHANDLE is not empty do
Extract q labeled by m from T OHANDLE ;
For every transition t firable from m do

Create qt son of q;
Label the arc linking q to qt with t;
mt := m + C(t);
Ω(mt) := mt;
For every place p ∈ P do

If q has an ancestor (including itself) a labeled by ma,
with ma < mt and ma(p) < mt(p) then

Ω(mt)(p) = ω
Endif

Endfor
Label qt with Ω(mt);
If q does not has an ancestor (including itself)
with the same label as q(t) then

Insert q in T OHANDLE
Endif

Endfor
Endwhile

First we show that this construction always terminates. Assume the contrary.
Then the covering tree is infinite. Using lemma 4.2, this tree has an infinite branch.
Lemma 4.3 holds for (Nω)P . So we can extract from this branch an increasing
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subsequence and even a strictly increasing one, since otherwise the branch would
be finite (see the insertion condition in T OHANDLE). Applying the arithmetic of
Nω , the ω-components cannot disappear on a branch. Assume that two consecutive
vertices of the subsequence have the same set of ω-components. This means that in
the second vertex, no ω-component has been created. But then Ω(m(t)) = m(t),
which is impossible since then m(t) is strictly greater than the marking of the first
vertex and there should have been a new ω-component. In other words, the number
of ω-components is increased at any marking of the subsequence. This leads to a
contradiction since this number is bounded by |P |.

Figure 4.2. A day in the life of a banana planter

We illustrate the construction of the covering tree of the net in Figure 4.2. This net
models (in a very unrealistic way) a day in the life of a banana planter. Initially in his
field (assumed to have an infinite capacity), the planter picks bananas, then he goes
to his house with his bananas and he sits down to eat some of them. Once his meal
is finished, he stands up and throws some banana skins in his garden before going to
bed. We have indicated in parentheses a possible labeling of transitions. The language
of the labeled net will be discussed at the end of the chapter.

The covering tree associated with this modeling is represented in Figure 4.3. The
vertices with an asterisk are those whose ω-marking is already present on the branch
that leads to the vertex. Since there are leaves without asterisks, here we conclude
that the net is not pseudo-live (be careful, this is only a sufficient condition). The
mechanism of creation of an ω-component is triggered at the root. When transition
CU is fired, we reach a marking greater on place BA and identical on the other
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CH

TA

JA

0

CH + ω.BA

CH + ω.BA(*)TA + ω.BA

JA + ω.BA

ω.BA

TA + ω.BA + ω.PE

TA + ω.BA + ω.PE(*)JA + ω.BA + ω.PE

JA + ω.BA + ω.PE(*)ω.BA + ω.PE

RE

LE

DO

CU

MA

JE

CU

DO

DO

LE

RE

MALE

Figure 4.3. The covering tree of the planter net

places, which leads to the creation of an ω-component for BA. The ω-marking−→
TA + ω.

−−→
BA + ω.

−−→
PE illustrates an important point of the construction. We can reach

a marking with an arbitrarily large number of tokens in places BA and PE but we
cannot make them simultaneously increase. We must first increase the marking
BA, and then decrease it while increasing the marking of PE. This explains why
proof of decidability of covering is not so simple.

Proof of proposition 4.5. Let mc be a marking covered by the net. There is a firing
sequence m0

σ−−→ m with m ≥ mc. Let us prove by recurrence that every marking
of the sequence is covered by an ω-marking of AC(R,m0). This is the case for m0.

Assume that mi is covered by mω,i and mi
t−→ mi+1. Pick the vertex corresponding

to the first occurrence of mω,i. From this vertex, we build a son corresponding to the
firing of t labeled by mω,i+1 ≥ mω,i + C(t) ≥ mi + C(t) = mi+1. This vertex
remains in the tree unless there is a vertex with marking mω,i+1 in the branch leading
to this new vertex. Whatever the case, the recurrence is established.

Let q be a vertex of AC(R,m0) labeled by mω , an ω-marking. We prove that the
markings less than or equal to mω are covered by the net. More precisely, we show
that for every n ∈ N, there exists a reachable marking mn equal to mω on its finite
components and greater than or equal to n on the other components.

We reason by recurrence on the number of ω-components of mω . If mω is an
ordinary marking then the sequence of transitions that labels the branch from r to q is
a firing sequence and mω is reachable.
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Suppose that the property holds for every vertex whose marking has at most d
ω-components, and that q is the first vertex on the branch whose marking has d + 1
ω-components.

– Note oldq, the vertex preceding q on the branch, whose ω-marking is oldm.

– For n ∈ N, note σ0,n, the firing sequence that leads from m0 to a marking mn

equal to oldm on its finite components and greater than or equal to n on the other ones
(such a sequence exists by recurrence hypothesis).

– Note t, the transition which labels the arc from oldq to q.

– Note p1, . . . , pk, the places which are the new ω-components of mω .

– Note r1, . . . , rk, the vertices, ancestors of q which justify the occurrence of these
ω-components. Their associated ω-markings are denoted m1, . . . , mk.

– Note σi, the sequence of transitions that labels the branch from ri to q.

– Note Δ ∈ N, an integer such that the marking consisting of Δ tokens in every
place enables firing of the sequences σi and transition t.

Let us prove that the sequence σ = σ0,(k·n+1)·Δ+n · t · (σ1)n · · · · · (σk)n fulfills
the searched property. We examine three kinds of places:

1) w.r.t. the finite components mω , on the one hand, the sequence
σ0,(k·n+1)·Δ+n · t leads to marking mω equal at these places to markings mi. On
the other hand, the sequences σi are repetitive stationary at these places and firable
from mi.

2) w.r.t. the ω-components of oldm, the sequence σ0,(k·n+1)·Δ+n leads to
a marking where the markings of these places are greater than or equal to
(k · n + 1) · Δ + n. By definition of Δ, the sequence t · (σ1)n · · · · · (σk)n can
be fired, reaching a marking of these places greater than or equal to n.

3) w.r.t. the new ω-components of mω , the sequence σ0,k·n·Δ+n+1 · t leads
to a marking greater than or equal to any of mi. For these places, every sequence
σi is repetitive increasing (incrementing the marking of pi). Hence we can fire
(σ1)n · · · · · (σk)n and obtain a marking of these places greater than or equal to n.

If q is not the first vertex of this branch whose marking has d + 1 ω-components,
let q′ with associated ω-marking m′

ω be such a marking. Let σ be the sequence that
labels the branch from q′ to q. As previously, we define Δ in order to enable the firing
of σ and we define σ0,n for m′

ω . The reader can check that the sequence σ0,n+Δ.σ is
appropriate.

This tree is used in the proof of reachability (see later). The main drawback of this
construction is that the size of the tree is not primitive recursive. Indeed, in the case of
bounded nets, it includes at least as many vertices as reachable markings.
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The covering graph. Several properties can be decided by examination of the
covering tree or the covering graph obtained by identifying the vertices labeled with
the same markings [VAL 85]. The operation consisting of “quotienting” the graphs
is a useful construction that we describe within the framework of transition systems.
We then apply this construction to obtain the covering graph from the covering tree.

DEFINITION 4.9 (Transition systems). A transition system G is defined by a tuple
〈S, s0,→, L〉 where:

S denotes the set of states of G;

s0 denotes the initial state of S;

L denotes the set of transition labels; and

→ is the transition relation (→⊂ S × L× S).

The reachability graph and the covering tree of a Petri net are transition systems
whose labels are the transitions of the Petri net.

DEFINITION 4.10 (Quotient of a transition system). Let G =< S, s0,→, L > be a
transition system and ≡ be an equivalence relation included in S × S; we denote by
G≡ =< S≡, s0 ≡,→≡, L >, the quotient of G by ≡, defined as follows:

S≡ represents the set of equivalence classes of ≡;

s0≡ is the equivalence class of s0;

→≡ is the smallest set of S≡ × L× S≡ fulfilling:[
(s, l, s′) ∈−→

]
=⇒

[(
s≡, l, s′≡

)
∈−→≡

]
.

The above construction handles all labels in the same way. In the other chapters of
this book, a more general construction is designed which takes into account a division
of labels between observable labels and unobservable ones.

Let q and q′ be two vertices of the covering tree AC(R,m0) whose ω-markings
are respectively mω and m′

ω . We define the equivalence relation between vertices as:

q ≡ q′ iff mω = m′
ω.

DEFINITION 4.11 (Covering graph). The covering graph of a net, denoted
GC(R,m0), is obtained by quotienting the covering tree AC(R,m0) by the
equivalence relation ≡.

The following result is immediate.

PROPOSITION 4.6. If (R,m0) is bounded then its covering graph and its reachability
graph are identical: i.e. GC(R,m0) = G(R,m0).
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The covering graph of the planter net (Figure 4.2) is represented in Figure 4.4.
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Figure 4.4. Covering graph of the planter net

In the case of an unbounded net, the covering graph represents a superset of the
real behavior of the net. Without considering the final markings, let us denote by
LC(R,m0) the language associated with the covering graph, then we have:

L
(
R,m0

)
⊆ LC

(
R,m0

)
.

This inclusion is often strict. In the example, the sequence CU ·RE ·MA ·MA of
the covering graph is not a firing sequence: the planter cannot eat more bananas than
he has picked.

4.4.2. Shortest sequences

The principle of this method relies on the following result: if a marking can be
covered by the net, then it can be covered using a firing sequence whose length is
bounded by a computable function of the size of the net and of the marking to be
covered [RAC 78]. Observe that the bound does not depend on the initial marking.

The algorithm consists of computing the bound and proceeding to a
non-deterministic search among the paths with length bounded by this bound.

We focus on the computation of the bound. Let us denote by k the number of places
P = {p1, . . . , pk} and n the size of the covering problem (i.e. of its representation).
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Observe that k ≤ n and that every value of an arc and the marking mc of every place
are less than or equal to 2n (binary representation of an integer).

We reason on pseudo-firing sequences, i.e. such that the firability condition is only
partially fulfilled.

DEFINITION 4.12. Let s = m1 · t1 ·m2 · t2 · · · ty−1 ·my be an alternated sequence
of items of Zk called pseudo-markings and transitions, let i be a place index between
0 and k:

– s is an i-firing sequence if:

∀x ≤ y − 1, mx+1 = mx + C
(
tx
)

and ∀j ≤ i, mx

(
pj

)
≥ Pre

(
pj , tx

)
and m1

(
pj

)
≥ 0

– s is an i-firing sequence r-bounded if, moreover:

∀x ≤ y, ∀j ≤ i, mx

(
pj

)
< r

– s is a covering i-firing sequence if, moreover:

∀j ≤ i, my

(
pj

)
≥ mc

(
pj

)
In other words, to produce an i-firing sequence the test of firability is only

performed for the first i places but tokens are produced and consumed as usual,
which leads to negative values. Similarly, an i-firing sequence is r-bounded if every
pseudo-marking of the sequence is bounded by r on the first i places. Finally, a
covering i-firing sequence only covers the first i places. We say that (R,m) i-covers
mc if a covering i-firing sequence exists whose initial marking is m.

Without taking into account m0, let us call lg(i,m) the length of the shortest
covering i-firing sequence starting from a pseudo-marking m counted as the number
of pseudo-markings. This quantity is only defined for m such that (R,m) i-covers
mc. Let us denote by f(i) the maximum of lg(i,m) for every such m. A priori, f(i)
could be infinite. We note that f(k) is the bound we are looking for since in this case
the sequences are real firing and covering sequences.

Since every (R,m) 0-covers mc by the pseudo-firing sequence reduced to m, f(0)
= 1. Our goal is to upper bound f(i + 1) by an expression involving f(i).

PROPOSITION 4.7. ∀ 0 ≤ i < k, f(i + 1) ≤ (2n · f(i))i+1 + f(i)

Proof. Let m be any pseudo-marking such that (R,m) (i + 1)-covers mc and let s be
a shortest covering (i + 1)-firing sequence.
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Case 1: s is an (i + 1)-firing sequence which is 2n · f(i)-bounded. For every
shortest (i+1)-sequence, the pseudo-markings restricted to the i+1 first places must
be different, otherwise the sequence could be shortened by deleting a subsequence.
The number of different restricted markings is equal to (2n · f(i))i+1, which yields
the bound.

Case 2: s is not an (i + 1)-firing sequence which is 2n · f(i)-bounded. So
s = s1 · t · s2 with s1 which is 2n · f(i)-bounded and s2 which begins with a
pseudo-marking m2 with the marking of one of the (i + 1) first components which
is at least equal to 2n · f(i). W.l.o.g., we suppose that it is pi+1. Using the proof of
case 1, the length of s1 is ≤ (2n · f(i))i+1.

(R,m2) i + 1-covers mc, hence it i-covers mc. This means that an i-covering
sequence s′2 with length at most f(i) which starts from m2 exists. This sequence
has at most f(i) − 1 transitions. The marking of pi+1 cannot decrease more than
2n · (f(i)−1) and so the final marking of pi+1 is≥ 2n ≥ mc(pi+1). Consequently s′2
is a covering (i+1)-firing sequence and the length of s1 ·t·s′2 fulfills the condition.

By a straightforward recurrence, we obtain f(k) ≤ 2(3n)k ≤ 22c·n·log(n)
for a

constant c independent of all parameters of the problem.

In order to non-deterministically search a path, it is enough to keep only the last
marking of the current path and a counter of its length. The marking cannot exceed
22c·n·log(n) · 2n tokens in a place. This algorithm uses a memory size of 2d·n·log(n) for
another constant d.

By the Savitch procedure [AHO 74], every algorithm can be determined with a
quadratic expense of the memory size. We obtain an algorithm in EXPspace.

The unboundedness of a net can be similarly solved (using a more elaborate proof)
using the characterization of proposition 4.1. These two problems are EXPspace-hard
[LIP 76], so we obtain:

THEOREM 4.1 (Complexity of covering and boundedness). The covering and
boundedness problems for a Petri net are EXPspace-complete.

In [YEN 92], this method is extended to a formula language for sequences, for
which as soon as a formula is satisfiable, it is satisfiable by a sequence whose length
is bounded by a computable value.

4.4.3. Backward analysis

The principle of backward analysis consists of building a finite representation of
the set of initial markings that satisfy the covering property. It was first designed
in [ARN 76], then rediscovered by [ABD 96] and finally generalized in [FIN 98].
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DEFINITION 4.13. Let R be a Petri net and mc be a marking.

– Couv(R,mc) is the set of markings m such that (R,m) covers mc.

– ∀n ∈ N, Couvn(R,mc) is the set of markings m such that (R,m) covers mc by
a sequence whose length is at most n.

Before describing the algorithm, we gather some elementary facts.

– Couv(R,mc) = ∪n∈N Couvn(R,mc).
– Couvn(R,mc) ⊂ Couvn+1(R,mc).
– Couvn(R,mc) is upper closed: m ∈ Couvn(R,mc) and m′ ≥ m ⇒ m′ ∈

Couvn(R,mc).

Given a set of markings E, let us denote by E↑ the set of markings greater than
or equal to a marking of E. The upper closed sets are characterized by the property
E = E↑.

We want to obtain Couv(R,mc) by iteratively computing Couvn(R,mc). This
requires that this sequence of sets stabilizes, i.e. that after some index, all sets are
equal and thus equal to Couv(R,mc).

LEMMA 4.4. Let {En}n∈N be a sequence of upper closed increasing sets of markings;
then this sequence stabilizes.

Proof. Assume the contrary. As soon as a set is not equal to the previous one, this
means that there is a marking of this set which is not greater than or equal to any of
the markings of the previous set. We select such a marking. Iterating the process, we
obtain an infinite sequence such that every marking is not greater than or equal to any
of the previous markings of the sequence, but this contradicts lemma 4.3.

To obtain a finite representation of an upper closed set, it is sufficient to pick the
minimal items of this set. Indeed, since none of them is comparable, there cannot be an
infinite number of minimal items, since again this would contradict lemma 4.3. Let us
call Min(E) the set of minimal items of E. Since E is upper closed, E = Min(E)↑,
which shows that an upper closed set is wholly determined by its minimal items.

Couv0(R,mc) represents the set of initial markings that cover mc by a sequence
with zero length. In other words, they are the markings greater than or equal to mc.
Hence Min(Couv0(R,mc)) = {mc}.

We now show how to compute Min(Couvn+1(R,mc)) starting from
Min(Couvn(R,mc)).

Let m′ ∈ Couvn+1(R,mc). By definition, m′ covers mc by a sequence of length
at most n or equal to n + 1. In the first case, m′ is greater than or equal to one of the
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markings of Min(Couvn(R,mc)). In the second case, it enables firing of a transition
that leads to a marking greater than or equal to a marking of Min(Couvn(R,mc)).

Let m be a marking of Min(Couvn(R,mc)). A marking obtained by firing
of t greater than or equal to m must necessarily be greater than or equal to
Sup(Post(t),m) and the marking preceding the firing is greater than or equal to
Sup(Post(t),m)− C(t). Summarizing:

Min(Couvn+1(R,mc))

= Min(Min(Couvn(R,mc)) ∪t∈T ∪m∈Min(Couvn(R,mc)) Sup(Post(t),m)− C(t))

Every step multiplies by at most |T |+1 the number of minimal items. The previous
method gives a bound on the number of stages before stabilization. So we deduce that
the method is primitive recursive.

A priori, the shortest sequence method seems more efficient. However, the interest
of backward analysis will be illustrated during the presentation of extensions of Petri
nets.

4.5. The reachability problem

The reachability problem consists of deciding whether, given a net R and two
markings mi and mf , there is a firing sequence: mi

σ−−→ mf . The decision algorithm
has been independently established by Mayr [MAY 84] and Kosaraju [KOS 82]. Here
we will not fully describe this proof, some features of which are very technical and to
which a book is devoted [REU 89]. We present the scheme of the proof and we only
develop its main feature, i.e. the sufficient condition for reachability.

First, the reachability problem is solved for a more general model than that of Petri
nets, called the chain of vector addition systems (CVAS). The main motivation of this
generalization is intimately linked to the proof. This proof can be described as follows:

– A size is defined for the reachability problem. This size is an item of a
well-founded set (i.e. such that an infinite sequence of strictly decreasing sizes does
not exist).

– We establish a sufficient condition for reachability with the help of the covering
graph.

– If the condition is not fulfilled, we build a finite (possibly empty) set of problems
with smaller sizes such that a solution for the initial problem exists iff a solution exists
for any of the reduced problems.

– Taking the initial problem as the root, we build a tree of problems defining, for
the sons of a problem, its reduced problems. If the tree was infinite, there would be an
infinite branch, which is impossible as a result of the first point.

– The initial problem has a solution iff some leaf has a solution (checked by the
sufficient condition).
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This procedure deserves some comment. Since it is based on the covering graph,
it is not primitive recursive. On the other hand, we only know that the problem of
reachability is EXPspace-hard [LIP 76]. Otherwise, determining whether this
problem is primitive recursive is an open issue. The reduction of the problem to
smaller problems of the same kind explains the choice of the model CVAS. As we
will see later, in Petri nets when the sufficient condition is not fulfilled, the problem is
reduced to different kinds of problems.

The decision problem of several properties can be reduced more or less
directly to the reachability problem. For instance, the liveness problem [HAC 75],
the pseudo-liveness problem and, given a marking, the home state problem are
decidable [FRU 86, FRU 89].

We begin the presentation of the sufficient condition by a decision procedure for a
necessary condition that is part of the sufficient condition.

4.5.1. A necessary condition for reachability

If a sequence σ such that mi
σ−−→ mf exists, then, due to the equation of state

change, we have: C.−→σ = mf − mi. Let us show how to decide the existence of a
solution x ∈ NT of equation C.x = b with b ∈ ZP . In the case where |T | = 1, the
equation can be trivially solved. So we assume that |T | > 1.

First we apply the computation of T -flows. If no T -flow is found, then the column
vectors {C(t)}t∈T form a linearly independent family and there is at most one
solution in QT to this problem. The existence and the computation of this solution
are performed by the main variation of Gauss elimination. If a solution is obtained,
we check that it belongs to NT .

In the other case, let us call a the T -flow computed (C.a =
−→
0 ), and let us note

T ′ = {t | a(t) > 0}. W.l.o.g. we assume that T ′ is not empty. Assume that there is a
solution x to the equation such that ∀ t ∈ T ′, x(t) > a(t), then x−a is also a solution.
Iterating this process, we obtain y, a solution fulfilling ∃ t ∈ T ′ t.q. y(t) ≤ a(t). We
can substitute in the original equation a family of equations, one per pair t ∈ T ′ and
0 ≤ i ≤ a(t), where we substitute variable x(t) by i. The existence of a solution for
some equation is equivalent to the existence of a solution for the initial equation. In
every new equation a variable has disappeared. By iteration, this leads (in the worst
case), to equations with a single variable whose resolution is straightforward.

4.5.2. A sufficient condition for reachability

We introduce the reverse net R̃, which fires transitions of R backwards. Places
and transitions of this net are those of R and the incidence matrices are defined by:

∀ t ∈ T , P̃re(t) = Post(t) and P̃ost(t) = Pre(t).
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An elementary check gives:

∀σ ∈ T ∗ m
σ−−→R m′ ⇔ m′ σ̃−−→R̃ m, C̃ = −C and

−→̃
σ = −→σ

Our goal is to transform the previous condition into a sufficient condition. Reusing
the vocabulary of section 4.4.2, we call pseudo-marking an item of ZP . Given two
pseudo-markings m,m′ and a sequence of transitions σ, we call a pseudo-firing
sequence (denoted m(σ〉m′) a sequence which fulfills the state change equation
m′ = m + C · −→σ .

We first establish a preliminary result about conditions which ensure that a
pseudo-firing sequence is a firing sequence.

LEMMA 4.5. Let R be a Petri net and m0(σ〉m1(σ〉m2 . . . mk−1(σ〉mk be a
pseudo-firing sequence then:

m0(σ〉m1 and mk−1(σ〉mk are firing sequences.

⇔ The whole sequence is a firing sequence.

Proof. We prove the implication since the reverse implication is trivial. We divide P
into two subsets P ′ = {p ∈ P | −→p t ·C ·−→σ ≥ 0} and P ′′ = {p ∈ P | −→p t ·C ·−→σ < 0}.
The sequence σ restricted to P ′ is repetitive for net R, thus since m0

σ−−→R m1 we

have m0
σk

−−→R,P ′ mk.

Applying the elementary results for R and R̃, the sequence σ̃ restricted to

P ′′ is repetitive increasing for net R̃. Thus since mk
σ̃−−→R̃ mk−1, we have

mk
σ̃k

−−→R̃,P ′′ m0, which is equivalent to m0
σk

−−→R,P ′′ mk.

Since P = P ′ ∪ P ′′, we obtain: m0
σk

−−→R mk.

To obtain a sufficient condition, we would show that the firability conditions are
somewhat irrelevant. Roughly speaking, the main idea consists of increasing the initial
marking by a firing sequence (σk

1 in the proof) such that the pseudo-firing sequence
(σ2) becomes a firing sequence, and then decreasing the marking by another firing
sequence (σk

4 ). However, before this last firing sequence, we insert an intermediate
sequence (σk

3 ) in order to cancel the cumulated effects of the first and last sequence.

PROPOSITION 4.8 (Sufficient condition). Let R be a Petri net, mi and mf two
markings; if:

1) R is consistent,
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2) ∃ v ∈ NT t.q. C · v = mf −mi,

3)
∑

p∈P ω · −→p belongs to the covering trees AC(R,mi) and AC(R̃,mf ),

then mf is reachable from mi in the net R.

Proof. We build the firing sequence step by step.

First, condition 3 implies the existence of an increasing repetitive sequence σ1 (for
every place) from mi in R and an increasing repetitive sequence σ̃4 (for every place)
from mf in R̃.

Since R is consistent, a positive vector w with support T exists such that C · w =
0. Since its support is T , there exists a big enough integer n such that w′ = n·w−−→σ1−−→σ4 ≥

−→
0 . Let us denote by σ3 an arbitrary sequence which fulfills −→σ3 = w′.

Finally, let us denote by σ2 an arbitrary sequence fulfilling −→σ2 = v. Observe that
σ2 is a pseudo-firing sequence from mi to mf . Let k ≥ 2 be an integer such that the
marking of all places with k tokens makes the following sequences firable:

– the sequence σ2 · σ3 in R, and

– the sequence σ̃3 in R̃.

We claim that mi
σk
1−−→ m1

σ2−−→ m2
σ3−−→ m3

σk−2
3−−−−→ m4

σ3−−→ m5
σk
4−−→ mf is

a firing sequence (we introduce intermediate markings to facilitate the proof).

Let us compute the incidence of this sequence:

C ·
(
k · −→σ1 +−→σ2 + k · −→σ3 + k · −→σ4

)
= C ·

(
v + k ·

(
w′ +−→σ1 +−→σ4

))
= C · (v + k · n · w) = C · v = mf −mi

So this sequence is a pseudo-firing sequence. Let us show that the firability conditions
are met (we implicitly use the relations between R and R̃):

– by definition of σ1 and σ4, we have mi
σk
1−−→ m1 and m5

σk
4−−→ mf ;

– by the choice of k, we have m1
σ2−−→ m2

σ3−−→ m3 and m4
σ3−−→ m5;

– which implies, due to the previous lemma m2
σ3−−→ m3

σk−2
3−−−−→ m4

σ3−−→ m5.

Let us examine how to carry on with the decision procedure if one point of
the sufficient condition is not fulfilled. If point 2 is not fulfilled (i.e the necessary
condition) then mf is not reachable. If point 3 is not fulfilled then it means that
during the possible firing sequence, the marking of a place remains bounded by
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its greatest finite value occurring on the covering trees (in fact the minimum of its
greatest finite values on each tree). Hence we substitute in the initial problem |P |
reachability problems with a bounded place by a known value.

For the case of inconsistency, we introduce particular subsets of vectors with
positive integer coefficients.

DEFINITION 4.14 (Semi-linear sets). A linear set of positive integer vectors E is
defined by a vector u and a family of vectors V = {v1, . . . , vm}:

E =

{
w | ∃λ1, . . . , λm ∈ N, t.q. w = u +

m∑
i=1

λi · vi

}

A semi-linear set of positive integer vectors E is a finite union of linear sets.

Semi-linear sets are finite representations of infinite sets which have numerous
interesting properties. We can compute the union and the intersection of two
semi-linear sets and the complementary of a semi-linear set; all these sets are
semi-linear. Furthermore we can decide whether a vector belongs to a semi-linear set.
If the reachability set is an effective semi-linear set of NP , the reachability problem is
solved. Unfortunately, the reachability sets of some nets are not semi-linear [HOP 79]
and we can decide whether this is the case [HAU 90].

However the set E of solutions of C.x = mf − mi is a semi-linear set whose
representation is computable (see for instance [REU 89]) and, more precisely, equal
to {u+

∑
λk ·vk | u is a minimal solution of C ·x = mf−mi , λk ∈ N and {vk} is the

set of minimal solutions of C ·x =
−→
0 }; the number of these minimal solutions is finite

due to lemma 4.3. Consequently, the net is not consistent iff t exists such that v(t) = 0
for every solution v of C · x =

−→
0 . In other words, every reachability sequence would

have a number of occurrences of t equal to some value u(t) of a minimal solution of
C ·x = mf −mi. We replace the reachability problem by a set of problems for which
the reachability sequence has a fixed number of occurrences of some transition.

Intuitively, in both transformations, the infinite character of the problem has been
reduced since in one case the marking of a place is bounded and in the other case the
number of occurrences of a transition is bounded. The formalization of this argument
yields the CVAS model, CVAS.

4.6. Extensions of Petri nets

4.6.1. Nets with inhibitor arcs

The expressive power of Petri nets is close to that of a programming language
working on integers. However, the nets lack the capability to test equality between the
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marking of a place and some constant. With this aim, nets with inhibitor arcs have
been introduced. In this model, the incidence matrices are completed by an inhibition
matrix which enforces an upper bound on the marking of a place in order to fire a
transition.

DEFINITION 4.15 (Petri nets with inhibitor arcs). A Petri net with inhibitor arcs is
defined by a tuple R = 〈P, T, Pre, Post, Inh〉 where:

– P is a finite set of places, T is a finite set of transitions.

– Pre and Post are the backward and forward incidence matrices defined in
NP×T .

– Inh is the inhibition matrix defined in (Nω \ 0)P×T .

DEFINITION 4.16 (Firing rule with inhibitor arcs). Let m be a marking of a Petri net
with inhibitor arcs and t be a transition:

– t is firable from m iff

m ≥ Pre(t) and m < Inh(t) (componentpercomponent).

– The firing of t from m leads to marking m′ defined by:

m′ = m + C(t).

Only the firability condition is modified. An inhibitor arc is represented by a line
ending with a small circle. Values different from 1 label the arcs and the value ω is not
represented (since it does not restrict the behavior of the net).

pa

pb pc

t1

t2

t3

t4

t5

Figure 4.5. Product of two numbers using a net with inhibitor arcs

Figure 4.5 explains the main difference between nets with inhibitor arcs and
ordinary nets. If we add to the initial marking a tokens in pa and b tokens in pb, then
the single maximal sequence (t1 · tb2 · t3 · tb4 · t5)a leads to a marking where pc has
a · b tokens. If the inhibitor arcs are omitted, there are several maximal sequences, all
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leading to a number of tokens pc less than or equal to a.b, and one of them fulfilling
the equality. In other words, a Petri net weakly computes (in the sense described
above) any computable increasing arithmetical function, while a net with inhibitor
arcs exactly computes any computable arithmetical function. The net in Figure 4.2
also illustrates the difference of expressive power. In this net (and in every net
modeling the actions of the planter), it is impossible to guarantee that the planter
eats all his bananas before going to the garden, while adding a single inhibitor arc is
enough to obtain this behavior.

This extended expressive power leads to the undecidability of all interesting
properties (reachability, liveness, boundedness, covering, termination, . . .). Indeed,
the stop of a program is an undecidable problem and it is not difficult to reduce this
problem to the decision problem of one of these properties even with two inhibitor
arcs.

However, it has been proved that reachability remains decidable with a single
inhibitor arc or with an “ordered” structure of inhibitor arcs w.r.t. the places
(Inh(pi, t) �= ω and j < i⇒ Inh(pj , t) �= ω) (all these arcs have value 1) [REI 95].

4.6.2. Self-modifying nets

Another interesting extension consists of making the number of tokens consumed
or produced depend on the current marking. In the initial model of self-modifying
nets, the value of an arc is a linear combination of place markings plus some
constant [VAL 78]. In the generalized model, called G-nets, the value is a polynomial
with non-negative coefficients on places [DUF 98b].

Notation

– N[P ] denotes the set of polynomials with non-negative coefficients whose
variables are places.

– Let m be a marking and Q be such a polynomial, then Q[m] denotes the value
of the polynomial when the value of every variable p equals m(p).

DEFINITION 4.17 (G-net). A G-net is defined by a tuple R = 〈P, T, Pre, Post〉
where:

– P is a finite set of places, T is a finite set of transitions.

– Pre and Post are backward and forward incidence matrices defined in
N[P ]P×T .

DEFINITION 4.18 (Firing rule in G-nets). Let m be a marking of a G-net and t be a
transition:

– t is firable from m iff:

m ≥ Pre(t)[m].
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– The firing of t from m leads to marking m′ defined by:

m′ = m− Pre(t)[m] + Post(t)[m].

Without important restrictions, G-nets easily simulate the inhibitor arcs and
consequently the main properties are undecidable. The easiest way to simulate an
inhibitor arc from p to t is to define Pre(p, t) = 2 · p, since m(p) ≥ 2 · m(p) ⇔
m(p) = 0.

This simulation gives hints about restrictions to apply in order that some properties
remain decidable. We indicate three restrictions and recommend the thesis of C.
Dufourd [DUF 98a] for a detailed study of the hierarchy of restrictions.

– In G-Post-nets the values of preconditions are integers. From the definition of the
firing rule, the two assertions of monotonicity (lemma 4.1) hold. Thus the construction
of the covering tree is still possible (with some adaptation). Hence we can decide the
covering, the boundedness of a net, the boundedness of a place, and the termination.

– In G-post-nets with reset the value of an arc from p to t is either an integer, or
the polynomial p. In this last case, firing t empties place p. In these nets, only the first
assertion of lemma 4.1 hold:

∀m1 ≤ m′
1 m1

σ−−→ m2 =⇒ m′
1

σ−−→ m′
2 with m2 ≤ m′

2

We can still decide termination by a construction which detects the repetitive
sequences. The covering is also decidable but then with the backward analysis of
section 4.4.3 which only relies on the first assertion of lemma 4.1. An important and
difficult result is the undecidability of boundedness.

– The G-post-nets with transfer are a restriction of the previous model where the
presence of an arc from p to t, labeled by p, implies the presence of an arc from t
to a place p′, labeled by p + Q, where Q ∈ N[P ]. In other words, when the content
of a place is emptied, it is moved to another place (possibly with additional tokens).
Here, the construction of the covering tree correctly detects that the net is unbounded
when the first ω occurs. It is amazing to observe that the place boundedness problem
is undecidable. Indeed, the boundedness problem for a net with reset is reduced to the
problem of boundedness of a subset of places by a straightforward transformation. We
add to the net with reset a place sink and, for every transition t, an arc from t to sink
labeled by

∑
p∈P ′ p, where P ′ is the set of places with a reset arc to t. It is immediate

that the net with reset is bounded iff every place of P \ {sink} is bounded in the new
net.

We end the overview of these models by showing that reachability is undecidable
in the presence of:

– either output arcs labeled by the destination place, called double arcs (for
obvious reasons);

– or reset arcs.
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PROPOSITION 4.9. The reachability problem in Petri nets with inhibitor arcs is
reducible to:

– the reachability problem in G-nets with only ordinary arcs and double arcs;

– the reachability problem in G-nets with only ordinary and reset arcs.

Proof. For every place p of a net with inhibitor arcs, we add a place p+ with the
same incidences as p. Let m be a marking of the first net, then m+ in the second
net is defined by m+(p) = m+(p+) = m(p). The inhibitor arcs of the first net are
transformed as indicated in Figure 4.6, either with a double arc, or with a reset arc.
The reader can check that whatever the construction:

m′ is reachable from m in the first net

⇔ m′+ is reachable from m+ in the second net.

Indication: p+ contains the same number of tokens as p iff there has been no firing of
a transition with an inhibitor arc from p (in the initial net) while p was marked.

Figure 4.6. “Simulation” of an inhibitor arc

4.6.3. Recursive nets

A recursive net [HAD 99b, HAD 07] has the same structure as that of a Petri
net, except that in recursive nets, transitions are divided into two categories: abstract
transitions and elementary ones. Furthermore, a start marking is associated with every
abstract transition and a semi-linear set of final markings is defined. The semantics of
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such a net can be informally explained as follows. In a Petri net, a process plays with
tokens, firing a transition and updating the current marking. In a recursive net, there
is a dynamic tree of processes corresponding to a fatherhood relation; every process
plays its own token game. A step of a recursive net is then an execution step of any
process. If the process fires an elementary transition, it updates its current marking
using the ordinary firing rule. If the process fires an abstract transition, it consumes
the tokens of preconditions of the transition and generates a new son, which starts its
token play with the start marking of the transition. If the process has reached a terminal
marking, it can terminate, killing all its descendants and producing in the marking of
its father the tokens of postconditions of the transition whose firing has triggered its
creation. If it is the root process, we obtain an empty tree. We formalize this behavior
in the following definitions.

DEFINITION 4.19 (Recursive net). A recursive net is defined by a tuple R = 〈P, T,
Pre, Post,Ω,Υ〉 where:

– P is a finite set of places, T is a finite set of transitions.

– A transition of T is either elementary or abstract. The subsets of elementary and
abstract transitions are respectively denoted by Tel and Tab.

– Pre and Post are backward and forward incidence matrices defined in NP×T .

– Ω is a function which associates with every abstract transition an ordinary
marking (i.e. an item of NP ) called the start marking of t.

– Υ is an effective semi-linear set of terminal markings.

An effective representation of a semi-linear set is a representation which can (by an
algorithm) be transformed as that of definition 4.14. For instance, a linear (in)equation
over markings is an effective representation.

DEFINITION 4.20 (Extended marking). An extended marking tr of a recursive net R
is a labeled tree tr = 〈V,M,E,A〉 where:

– V is the set of vertices, M is a function V �→ NP .

– E ⊆ V × V is the set of arcs and A is a function E �→ Tab.

A marked recursive net (R, tr0) is a recursive equipped with an initial extended
marking.

Let v be a vertex of an extended marking, pred(v) denotes its father in the tree
(defined if v is not the root) and Succ(v) the set of direct and indirect successors
(including v). An elementary step of a recursive net is either a transition firing or the
deletion of a subtree (named the termination step and denoted by τ ).

DEFINITION 4.21. A transition t is firable in a vertex v of an extended marking tr

(denoted by tr
t,v−−→) if M(v) ≥ Pre(t), and a termination step is firable in v (denoted

by tr
τ,v−−−→) if M(v) ∈ Υ.
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DEFINITION 4.22. The firing of a firable elementary step t in a vertex v of an extended
marking tr leads to marking tr′ defined w.r.t. the type of t.

– t ∈ Tel

- V ′ = V , E′ = E, ∀e ∈ E, A′(e) = A(e), ∀v′ ∈ V \ {v}, M ′(v′) = M(v′)
- M ′(v) = M(v)− Pre(t) + Post(t)

– t ∈ Tab, (v′ is a new identifier, thus not present in V )

- V ′ = V ∪{v′} , E′ = E ∪{(v, v′)}, ∀e ∈ E, A′(e) = A(e), A′((v, v′)) = t

- ∀v′′ ∈ V \ {v}, M ′(v′′) = M(v′′), M ′(v) = M(v)− Pre(p)
- M(v′) = Ω(t)

– t = τ

- V ′ = V \ Succ(v), E′ = E ∩ (V ′ × V ′), ∀e ∈ E′, A′(e) = A(e)
- ∀v′ ∈ V ′ \ {pred(v)}, M ′(v′) = M(v′)
- M ′(pred(v)) = M(pred(v)) + Post(A(pred(v), v))

If v is the root of the tree then the firing of τ leads to the empty tree denoted ⊥.

At first sight, it seems that associating the same net with every abstract transition is
somewhat restrictive. In reality, it is easy to simulate a net with the activation of a net
depending on the abstract transition. Using a single net simplifies the notations and
facilitates the proofs. Most of the usual conditions can be described by a semi-linear
set. For instance, we can specify the set of dead markings, the firability of a transition,
mutual constraints on some place markings, etc. We now illustrate the expressive
power of this model using a simple modeling. Some other relevant examples are
described in [HAD 00]. We represent an abstract transition by a rectangle with a
double border equipped with its start marking inside a frame.

In order to study fault-tolerant systems, the engineer starts with a description
of the functional system and then introduces the faulty behaviors and mechanisms
of repair. Here the functional system periodically records a measure from the
environment (elementary transition tcount). The number of measures is stored in place
pcount. The complete system is obtained by adding the left hand part of Figure 4.7.
The behavior of this recursive net is as follows. Initially and immediately after the
occurrence of a fault, the extended marking is reduced to a single vertex. A token in
place prepair indicates that the system is repairing, while a token in place pinit means
that the system is ready. When abstract transition tbegin is fired, the correct behavior of
the system is executed by the new process. The termination of this process represents
an occurrence of a fault. As place pfault is always marked in this second vertex and
due to the definition of Υ, the occurrence of a fault is always possible. Adding some
places and updating Υ, we could model more complex fault patterns (e.g. faults
triggered by software execution).
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Figure 4.7. A fault-tolerant system

The state of the net is either a tree with a single vertex or a tree with a root and
a leaf. However, the number of reachable markings in this leaf is infinite. This means
that the faulty state can be reached by an infinite number of states. This modeling is
impossible with a Petri net, since a state can only reached from at most |T | transitions.
Self-modifying nets also have this capability but not nets with inhibitor arcs.

Contrary to other extensions, the two main decidable properties of Petri nets are
also decidable for recursive nets: reachability and boundedness [HAD 99a].

4.7. Languages of Petri nets

The introduction of “extended” Petri nets aims to increase the expressive power of
nets, while preserving the decidability of some properties. The families of languages
generated by nets are one of the means of determining this expressive power.
Initially, formal languages have been studied in relation to grammars [HOP 69].
Let us briefly recall that a grammar includes non-terminal symbols (with an initial
symbol) and terminal ones (the characters of the alphabet). A grammar is composed
of transformation rules {S1 . . . Sm → T1 . . . Tn}. To compose a word of the
language associated with a grammar, we start with the initial symbol and apply any
transformation rule to a subword of the current word until the word has only terminal
symbols.

Depending on the structure of the grammar, we define families of languages and
study problems such as:

– the membership of a word in the language;

– the emptiness of the language;

– the closure of a family of languages under operations like union, intersection and
complementary.



Decidability and Complexity of Petri Net Problems 117

Each problem has an interpretation w.r.t. the behavior of systems modeled, for
instance by Petri nets. The membership problem is related to the test: whether
expected behavioral sequences really occur. The emptiness problem is related (with
an appropriate choice of final markings) to the existence of at least one faulty
sequence. The closure of a family by operations offers the designer the possibility
of modularly building systems using specifications given by such operations. For
instance, the intersection of languages very often corresponds to a synchronization
between subsystems.

Usually, we distinguish four families of languages strictly nested. Regular
languages are generated by grammars whose rule patterns are: S → λ, S → a · T ,
S → a with S,T non-terminal and a terminal. Algebraic languages are generated
by grammars whose rule patterns are: S → T1 . . . Tn with n possibly zero.
Context-sensitive languages are generated by grammars whose rule patterns are:
Sinit → λ, S1 . . . Sm → T1 . . . Tn with n ≥ m and where Sinit is the initial symbol.
Finally, type 0-languages have no restriction on rule patterns.

EXAMPLE 4.1 (A regular and an algebraic grammar). The following grammar denotes
the behavior of a process iterating an action until it succeeds:

S −→ try · T, T −→ fail · S, T −→ success.

The associated language L is defined by:

L =
{

try · (fail · try)n · success
}

n∈N

also denoted in a compact way by

L = try · (fail · try)∗ · success.

The following algebraic grammar generates the language L′ of palindromes on
alphabet Σ = {a, b}, L′ = {σ ∈ Σ∗ | σ̃ = σ}

S −→ λ, S −→ a, S −→ b, S −→ a · S · a, S −→ b · S · b.

We can decide the membership problem for the first three families but this
problem is undecidable for type 0-languages. We can decide the emptiness
problem for regular and algebraic languages but this problem is undecidable for
context-sensitive languages. Finally, regular languages are closed by the standard
operations, while, for instance, the intersection of two algebraic languages is not
necessarily an algebraic language [AUT 87].

The theory of languages of Petri nets consists of analyzing the same kind
of problems and in positioning the languages of Petri nets w.r.t. the standard
families [PET 81]. For the sake of readability, we recall here the definition of a Petri
net language. Then we indicate the main results.
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DEFINITION 4.23 (Language of a net). Let (R,m0) be a Petri net, Σ be an alphabet
and l be a labeling mapping from T to Σ∪ λ (the empty word). The labeling mapping
extends to sequences by l(λ) = λ and l(σ · t) = l(σ) · l(t). Let Term be a finite set of
terminal markings. The language of the net denoted L(R,m0, l, T erm) is defined by:

L(R,m0, l, T erm) =
{
w ∈ Σ∗ | ∃σ ∈ T ∗, ∃mf ∈ Term,

m0
σ−−→ mf and w = l(σ)

}
.

PROPOSITION 4.10 (Closure properties for Petri nets). Languages of Petri nets are
closed by union and intersection.

Proof. The construction of a net that accepts the union of Petri net languages is
presented in Figure 4.8. We insert the two nets (we assume there are disjoints)
without initial marking. We add to the net a place initially marked input of two new
(initially firable) transitions labeled by the empty word and whose outputs are the
initial markings of the two nets. The set of terminal markings is the union of the two
sets of terminal markings (or more precisely their mappings in the new vector space
of place markings). This net non-deterministically chooses to trigger one of the two
nets that will produce a word of its language.

t1 (λ)

R1

m0
(1)

R2

m0
(2)

t2 (λ)

Term = Term1 Term2∪

Figure 4.8. Construction of a net for the union of languages

The construction of a net that accepts the intersection of Petri net languages is
presented in Figure 4.9. We insert the places of the two nets (we assume there are
disjoints) with their initial marking. For every pair of transitions (one per net) labeled
by the same character, we create a transition with this label whose incidences are the
sum of incidences of each transition. The transitions labeled by the empty word are
added without any change. A terminal marking is the sum of a terminal marking of
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Figure 4.9. Construction of a net for the intersection of languages

the first net and a terminal marking of the second net. So a word is simultaneously
accepted in both nets, since every character is produced by the simultaneous firing
of a pair of transitions. Transitions labeled by the empty word need to be fired
independently in order to generate every possible subsequence that produces the
empty word in any of the two nets.

PROPOSITION 4.11 (Analysis of Petri net languages). The membership problem and
the emptiness problem are decidable for Petri net languages.

Proof. To check the non-emptiness of the language, we decide whether one of the
terminal markings is reachable. To check wether a word belongs to the language of a
Petri net, we build a second net that only accepts this word and then the net that accepts
the intersection of net languages. Finally, we check the emptiness of its language.

PROPOSITION 4.12 (Position of Petri net languages). The family of Petri net
languages contains the regular languages and is not comparable with the family of
algebraic languages [JAN 79].

Proof. To simulate regular grammar by a net, we associates with every non-terminal
symbol a place and with every rule a transition labeled by the terminal symbol of
the rule, whose precondition is the symbol of the left hand member of the rule and
whose postcondition is the symbol of the right hand member of the rule if it exists.
The place of the initial symbol initially contains a token (and it is the only one) and
the terminal marking is the zero marking. A simulation of the grammar of example 4.1
is represented in Figure 4.10.
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Figure 4.10. Simulation of a regular grammar

Observe that the language of the net in Figure 4.2 (the planter net), whose final
marking is the zero marking ({an · bn · cn | n ≥ 0}), is not an algebraic language
(due to the Ogden lemma [AUT 87]). On the other hand, we prove that the language
of palindromes is not a language of Petri nets (but the proof is rather technical).

PROPOSITION 4.13 (Position of a language). Given a Petri net language:

– If the labeling function is the identity and every marking is a terminal marking,
we can decide whether it is regular [VAL 81] and whether it is algebraic [SCH 92].

– If, furthermore, a set of terminal markings is specified, we can still decide
whether or not it is regular [LAM 92].

From the point of view of the position of Petri net languages, the model of recursive
nets unifies Petri nets and algebraic grammars. Indeed, the family of languages of
recursive nets strictly includes the union of Petri nets and algebraic languages and,
as for these families, we can decide the membership and the emptiness problems.
However, unlike these families, the intersection of a recursive net language and a
regular language is not necessarily a recursive net language.
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Chapter 5 

Time Petri Nets

5.1. Introduction 

The purpose of this chapter is to analyze the behavior of systems in which time 
appears as a continuous and quantifiable parameter. Communication protocols, in 
particular, are such systems: mechanisms providing reconfiguration after a message 
loss or a net topology change are usually based on time delays. Various techniques 
have been proposed to specify and check such systems. Among these techniques, 
two were developed from Petri nets: these are timed Petri nets [RAM 74], and time
Petri nets (TPNs) [MER 74]. Timed Petri nets extend Petri nets by associating a 
firing duration with each transition. In addition, transitions should be fired as soon 
as they are enabled. Such nets, and various similar models, are mainly used for 
performance analysis. Merlin defined (more general) time Petri nets as Petri nets in 
which two times min and max, with 0 min max, and with min finite, and max
possibly infinite, are associated with every net transition. Such times, for a net 
transition t, relate to the date on which transition t was enabled for the last time. 
Suppose that at a date  transition t becomes enabled, then t cannot be fired before 
the date  + min and should be fired no later than the date  + max if max is finite, 
unless firing another transition disables transition t before the latter is fired. Firing of 
transitions has zero duration. Using such nets, Merlin explored reconfiguration 
problems in computer systems as well as communication protocols’ specification 
[MER74, MER 76].  

                                                          
Chapter written by Bernard BERTHOMIEU, Marc BOYER and Michel DIAZ.
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Figure 5.1 shows a time Petri net.1 When a token arrives in place A, it enables 
transition t1, which can be fired within a period of between 2 and 7 time units; firing 
will be instantaneous. However, if a token arrives in place C before 2 time units 
have elapsed from enabledness of t1, t2 will have to be fired. If at least 2 time units, 
and 7 at most, have elapsed before the last token arrives, both transitions can be 
fired, in a non-deterministic way. Time Petri nets may easily express specifications 
“in terms of delays”, as illustrated by the example shown in Figure 5.1. However, 
the example shown in Figure 5.2 shows that, by adding up additional transitions and 
places, time Petri nets may also express specifications “in terms of duration”.  

Figure 5.1. A time Petri net 

In the time Petri net shown in Figure 5.2, whenever a token arrives in place A,
firing of t1

b at date 0 takes it immediately to place X, in which it will remain for a 
period of between 2 and 7 time units. Transition t2 can only be fired if a token 
arrives in place C before (or at the same time) as a token arrives in place A; so the 
choice of firing the transition fired between t1

b or t2 is non-deterministic.  

To obtain a specification “in terms of duration”, it is sufficient to break down 
each action whose duration is to be specified (actions are typically associated with 
transitions) into two transitions representing the beginning and end of an action. So, 
a delay for this last transition can be interpreted as the action duration. This example 
shows that, along the same lines, timed Petri nets can be simulated by time Petri 
nets, whereas the opposite is untrue.  

                                                          
1 All Petri nets in this chapter have been drawn with the Tina net editor, presented in section 
5.7.
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Time Petri nets are well adapted to the analysis of general behavior. Timed Petri 
nets are, for example, well adapted to performance analysis, or when transition 
firing is stochastically interpreted. The first objective of the techniques set forth in 
this chapter being behavior analysis, we will only consider time Petri nets.  

t2

t1b

t1e

A

X

B

C

D

[2,7]

[0,0]

[0,0]

Figure 5.2. Specification in terms of duration 

Such nets help to express simply most of the required time constraints, including 
duration (as shown by the previous example), whereas it is tricky to express certain 
time constraints using only durations. We set forth in this chapter an enumerative 
analysis method for time Petri nets, developed in [BER 82, MEN 82, BER83, MEN 
83, BER 91]. Such methods, referred to as methods of “state classes”, enable, for a 
wide class of time Petri nets, a reachability analysis identical to the method used for 
Petri net reachability analysis set forth in Chapter 3. It produces a finite 
representation of behavior of a significant category of time Petri nets, in the form of 
a set of state classes and a reachability relation on such a set. 

Throughout this chapter, we will refer to “Petri net”, or simply “PN”, when the 
considered net is an ordinary Petri net, or “place–transition” using the terminology 
of Chapter 1.  
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5.2. Time Petri nets 

5.2.1. Time nets 

DEFINITION 5.1 (Time Petri nets) A time Petri net is a tuple (P,T,Pre,Post,M0,IS), in 
which (P,T,Pre,Post,M0) is a Petri net, and IS: T  Q+ × ( Q+  {  }) is the static 
interval function.  

Function IS combines with any transition t of a net an interval with rational 
bounds IS(t) = [min, max], with 0 min max and max being possibly infinite. The 
smallest of these times is called the static date of earlier firing of t (denoted 
SMin(t)), and the largest one is called the static date of later firing of t (denoted 
SMax(t)). Figure 5.3 shows a time Petri net. This example will be used throughout 
the chapter to illustrate concepts and methods being introduced.  

In a time Petri net, firing an enabled transition t is only allowed in a time interval 
related to it; remember that this interval relates to the date of transition enabledness. 
Initially (at date 0), and if t is enabled by the initial marking, such an interval 
coincides with its static interval IS(t) (part of net definition). When a net evolves 
(when time elapses), time interval combined with an enabled transition evolves too; 
it is shifted to the origin of time with a quantity equal to the duration elapsed 
between the date of transition enabledness and the time of firing, and, naturally, this 
applies to all enabled transitions.  

These “dynamic” intervals are expressed as an application I which matches up at 
any transition t time interval I(t) in which it can be fired. Lower and upper bounds of 
interval I(t), for a transition t, are referred to as date of earlier firing (denoted 
DMin(t)) and date of later firing (denoted DMax(t)) of transition.  

Previously, we implicitly associated one maximum time interval with each 
enabled transition, whether it is multi-enabled or not.2 This enabledness 
interpretation that we will describe as standard is specified in the following sections, 
by defining a state notion and a reachability relation between states. Other 
interpretations of multi-enabledness lead to combining various time variables with 
multi-enabled transitions. Such interpretations, described as extended, will be 
discussed in section 5.6.1, after outlining the standard interpretation. The standard 
interpretation, compared to these extended interpretations, is identical to the 
operating “interleaving” oriented interpretation of Petri net transitions, as opposed to 
“true parallelism” oriented interpretations.  

                                                          
2 A transition t is multi-enabled by a marking M if we have M k . Pre(t) for an integer k > 1. 
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Figure 5.3. A time Petri net 

5.2.2. States and firing rule 

A state of a time Petri net is a pair E = (M,I) in which M is a marking and I is the 
firing interval application. Initial state E0 consists of an initial marking M0 and firing 
interval application I0 which matches up at each transition t enabled by M0 its static 
firing interval IS(t), and, at any other non-enabled transition, the empty interval. 
Firing of transition t, at a relative date , from a state E = (M,I), is allowed if and 
only if the following conditions are fulfilled:  

1. Transition t is enabled by M: M Pre(t).  

2.  is not lower than the earlier firing date of t: DMin(t).

3.  is not higher than the later firing date from any transition enabled by M:

k, M Pre(k) DMax(k).

The first condition is that authorizing firing in Petri nets, the last two result from 
the obligation to fire transitions in their firing interval.  

Remember that two transitions t and t’ are conflicting for a marking M if both of 
them are enabled by M, but, for at least a place p, M(p) < Pre(p,t) + Pre(p,t').  
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Firing an enabled transition t, at date , from state E = (M,I), leads to a state E’ = 
(M',I') determined as follows:  

1. The new marking M' is classically determined by: M' = M Pre(t) + Post(t).  

2. The new firing interval I’(k), for every transition k, is defined by:  

a) If k is not enabled by M', then I’(k) is empty.  

b) If k is distinct from t, is enabled by M, and is not conflicting with t for M,
so I’(k) = [max(0, DMin(k) ), DMax(k) ], if DMax(k) is finite I’(k) = 
[max(0, DMin(k) ), [.  

c) Otherwise, I'(k) = IS(k).  

In other words, transitions non-enabled by the new marking M' receive empty 
firing intervals; distinct transitions of t which remained enabled on firing of t see 
their firing interval shifted to the origin of time of value , the relative date at which 
transition t was fired (and restricted, if necessary, to non-negative time values); all 
other transitions enabled by M' receive as a firing interval their static interval. Note 
that if t remained enabled on its own firing, then it would receive its static interval as 
an interval.  

5.2.3. Set of states, schedules 

The above firing rule defines a reachability relation in the set of states of time 
Petri nets. Firing sequences will be, just as for Petri nets, transition sequences which 
are successively firable. A firing schedule, or simply schedule, is a pair (s,u)
consisting of a sequence of transitions s and a sequence u of relative firing dates. A 
schedule (s,u) is said to be achievable from a state E if and only if transitions in 
sequence s are successively firable from state E, at relative firing dates matching 
directly with them in sequence u. Operation of a time Petri net can be featured by 
the set of its reachable states from its initial state or, alternatively, by the set of its 
schedules achievable from its initial state.  

Representing a Petri net operation by the reachability graph of its states (as a 
Petri net operation is represented by the reachability graph of its markings) is 
generally impossible: as time is continuous and transitions can be fired at any time 
within their firing interval, states, as defined above, generally have an infinity of 
successors through the firing rule. The purpose of state classes, defined later, is to 
provide a finite representation of this infinite set of states, but, first of all, we shall 
focus on a specific case.  
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Though the states defined above generally have an infinity of successors, there 
exists a specific class of time Petri nets for which each state can only have a finite 
number of successors, and for which the state graph can therefore be defined. These 
are nets in which the static interval associated with each transition is [0, [. For such 
nets, we have the following property:  

THEOREM 5.1 Let there be a time Petri net (P,T,Pre,Post,M0,IS). If IS associates 
with all transitions the interval [0, [, so the state graph of the net is isomorphic to 
the marking graph of time Petri net (P,T,Pre,Post,M0.). 

Proof:
If any transition is provided with the static interval [0, [, so constraints (2) and (3) 
of the firing condition are always met, the firing condition reduces to condition (1), 
which is that of Petri nets. Furthermore, calculating the next state (M',I') yields the 
same marking M' as for Petri nets, and I' associates with each enabled transition the 
interval [0, [ (immediate for case 2b of the firing rule). By induction, each state has 
therefore only one single next state per fired transition.  

Theorem 5.1 allows us to see Petri nets as time Petri nets in which the static 
interval combined with each transition is [0, [.

5.2.4. Firing domains 

Before defining state classes, we introduce a more convenient representation for 
states. A time Petri net state may be described as a pair E = (M,D) in which M is a 
marking and D a set of vectors referred to as a firing domain. Vectors of D have a 
component for any transition enabled by M; the ith projection of set D is the firing 
interval associated with the ith enabled transition. Such domains may be expressed 
as the set of solutions of linear inequality systems with a variable associated with 
each enabled transition, as follows. 

Initial state E0 of the net shown in Figure 5.3, for example, consists of a pair (M0,
D0) as shown below:  

– M0: p1(1), p2(2)  

– D0: Set of solutions in t1 of system: 
4  t1  9 

The above marking M0 means that only places p1 and p2 are marked, p1 with a 
token, and p2 with two tokens. Time variables will be noted as transitions with 
which they are associated; so, the above variable t1 is associated with transition t1, a 
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single transition enabled by M0. Firing of t1 from state E0, at a relative date 1 of 
interval [4,9], leads to state E1 = (M1,D1), with:  

– M1: p3(1), p4(1), p5(1)  

– D1: Set of solutions in (t2,t3,t4,t5) of:  
0 t2  2

1 t3  3

0 t4  2

0 t5  3

Date 1 does not appear in the system expression which defines D1 since t1 was 
the single transition enabled by M0. Firing of transition t2, from state E1, at a relative 
date 2 in interval [0,2], leads to state E2 as follows:  

– M2: p2(1), p3(1), p5(1)  

– D2: Set of solutions in (t3,t4,t5) of:  

max(0,1 2) t3  3 2

0 t4  2 2

0 t5  3 2

Parameter 2 appears in the above system D2 as a constant. As time is 
continuous, parameter 2 may assume any real value in the interval [0,2]. State E1
assumes therefore an infinity of next states by firing transition t2; each value of 2
defines a next state different from the others.  

An example of a schedule achievable from the initial state is (t1.t2,5.0). The set of 
all supporting schedules t1.t2 achievable from state E0 may be described in this 
specific example by the set of schedules of form (t1.t2, 1. 2), with 1  [4,9] and 2

 [0,2]. This results from the fact that relative date 2 is not dependent upon 1;
achievable schedule characterization in the general case will be discussed later on. 

5.3. Behavior characterization – state classes’ method 

5.3.1. State classes 

Rather than considering the state reached from the initial state by firing a 
schedule (s,u) as described above, consider now the set of all states which can be 
reached by firing schedules with, as a support, firing sequence s.
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This set of states will be called the state class combined with firing sequence s.
More rigorously, a state class is associated with any sequence of transitions firable 
from the initial state: the state class associated with sequence s is defined as a pair 
(M,D) in which M is the marking reached from initial marking by firing sequence s
and D characterizes firing domains of all states reachable from the initial state by 
supporting schedules s.

As for states, firing domains of classes may be expressed as sets of solutions for 
linear inequality systems with a variable associated with any transition enabled by 
class marking. But, in addition to firing intervals for such transitions, such systems 
will generally express relations between firing dates of different transitions. 
Intuitively, the firing domain of a class abstracts relative dates in which transitions, 
being fired to reach such a class, were fired. A state class will be seen as a pair, C =
(M,D) in which:  

– M is a marking;  

– D is a firing domain; this is a set of solutions of a linear inequality system 
A.t b in which A is a matrix, b a vector and the ith variable ti of vector t is 
associated with the ith transition enabled by M.

To obtain a constructive algorithm, it is sufficient to have a recursive method to 
calculate state classes, i.e. a method allowing calculation of the class associated with 
firing of transition t, thus to firing sequence s.t, from the class associated with 
sequence s, the initial class being defined as the class composed of the single initial 
state (for the net in Figure 5.3, this consists of the single state E0, as explained 
above). This is what allows the next firing rule, directly applied to state classes.  

5.3.2. Transitions between state classes 

A transition t is firable from a state class C = (M,D) if and only if both following 
conditions are satisfied: 

1. t is enabled by marking M.

2. Domain D contains a vector in which the component relating to transition t has 
a value less than or equal to components relating to other transitions enabled by M.

The first condition is the usual condition in Petri nets. The second condition 
expresses that transition t is fired within its firing interval and that it is fired first 
among all enabled transitions, by complying with later firing dates of all others. Its 
expression is here more complex than for the case of states due to the possibility of 
relations between relative firing dates of different transitions. In the form of 
inequalities, D being the set of solutions of a system A.t b, and t being the ith
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enabled transition (thus associated with variable ti), the second condition is satisfied 
if and only if the following inequality system assumes a solution in t:

1.  A.t  b 

2.  ti  tj, for any variable tj ti

Calculating the next class C' = (M',D') is performed as follows:  

1. Marking M' is calculated as in Petri nets.  

2. Domain D' is determined in four steps:  

a) System A.t b is first incremented by firing conditions (2) relating to 
transition t, set forth above (transition t is only firable if such an incremented system 
assumes a solution). 

b) Variables associated with transitions conflicting with t (t not being 
included) for marking M are eliminated from the system. Such transitions are those 
distinct from t, enabled by M, and not enabled by marking M Pre(t).

c) In this reduced system, the fired transition matches variable ti. In this 
system, any variable tj, with j i, is replaced by the sum of variable ti and variable tj,
and then variable ti is eliminated.  

d) In this new system, a new variable is introduced for each newly enabled 
transition, constrained to belong to the static firing interval of the associated 
transition. Newly enabled transitions are those enabled by M' and not enabled by  
M Pre(t) as well as t if enabled by M'.  

At step (a), the starting domain is reduced to the set of firing-date vectors for 
which the component relating to fired transition t equals the weakest component, i.e. 
vectors expressing that t is the first to be fired among enabled transitions.  

At step (b) variables corresponding to transitions distinct from t and conflicting 
with t are eliminated; such elimination modifies neither the firing intervals of the 
remaining transitions nor the possible relations between the firing dates of such 
transitions.  

The set of solutions of the system determined at step (c) may be seen as the 
firing domain of transitions (distinct from t) which remained enabled on firing of t,
expressed with, as the new origin of time, the date at which transition t was fired.  

Step (d) simply introduces firing intervals for newly enabled transitions, being 
equal to their respective static intervals. If t remains enabled on its own firing, then 
it is considered as being newly enabled.  
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Naturally, the elimination method being used in steps (b) and (c) preserves time 
constraints induced on the remaining variables; to do so, Fourier–Motzkin’s classic 
elimination method can be used (refer, for example, to [DAN 63]). For illustration 
purposes, fire a few transitions in the time Petri net shown in Figure 5.3. Initial class 
C0 only contains initial state E0 (determined in section 5.2.4). Class C0 is exactly 
defined as E0. Firing transition t1 from class C0, at a relative date in interval [4,9] 
leads to a class C1 consisting of the single state E1 being previously calculated since 
no transition remained enabled on firing of t1. Class C1 is thus exactly defined as E1.
Firing transition t2 from class C1 leads to state class C2 = (M2,D2) determined as 
follows:  

Marking M2 is determined by:  

M2 = M1  (t2) + (t2) = p2(1), p3(1), p5(1) 

Domain D2 is calculated in four steps, according to the above rules. 

 Step (a): By adding to system D1 of class C1 the firability conditions of t2, the 
following system D2(a) is obtained:  

0 t2  2

1 t3  3

0 t4  2

0 t5  3

t2 t3

t2 t4

t2 t5

Step (b): No transition distinct from t2 being in conflict with t2, we have D2(b) = 
D2(a).  

Step (c): Change in variables yields the following system:  

0 t2  2

1 t2 + t3  3

0 t2 + t4  2

0 t2 + t5  3

t2 t2 + t3
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t2 t2 + t4

t2 t2 + t5

Elimination of variable t2 in this system, followed by cancellation of redundant 
inequalities, yields system D2(c):

0 t3  3

0 t4  2

0 t5  3

t4 t3  1  

t5 t3  2  

Step (d): No transition being newly enabled, we have D2(d) = D2(c). Class C2 is 
thus determined by:  

– M2: p2(1), p3(1), p5(1)  

– D2:: Set of solutions in (t3,t4,t5) of:  

0 t3  3

0 t4  2

0 t5  3

t4 t3  1  

t5 t3  2  

5.3.3. State class equality  

Two classes are equal if and only if their respective marking and domain are 
equal. Comparing two domains is equivalent to comparing sets of solutions of two 
linear inequality systems with identical variables. This comparison is costly in the 
general case but can be efficiently performed in our specific case, as explained 
below.  

THEOREM 5.2 A firing domain in any state class may be expressed as the set of 
solutions of a linear inequality system, with a maximum of two variables per 
inequality, of the following general form:  

ai  ti  bi for any i 

tj  tk  cjk for any j, k with j  k
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where ti is the associated variable with the ith transition enabled by class marking 
and ai, bi and cjk are constants (some bi or cjk may be infinite).

Proof:
Initial domains satisfy this property and the general form is maintained for each of 
the four operations representing the firing rule.  

Such systems assume canonical forms of the same form:  

ai
* ti bi

* for any i ; tj tk cjk
* for any j, k with j k

where ai
*, bi

* and cjk
* designate the smallest possible value of the variable ti, the 

largest possible value of the variable ti and the largest possible difference between 
the values of variables tj and tk, respectively. A value is possible if it appears in at 
least one solution of the inequality system.  

Such canonical forms can be calculated in polynomial time. To do so, one 
possible technique is associating a constraint graph [ASP 80, RAM 99] with the 
inequality system, as follows. Obtaining the canonical form is then reduced to a 
calculation of the shortest paths between all pairs of graph vertices.  

Let s be the system to be implemented in the canonical form; s has the general 
form specified in theorem 5.2. The constraint graph has as many vertices as system s
has variables, plus an additional vertex src. The graph is complete; arcs are valued 
by function V defined as follows:  

 x. V(x,x) = 0 

if k y s, then V(src,y) = k

if x k s, then V(x,src) = k

if x y k s, then V(x,y) = k

otherwise V(x,y) = 

Let D(x,y) be the length of the shortest path from x to y in the constraint graph 
valued by V; so we have for any i, j, k (j k):

ai
* = D(ti,src)

bi
* = D(src,ti)

cjk
* = D(tj,tk)

For the shortest-path calculation, the Floyd–Warshall algorithm [COR 90] of 
complexity O(n3) in time and O(n2) in space (n is the number of graph vertices) can 
be used, for example. In addition, this algorithm allows us to verify the inequality 
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system consistency: system s is consistent if the associated constraint graph does not 
contain any negative-weight cycle, i.e. if for any vertex x we have D(x,x)  0. 

5.3.4. Class graph 

The reachability relation on state classes defined by the previous firing rule 
allows us to define a graph: its vertices are state classes, it contains the initial class, 
there is an arc marked t with origin C and extremity C’ if and only if transition t is 
firable from class C and its firing from C leads to C’.  

It follows from the state class definition that any transition sequence firable from 
the initial state corresponds to a graph path whose origin is the initial class; the 
existence of a graph path marked with s between the initial class and a vertex C
requires, on the other hand, that at least one firing-date sequence exists such that 
schedule (s,u) can be achievable. It should be noted that the class graph does not 
directly allow us to define the set of schedules achievable between two classes but 
only the set of firing sequences. However, such schedules may be achieved by 
adapting the method; this point will be discussed in section 5.4.5. 

As an example, the complete net classes graph for Figure 5.3 is given in section 
5.7, Table 5.2. This was generated by software Tina as discussed in that section.  

An additional class graph contraction may sometimes be reached by expressing 
firing domains such as the sum of a constant (the smallest relative date in which a 
transition is firable) and the set of inequality system solutions achieved after the 
“elapsing of time” of such a value. The smallest possible firing date determined by 
firing domains shifted in that way is therefore zero, and a time shift value (which 
may be zero) is associated with any class graph arc. So, it will be referred to as a 
class graph with shifting. By shifting part of the time information to graph arcs (a 
constant), this representation variant sometimes allows us to group together classes 
which otherwise would be distinct. Unless explicitly quoted, this operation is not 
being used in the examples in this chapter.  

Our intention is to use the state class graph of a time Petri net to represent and 
analyze its behavior. This results from the state class definition that any vertex of 
this graph has a finite number of next vertices. Furthermore, in order that the graph 
may have a finite number of vertices, it is sufficient that no firing schedule with 
infinite length passing through different paired classes be firable in the net. Analysis 
of this property is the subject of the next section. First, we clarify the differences 
between marking graphs and class graphs.  
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5.3.5. Marking graph and class graph 

In a class graph, various classes may exist with the same marking, but with 
different time domains. This simply means that the transition related time 
information generally modifies a net behavior. This fact will be illustrated in a very 
simple time Petri net, assuming only one single marking, by observing the effect of 
various time-interval assignments to transitions. In the first example, Figure 5.4, the 
trivial interval [0, [ is associated with each transition. The net’s class graph is then 
isomorphic to its marking graph (see theorem 5.1). All firing sequences 
constructible with t1 and t2 are firable from the initial class.  

t2t1 p2

C0

p1 [1,1][1,1]

Figure 5.4. Without any time constraints, IS(t1)=IS(t2)=[0, ,[ 

Figure 5.5. Transition with the same rate, IS(t1)=IS(t2)=[1,1] 
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In the second example shown in Figure 5.5, achieved by combining the same 
interval [1,1] with both transitions, a class graph with three classes is reached. As 
compared to the example shown in Figure 5.4, certain firing sequences are no longer 
firable. For instance, from the initial class, t1 or t2 cannot be fired more than once 
consecutively, and, from any state, t1 (t2, respectively) can never have been fired 
more than twice without firing t2 (t1, respectively). Finally, the net shown in Figure 
5.6, achieved by associating the interval [0,2] with t1, and [1,3] with t2, sets forth a 
number of classes and a behavior which is again different. 

Figure 5.6. IS(t1 )= [0,2] and IS(t2) = [1,3] 

5.4. Analysis – operating the state class graph 

5.4.1. Analyzing behavior of time-dependent systems  

The time parameter may intervene in different ways in a system’s specifications. 
We will not attempt here to make a distinction between functional properties and 
those expressing performance constraints. We will assume that a system’s correct 
operation can be featured by a set of constraints or assertions in which time may 
appear as a variable. When the system is represented by a time Petri net, such 
properties will be expressed as properties of the set of classes and/or the set of net 
schedules. Among the required properties, the following can be found: 

a) invariants on the set of the net’s reachable markings, such as, for example, 
mutual exclusion constraints or the absence of deadlocks in certain states;  

b) properties of a set of firing sequences such as liveness or termination;  
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c) time-oriented constraints, such as bounds on reachability time of one marking 
from another one, or time synchronization constraints (relations between markings 
and reachability dates).  

Properties of type (a) or (b) can generally be defined on a state class graph of a 
time net as defined in a Petri net’s marking graph. Marking invariants may be 
checked through an exhaustive marking examination in state classes. Properties 
regarding firing sequences will be verified on a set of class graph paths.  

Most type (c) time constraints come down to research of specific schedules, with 
a given origin or extremity, with an imposed duration, or else a constrained path. As 
noted above, a class graph does not directly allow extraction of constrained 
schedules, but a simple extension that allows such extractions will be proposed.  

The following sections sum up various verifications which may or may not be 
conducted on the class graph of a time-dependent system.  

5.4.2. Marking reachability 

Denote the set of net markings which can be reached from its initial marking by 
R(M0). The problem of marking reachability is that of determining whether or not a 
given marking belongs to set R(M0). Theorem 5.3 gives an undecidability result for 
time Petri nets.  

THEOREM 5.3 (Undecidability of reachability problem) The reachability problem of 
a marking is undecidable for time Petri nets.  

Proof:
One direct demonstration is produced in [JON 77]. It can be shown that the 
reachability problem in time Petri nets is reduced to an identical problem for 
inhibitor-arc or priority nets, net classes for which such a problem was shown to be 
undecidable.  

5.4.3. Boundedness  

Remember that a Petri net is bounded if marking of any net place assumes an 
upper bound. As for a marking’s reachability, demonstrating the boundedness of a 
time Petri net is reduced to demonstrating such a property for inhibitor-arc nets and 
is therefore undecidable [JON 77]. 
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THEOREM 5.4 (Undecidability of boundedness) Boundedness is undecidable for time 
Petri nets. 

The boundedness property for a time Petri net is equivalent to the finiteness 
property of set R(M0) of its reachable markings. An immediate consequence of 
theorem 5.4 is that the finiteness problem of the state class set of a time Petri net is 
also undecidable since classes are pairs (marking firing domain).  

Now, let us consider a bounded time Petri net. Can we deduce that its number of 
state classes is finite? The next lemma involves a positive reply.  

Lemma 5.1 (Finiteness of set of firing domains) Set of firing domains of a time 
Petri net is finite.

Proof:
Finite constants ai

*, bi
* and cjk

* which appear in the canonical form of firing domains 
are linear combinations with integer coefficients of static bounds and are bounded 
with such static bounds: we have 0 ai

* DSmin(ti), 0 bi
* DSmax(ti), and cjk

*

DSmax(tj) DSmin(tk). This means that only a finite number of such constants can 
be calculated. Then, with the firing rule, calculated systems have necessarily a finite 
number of variables (exactly one per enabled transition); so, it appears that the 
number of distinct canonical systems (or distinct firing domains) which can be 
calculated by using the firing rule is finite.  

Note that lemma 5.1 does not require the net to be bounded: for any marking, it 
is actually sufficient that the number of enabled transitions be bounded, which is 
true in any Petri net since such a number is at most equal to the number of 
transitions. One immediate consequence of lemma 5.1 is: 

THEOREM 5.5 (Finiteness of number of state classes) The number of state classes of 
a time Petri net is finite if and only if the net is bounded.  

Proof:
It is clear that, if the number of classes is finite, the net is bounded since the number 
of markings quoted in classes is finite. Reciprocally, if the net is bounded, it 
assumes both a finite number m of markings (consequence of the boundedness 
property) and a finite number d of distinct firing domains (with lemma 5.1); its 
number of classes is thus finite since classes are pairs (marking, domain), in 
bounded number with m x d.
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Theorem 5.5 confirms that any sufficient condition (required, respectively) for 
the boundedness property will provide a sufficient condition (required, respectively) 
for the finiteness property of the state class number. The required and sufficient 
condition for the boundedness property in Petri nets or vector addition systems, set 
forth in [KAR 69], provides a first sufficient condition for the boundedness property 
(and therefore for finiteness of state class number) of a time Petri net.  

THEOREM 5.6 (Sufficient condition 1 for boundedness) A time Petri net is bounded if 
it does not assume any pair of state classes C = (M,D) and C' = (M',D') such that:  

1. C' is reachable from C;  

2. M' > M 

Proof:
An unbounded time Petri net necessarily assumes an infinite-length firing sequence 
passing through a sequence  of all-distinct state classes. On the other hand, 5.1 
requires that classes of  can only contain a finite number of distinct firing domains; 
sequence  therefore necessarily contains a subsequence ,' with infinite length, in 
which all markings are different. By using [KAR 69], such a sequence ' shall then 
necessarily contain two classes C and C' which satisfy (1) and whose markings 
satisfy (2). Such a sufficient condition allows us to analyze a significant family of 
time Petri nets, but it is typically too strong for the applications we are 
contemplating. It allows us, for example, to prove that the net shown in Figure 5.3 is 
bounded, but fails for the net shown in Figure 5.7a below, while the latter only 
assumes two state classes.  

The following sufficient condition is weaker than the previous one.  

THEOREM 5.7 (Sufficient condition 2 for boundedness) A time Petri net is bounded if 
it does not assume any pair of state classes C = (M,D) and C' = (M',D') such that:  

1. C' is reachable from C  

2. M' > M 

3. D' = D 

Proof:
This is the same as that for lemma 5.1. So, if a net is unbounded by lemma 5.1, the 
infinite sequence of classes  considered in previous evidence necessarily contains 
an infinite sub-sequence ' in which all markings are different and all domains are 
equal. So, any pair of classes in this sequence satisfies (3) and, with [KAR 69], it 
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necessarily contains two classes C and C' which satisfy (1) and whose markings 
satisfy (2).  

Figure 5.7. Proving the boundedness property

Any bounded net by theorem 5.6 is also bounded by theorem 5.7, but the reverse 
is not true; theorem 5.7 allows us, for example, to demonstrate that the net shown in 
Figure 5.7a is bounded. But, conversely, neither theorem 5.6 nor theorem 5.7 allows 
us to demonstrate that the net shown in Figure 5.7b is bounded, while the latter only 
assumes 11 classes. We will set forth a last sufficient condition, weaker than that of 
theorem 5.7. 

THEOREM 5.8 (Sufficient condition 3 for boundedness) A time Petri net is bounded if 
it does not assume any pair of state classes C = (M,D) and C' = (M',D') such that:  

1. C' is reachable from C  

2. M' > M  

3. D' = D 

4.  p. M'(p) > M(p)  M'(p)  max(t  T) {Pre(p,t)}  

Proof:
Condition (4) expresses that any place, whose marking is incrementing between M 
and M', contains a number of markings at least equal to the largest number of 
incoming arcs among its next transitions. If the net is unbounded, so the infinite 
sequence of classes  considered in the proof of theorem 5.7 necessarily contains an 
infinite subsequence ' in which all markings are distinct, all domains are equal, and 
which contains two classes C and C' which satisfy (1), and whose markings satisfy 
(2) and (4).  
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This last sufficient condition allows us, for example, to demonstrate that the net 
shown in Figure 5.7b is bounded. Naturally, it is not as necessary as previous ones; 
it does not allow us, for example, to demonstrate that the net shown in Figure 5.7c is 
bounded while the latter only assumes 48 state classes. For cases (rare, in practice) 
resistant to the last sufficient condition, constructing the class graph by enumerating 
classes “undergoing constraints” can be attempted by verifying, for example, 
straight away, properties which the net will satisfy, or simply by arbitrarily bounding 
the number of classes to be enumerated or the time assigned to enumeration.  

5.4.4. Specific properties for set of markings or firing sequences 

When the boundedness property is demonstrated for a time Petri net, verifying 
any property concerning markings or firing sequences is made possible with an 
exhaustive examination of a graph of its state classes, as properties of a bounded 
Petri net are analyzed using its marking graph. In particular, properties of absence of 
deadlock and quasi-liveness, defined just as for Petri nets, can be verified for any 
bounded time Petri net, using its state class graph. Invariants or specific properties 
concerning reached markings or achievable firing sequences are demonstrated in the 
same way.  

5.4.5. Time-dependent analyses, existence of schedules 

The verification of purely temporal properties such as the reachability of a given 
marking from another one within a determined time interval, or a time-dependent 
configuration of firing sequence duration, has still to be considered.  

A state class graph does not generally allow us to complete such analyses 
successfully through a mere examination of classes or pathways. However, a time-
dependent firing interval can be easily associated with any graph arc, which is the 
relative interval in which a relevant transition is firable; such an interval can be 
extracted from inequalities which represent classes’ firing domains. However, for a 
given firing sequence, the set of achievable schedules with such a transition 
sequence as a support cannot be deduced from intervals associated in this way with 
sequence transitions; actually, relative firing dates of schedule transitions are 
generally interdependent.  
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Observe the example shown in Figure 5.6: from initial class C0, transition t1 can 
be fired at date 0, which leads us to C1. From this latter class, we may return to C0
by firing t2 at date 0. But schedule (t1.t2,0.0) is not achievable from class C0: from C0
transition t1 cannot be fired in sequence at relative date 0 then transition t2 at relative 
date 0; at least 1 time unit has to pass before t2 can be fired. 

This does not mean that firing domains have no relation to achievable schedules 
but simply that we cannot interpret them in the way shown above. To demonstrate 
the existence of schedules, we show that, for any firing sequence  being firable, we 
can construct an inequality system in which each solution  determines an 
achievable schedule ( , ). The technique consists of applying the rule of achieving 
classes, but without eliminating, in step (c), the variable corresponding to the fired 
transition. Rather than eliminating such a variable ti, it is renamed as a new variable 
 likely to be interpreted as the relative firing date of transition ti, appearing in terms 

of a parameter of such a class and next classes on the considered path. Thus, by 
calculating such extended classes throughout a given firing sequence , the last class 
achieved contains as many parameters 1 … n as the number of transitions being 
fired in sequence, and any solution in  of the system achieved provides an 
achievable schedule.  

By adding up additional time constraints on such variables, we can further focus 
on the existence or impossibility of specific schedules. In particular, determining the 
shortest or the longest schedule with a given sequence as a support and a given class 
as an origin is made easier.  

5.5. Application example 

As described in the introduction, communication protocols significantly use time 
constraints in their specifications: reconfiguration mechanisms, for example for 
message loss, are often defined using time-outs.  

The alternating bit protocol is certainly the simplest of these protocols. As seen 
in Chapter 2, it is a sending–waiting type data transfer protocol: before sending a 
message again, the transmitting process waits for the incoming acknowledgement of 
the previously sent message. Assumptions on communication medium operations 
are that messages or acknowledgements may be lost or damaged (in the latter case, 
they are simply rejected).  
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Figure 5.8. A time Petri net for the alternating bit protocol 
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t1 sending packet 0  t9 rejecting packet 0 duplicate 

t2 resending packet 0 t10 accepting packet 1  

t3 receiving acknowledgement 0 t11 sending acknowledgement 1  

t4 sending packet 1 t12 rejecting packet 1 duplicated  

t5 resending packet 1 t13 packet loss 0  

t6 receiving acknowledgement 1 t14 acknowledgement loss 0  

t7 accepting packet 0 t15 packet loss 1  

t8 sending acknowledgement 0 t16 acknowledgement loss 1  

Table 5.1. Semantics of the transitions in Figure 5.8 

A message retransmission and time-out mechanism, which represents a real 
system, allows us to correct message losses: a time-out is initiated when a message 
is transmitted; if the message receipt does not come before the end of the timing, the 
message is retransmitted.  

Time Petri nets and the analysis method outlined in section 5.3 allow us to verify 
that values of such time-outs are properly selected. The alternating bit protocol may 
be represented by the time Petri net in Figure 5.8, in which transitions, which no 
interval is associated with, are implicitly provided with interval [0, [. For 
simplification purposes, corrupted messages are likened to lost messages, and 
retransmission time-out is selected to be long enough so that the transmission 
medium can contain at most only one message or acknowledgement. Note that in 
this net message or acknowledgement losses are simply represented by transitions 
with no output place, and there is no need to express, using additional places and 
transitions, any relation whatsoever between lost messages and retransmissions. So 
as to produce the specification, assessments for the duration of all elementary 
protocol operations should be provided. So, retransmitting a message occurs at the 
end of a time of between 5 and 6 time units after transmitting its last copy. The same 
assessments are given for loss and reception of messages or acknowledgements 
(between 0 and 1 unit). No date constraint is given for sending the first copy of each 
message; corresponding transitions are provided with interval [0,  [.  

The net shown in Figure 5.8 was analyzed by the method outlined in sections 5.3 
and 5.4. This net is bounded and has the 16 state classes shown in Figure 5.9. 
Examining such classes shows that one message at most may be transiting at any 
time (places p9, p10, p11 and p12 solely contain at most one token, for any reachable 
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marking). This makes sure that time-out is properly selected. Furthermore, the 
receiver cannot accept more than one copy of each message (transitions t7 and t10
alternate in any class graph path) and message transfer always occurs.  

We will observe on class graph annotations +1 and +4 on certain arcs. They 
show a time shift (as explained in section 5.3.4). Without such a shift, domain D5
would have as a value 1 t2  6. Annotation +1 on incoming arcs in C5 allows us to 
write 0 t2  5. 

Among other communication systems being modeled and analyzed using such 
methods is a line allocation protocol called REBUS, described in [AYA 82], an 
error-tolerant experimental distributed system designed for real-time applications. A 
REBUS configuration consists of a set of units on which application tasks are 
performed, connected to a material bus whereby they are communicating. Units are 
organized into a virtual ring, regardless of a system’s physical organization. 
Communication bus control is successively given to any ring unit depending on a 
circular discipline. A transmitted message is used to transmit the bus control from 
one unit to the next of the ring.  

Failure assumptions are as follows: messages circulating on the bus may be lost 
or corrupted, and a unit may become, permanently, either deaf (so, it loses all 
messages transmitted to it), or dumb (so all messages transmitted by it are lost). On 
the other hand, it is assumed that any failure is corrected before the occurrence of 
another one.  

Such a bus allocation protocol was specified and its correction was established in 
[AYA 82] using classical Petri nets, as time-constraint effects are expressed there by 
auxiliary places and transitions. A specification of such a protocol using time Petri 
nets and a verification of its properties using the enumeration method discussed here 
are outlined in [MEN 83, ROU 86]. The interesting point of the exercise lies in the 
application’s significant complexity. To maintain a reasonable dimension to the set 
of classes enumerated and complete the protocol property analysis successfully with 
much more convenience, we applied a method using a superposition-oriented 
analysis: effect and processing of various possible failures were analyzed separately 
for any type of failure, rather than using an overall model representing all failure 
cases.
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Figure 5.9. Class graph of net shown in Figure 5.8 
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5.6. Extensions and variations 

5.6.1. Interpreting multi-enabled transitions 

5.6.1.1. Multiple enabledness 

We will say that a transition t is k-enabled by M if k > 0 and k is the largest 
integer such that M k . (t). A transition t is multi-enabled by a marking M if it is k-
enabled by M for a certain k > 1.  

In section 5.2.1, we defined the interpretation of transition enabledness, 
described as a standard one, that we have used so far in this chapter: whether it is 
multi-enabled or not by class marking, any enabled transition has so far been 
associated with one single time variable of the firing domain. In this section, we 
explore alternatives to such an interpretation, described as extended interpretations, 
in which a transition can be associated with various time variables. The net in Figure 
5.10 will be used to illustrate different interpretations. 

t1

t2 [0,2]

t3 [0,2]
[1,1]

p1

p0

Figure 5.10. Illustration of multi-enabledness 

Firing of t1 from initial class C0 in the above net leads to the following class C1:

– M1: p0(1), p1(1)  

– D1: Set of solutions in (t1, t2, t3) of:  

1 t1  1

0 t2  2

0 t3  2
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Applying the standard firing rule of section 5.3.2, firing of t1 from class C1 will 
lead to the following class C2

s:

– M2: p0(1), p1(2)  

– D2
s: Set of solutions in (t1, t2, t3) of:  

1  t1  1

0 t2  1

0 t3  1

Transitions t2 and t3 remain enabled on firing of t1, which explains the shifting 
towards the origin of times of their intervals in system D2

s, but if t2 and t3 were not 
enabled by M1, then they would have received as intervals their static intervals as 
they would be considered as “newly enabled”. Interpretations that we consider in 
this section actually combine these two intervals with transitions t2 and t3: they will 
be considered both as persistent with firing of t1, and as newly enabled.  

Thus, according to the extended firing rule adopted in this section, firing of t1
from class C1 leads to the next class C2 in which transition t2 (t3, respectively) is 
associated with two time variables denoted t2

0 and t2
1 (t3

0 and t3
1, respectively). 

– M2: p0(1), p1(2)  

– D2: Set of solutions in (t1, t2
0, t2

1, t3
0, t3

1) of:  

1  t1  1

0  t2
0  1  

0  t2
1  2  

0  t3
0  1  

0  t3
1  2  

In system D2, we clearly distinguish, according to their intervals, inequalities and 
variables resulting from persistence of enabledness of t2 and t3 on firing of t1
(variables t2

0 and t3
0), and those resulting from the new enabledness of t2 and t3

(variables t2
1 and t3

1).

As a general rule, a k-enabled transition t will be associated here with k firing 
domain time variables, denoted ti

0, …, ti
k 1 if t is the ith enabled transition. To 

complete the interpretation, it is necessary to define: 

–  which of the variables associated with an enabled transition is considered 
when a transition is fired, and what happens to the other ones;  
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–  in case of conflict between this transition and another one, which of such 
variables will disappear on firing of other transitions.  

5.6.1.2. Selecting firable transitions 

Many options may be considered for selecting a firable transition: any such 
interval (non-deterministic strategy), the oldest one (first enabled – first fired
strategy, referred to as FEFF), or else the latest. In the first case, a multi-enabled 
transition is interpreted as many independent instances of transition. In the other 
cases, an order is applied between the various instances. The oldest instance is that 
first created (enabled).  

All such interpretations are consistent with the fact that tokens in Petri nets are 
simplified (none requires to distinguish tokens).  

The first (non-deterministic) interpretation is the most general in the sense that 
the net behavior, depending on such an interpretation, includes constructed 
behaviors using other interpretations, but it leads to a higher number of classes. 
Moreover, as opposed to the standard interpretation and other extended 
interpretations, it produces a non-deterministic class graph since a class may 
therefore have many next distinct classes by firing a similar transition.  

The second interpretation (extended FEFF) appears to be natural within the 
context of distributed systems, when marks (more specifically here the enabling 
instances) are interpreted as incoming messages. So, such an interpretation means 
that in the presence of various messages, this is the earliest one to arrive and is first 
handled. It is clear that within other contexts a different interpretation might be 
meaningful.

5.6.1.3. Selecting outgoing transitions in case of conflict 

When a transition is fired, it consumes tokens. If a fired transition was 
conflicting with other transitions, and if such transitions were multi-enabled, which 
time variables associated with such transitions should disappear at firing rule step 
(a)? 

The same options as above are actually possible: time variables may be 
considered as independent (which would introduce another cause of class graph non-
determinism), or arranged depending on their date of appearance.  

As above, the non-deterministic strategy is the most general but it fosters an 
explosion of class number, while the strategy consisting in removing first the oldest 
variables has a reasonable interpretation in terms of systems.  
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5.6.1.4. Extended firing rule 

When a strategy has been selected, the firing rule for state classes as described in 
section 5.3.2 is easily adapted to extended interpretations. The different enabling 
instances of each transition are simply associated with as many variables in the 
systems defining firing domains; the variable management strategy (we will 
remember here the FEFF strategy) determines the selection of variables exiting from 
domains.  

To facilitate the calculation of new classes, variables of any system are indexed 
depending on the order in which they are introduced (and renumbered by preserving 
this order when placed in canonical form).  

In firing rule step (2b) of section 5.3.2, we eliminate transition instances 
conflicting with t by starting with the oldest instances, excluding any commonly 
fired instance. In step (2c), all instances of transitions which remained enabled on 
firing of commonly fired instances are translated. In step (2d), a new variable is 
introduced for each instance of newly enabled transitions (indexed so that they 
appear as the newest instances).  

For the example shown in Figure 5.10, the class graph shown in Figure 5.11 is 
thereby achieved.  

5.6.1.5. Boundedness  

Theorems 5.6, 5.7 and 5.8, which set out sufficient conditions for boundedness, 
are no longer applicable with the extended firing rule. In fact, lemma 5.1 and 
theorem 5.5 are no longer verified, since the number of variables is no longer 
bounded by the number of transitions.  

Lemma 5.1 and theorems 5.5, 5.6, 5.7 and 5.8, however, extend to nets referred 
to as T-bounded: a net is said to be T-bounded if there is an integer k  0 such that, 
for any reachable marking M, and any transition t, t is at most k times enabled by M
(or q. M q.Pre(t) q k). The number of variables associated with a transition 
(using the extended firing rule) in any firing domain of a T-bounded time Petri net is 
clearly bounded since being at most equal to the constant k; the outcome is that the 
number of constructible firing domains is finite. When applied to T-bounded time 
Petri nets, theorems 5.6, 5.7 and 5.8 therefore provide sufficient conditions for 
boundedness.  
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Figure 5.11. Graph of classes of net shown in Figure 5.10, FEFF firing strategy 

Unfortunately, except for specific cases, there is no simple definition of the  
T-bounded property. In order that a Petri net or a time Petri net may be T-bounded, 
any of its transitions should have (and this is sufficient) at least one bounded input 
place.
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Theorem 5.6 is valid for time Petri nets used with the extended firing rule and in 
which any transition has at least one input place: so, the sufficient condition for the 
boundedness property expressed by this theorem is also a sufficient condition for the 
T-bounded property (remember that theorem 5.6 does not involve firing domains).  

On the other hand, theorems 5.7 and 5.8 do not express sufficient conditions for 
the T-bounded property. With the extended firing rule, infinite class chains in which 
all firing domains are distinct (because their sets of variables are distinct) may 
generally exist. When the boundedness property cannot be demonstrated using 
theorem 5.6, it is still possible to have a bound k for the number of simultaneous 
enabledness states of any transition, and to construct the class graph using theorem 
5.7 or 5.8, while verifying straight away that any transition is at most enabled k
times simultaneously. Termination is thereby guaranteed, and, if the enumeration 
does not fail, we have demonstrated the T-bounded and bounded properties.  

It is worth noting a final specificity about the boundedness property: a time Petri 
net may be unbounded with the standard firing rule but bounded with the extended 
firing rule! This would be the case, for example, of the net shown in Figure 5.10 if 
transitions t2 and t3 were provided with static interval [2,3] rather than [0,2]: the 
modified net would assume 7 state classes by using the FEFF extended firing rule, 
but it would assume an infinity of state classes by using the standard firing rule.  

5.6.1.6. Alternatives 

An alternative for multi-enabledness processing contemplated by certain authors 
is to consider that tokens have an age. So, transition enabling instances are ordered 
depending on the age of the tokens they mobilize, while our interpretation associates 
an age directly with enabledness. Naturally, such interpretations require a different 
representation of time Petri net states, by considering the age of each token. Such an 
approach was considered in [CER 99], by being limited to arcs with weight 1, in 
[BOY 08] which defines “threshold semantics”, and in [KHA 96, KHA 97], by 
associating intervals with places rather than with transitions.  

5.6.2. Other time extensions 

It is not appropriate within the scope of this book to give an exhaustive outline of 
time-extension oriented Petri nets. An overview can be found in [SRB 08, BOY 08]. 
Furthermore, the subject will be addressed again in the next chapter. So, here we 
will just put forward a few models which are similar to the time Petri net model.  

Two variations of Merlin’s model are found in the literature. 
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The first one concerns the timed interval locus. The interval may be located on 
places or on arcs (rather than on transitions). Chapter 6 will put forward a significant 
semantic extension of great practical use in setting intervals on arcs. More recently, 
[KHA 96, KHA 97] used nets with time intervals on places.  

The second one concerns the interpretation of upper time bounds. Some studies 
consider that, as opposed to Merlin’s model, there is no obligation to fire a transition 
before or at an upper bound of its firing interval. Such semantics, referred to as 
“weak”, may be observed as a system’s partial specification: we know that an action 
may only occur between two dates, but we do not know whether it will occur. Weak 
semantics facilitate the verification since upper time bounds are no longer being 
considered: if [RUI 99] showed that reachability remains undecidable, boundedness 
does become decidable [FRU 00]. Furthermore, weak semantics systems are 
monotonic (refer to lemma 3.14 of Chapter 3); so, for their analysis, we may use 
techniques such as those of the covering graph (refer to section 4.4.1 of Chapter 4).  

A comparative study was carried out in [CER S99], which concludes that, from 
the language viewpoint, all weak semantics models are equivalent, and that, with 
standard semantics (referred to as “strong semantics” in their article, i.e. with a 
firing obligation when the maximum bound is reached), nets with intervals on arcs 
are a generalization of the other two types of nets. Such generalization is strict, as 
shown in [BOY 99]. Another study, based on the weak bisimulation criteria and 
considering open intervals (i.e. with strict constraints), refines this result, and 
confirms that nets with intervals on arcs are a strict generalization of both the others 
[BOY 08]. 

The timed automata model [ALU 94] is another model integrating time, based on 
automata rather than on Petri nets. As it was introduced more recently, it has 
fostered a high number of studies [ALU 95]. The idea is to add to a classical 
automaton a finite set of clocks, and quote automaton arcs with conditions and 
actions concerning clocks. As it adopts the technique of a “geometrical” processing 
of time, time processing for timed automata is significantly different from time 
processing for time Petri nets. Timed atomata manage especially a finite and 
constant number of clocks, while time Petri nets dynamically create clocks as 
marking develops. Studies [HAA 00, BOU 06] outline crossed codings between two 
such techniques. 

The time Petri net itself can be extended with stopwatches, to express 
suspensions and resumption of actions, or with priorities. The state class method can 
be adapted to handle such extensions [BER 07a, BER 07b]. 
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5.7. Implementation using the Tina tool 

5.7.1. Tina tool 

The enumerative analysis technique described in this chapter was implemented 
and incorporated many times in university and commercial projects. Examples of 
this chapter were handled with a non-commercial toolbox, called Tina V2,
developed by the first author. Such a toolbox is available on the internet, for Unix or 
Windows targets, at: http://www.laas.fr/tina. The Tina V2 tool is derived from the 
tool of the same name described in [ROU 86], and is provided with the same 
functionalities. Tina is supplied with a portable graphic editor of time Petri nets. 
From a textual or graphical description of a time Petri net, Tina first constructs the 
net’s class graph. The user may select different stopping tests for the class 
enumeration: he may have the option to verify straight away the boundedness 
property with one of the sufficient conditions set forth in section 5.4.3, or construct 
the class graph until reaching a given number of classes, or a given calculation time. 
If the class graph is finite, then Tina analyzes the liveness property, after 
constructing the graph of highly connected components of the class graph. A 
required condition for a bounded time Petri net to be living is that all its transitions 
be fired in all highly connected pending components of its class graph.  

Tina incorporates both interpretations of enabledness discussed in this chapter: 
the “standard” interpretation (with a time variable for each enabled transition) as 
described in section 5.2.1, and the “FEFF extended” interpretation as described in 
section 5.6.1.4. One Tina command argument allows us to select either 
interpretation. Finally, the user may or may not use the “time shift” operation as 
discussed in section 5.3.4.  

5.7.2. Application example 

Analyzing the net shown in Figure 5.3 by Tina, with no shift option and with the 
bounded test of theorem 5.6, is shown in Table 5.2 below. Results printed by Tina
consist of three sections: the first one gives the net’s textual form (being equivalent 
to that read in the data file). The second one gives reachability analysis results: 
boundedness property diagnosis and, as the case may be, details on the origin of the 
infringement of such properties, or a set of state classes followed by the reachability 
graph. Finally, the third one is the detail of liveness analysis, consisting of a 
diagnosis followed by highly connected components of the class graph and graph of 
highly connected components.  
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Tina version 2.9.2 -- 05/02/08 -- LAAS/CNRS 

mode -W 

INPUT NET -------------------------------------------------------

parsed net Fig3 

5 places, 5 transitions 

net Fig3 
tr t1 [4,9] p1 p2*2 -> p3 p4 p5
tr t2 [0,2] p4 -> p2
tr t3 [1,3] p5 -> p2
tr t4 [0,2] p3 -> p3
tr t5 [0,3] p3 -> p1
pl p1 (1) 
pl p2 (2) 

0.001s

REACHABILITY ANALYSIS -------------------------------------------

bounded

12 classe(s), 29 transition(s) 

CLASSES:

class 0           class 1           class 2           class 3
marking           marking           marking           marking
  p1 p2*2           p3 p4 p5          p2 p3 p5          p2*2 p3
domain            domain            domain            domain
  4 <= t1 <= 9      0 <= t2 <= 2      0 <= t3 <= 3      0 <= t4 <= 1
                    1 <= t3 <= 3      0 <= t4 <= 2      0 <= t5 <= 2
                    0 <= t4 <= 2      0 <= t5 <= 3
                    0 <= t5 <= 3      t4 - t3 <= 1
                                      t5 - t3 <= 2 

class 4           class 5           class 6           class 7
marking           marking           marking           marking
  p2*2 p3           p2 p3 p5          p1 p2 p5          p2 p3 p4
domain            domain            domain            domain
  0 <= t4 <= 2      0 <= t3 <= 3      0 <= t3 <= 3      0 <= t2 <= 1
  0 <= t5 <= 3      0 <= t4 <= 2                        0 <= t4 <= 1
                    0 <= t5 <= 3                        0 <= t5 <= 2

class 8           class 9           class 10           class 11
marking           marking           marking           marking
  p2 p3 p4          p1 p2 p4          p3 p4 p5          p1 p4 p5
domain            domain            domain            domain
  0 <= t2 <= 1      0 <= t2 <= 1      0 <= t2 <= 2      0 <= t2 <= 2
  0 <= t4 <= 2                        0 <= t3 <= 3      0 <= t3 <= 3
  0 <= t5 <= 3                        0 <= t4 <= 2      t2 - t3 <= 1
                                      0 <= t5 <= 3
                                      t2 - t3 <= 1
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REACHABILITY GRAPH: 

0 -> t1 in [4,9]/1 
1 -> t2 in [0,2]/2, t3 in [1,2]/7, t4 in [0,2]/10, t5 in [0,2]/11 
2 -> t3 in [0,2]/3, t4 in [0,2]/5, t5 in [0,2]/6 
3 -> t4 in [0,1]/4, t5 in [0,1]/0 
4 -> t4 in [0,2]/4, t5 in [0,2]/0 
5 -> t3 in [0,2]/4, t4 in [0,2]/5, t5 in [0,2]/6 
6 -> t3 in [0,3]/0 
7 -> t2 in [0,1]/3, t4 in [0,1]/8, t5 in [0,1]/9 
8 -> t2 in [0,1]/4, t4 in [0,1]/8, t5 in [0,1]/9 
9 -> t2 in [0,1]/0 
10 -> t2 in [0,2]/5, t3 in [0,2]/8, t4 in [0,2]/10, t5 in [0,2]/11 
11 -> t2 in [0,2]/6, t3 in [0,2]/9 

0.000s

LIVENESS ANALYSIS -----------------------------------------------

possibly live 

0 dead classe(s), 12 live classe(s) 
0 dead transition(s), 5 live transition(s) 

STRONG CONNECTED COMPONENTS: 

0 : 0 1 2 3 4 5 6 7 8 9 10 11 

SCC GRAPH: 

0 -> t1/0, t2/0, t3/0, t4/0, t5/0 

0.000s

ANALYSIS COMPLETED ----------------------------------------------

Table 5.2. Tina invocation of net shown in Figure 5.3 

5.8. Conclusion 

The behavior of a large number of systems, and in particular of systems that are 
related to critical missions, is influenced by explicit values of time. It is therefore 
crucial to be able to define a formal model of such aspects, and then also to analyze 
the models, in order to check whether safety properties are fulfilled or to be able to 
detect errors early. The time Petri nets model provides an adequate modeling power, 
and its analysis can be supported by efficient validation algorithms. The enumerative 
analysis method of time Petri nets set forth in this chapter enables for time Petri nets 
a reachability analysis similar to that allowed for Petri nets by the marking graph 
technique. Such a technique has been used in many university or industrial studies, 
and embedded in many system analysis tools. So it is of undisputable practical 
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value. It should be noted that no alternative avoiding the enumeration has been 
suggested for analyzing time Petri nets concerning their verification. 

However, the method’s intrinsic limits should not be disregarded. The first limit 
is that no required and sufficient condition can be set forth for the boundedness 
property of time Petri nets, and such a is a prerequisite for the enumerative analysis. 
Such a limit can only be overcome by formulating sufficient conditions for the 
boundedness property which are much weaker than those suggested here. The 
second limit, which is also a limit for the analytical method of classical Petri nets 
with marking enumeration, is that, even though the number of state classes of a time 
Petri net is bounded, the number may be very high and consequently such a set is 
difficult to manipulate. Thorough attention should be given to the modeling 
technique so that the number of state classes will be maintained at a reasonable 
value. Such condition being fulfilled, the enumerative analysis method is completely 
satisfactory. 
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Chapter 6 

Temporal Composition and Time 
Stream Petri Nets

6.1. Time, synchronization and autonomous behaviors  

Petri nets (PNs) are used to specify basic functional behaviors, in particular 
synchronization, waiting and sequence, and transitions and places are fully or 
partially ordered, but without using explicit temporal values.

Furthermore, time Petri nets (TPNs) have been defined for systems whose 
behavior depends on real and explicit values of time. For example, for expressing 
the duration of actions, or some relationships between some occurrences of actions, 
temporal parameters are needed. It has also been shown that TPNs allow the 
designer to specify a great number of these problems, in particular for the durations 
of actions and for time-outs.

Nevertheless, it appears that TPNs are not fully adapted to the specification of 
some systems, in particular the ones related to multimedia systems, because they 
contain some complex events that have inherently sophisticated temporal behaviors.

More precisely, these advanced systems possess complex objects, which are 
defined by a well-defined autonomous temporal behavior. For example, voice, 
music, and video are such objects. Their behavior is made up of simple presentation 
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actions, i.e. sending a voice, music, or video sample (an image, or frame, in this 
latter case) to some appropriate peripheral devices. To be correct, these presentations 
must follow a very well-defined temporal schedule, e.g. the presentation of 25 
frames per second for a video flow. In complex multimedia systems, the behaviors 
of the different flows may also need to be co-ordinated, for example by
synchronizing voice and video for lip-synchronization in movie-like presentations.

These new objects will be called “streams”, in order to emphasize their temporal 
behaviors, which causes them to behave in a way similar to a stream.

6.2. Limitation of time PNs 

In TPNs, firing a transition is defined by fulfilling the three following conditions: 

(i) the considered transition must be enabled; 

(ii) counting the time starts at the instant at which the transition is enabled; 

(iii) firing takes place in the interval [qmin, qmax], when the transition is 
continuously enabled during the interval (between these two values). 

Let us now take the example of a transition having two input places. By 
analyzing its behavior in depth, it appears that the firing condition of the TPN 
implies a subtle constraint, with has to be well understood: the behavior of the two 
input places are not temporally autonomous and neither of them has independent 
temporal behavior.

This observation comes from the formal definition of firings in TPNs:  

– firing starts by waiting for the transition to be enabled, that is waits for a non-
temporal synchronization of the token in the two input places (as in a PN); 

– and then, and only then, when the transition is enabled, the semantics start the 
timer, and as this counting is related to the temporal interval associated with the 
transition, the timer applies to all input places: it follows that the behaviors of the 
tokens are not independent. 

6.3. Temporal composition

As there is no temporally independent synchronization in TPNs, firing can be 
decomposed as follows: 

– firstly, enabling is a logical synchronization, a logical composition defined by 
T, without any reference to time; 
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– and then, secondly, the temporal behavior starts, i.e. waiting during a certain 
amount of time, but this is done in an identical way for all input places of T, and the 
tokens will be deleted from all input places by the firing, and at the same time.

As a consequence:

– the tokens do not have an autonomous behavior and they cannot model 
temporally independent behaviors;

– moreover, these behaviors cannot of course be composed while keeping their 
particular temporal characteristics.

This modeling and composition problem was solved by introducing time stream 
PNs in [DIA 93, DIA 94, SEN 95, SEN 96].

Let us show how TPNs can lead to temporal composition.

6.4. Temporal composition and temporal synchronization

6.4.1. The semantics of “waiting” 

The unit of time is global in TPNs, but counting time is local to a transition when 
it is enabled, because the implicit (waiting) timer related to the firing is started when 
the transition is enabled. 

In particular, this implies that the waiting time is not related to the behaviors of 
each token (tasks or processes) but to a waiting of all of them occurring after their
logical synchronization (Figure 6.1a). 

Po1
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Po3

Po2

Pi2

[ min, max]

Po1

Pi1

ti

Po3

Po2

Pi2

[ 2min, 2max][ 1min, 1max]

Figure 6.1. Intervals in TPNs and STPNs
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The purpose of PNs with independent streams, or time stream PNs (TSPN), is 
thus to extend TPNs in order to represent systems having independent temporal 
behaviors that need to be synchronized and composed. For instance, this model will 
be used to define jitters (around nominal values), and to compose such jitters. An 
important area of application is defined by systems having temporal flows or 
streams, in particular multimedia systems, in which temporal intra-stream 
synchronization and inter-stream synchronization have to be handled.

The new TSPN model is able to explicitly express temporal synchronizations and 
compositions, for example by counting time as soon as the tokens arrive in a place of 
the net, i.e. before enabling the transition. To do this, TSPNs have intervals of 
temporal validity [ min, max] that are associated with the arcs, but no longer with the 
transitions.

This extension will completely modify the semantics of the model, and will 
allow the designer to express precise temporal definitions of autonomous temporal 
behaviors, for example for streamed intra-process and inter-process 
synchronizations.

More precisely, and not yet in a formal way, let us consider the transition of the 
simple TSPN given in Figure 6.1b. Each arc that is an input of (entering) this 
transition has an interval [ min, max] associated with it. Now, of course:

(i) Firstly, the arc semantics have to be extended to handle these temporal 
intervals. This will lead to modification of the enabling condition of transition t for
this arc, according to the temporal constraint given by the interval: one arc will be 
called “pre-enabled” when it receives a sufficent number of tokens (greater than the 
weight of the arc, as before) in its input place. Let us assume that the arc is pre-
enabled at instant , which is the instant corresponding to the arrival of the required 
tokens in the place connected to this arc. Then, a partial (temporal) enabling of t,
related to this arc, is defined to be in the interval [ + min, + max]. This new 
definition introduces an implicit timer related to the arc, and the starting date of this 
timer is the instant at which the place is pre-enabled by the tokens that enable the 
input place of the arc. Note that if this arc is the only input arc of the transition, then 
clearly the transition is enabled as soon as it is enabled by this arc. 

(ii) Secondly, if there is more than one arc that is an input of this transition, a 
global firing rule of the transition has to be defined by extending the semantics 
defined for one arc to all arcs of this set. An obvious generalization of the previous 
choice results in the following definition of enabling a transition in TSPNs. A 
transition is enabled when all its input arcs are enabled, i.e. when all of them satisfy 
their temporal constraints: this leads to the requirement of fulfilling a set of intervals 
{[ i + imin, i + imax]} for all i arcs that are inputs of the transition (the firing 



Temporal Composition and Time Stream Petri Nets     167 

must occur for all arcs in their intervals with respect to the instant of the arrivals of 
the pre-enabling tokens).

6.4.2. Pragmatics and time assumptions 

As before for TPNs, firing can occur within an interval, which will be defined by 
the waiting interval of all arcs, each newly enabled arc being able to introduce a new 
constraint on this interval. When all arcs are enabled, firing the transition should be 
possible, and when it is possible, as in TPNs, the duration of the firing takes zero 
time. 

Let us emphasize that the constraints to be fulfilled to fire a transition t are very 
dynamic, because the enabling intervals of the arcs depend on the instant at which 
these arcs are enabled, i.e. on the instants i of the pre-enabling arrivals of the tokens 
in the input places pi of the arcs.  

When place pi pre-enables an arc that is an input of t, at the instant i of arrival 
of the required tokens in pi, the enabling interval of t for this arc will be [ i + imin, 
i + imax], [ imin, imax] being the interval associated with the corresponding arc 

that exists from pi to t. This clearly shows that the behaviors of the arcs and of the 
tokens related to these arcs are completely independent.

As such behaviors are fully asynchronous, the following problem arises: for a 
given transition, very different temporal shifts may exist, and may lead to 
incompatible temporal synchronization constraints, which can occur when 
combining the different intervals of the different arcs.

Taking the case of two pre-enabling instants, i and j, coming from two 
different places, pi and pj, whose output arcs are inputs of t, they can have very 
different values, and the enabling intervals, [ i + imin, i + imax], and [ j + 

jmin, j + jmax], can be very dissimilar.

Consequently, the definition of firing a transition in TSPNs has to take this into 
account to define a model to represent the actual temporal synchronization of 
autonomous behaviors that occur in real systems.

Defining such a firing is difficult because, in general, independent behaviors, 
although related to the same transition: 

– do not have the same pre-enabling instants;

– do not have the same synchronization interval, but also;
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– can be associated with streams or processes of different priorities; and

– can depend on the context in which the composition is defined.

As will be seen in the particular case of multimedia systems, defining the firing
of transitions in TSPNs leads to the definition of different policies and semantics, to 
be introduced by the different possible meanings of temporal composition. In 
particular, several temporal composition semantics, and thus different temporal 
firing intervals, were proposed for multimedia systems (as pure-and, and, weak-and, 
or, strong-or, master, and-master, strong-master, weak-master, or-master, as will be 
seen later).  

Other relevant semantics of composition can undoubtedly be defined, for 
instance in other application areas.

A paramount aspect of these different possible cases is that the semantics of a
temporal composition cannot be defined a priori.

In fact, the semantics to be selected will depend on the meaning of the 
composition, often defined by the context in which the composition occurs: a given 
choice can prove to be more adequate than another, in a given context, for 
representing the reality.

The choice of the semantics of temporal composition is thus a pragmatic 
decision, in the sense that the choice of a particular semantics (in the chain syntax, 
semantics, pragmatic), will come from a higher decision level (that is outside the 
system representation).

Of course, the different possible choices complicate the models and the 
specification of systems having autonomous temporal behaviors, because no unique 
solution exists, and a given automatic (programmed) composition solution cannot be 
used. 

6.5. Time stream PNs

6.5.1. Definition of the model 

DEFINITION 6.1 Let Aj be the set of the arcs that are inputs of a transition tj (more 
simply, when possible, we will say A for a transition t): 

Aj = {ai= (pi, tj) | Pre(pi, tj) 0}



Temporal Composition and Time Stream Petri Nets     169 

DEFINITION 6.2 A TSPN is a triple (R, ITA, SYN) in which 

– R is PN. 

– ITA is an application, ITA: A Q+  Q+  (Q+ ), which associates with 
each arc ai Aj, a temporal tuple ( i, ni, i), [ i, i] being a static firing interval 
where

i represents an earliest value,
i a latest value, and 

ni is a nominal value (when it is not needed, it can be omitted or denoted as *). 

– SYN is a typing function of a transition, which associates a given semantics to 
each transition of the TSPN 

SYN: T {Semantics}. 

Different semantics, i.e. different possible firings, will be defined later. 

DEFINITION 6.3 An arc (pi, t) is pre-enabled by a marking M when its input place pi 
receives a number of tokens higher than its weight, i.e. if M(pi)  Pre(pi, t). 

When the arc becomes pre-enabled, a virtual timer associated with this arc is 
initialized at this date . The definition of the interval, directly extended from 
transitions to arcs, implies that this arc can be fired during the interval [  + i,  + 

i]. Note that the nominal value t + ni is the normal expected instant of firing (but 
not the actual value). 

6.5.2. The different firing semantics 

In order to specify what firing a transition now becomes, two simple semantics 
will be given first, i.e. the ones called “Pure-And” and “Weak-And”. Others will be 
defined later. All of them are illustrated in Figure 6.2. 

(A) First firing semantics: “Pure-And” semantics

(a) Let us consider one arc and its static firing interval [ i, i]. The arc semantics 
will be defined by considering that the transition must be fired during the interval of 
time that starts at the pre-enabling time  and that lasts during the interval [ i, i],
that is during the time [  + i,  + i]. As a consequence, the firing (and so the 
possible action event associated with this transition, for example starting an effective 
presentation in a multimedia system) cannot occur before  + i (too early), and 
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cannot occur after  + i (too late): the instant of firing must strictly belong to the 
interval [  + i,  + i] to fulfill the Pure-And temporal constraint related to this arc. 

(b) If transition t has two or more input arcs, i.e. a set A of arcs, then the Pure-
And semantics is the logical extension of the previous semantics for all arcs that are 
inputs of t. 

In the Pure-And semantics, all arcs must satisfy their interval constraint: if one of 
them does not satisfy it, either the specified synchronization is not possible and the 
system is faulty, or the transition cannot be of a Pure-And type, and, as a 
consequence, an error is detected. 

DEFINITION 6.4: Pure-And firing. A transition t of type Pure-And is firable at a 
(absolute) date f if the following conditions (a) and (b) are satisfied, ai A:

(a) t is enabled by M at i: pi, M(pi)  Pre(pi, t;)  

(b) the value of f  is such that pi, ( i + i) f  ( i + i). 

Thus, for t, the possible firing interval, [MIN, MAX], is ai A:

MIN = max, over i A, of {( i + i)} = max (of the min) f

MAX = min, over i A, of {( i + i)} = min (of the max) f

(B) Second semantics: “Weak-And” semantics 

It will be seen later that a Pure-And behavior is very constrained, and too strong 
in terms of firing for some cases, leading to the need for weaker semantics. 

The next step is to define a Weak-And semantics, in order to wait as long as 
possible to fire a transition. A Weak-And type is defined in order to represent 
applications for which, if an arc is in advance with respect to the others, it can be 
delayed up to a certain maximum value, to await, as much as possible, the other arc 
intervals. This maximum value, for the Weak-And semantics, was chosen to be the 
last date that fulfills the latest temporal interval of an arc (i.e. to wait until the latest 
stream), i.e. will be defined by the latest value of ( i + i).

Consequently, the instant of firing, f, will not be smaller than all the ( i + i) 
values and will not be larger than the largest of the (ti + ) values. 

DEFINITION 6.5: Weak-And. A transition t of the Weak-And type is firable at time f

if the two following conditions are satisfied: 

(a) t is enabled by M at i: pi, M(pi) Pre(pi, t);  
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(b) the instant of firing f is such that ai A, pi, ( i + i) f and pi, f

( i + i). 

Thus, transition t of type Weak-And is semantically defined to be temporally 
firable if its time constraints belong to the intervals of time ranging between the 
largest of the min values and the largest of the max values: ai A, [MIN, MAX] 
is defined by 

MIN = max, over i A, of { i + i) } = max (of the min) f

MAX = max, over i A, of { i + i} = max (of the max) f

At the latest, the transition must be fired after the maximum of {( i + i)}, for 
all i, ensuring that all arcs waited their minimum time, and before or at the 
maximum of {( i + i)}, ensuring that the arcs waited up to the latest time instant of 
the latest arc. 

(C) Other different semantics and temporal synchronization 

The two previous semantics can be summarized as: 

– Pure-And: max, over i A, of { i + i} f  min, over i A, of { i + i}

– Weak-And: max, over i A, of { i + i} f  max, over i A, of { i + i}

An obvious generalization of these semantics is to consider the missing 
combinations (min min and min max), leading to the following semantics. 

(C1) “Strong-Or” semantics 

In the Strong-Or type, an arc that is in (temporal) advance with respect to the 
others will impose the firing. In terms of streams, this means that the fastest stream 
will not be delayed, and it will fire. Of course, its firing will remove the tokens in 
the input places of the transition, and will stop the other streams, even if the action 
(output) related to these places are not finished. 

DEFINITION 6.6: Strong-Or. A transition t of type Strong-Or is firable at time f if 
the following two conditions are satisfied: 

(a) t is enabled by M at i: pi, M(pi)  Pre(pi, t); 

(b) the instant of absolute firing f is such that, ai A: pi, ( i + i) f and 
pi, f  ( i + i). 
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The transition must wait until the minimum of the ( i + i), which ensures that it 
has waited for the minimum time for an arc, and must wait at the maximum up to the 
end of the validity of the interval of the fastest stream. 

Such a transition t is firable if its maximum time constraints are satisfied, i.e. is 
firable in the interval of time ranging between the smallest of the minimum dates 
and the smallest of the maximum dates: ai A:

MIN = min, over i A, of { i + i} = min (of the min) f

MAX = min, over i A, of { i + i} = min (of the max) f

(C2) “Or” semantics 

This rule gives the weakest semantics, as a transition will be able to be fired in 
the interval that fulfills only one of the interval of all arcs: it is enough for one of the 
semantic conditions to be true for the transition to be allowed to fire. 

DEFINITION 6.7: Or. A transition t of type Or is firable at time f if both following 
conditions are satisfied: 

(a) t is enabled by M at i: pi, M(pi)  Pre(pi, t); 

(b) the instant of absolute firing f is such that ai A: pi, ( i + i) f and 
 pi, f  ( i + i). 

Thus, transition t of type Or is firable if its time constraints are satisfied, i.e. in 
the interval of time ranging between the smallest of the minimum dates and the 
latest of the maximum dates:  

ai A

MIN = min, over i A, of { i + i} = min (of the min) f

MAX = max, over i A, of { i + i} =max (of the max) f

(C3) Semantic “And” 

With the Pure-And semantics, each arc must fulfill its temporal intervals. If one 
of them is not fulfilled, the semantics are violated and the behavior must be 
debugged (if the validation is off-line), or stopped (if the test is carried out on-line, 
during real operation). 

The Pure-And conditions can be weakened, to be used in applications where the 
designer wants the behavior to continue, even if the (dynamic) intersection of the 
intervals of the various arcs is empty. 



Temporal Composition and Time Stream Petri Nets     173 

DEFINITION 6.8: And. A transition t of type And is firable at time f if both the 
following conditions are satisfied: 

(a) t is enabled by M at i: pi, M(pi)  Pre(pi, t); 

(b) the instant of absolute firing f is such as, ai A: pi, ( i + i) f and 
pi, f  max of the pair ( i + i), or f  (max ( i + i)). 

Thus, a transition t of type And is firable, if for ai A:

– either in the interval of time ranging in the intersection between the largest of 
the minimum dates and the smallest of the maximum dates is not empty; 

– or at the instant “max of the min”, if it is empty. 

Note that this semantics defines an interval if it exists: the maximum [max (of 
the min), min (of the max)], or a value, the latest of ( i + i), if it does not exit. 

MIN = max, over i A, of { i + i} = max (of the min) f

MAX = max of (min, over i A, of { i + i}), and of (max, over i A, or max 
{ i + i}) f

Note that where all intervals have no instant in common, e.g. for two intervals 
[a1, a2] and [b1, b2] when b1 > a2 or a1 > b2, they do not have a common 
intersection (and thus appear temporally desynchronized, i.e. in sequence). Then, the 
selected solution is the instant which is the latest of the ( i + i). Of course, this 
choice is arbitrary, but it has proved to be of interest for multimedia applications that 
can progress despite temporal desequencing. Note also that in Figure 6.2, the Pure-
And and And types produce the same interval. 

(C4) “Master” semantics

This rule, which was essential for the specification of some systems, defines a 
stream that is more important than the others, i.e. that has a higher priority: this 
stream will define the transition firing by its own firing interval. 

DEFINITION 6.9: Master(ai). If ai is the arc related to the priority stream, a 
transition t of Master type is firable at time f if the two following conditions are 
satisfied: 

(a) t is enabled by M at i: pi, M(pi)  Pre(pi, t); 

(b) the instant of absolute firing f is such that ai A: ( i + i) f and  f

( i + i). 
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Thus, a transition t of the Master type is firable when the time constraints of the 
priority arc are fulfilled, i.e. in the time interval ranging between the min date and 
the max date of this arc: 

MIN = ( i + i) f

MAX = ( i + i) f

(C5) Other semantics derived from the Master semantics 

The previous Master semantics can also be seen as a basic rule. It then appears 
that the Master type can be enriched by composing its definition with the other types 
already given. This leads to four possibilities extending the Master type: And-
Master, Or-Master, Weak-Master, and Strong-Master, that are defined, k being the 
index of the Master arc, by: 

And-Master 
MIN = max, over k A, of { k + k} = max (of the min) f

MAX = max of ( i) and of (max, over k A, of ( k + k)) f

Or-Master 
MIN  min, over k A, of { k + k} = min (of the min) f

MAX = i f.
Weak-Master
MIN = i f

MAX = max, over k A, of { k + k } = max (of the max) f

Strong-Master. 
MIN = i f

MAX = max of ( i) and of (min, over k A, of { k + k}) f

(D) Discussion 

Real systems require such a complex degree of sophistication, and given these 
different semantics of firing, each transition in a TSPN must be typed to select its 
firing semantics. This typing will then define the interval allowed for its firing, and 
has to be given in the specification, according to the applicative context in which the 
synchronizations are defined. 

The following additional remarks are of interest: 

– all time intervals of all arcs related to a transition are satisfied for the Pure-And 
type; 

– an interval (the Pure-And one) or a value are obtained for the And type; 

– firing may occur in the latest interval for the Weak-And type; 
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– the first interval can control the firing for the Strong-Or type; 

– an arc can be specified to be the Master, and its firing interval controls the 
firing of the transition; 

– and the firing of the Or type is the most general and the least constrained, 
which means that all the intervals previously given are included in its firing 
intervals: defined between the min of the min and the max of the max, at least one of 
the arcs has its temporal constraint satisfied. 

t enabled by p1 at Firing interval for p1 and arc (p1, t)

[ 1, 1]

[ 2, 2]

p1

p2

p3

t

[ 3, 3]

Pure-
AND

WEAK-AND

STRONG-OR

OR

MASTER :  here arc (p2, t) 

p1

p2

p3

... etc ...

Figure 6.2. Some semantics of firing for TSPN 
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Let us emphasize that: 

– as already mentioned, temporal composition cannot be defined a priori,
because its choice is a pragmatic decision, depending on the synchronization 
context;

– and, of course, selecting different semantics can lead during the analysis to 
very different temporal behaviors of the (global) model. 

Figure 6.2 shows an example with short intervals, but remember that in general 
the minimum and maximum values can be very large, the minimum being 0 and the 
maximum being .

Finally, semantics other than those given here can be of interest, and can be 
developed, but will make the definition of temporal composition more complex. 

6.5.3. Relating times behavior 

PROPERTY 6.1 A TPN is a TSPN in which: 

– all transitions are of the Weak-And type; 

– the [min, max] intervals of all arcs entering a transition are the [min, max] 
interval of this transition in the TPN. 

Proof:
Let us consider a transition t of a TSPN and let {pi} be the set of its input places. 

In {pi}, the place which receives the latest token (LAST) receives it at the 
absolute latest instant (LAST). If all arcs {pi, t} have the same static interval [min, 
max], then the last enabled arc, from p(LAST) imposes the latest value (LAST) + 
min(LAST) and (LAST) + max(LAST). 

By definition of Weak-And, this last firing interval is exactly that of the 
transition in the TPN. Thus, the interval of firing of t, that of the latest enabled place, 
has the same value, starting from p(LAST), as in a TPN.  

The behavior of the model should be defined by a marking and a set of intervals, 
these intervals being defined by the MIN and MAX values. Nevertheless, a suitable 
verification technique for TSPNs has still to be developed, but the analysis of 
TSPNs should be carried out by techniques extending the ones used for TPNs. 
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PROPERTY 6.2 The problems of boundedness and reachability are undecidable for 
TSPNs.

Proof:
As TSPNs are extensions of TPNs, the property follows. 

6.5.4. TSPN with structured streams 

The TSPN model has also been extended in order to represent hypermedia 
systems, leading to the definition of hierarchical TSPNs (HTSPN), which include 
hyperlinks and temporal hierarchy. HTSPN will be presented in Part 2. 

6.6. Application to multimedia systems 

6.6.1. Jitter in streams 

A stream is represented by a sequence of data samples, for example voice 
samples, i.e. a temporal sequence of samples of a given duration. For example, the 
ISDN voice was defined by the PCM coding, corresponding to a sequence of 8-bit 
samples, a sample being sent every 125 microseconds, at a frequency of 8 kilohertz, 
corresponding to a stream of 8.000  8 = 64 kb/s. 

When a voice stream is transmitted through an IP network, it is subject to various 
transmission delays, and its reception does not occur every 125 microseconds. The 
differences between the nominal values of 125 microseconds and the actual values 
define the jitters. A jitter is thus the difference between a nominal value and an 
actual obtained value: in general, the jitter can be positive or negative, and 
corresponds to a temporal interval around the nominal value. 

Consequently, it is very easy to represent a jitter, for example an intra-stream 
jitter for a voice stream, by a TSPN and its temporal intervals: a jitter is defined by 
the interval associated with an arc in the sequence, and by example in Figure 6.3a, 
[min, max] = [120, 130] for a voice. 

6.6.2. Intra- and inter-stream drifts 

Let us now consider two streams, a voice stream and a video stream. For good 
perception quality, the two streams need to be synchronized, as the voice must 
correspond to the corresponding movements of the lips in the video, which means 
that, at the same time, each of the streams (as before) and the two streams (for lip 
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synchronization) must be synchronized. Indeed, these streams are independent (i.e. 
independently produced and independently transmitted), and, if they are not 
synchronized, their delays can be added and their intra- and inter-stream 
synchronizations can be lost. 

The intra-stream drift, the drift of a stream, is defined as the maximum shift 
between the earliest time instant and the latest time instant in a given part of this 
stream. 

Figure 6.3. A multimedia stream

The inter-stream drift, the drift between several streams, is also defined as the 
maximum shift between the earliest time instant of one stream and the latest time 
instant of another stream: it is, at a given instant, the maximum drift between the 
most advanced stream and the latest stream. 
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Figure 6.4. Modeling multimedia scenarios

6.6.3. Modeling stream composition 

Figure 6.3 gives models of two streams in (a) and (b), and in (c) the values of the 
two intra-stream drifts between the minimum values and the maximum values of a 
stream.  

Figure 6.3d presents the composition of these two streams, synchronized by one 
transition of the standard type, which shows the limitation of TPNs. Indeed, using 
TPNs would have meant synchronizing two different values on the final transitions 
of Figure 6.3c, and there is no means of synchronizing them because there is no rule 
for selecting the composition interval for the new last transition in Figure 6.3d. 
TSPNs elegantly solve this problem, because there is no incompatibility to merge, as 
in 6.3d) the two arc intervals of the two streams given in Figure 6.3c. 



180     Petri Nets 

Figure 6.5. Modeling multimedia scenarios 

6.6.4. Principle of modeling multimedia systems 

Figures 6.4a and 6.4b present the bases for modeling multimedia systems: (a) 
indicates that the presentation uses five windows, f1 to f5, and (b) expresses that 
these windows are simple for the first three, f1 to f3, and complex for f4 and f5. 
Figure 6.4(c) proposes a first model using a PN. The five windows contain the 
following objects: a logo in f1, a picture in f2, a text in f3 and a succession of frames 
in f4 and f5, numbered from 4 to 99. This first logical synchronization is such that 
objects 1, 2 and 3 are presented in parallel (the object files are sent to the display 
when the corresponding places are marked), and during their presentation, the two 
sequences of frames are also presented. Of course, the temporal behavior is still 
missing, in particular for defining how long the presentation will last. 

6.6.5. Modeling multimedia scenarios 

Two simplified but general temporal multimedia scenarios appear in Figures 
6.5a and 6.5b. Figure 6.5a contains transitions of the type And, and Figure 6.5b has 
a transition of type Strong-Or and one of type Weak-And. 
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In (a), transition t0 is enabled at the initial instant and thus is firable between 2 
and 7. By definition of the firing of t0, places p1, p3 and p5 receive their tokens at 
the same time (the firing takes 0 time). Therefore, t2 will be enabled by p1 followed 
by p2 between 6 and 14, ([3 + 3, 7 + 7] = [6, 14], and by p3 between 5 and 15. 

Transition t2 being from type And, the intersection of the two intervals [6, 14] 
and [5, 15], is [5, 14], which thus defines the possible interval of firing of t2. In the 
same way, t3 is enabled in [10, 20] by p5, and in [5 + 3, 14 + 9] = [8, 23] by t2 and 
p4; the interval of firing of t3, of type And, is thus: [10, 20].  

In (b), p1, p2 and p3 also receive their tokens at the same instant. t1 is of type 
Strong-Or (defined by [min (of the min), min (of the max)], therefore here is [20, 
25], the interval of p2. In this case, p2 could correspond to a video and p1 to 
accompanying music (much longer than the video). By definition of the Strong-Or, 
the end of the video in the interval [20, 25] implies the firing of t1, and thus, by 
definition of the firing (the tokens are deleted), this firing stops the music and starts 
the action related to p4. Transition t2 being of type Weak-And, it is defined by [max 
(of the min), max (of the max)]; the firing will wait for its two input streams, p4 and 
p3. Here, the chosen semantics, combining p1p2p4, leads to the interval [20 + 10, 25 
+ 30] = [30, 55] and p3, [35, 40] thus gives [35, 55]. This interval means that by the 
semantics, the firing of t2 will wait for the slower stream, the action related to p3, 
for example the end of the presentation of a multimedia component associated with 
p3. Thus, this action will be completed, for example, at time 42 (the presentation is 
finished and its window disappears), before the end of the sequence p1;p2;p4, which 
can finish later, for example at time 52. 

Note that the given types, by defining the possible firing intervals, allow the 
designer to analyze some static temporal errors: for example a Pure-And type for t1 
in 6.5(b) would have allowed detection of an error as, in this specification, the 
intersection of the intervals p1 and p2 is empty. 

6.6.6. TSPN for designing hypermedia architectures  

After modeling complex multimedia presentations, TSPNs were used to model 
computer architectures able to provide temporal guarantees. In particular, they were 
used first to define the various necessary temporal mechanisms existing in the 
different levels of the architecture, and second to specify them in a precise way, to 
analysz their coherence and to implement the resulting software for temporal 
guarantee.  

The desired temporal properties are given in terms of acceptable jitters and drift 
intervals on the arcs of the TSPNs. Different TSPNs are used to define the different 
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temporal constraints that have to be fulfilled at the different levels of the 
architecture. The model will then be translated into a set of software entities able to 
guarantee to the users, at the application presentation level, the temporal specified 
quality of service. 

An example of such a layered model of an architecture will be given in Part 2 of 
this volume. 

6.7. Conclusion 

This chapter first introduced and defined the concept of temporal composition, of 
high importance for systems having autonomous and constrained temporal 
behaviors. This composition, which leads to a non-trivial solution, comes from the 
possible use of a set of synchronization patterns for expressing connected temporally 
autonomous behaviors. This is needed for expressing the synchronization of 
autonomous tasks or processes having temporally constrained behaviors which, at 
certain instants, must synchronize or co-ordinate themselves. 

Temporal composition lead to different choices of synchronization semantics, 
which also happen in everyday life, where waiting for somebody or something can 
depend on the person or on the object who is awaited, and on the possible future of 
the waiting. It is for this reason that this composition was qualified as “pragmatics”. 
As a consequence, there is not in general an automatic solution for describing and 
specifying the temporal compositions that occur in general temporal systems. 

Finally, it has been shown how the corresponding compositions can be used and 
applied to define a temporally constrained presentation of multimedia streams in 
complex multimedia objects. It should also be emphasized that this field is only at 
its beginning and that a lot of studies are still necessary. 
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Chapter 7

High Level Petri Nets

7.1. Introduction

Place/transition nets define a simple and powerful theoretical framework for
studying concurrency problems. Moreover, they are supported by a large number of
available tools for specifying and analyzing concurrent systems in large application
domains. However, this formalism emphasizes control while overlooking data
structures: it is easy to model and analyze control problems but difficult to deal
with large numbers of objects belonging to many classes and to integrate definition
and manipulation in the specification. Moreover, for large nets it is difficult to
take advantage of the symmetries of objects inside each class to synthesize the
analysis of their behaviors. To cope with this, without modifying the semantics of
the Petri net, several abbreviations have been proposed. These high level formalisms
attach new information to nodes, arcs and tokens, to obtain new dense behavioral
semantics using these parameters, but a key point is to remain able to “unfold” these
abbreviations to obtain large classical Petri nets showing the same behaviors. Indeed
better efficiency is obtained for high level formalisms which allow direct analysis
(avoiding unfolding the net) and even a parametrizable one. Moreover, they enable
object symmetries to be well exploited.

These formalisms differ by a greater or lesser degree of natural syntax and
by parametrization modes. In particular, we may cite colored nets [JEN 91],
predicate/transition nets [GEN 81], algebraic nets [REI 87, REI 91], well-formed nets
[CHI 91, CHI 93], and object-oriented nets [LAK 02]. Well-formed nets have led
to symmetric nets, which are now a standard (IS/IEC 15909 [HIL 06]). Many tools
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are now available for them, such as CPN-AMI [KOR 99], Design/CPN [KRI 98],
GreatSPN [CHI 95] or Prod [VAR 97].

In this chapter, we focus on colored nets and well-formed nets (WN), which both
have the same power of expression:

– Colored nets are characterized by a simple functional semantics: colored
information is associated with tokens and firings, while the values of arcs are functions
of colors. These functions specify the number and the colors of the tokens that are
consumed and produced by each particular transition firing, with the convenient choice
of its color parameters. Since there is no syntactical constraint on these functions,
modeling is simplified but direct analysis techniques are difficult or impossible to
construct.

– Well-formed nets are a functional and parametrized extension of Petri nets
where the functions of colors are restricted to compositions of a few elementary
functions (identity, successor and diffusion). Moreover, the color values must be tuples
of values from basic sets called classes. The benefits of this limited syntax are the
parametrized extension of classical analysis techniques (such as invariant calculus and
structural reductions) and also the development of more general approaches (such as
the symbolic reachability graph).

After an informal introduction (section 7.2) presenting several examples of high
level nets, we define and illustrate colored nets (section 7.3), then well-formed nets
(section 7.4), for which analysis techniques will be presented in Chapter 8. We finally
look at two higher level formalisms: interpreted Petri nets and algebraic nets (section
7.5).

7.2. Informal introduction to high level nets

For a simple client-server system, its place/transition model roughly describes
the exchanges between processes but fails to study their individual behavior. This
drawback has motivated the definition of colored nets, which attach extra information
to the tokens, nodes and arcs. With the same underlying graph of the net, colored
models of the system are able to distinguish the behaviors of clients and servers.
Furthermore, it is possible to systematically expand a colored net to reconstruct an
equivalent (unabbreviated) place/transition net. A model of the alternate bit protocol
shows the ability of colored nets to concisely describe the management of data
structures.

7.2.1. A client-server model

The following place/transition net motivates colored nets by showing some
difficulties encountered by designers in describing the behaviors of multiple system
entities. Net R1 (Figure 7.1) models two clients connected to one server, but it may be
parametrized to more clients and also generalized to more servers by adding tokens.
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Figure 7.1. Classical place/transition net R1: two clients and one server

– A client in state ready, denoted by a token in place Cready, may send (transition
csend) a message (place Mess) to the server and goes to state waiting (place Cwait).
When receiving an answer (place Answ), the client returns to state ready (transition
crec).

– The server in state ready (Sready) may receive (transition srec) a sent message
and goes to state busy (Sbusy) to process it. After dealing with this message it sends
(transition ssend) an answer (place Answ) and returns to state ready.

– The initial marking m0 = 〈2 · Cready + 1 · Sready〉 denotes two clients and
one server, all in state ready.

However, this model is somewhat too abstract because it cannot distinguish either
the states of each particular client or the addressee of a message or of an answer.

– There is no way of specifying which client fires the transition csend to give
the new marking m1 = 〈1 · Cready + 1 · Cwait + 1 ·Mess + 1 · Sready〉: this
marking does not specify which client is ready and which is waiting and does
not give the sender of the pending message. If the second client also sends a
message, and if the server receives one of these two messages, the new marking
m2 = 〈2 · Cwait + 1 ·Mess + 1 · Sbusy〉 does not distinguish which message is
treated and which is still pending.

– The positive flow [Cready + Mess + Sbusy + Answ] indicates that a message
is prepared by a client, then pending, treated by the server, and finally rises to a
transmitted answer. Therefore the total number of tokens in the corresponding places
is an invariant, equal to 2, since there are initially only 2 ready clients and no pending
message or answer. But no invariant indicates that, in the modeled system, there is no
more than one message or one answer separately for each client.

Modeling more clients and several servers needs only the addition of tokens in the
places Cready and Sready, but the inaccuracy increases: the model does not allow a
client to specify whether it wants to choose a specific server for a given message, or
any of several equivalent servers. When several servers are busy, it is not possible
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to know the sender of the message treated by each server. Indeed, to make such
distinctions, it would be possible to introduce a subnet for each client, but the global
net would become unsuitable for large numbers of clients. A separate subnet may also
be used for each server at the price of a more complex subnet interconnection (see
section 7.2.5) so that the net and its behavior would become messy for large numbers
of clients and servers. Moreover, for parametrized systems, a new drawing and a new
analysis would be needed each time these numbers change.

7.2.2. Client distinction

Colored nets have been introduced to distinguish different tokens to model
different objects having the same sets of states and subject to the same kinds of
actions. Colors may be numbers or items of some set, called a class. The class of
tokens that may appear in a place is called its domain. Variables may be declared in
each domain and used on the arcs connected to a place for specifying the color of the
tokens consumed or produced in this place by the transitions.

Figure 7.2. Colored net R2: distinction of different clients

The colored net R2 (Figure 7.21) distinguishes the two clients by using a separate
color for each one. The client class is the set {1..2}. A modification of this class
specification would allow us to easily change the client set. The places Cready
and Cwait have this class as domain, which specifies that they may only contain
tokens of color 〈1〉 or 〈2〉. The initial marking 〈1〉 + 〈2〉 of the place Cready
indicates that both clients 1 and 2 are in state ready. It may also be denoted by
〈client · all〉 · Cready, to avoid listing all client colors. Moreover, this shortening

1. The drawing of the nets and the syntax of the classes depend upon the graphical tool used:
for instance the names of places may be followed by the character “:” and their color domain.
In this chapter, most of the nets have been designed with the tool Macao and the framework
CPN-AMI [KOR 99].
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simplifies the design of parametrized models (i.e. where the number of clients may
change). The places Mess, Sbusy, Answ have the same domain client, while the
place Sready remains uncolored, or may be colored with a neutral color, because
the server may treat a message from any client. The initial marking of the place
Sready is 1, which is an uncolored token. The complete initial marking is denoted
by 〈1〉 · Cready + 〈2〉 · Cready + Sready.

To distinguish which client acts by the firing of a transition such as csend, a firing
domain is associated with each transition (here client for the transition csend). Each
arc connected to this transition bears an inscription, here a variable 〈x〉, taking a
value within the class client. All the arcs, save the ones connected to places with
a neutral domain (here Sready), have inscriptions with variables or constants in the
adequate class. Moreover, the class of the variable appearing on an arc must be the
same as the domain of the place at the other end of the arc. Here the same variable
x appears on the arcs from Cready to csend and from csend, to Cwait and Mess.
A value for this variable must be chosen for each firing occurrence to specify which
is the color of the tokens to get from the input place and to put in the output places.
This choice is indeterministic within the variable domain, but the transition firing is
enabled if and only if there are enough tokens of the chosen color in the input places
of the transition. The possible firings of transition csend, associated with each client,
are denoted csend(〈1〉) or csend(〈2〉): they specify the value chosen for the variable
< x > which is the color of the token to get from Cready and also the color of the
tokens to put into Cwait and Mess. After firing csend(〈1〉), the transition srec can
only be fired for x = 1 since there is no token 〈2〉 in place Mess.

As with formal parameters for procedures, the variable names are local to each
transition: for instance it would have been equivalent to use a variable u instead of x
(of course from the same domain client), but the same u for all the inscriptions of the
arcs from Mess to srec and from srec to Sbusy. For firing srec this variable u would
have been instantiated to the actual value u = 1, the color of the only token present in
Mess, leading to the same firing srec(〈1〉).

Let us now consider the case where client 1 sends a message received and
treated by the server, which sends an answer. Then client 2 also sends a message.
The sequence csend(〈1〉), srec(〈1〉), ssend(〈1〉), csend(〈2〉) gives the marking
(〈1〉+ 〈2〉) · Cwait + 〈2〉 ·Mess + 〈1〉 ·Answ + 〈1〉 · Sready. The transition crec
is only firable for the choice x = 1 and the transition sre for x = 2, which correctly
models an effective system behavior.

To anticipate the notion of colored flow (see Chapter 8), we present the positive
flow [〈X〉 · Cready + 〈X〉 · Cwait], which, according to the initial marking,
shows that for each color X , the total number of tokens of this color within
these two places remains equal to 1. This invariant indicates that each client is
a sequential process which is either ready or waiting. Also, the positive flow
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[〈X〉 · Cready + 〈X〉 · Mess + 〈X〉 · Sbusy + 〈X〉 · Answ] indicates that, for
each color X , the total number of tokens in the corresponding places is an invariant,
equal to 1, which is more precise than saying that it is 2 for uncolored tokens. These
kinds of invariants may be easily parametrized and interpreted: a client process for
each color, as well as separately for each client being in the ready state or having its
message emitted or its service being performed or its answer sent.

7.2.3. Server distinction

Putting several initial tokens in place Sready would extend the net R2 to several
indistinguishable servers. So, to distinguish them, a new color domain is needed for
the place Sready and a new variable y in this domain for the transitions srec and
ssend. For instance, for two servers the class server is the set {1..2}. As the classes
client and server are different, a token 〈1〉 in a place like Cready of domain client
cannot be confused with a token 〈1〉 in place Sready of domain server and the arcs
issued from these places must bear variables of the corresponding different classes.

Let us first consider the simple case where the clients send their requests to a pool
of servers, each one being able to answer any request. Therefore the client does not
have to choose a server and the transition csend, not having to specify, remains the
same. As any server y may treat the message from a client x, a transition like srec
must now use a variable x for the color of the received message and a distinct one y
for the color of the server treating a message: its firing has now two parameters and
will be denoted by srec(〈x, y〉). For each instance of firing it is necessary to specify
the values of each of its parameters: if the server 2 treats a message for the client 1,
the firing of srec is denoted srec(〈x = 1, y = 2〉) or, more briefly, srec(〈1, 2〉).

Moreover, the client color x and the server color y must be remembered while
treating the message to send the answer to the calling client and to free the server.
However, it would be erroneous to simply add a new output place such as Mtreated
(see model R3 in Figure 7.3). This modeling would cause confusion: for instance,
if server 1 treats a message for client 1 and, respectively, server 2 for client 2, the
transition ssend may be firable with x = 1 and y = 2, which does not correspond to
the current treatment.

A correct model must preserve the association of a server with a calling client.
For that a compound domain treatment is declared for the place Sbusy as a
product of classes client × server (see Figure 7.4). This generalization of tokens
and variables as tuples of colors allows convenient modeling of object associations
and data structures. The transitions srec and ssend have this same color domain,
which allows the instantiation of a couple of associated values 〈client, server〉.
The transition srec has again two parameters x and y: its firing is still denoted by
srec(〈x, y〉), as for R2, but now it puts in place Sbusy, a compound token, i.e. a
couple 〈x, y〉, having client x for the first component and server y for the second one.
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Figure 7.3. Colored net R3: erroneous modeling of the service of a client

Figure 7.4. Colored net R4: server unspecified by the client

If the transition srec(〈1, 1〉) fires for server 1, treating client 1, and then srec(〈2, 2〉)
for server 2, treating client 2, the compound tokens put in place Sbusy are 〈1, 1〉 and
then 〈2, 2〉. In this case only the firings ssend(〈1, 1〉) and ssend(2, 2) are enabled, not
ssend(〈2, 1〉). These last firings would only be possible if server 2 had received and
treated a message from client 1 or server 1 from client 2.

Let us consider a second specification where the clients must choose the server that
will treat their message. Since the messages must contain the server identification,
they are now modeled as couples 〈x, y〉 and the place Mess must have the domain
treatment. The arc from csend to Mess bears the inscription 〈x, y〉, where the
variable x is an input parameter of csend, its value being determined by the token got
from Cready, while the variable y, which does not appear on any input arc of csend,
may take any server number according to the client choice (that is indeterminist).
Now, if there is a token 〈x, y〉 in place Mess, the transition srec(x, y) is only firable
if server y, chosen by client x, is in state ready (i.e. if there is a token equal to 〈y〉 in
place Sready).
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There are two modeling options for the answers. In the first one, the client wants
to check by the transition crec that the answer comes from the chosen server, which
must identify itself in the answer: the places Cwait and Answ have the domain
treatment, allowing the transition csend to put a token 〈x, y〉 in place Cwait and
then the transition ssend to put a token 〈x, y〉 in place Answ. Now the transition crec
would fire only if there are the same couples of tokens 〈x, y〉 in Cwait and Answ.
In the second option these places need only to have the domain client because it is
sufficient to put simple 〈x〉 tokens in Answ and Cwait, since only the addressed
server y may send an answer to client x (see net R5 in Figure 7.5).

Figure 7.5. Colored net R5: server specified by the client

7.2.4. Equivalent unfolded net

The unfolding of a colored net with respect to a color domain is a transformation
producing an equivalent net by replication of all the places and transitions concerned
by this domain as well of their incident arcs. Of course a convenient indexing (or a
suffixing or renaming) is needed to distinguish the identifiers of the replicated places
and transitions. This operation may be iteratively applied to obtain an uncolored net.

The net R6 in Figure 7.6 illustrates the partial unfolding of the net R5 with respect
to the color server, which disappears. Therefore only the class client remains, which
replaces the domain treatment.

– The places Cready, Cwait and Answ, which do not use the class server,
remain the same. Each server, 1 or 2, generates a subnet where the places are suffixed
by their color, giving Sready_1 or Sready_2, which are uncolored, and Sbusy_1 or
Sbusy_2 of domain client. Similarly the place Mess of domain server generates the
uncolored places Mess_1 or Mess_2.

– Each transition generates as many transitions with suffixes as there are variables
of domain server on their arcs. The client transition csend generates csend_1 and
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Figure 7.6. Colored net R6: partial unfolding of net R5

csend_2. The server transition srec generates srec_1, and srec_2, while ssend
generates ssend_1 and ssend_2. All these transitions no longer need the variable
y on their arcs.

– As many arcs as needed are generated for connecting the corresponding
replicated places and transitions.

– The initial marking remains 〈client · all〉 for Cready but now distributes one
uncolored token in Sready_1 and one in Sready_2.

We finally unfold the net R6 with respect to the remaining class client, obtaining
the classical place/transition net R7 in Figure 7.7 without any class or variable
declaration.

– Each client, 1 or 2, generates a subnet where the places are suffixed by its color,
giving Cread_1 or Cready_2 and Cwait_1 or Cwait_2. Similarly the place Answ
generates Answ_1 or Answ_2.

– However the suffixes must be combined in case the place domain was a Cartesian
product of classes in net R5 having already gained a first suffix in net R6. We obtain
the places Mess_1_1,Mess_1_2 for the messages sent by client 1 to each server
and Mess_2_1,Mess_2_2 for the messages sent by client 2. Similarly there are four
places Sbusy_1_1, Sbusy_1_2, Sbusy_2_1 and Sbusy_2_2 for the treatments, but
only two places Cready_1 and Cready_2 as well as Answ_1 and Answ_2 because
the places Cready and Answ had only the domain client in the net R5. Finally, after
the two unfoldings, each original place generates as many suffixed places as there are
tuples in its domain of R5.

– Each transition of R6 still having a variable of domain client is replicated
according to the colors of its parameters: for instance the transitions csend1 and
csend2 generate csend_1_1, csend1_2, csend_2_1 and csend_2_2, while crec
generates only crec_1 or crec_2.
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Figure 7.7. Uncolored net R7: complete unfolding of net R5

– The new initial marking distributes one token in Cready_1 and Cready_2, and
one token in Sready_1 and Sready_2.

– This net has a base of six flows (which moreover are positive): two correspond
to the client processes, two correspond to the server processes, and the last two
correspond to the circuits of messages respectively sent by client 1 or client 2.

Indeed, the complete unfolding of a net allows the use of classical analysis
techniques. However, it becomes complex when there are too many colors in the
classes or too many classes in the domains and therefore the analysis produces a lot
of unfolded results which are difficult to interpret. The interest of direct analysis
techniques of colored nets presented in Chapter 8 is precisely to give synthesized
results directly based on the original net.

7.2.5. Colored model for the alternate bit protocol

The previous examples have shown the interest of colored nets for modeling
sets of processes having similar behaviors and for using integers as control data.
The colored net R8 in Figure 7.8 illustrates their use for the circular numbering
of successive messages in the alternate bit protocol already presented in Chapter 2,
section 2.3.2 (see Figure 2.7). This numbering allows us to manage losses of messages
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Class number is 0..1; Var i,k in number;

Figure 7.8. Net R8: colored model of the alternate bit protocol

or acknowledgements. As similar actions are iteratively taken for messages numbered
0 and 1, it is natural to use the circularly ordered class 0..1 to color their messages
and their acknowledgements, and to fold the 0 and 1 iterations in the sender and in the
receiver submodels.

– At initialization both the sender and the receiver are ready for message 0 (tokens
〈0〉 in Sready and Rready).

– The sender process emits a message (transition ssend) with number i in
place Mess. This message, or its acknowledgement, may be undeterministically lost
(transitions lossm or lossa), with a notification in place Loss. Here this colored place
keeps the number k of the lost message or acknowledgement, but it would be better (as
the sender cannot know whether the message or its acknowledgement has been lost) to
neglect this information by using an uncolored token. In the case of a loss notification
the sender returns to state Sready (transition sredo) to resend the same message with
the same number i.

– The receiver is waiting for a message having the number i. If this number i is the
same as the number of the received message, the receiver accepts it (transition rrec),
then sends an Ack with the same number i (transition rsend). Now it will wait for the
next message numbered i++1 (modulo 2 since an ordered class is implicitly circular),
according to the inscription on the arc from rsend to Rwait. If the receiver finds
the number i − −1 of the message it has previously received (because its preceding
Ack has been lost), it deletes it (transition rredo) and resends an Ack but with the
preceding number (arc with i − −1 from rredo to Rready). After that, it restores i
and returns to the waiting state (arc with i + +1 from rsend) to Rwait.
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– When the sender receives an acknowledgement with the awaited number, it
increases (modulo 2) the message number and returns to state Sready to send the
next message with the next number.

This folding of the uncolored model may be immediately extended to larger
message windows such as 0..7 and even be parametrized without having to redraw
larger nets.

7.3. Colored net definition

Two kinds of high level nets, colored nets and predicate/transition nets, have been
initially introduced to distinguish similar behaviors in a Petri net. Since these two
models have equivalent modeling powers [JEN 91], we mainly consider colored nets
because their more formal definition has given most of the present theoretical studies.

These formalisms have been defined to model families of systems having identical
structures but different sizes. The domains of colors associated with each place allow
designers to color their tokens and the domains associated with transitions allow them
to choose the sets of colors for each firing. So to distinguish several instances of the
same state, we do not need to replicate places and transitions as for Petri nets, as it is
sufficient to color them.

The pre-conditions (resp. the post-conditions) are now specified by the color
functions attached to the arcs. For a transition color c1 and a color place c2, such a
function associates the number of tokens having color c2 which are consumed (resp.
produced) in each place when the transition is fired for the color instance c1.

7.3.1. Notation

To define colored nets, let us first give some basic definitions.

DEFINITION 7.1. A multiset or a bag over a finite non-empty set Y is an application
from Y to N.

Intuitively, a multibag is a set able to contain several occurrences of the
same element. A multibag a over Y may be represented by the formal sum
a =

∑
y∈Y a(y) · y, where the positive or null number a(y) is the number of

occurrences of y in the multibag a. For instance, the sum m = 2 · α + 3 · β designs
the multibag containing twice the value α and three times the value β over a set
containing at least the elements α and β. We denote by Bag(Y ) the set of all
multibags over Y .

The sum of two elements of Bag(Y ) and the product of an element of Bag(Y ) by
an integer are naturally defined.
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DEFINITION 7.2. Let a belong to Bag(Y ).

– If b belongs to Bag(Y ) then the sum a + b of a and b is the element of Bag(Y )
defined by: a + b =

∑
y∈Y (a(y) + b(y)) · y.

– If λ is a positive integer then the product of λ · a of λ by a is the element of
Bag(Y ) defined by: λ · a =

∑
y∈Y (λ · a(x)) · x.

Bag(Y ) is provided with the order relation which is the natural extension of the
order relation over N.

DEFINITION 7.3. Let a =
∑

y∈Y a(y) · y and b =
∑

y∈Y b(y) · y be two multibags
over Y ; a is greater than or equal to b, denoted a ≥ b iff: ∀y ∈ Y , a(y) ≥ b(y).

The color domains of a high level net are Cartesian products of finite sets. To
manage tuples, let us define tuples of values and tuples of functions.

DEFINITION 7.4 (Tuple values). Let C1, . . . , Ck and C be finite sets. An element
C1 × · · · × Ck is called a k-tuple (or simply a tuple) and is denoted 〈c1, . . . , ck〉.

DEFINITION 7.5 (Function tuples). Let f1, . . . , fk be a set of applications of C to
Bag(Ci) (∀i ∈ [1..k], fi : C → Bag(Ci)). The function tuple 〈f1, . . . , fk〉 is a
function f having domain C and codomain Bag(C1) × · · · × Bag(Ck) such that
∀c ∈ C, 〈f1, . . . , fk〉(c) = 〈f1(c), . . . , fk(c)〉.

A function of a set C to a set Bag(C ′) may be extended as a linear application of
Bag(C) to Bag(C ′) with the following rules:

– f(λ · c) = λ · f(c)

– f(c1 + c2) = f(c1) + f(c2)

Similarly, Bag(C1 × · · · × Ck) is identified as Bag(C1) × · · · × Bag(Ck) with
the following rules:

– 〈c1, . . . , λ · ci, . . . ck〉 = λ · 〈c1, . . . , ci, . . . ck〉
– 〈c1, . . . , ci + c′i, . . . ck〉 = 〈c1, . . . , ci, . . . ck〉+ 〈c1, . . . , c

′
i, . . . ck〉

7.3.2. The formalism of colored nets

Colored nets [JEN 97] lead to a much more concise modeling than using ordinary
Petri nets: they make it easy to design, draw and study models where there are a lot
of processes and objects having similar behaviors and data structures to manage. In a
colored net, a place may contain tokens of different colors, and we have to specify the
different manners of firing a transition according to the colors chosen for firing it.
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An arc between a place and a transition bears an inscription (sometimes also called
a label), which is a linear application called a color function. This function determines
for each transition color (or firing instance) the number of tokens of each color having
to be consumed or produced in the place related to the transition that is fired for the
chosen color. As for ordinary Petri nets the choice of the firing colors of a transition
is indeterministic: if a transition t is enabled for a color c1 as well as for a color c2,
nothing in the formalism specifies which is the color instance that will be chosen for
firing t. These notions are formalized by the following definitions.

DEFINITION 7.6 (Colored net). A colored net is a 5-tuple CN =〈P, T, C, P re, Post〉
where:

– P is a non-empty finite set of places;

– T is a non-empty finite set of transitions, separate from P ;

– C is the color function with domain P
⋃

T and codomain ω, where ω is a set
containing the non-empty finite sets. Let s ∈ P

⋃
T ; an element of C(s) is called the

color of s and C(s) designs the color domain of s;

– Post (resp. Pre) is the function of forward incidence (resp. backward
incidence), which associates with each place p ∈ P and with each transition t ∈ T ,
an application from C(t) to Bag(C(p)).

DEFINITION 7.7 (Colored marking). A marking m of a colored net is a vector indexed
by P , where for each place p ∈ P , m(p) is an element of Bag(C(p)) which gives the
number of colored tokens in this place p.

A marked colored net is a couple 〈CN,m0〉, where CN is a colored net and m0 a
marking. In particular the initial marking gives the number of colored tokens initially
present in each place of the net.

The key idea, which is the main point of interest for colored nets, is their firing
rule, which is defined in the following way.

DEFINITION 7.8 (Firing rule). A transition t is enabled for a marking m and a color
ct ∈ C(t) iff:

∀p ∈ P, m(p) ≥ Pre(p, t)
(
ct

)
The firing of a transition t for a marking m and a color ct ∈ C(t) gives the new

marking m′ defined by:

∀p ∈ P, m′(p) = m(p) + Post(p, t)
(
ct

)
− Pre(p, t)

(
ct

)
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We use the notation m[t(ct)〉, or m
t(ct)−−−−→, which means that t is enabled for the

color ct for the marking m. Similarly m[t(ct)〉m′, or m
t(ct)−−−−→ m′, means that this

firing gives the new marking m′.

As usual it is possible to recursively construct the set of all reachable markings
from a given marking m0. This set is denoted RM(CN,m0) and constitutes the nodes
of the reachability graph.

7.3.3. Unfolding of a colored net

A colored net is in fact the abbreviation of an ordinary Petri net, called its unfolded
net. The unfolding of a colored net is done as follows (see for instance the complete
unfolding of the net R5 giving the net R7). There is a place in the unfolded net for
each place and color in the colored net and similarly for the transitions: these generated
places and transitions are indexed (or their names are suffixed) according to the colors
in the domains of the original places and transitions. If a place pu and a transition
pu result from the unfolding of p for the color cp, and of t for the color ct, then the
arc values of the unfolded net are deduced by applying the color functions cp and ct

according to the inscription on the arc from p and t. Of course, the constraint of finite
color domains is essential for this operation.

DEFINITION 7.9 (Unfolded net). Let CN = 〈P, T, C, P re, Post〉 be a colored net.
The place/transition Petri CNu = 〈Pu, Tu, P reu, Postu〉, which is unfolded from
CN , is defined by:

– Pu =
⋃

p∈P,cp∈C(p)(p, cp) is the set of places.

– Tu =
⋃

t∈T,ct∈C(t)(t, ct) is the set of transitions.

– Preu is the forward incidence function, and Postu is the backward incidence
function, defined from Pu × Tu to N by:

- Preu(p, cp)(t, ct) = Pre(p, t)(ct)(cp),
- Postu(p, cp)(t, ct) = Post(p, t)(ct)(cp).

The unfolded marking is similarly defined.

DEFINITION 7.10. Let CN be a colored net and m one of its markings. The unfolded
marking corresponding to m in the unfolded net CN is the marking mu defined by:

∀
(
p, cp

)
∈ Pu, mu

(
p, cp

)
= m(p)

(
cp

)
.

The following fundamental proposition states that the semantics of a colored net
CN and of its unfolded net CNu are isomorphic.

PROPOSITION 7.1. m[t(ct)〉m′ in CN iff mu[t(ct)〉m′
u in CNu.
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Therefore the analysis of a colored net can be reduced to the analysis of its
unfolded net, so classical techniques can be used to study this net. However, this
method raises two important difficulties:

1) The size of the unfolded net is usually very large and often forbids the use of
most analytical techniques.

2) The obtained results are hard to synthesize on the original colored net.

The interest in colored nets results not only from their conciseness but from their
techniques of direct analysis: extension of classical techniques (colored invariants,
colored reductions) as well as new ones based on the natural symmetries that exist
between objects of each color domain (symbolic reachability graph). Very often these
techniques are very difficult to apply because the domains and, moreover, the color
functions are insufficiently structured. For this reason structured formalisms have
been developed to facilitate their direct analysis while keeping a sufficient expression
power. Programming languages have evolved in a similar way to allow better proof
techniques and application reliability.

Several high level formalisms have been defined: regular nets [DUT 89], ordered
nets [COU 88] or unary predicate/transition nets [MEM 86]. These all allow a better
structure leading to direct analysis techniques. They have been synthesized using the
definition of well-formed colored nets [CHI 97, HIL 06], which are presented in the
next section.

7.4. Well-formed net definition

Well-formed nets (WN) [CHI 97, CHI 91, CHI 93] are colored nets which satisfy
several syntactical constraints. These constraints provide them with a good structure,
simplifying their direct analysis. Moreover, it has been proved that they have the same
expression power as colored nets.

There are three constraint types:

1) Color domains are Cartesian products of basic domains called elementary color
classes (in short classes).

2) Color functions are built from a few elementary functions (identity, successor
and broadcast); these functions are basic ones because they allow us to select one
object, to iterate on a set of objects, and to address a whole set of objects (for example
for broadcasting a message to a set of sites or for collecting messages from them).

3) The formalism emphasizes the system symmetries. Even some asymmetric
behaviors between object of a given class may be taken into account by splitting this
class into static subclasses in its declaration or by adding guards on transitions and on
color functions.
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7.4.1. Color domains

DEFINITION 7.11 (Elementary color class). An elementary class is a finite non-empty
set (possibly ordered) of terminal colors (i.e. colors which do not depend on other
colors).

It may be defined by enumeration or as an integer range. A class may be interpreted
as a set of elements of the same type. For instance, a set of three client processes may
define a class Client, which may be denoted as: Client = {1, 2, 3}, as well
as the more verbose Client = { Client1, Client2, Client3}.

To also allow uncolored places or transitions, a neutral color is used and the domain
of such a place is denoted ε.

A class may be parametrized: in such a case the number of elements, instead of
being a fixed integer, is given by a variable n whose value is a parameter of the
system. If we do not want to fix the client number, we may denote the class by:
Client = {1..n}, as well as Client = { Client1 . . . Clientn }, where n is
an implicit parameter giving the number of clients.

When the ordering is useful, for example when the successor function is used, a
circular ordering is implicitly assumed, which means that each element has a unique
successor of which it is the unique predecessor. This implicit order is the one given
by the class definition. For instance, the order defined by the class Client is such
that the successor of Client1 is Client2, the successor of Client2 is Client3, and the
successor of Client3 is Client1. The predecessor function may also be used. When
classes are defined as ranges of integers, the successor function of x is simply denoted
x + +1 (or !x for some tools) and the predecessor function is denoted x−−1.

An elementary class may be split into several static subclasses to gather within the
same class elements of the same type but with some differences in their behaviors.
This division is static, which means that it is done during the modeling phase and
depends upon the initial marking. For example, Client1 may have a slightly different
behavior (for instance being the only one allowed to use some resources). Rather than
defining two distinct classes, the class Client may be split into the subclass made
up of Client1 alone and the subclass containing the two other clients: this division is
denoted Client = {1} ∪ {2,3}. This may be useful for restricting the firing of
some transitions, for instance those accessing resources not allowed for other clients.

A static subclass may be parametrized. In such a case the upper class must also
be parametrized with a size equal to the sum of its subclasses. For instance, if we
distinguish minor and major clients, the definition of the class Client would be:
Client = { Client_m1 . . . Client_mn1 } ∪ { Client_M1 . . . Client_Mn2 }
its size being n1 + n2.
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DEFINITION 7.12 (Color domain). A color domain is a finite Cartesian product of
elementary classes (possibly a unique class). An elementary class is a finite set of
elements, all elementary classes being disjoint.

The set of all elementary classes is denoted Cl = {C1, . . . , Ck} with ∀i �= j ∈
[1..k], Ci ∩ Cj = ∅.

When it is declared, an elementary class may be split into static subclasses. The
qth subclass of the class Ci, is denoted Ci,q , and si is the number (positive or zero) of
static subclasses of Ci from which2 Ci = �q=1..si

Ci,q .

When a static subclass Ci,q is parametrized, its number of elements is denoted by
ni,q .

A color domain is denoted C = Ce1
1 × . . .×Cek

k , where ei is the number (positive
or zero) of occurrences3 of the class Ci within C. When all ei are zero, the color
domain is the neutral domain, denoted ε.

The color domains of the transitions are never directly specified on the models
but are automatically deduced from the domains of the connected places and of the
variables or constants appearing on their arcs.

Figure 7.9. Net R9: class example

Some examples of class and domain definitions appear in Figure 7.9.

– The domain of place Ready is the class site defined as site is {1..N}. It models
the sites of the net and it is needed to fix their number N ; the class type is {req, answ}
for specifying two types of messages but it is also possible to declare it as type
is {req} ∪ {answ} to distinguish two different subclasses for the requests and the
answers; info is {1..K} models the contents of the transmitted messages: again K
must be fixed.

2. � means the disjoint union.
3. Here Cei

i stands for the product Ci × . . . × Ci, where Ci appears ei times.
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– The domain of the place Wait is defined by S2 is 〈site, site〉: it is a Cartesian
product of twice the class site and allows us to put in this place tokens that refer to
couples of sites.

– The domain of the place Mess is defined by localmess is 〈site, site,
type, info〉 as a Cartesian product that specifies the four fields of the tokens.

– The only variables that may appear on the arcs are x and y in the class site and
m in the class info. The inscriptions may also use the constants req and anw.

7.4.2. Color functions

The arcs of a WN bear color functions which are weighted sums of tuples of
elementary colors. As for colored nets, these functions specify, according to a firing
color, the number and colors of the consumed or produced tokens.

There are three elementary color functions. Each one is defined from a color
domain C to an elementary color Ci. The identity function (XCi

) selects an instance
of color Ci, the successor function (!XCi

) selects the successor of an instance Ci;
the broadcast function (AllCi

) allows the design of all the elements of Ci. This last
function may be restricted to a subclass Ci,q of Ci (AllCi,q

). When a class appears
several times in the domain C, a supplementary index is required to specify to which
occurrence of Ci the function is applied.

DEFINITION 7.13 (Elementary color functions). Let Ci be an elementary class and
C = Ce1

1 × · · · ×Cek

k be a color domain. The elementary color functions are defined
from C to Bag(Ci) by:

∀c = 〈c1
1, . . . , c

e1
1 , . . . , c1

k, . . . , cek

k 〉 :

– The identity function is Xj
Ci

(c) = cj
i (for all j such that 1 ≤ j ≤ ei).

– Let Ci be an ordered class, the successor function is defined by: !Xj
Ci

(c) = is

the successor of cj
i in Ci (for all j such that 1 ≤ j ≤ ei).

– The broadcast function is: AllCi
(c) =

∑
x∈Ci

x and ∀c ∈ Ci, AllCi,q
(c) =∑

x∈Ci,q
x.

If C is the neutral domain then the only possible function is Allε.

These elementary functions allow us to define a color function on a class Ci as
a linear combination of the functions provided that the constraints required on the
coefficients of this combination insure that positive numbers of tokens are selected.
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DEFINITION 7.14 (Color functions on a class). Let Ci be an elementary class and
C = Ce1

1 ×· · ·×Cek

k be a color domain. A color function on Ci is a linear combination

fCi
=
∑

k=1..ei

αi,k ·Xk
Ci

+
∑

q=1..si

βi,q ·AllCi,q
+
∑

k=1..ei

γi,k · !Xk
Ci

such that ∀q ∈ 1..si, ∀K ⊆ {1..ei}, [βi,q +
∑

k∈K Min(αi,k, γi,k)] ≥ 0.

REMARK. These definitions need some remarks concerning their practical use:

1) The broadcast function is equally denoted AllCi
, Ci · All, where SCi

is the
broadcast function on Ci. Moreover, if there is no ambiguity, the class name may be
omitted (Alli or Si) as well as the index if there is only one class (All or S). By
definition,

∑
q=1..si

AllCi,q
= AllCi

which explains why the function AllCi
does not

directly appear in the definition.

2) The identity function may be denoted Xj
Ci

, Xj
i , Xi or X . Moreover, any name

other than All (or S) and also other than a class name or a class element may be used
for the identity function (client, Y , philo, proc, ...).

3) Similarly the successor function may be denoted (!Y , Y + +1, !philo, ...). This
is close to the definition of predicate/transition nets [GEN 81], where the name of the
function appearing on an arc is interpreted as a variable.

For the example in Figure 7.10, the left hand model represents the broadcast of a
message by a site x to all other sites except itself. The right hand model represents the
partial broadcast by any site x to only all servers.

Figure 7.10. Net R10: examples of broadcast functions on a class

The color functions of a WN are either integer functions, in the case of a neutral
color, or sums of tuples of functions on the classes of the color domain of the
corresponding place.
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DEFINITION 7.15 (Color function). Let t be a transition and p a place. A color
function on an arc between t and p is:

1) an integer if C(p) = ε;

2) a sum of tuples
∑

j〈f
j
Cα1

. . . f j
Cαk

〉, if C(p) = Cα1 × . . .×Cαk
where all f j

Cαi

are color functions from C(t) to Ci.

Although these notations would appear to be somewhat cumbersome, in practice
giving different names to the identity functions simplifies the notations. Let us
consider Figure 7.11:

Figure 7.11. Net R11: example of color functions

The firing of transition t consumes a neutral token from place P1, a colored token
< x > of color C from place P2, and a colored token < y >, also of color C, from
place P3 (note that x = y can enable t). It produces two tokens < x > and < y >
in place Q1 and one < y + +1 > (which is the circular successor of y in its class) in
place P3, as well as the set of all couples (z, y), with z different from x, in place Q2.

Formally:

– 〈x〉 designs the function X1
C1

, 〈y〉 designs the function X2
C1

, and 〈y + +1〉
designs the function !(X2

C1
);

– 〈x + y〉 designs the function 〈X1
C1

+ X2
C1
〉;

– 〈All −X,Y 〉 designs the tuple of functions 〈f1, f2〉 with f1 = (AllC1 −X1
C1

)
and f2 = X2

C1
.

7.4.3. Guards

The definition of WN is strongly motivated by the notion of symmetry which
appears in the modeled behaviors. Modeling a set of resources of the same type (or
a set of process states ready to do the same actions), is achieved by introducing a
colored place modeling the set of resources (or the set of process states), while the
distinction of instances is obtained by the color domain of this place. We have also
seen that splitting a class into static subclasses distinguishes some slight variants
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of behaviors within this class. This design feature avoids replication of places and
transitions. To exploit the definition of subclasses during the dynamic evolution of the
system sometimes needs restriction of some transition firings to certain subclasses or,
more often, to tokens satisfying certain conditions. This objective is reached by the
definition of guards.

DEFINITION 7.16 (Guard). A guard is a Boolean function defined on a color domain
C = Ce1

1 × · · · × Cek

k and built from elementary predicates by: ∀c = 〈c1
1, . . . ,

ce1
1 , . . . , c1

k, . . . , cek

k 〉 ∈ C:

1) [Xi1
Ci

= Xi2
Ci

](c) is TRUE iff ci1
i = ci2

i .

2) [Xi1
Ci

= !Xi2
Ci

](c) is TRUE iff ci1
i is the successor of ci2

i in Ci.

3) [Xi1
Ci
∈ Ci,q](c) is TRUE iff ci1

i belongs to the static subclass Ci,q .

4) g1 ∨ g2, g1 ∧ g2, ¬g1 (where g1 and g2 are guards and ∨,∧,¬ the classical
Boolean connectors).

REMARK. When variable names different from XCi1
have been used to design the

identity function on the ith component of the color domain C, these names may also
be used to simplify the guard definitions instead of the notation Xi1

C . Moreover, instead
of using two different variable names (for instance X and Y ) and introducing a guard
such as ([X = Y ]) linking them, it may be simpler and equivalent to use only one
variable (for instance X) on all the arcs concerned. Also, when a static subclass is a
singleton, the notation X = e may be used instead of X ∈ {e}.

When a guard g appears in the definition of a transition t, it is interpreted as
follows: the transition t is enabled for a color instance c iff the preconditions of t
are satisfied for this color instance c (this condition being the classical firing rule),
and, in addition, if the guard is true for c (i.e. g(c) = TRUE). A transition guard
dynamically specifies the color for which a transition is enabled.

Figure 7.12. Nets R12: examples of transition guards

To restrict the application of the guard to only one of the functions linked to this
transition, it is necessary to apply the guard to the function instead of the transition. Let
us consider the two previous models (Figure 7.12). In the left hand model, the guard
restricts the firing of t to the values (x, y) of C × C, verifying x = y′. The guard
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would theoretically be denoted [X1
C = X2

C ]. The right hand model is its simplified
version: instead of the guard [x = y] we replace y by x on the arcs linking t with p2
and p1.

When a guard g appears in the definition f of a color function, [g]f designates the
tuple f guarded by g. This guard modifies the value of f in the following manner.

DEFINITION 7.17 (Guarded color function). Let f be a tuple of elementary functions
and g a guard. The guarded tuple [g]f is defined by

[g]f(c)
def
=
(
if g(c) then f(c) else 0

)
So, a guarded color function is a sum of guarded tuples.

The two models in Figure 7.13 illustrate the difference between a guarded
transition and a guarded function. In the left hand model the transition t is only
enabled for the values < c, c′ > of C×C, verifying c′ �= 0 4. In the right hand model,
t is enabled only for a couple of values < c, c′ > provided that on the one hand there
is at least one token of color c in P1, and on the other hand, either c′ = 0 or there is
at least one token of color c′ in P2: therefore t may be enabled for values < c, 0 >.
If t is fired for < c, c′ > with c′ �= 0, a token of color c is removed from place P1,
a token of color c′ is removed from place P2, and a token of color < c, c′ > is
produced in Q. Otherwise, if t is fired for a value < c, 0 > then only one token c is
removed from P1 (no precondition on P2) and a token of color < c, 0 > is produced
in Q.

Figure 7.13. Nets R13: guarded transition versus guarded function

7.4.4. The formalism of well-formed nets

DEFINITION 7.18 (Well-formed nets). A well-formed net is a 7-tuple WN = 〈P, T,
Pre, Post, Cl, C,Φ〉 where:

4. This is an abbreviated notation for c′ /∈ {0} which means that c′ is different from the value 0
of C.
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– P is a non-empty finite set of places.

– T is a non-empty finite set of transitions disjoint from P .

– Cl = {C1, . . . , Ck} is a set of elementary classes; each Ci is a non-empty finite
set and may be split into si static subclasses (Ci = �q=1..si

Ci,q). Their respective
sizes are denoted ni = |Ci| and ni,q = |Ci,q|.

– C is the color function from domain P ∪ T and codomain ω, where ω is a set
containing the finite Cartesian products of elements from the elementary classes Cl.
Let s belong to P ∪ T : an element of C(s) is a tuple 〈c1, c2, . . . , cl〉 and is called the
color of s. C(s) defines the color domain of s.

– Post (resp. Pre) is the forward incidence function (resp. backward) which
associates with each couple p, t of P × T a guarded color function from C(t) to
Bag(C(p)).

– Φ is a function which associates a guard with each transition (in its absence,
Φ(t) = TRUE for each t).

There exists an ordered function defined from Cl to Boolean which specifies if
the order is significant for each given elementary class to allow or not the use of the
successor function for this class.

The firing rule and the construction of the unfolded net are the same as for colored
nets. The only difference comes from the management of guards:

1) A transition t is enabled for a color ct ∈ C(t) iff the guard associated with t is
true for ct (Φ(t)(ct) = TRUE) and t is normally enabled for ct (satisfaction of the
classical preconditions).

2) A transition (t, ct) appears in the unfolded net iff the guard associated with t is
true for ct (Φ(t)(ct) = TRUE).

To illustrate this definition let us consider the routing of messages sent by clients
and servers as in Figure 7.5, but now embedded in a computer network. This system
is modeled by Figure 7.14.

This net refines the net R5 already described in Figure 7.5, page 192, where the
clients specify which server they choose to treat their request. In addition, it describes
the routing of the requests from clients to the chosen servers and conversely the routing
of the server answers to their calling clients. These two types of messages will be
routed in the same manner by the network, which does not have to distinguish between
requests and answers. Messages from different clients to the same site are queued, but
the order of service is left indeterministic according to the routing and server policies.
A server may only accept messages of type request and a client may only accept
messages of type answer sent by the server it has chosen.

– A client x sends (transition csend) a local emitted message em of type req. Such
a message is modeled by a 4-tuple 〈x, y, req, em〉 in place EmittedMess.
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Figure 7.14. Net R14: model of routing in a computer network

– To be routed in the network a local message is translated (transition netintro)
in an extended form 〈s, e, d, t,m〉 in place NMess: the new field s is the current site
where the message stands (first the client site, set by the guard [s = e]), e is the emitter
site, d is the destination site, t is the message type (either req or answ), and m is the
data part of the message. If s = d, the message arrives at its destination d, is delivered
in place DeliveredMess on the simple local form 〈e, d, t,m〉 (transition netdeliv).

– Otherwise the message is routed forwards to the following site f given by a
routing table. The table in place Table contains 3-tuples 〈s, d, f〉 specifying that a
message on the current site s with the destination d �= s must be forwarded to site
f . Therefore a message 〈s, e, d, t,m〉 in place NetMess becomes 〈f, e, d, t,m〉 in
(the same) place NetMess and possibly would be routed again. In the example there
are only three sites: site 1 is connected to 2 and site 2 is connected to 3 (all in both
directions). In place Table, there are six tuples: for instance 〈1, 2, 2〉 indicates that the
messages in 1 for 2 must be sent directly to 2, while 〈1, 3, 2〉 indicates that the ones
for 3 must be routed via 2.

– A server y receives (transition srec) the messages of type req addressed to it. It
produces an answering message am of type answ which it emits (transition ssend)
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under the form of a local message 〈y, x, t, am〉 in place EmittedMess. This answer
is again translated as a network message, routed from the server site to the client site
and delivered by transition netdeliv as a local message using the same mechanism.

– This answer will finally be received by the waiting client (transition crec), only
if it is of type answ and has been sent by the called server y (its number has been kept
in Cwait).

This example illustrates how data structures (here the messages and the routing
table) may conveniently be taken into account by colored nets and well-formed nets.

7.4.5. Regular nets and ordered nets

By restricting the definition of WN, we may obtain two simple families of nets:
regular nets and colored nets. Their interest lies in simple efficient algorithms that
allow us to find their generative families of colored parametrized invariants [COU 88,
COU 90, COU 91]. These algorithms will be presented in the next chapter.

DEFINITION 7.19 (Regular nets). A well-formed net is a regular net if:

1) The classes are not split into static subclasses.

2) The color domain of a place or a transition never uses the same color several
times.

3) The only functions used are the identity (XCi
) and the broadcast (AllCi

).

4) There are no guards either on transitions or on arc functions.

If, moreover, the domain of all places and transitions is the Cartesian product of
all the classes, the net is said to be homogenous. If the domain is reduced to a unique
class, the regular net is said to be unary.

All these constraints forbid a transition to distinguish a constant value in a class
and more than one object by elementary class. The color functions which may be used
are also restricted.

The following example of regular nets (Figure 7.15) models the concurrence
management in a distributed database [DUT 89], where all the files are replicated on
each site.

There are two color classes: site and file, which represent the sites and the
files of the base. To allow more parallelism, there are two processes per site: one
for performing modifications and the other for updates. Initially each site is ready
to make a modification of a file, as well as an update (multibag site · All in the
places StartModif and StartUpdate). As initially no site is active, all files are free,
therefore the initial marking of FreeF iles is 〈file ·All〉.
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Figure 7.15. Net R15: concurrence management in a replicated data base

– When a site x wants to modify a file f of the database (transition t1), no other
site can access this file: therefore it must obtain an exclusive lock on the file (arc from
FreeF iles to t1). The site x modifies its copy, broadcasts to all other sites an update
request with the modifications (function site.All − x on the arc t1 → Mess) and
waits until they have updated their copies and notified it.

– When receiving a message, a site y must modify its copy of f (transition t3),
then it sends an acknowledge in place Ack (transition t4). When the waiting site x has
received all these acks (function site · all − x on the arc Ack → t2), it unlocks the
file f and returns to state StartModif (transition t2). At that time all the copies of
the modified file are again identical.

DEFINITION 7.20 (Ordered nets). A well-formed net is an ordered net if it satisfies the
same constraints as a regular net except that it may use the successor function (!XCi

)
but not the broadcast function. Therefore the allowed functions on a class are: XCi

and !XCi
.

The following ordered net R16 (Figure 7.16) models the classical problem of N
philosophers around a table, wishing to eat spaghetti. Each one needs two forks,
but there are only N forks, each one between two consecutive neighbors. Each
philosopher tries successively to get, in any order, a left fork and a right fork, then
eats and finally releases the forks, again in any order. It is well known that this
indeterminism may lead to a deadlock when all philosophers get only one fork (the
left one or the right one) and are waiting for the other one.

An ordered class phi models the set of philosophers. The same class is used for
the forks because they are indexed by the number of philosophers. All philosophers
(class Phi) are initially (tokens 〈philo ·All〉 in place Pthink) and the forks are free
(tokens 〈philo · All〉 in place Forks). The transitions getL and getR model the
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Figure 7.16. Net R16: the philosopher problem

philosopher x getting a first fork, indexed by x for the left one and x + +1 for the
right one. Then he waits either in place PwaitR or PwaitL for the second fork,
until he gets it (transition getR2 or getL2), to reach stage Peat. Finally he gives
back the forks (transitions putL then putR2 or putR then putL2) before returning
to state Pthink. For four philosophers the reachability graph shows 341 states and
1160 arcs. It is possible that both philosophers 1 and 3 (or conversely both 2 and 4),
succeed in eating simultaneously, but there are also the two known deadlock nodes.

7.5. Other high level formalisms

We have studied colored nets and well-formed nets. Other formalisms also allow
us to enrich the token semantics of a Petri net, while still offering some verification
techniques. Of these we will briefly look at interpreted nets and algebraic nets
[REI 91].

7.5.1. Interpreted nets

In a colored or well-formed net, data associated with the studied system are
modeled with places and color domains. Therefore the same formalism is used to
model both the control and the data, which allows an integrated analysis but leads to
the construction of complex domains.
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In an interpreted net, control and data are separated: the control is modeled with
Petri nets, while an external environment made of a finite set of variables is associated
with the net state to deal with the data. A predicate upon this environment and an
action that may modify this environment are associated with each transition.

DEFINITION 7.21 (Interpreted nets). An interpreted net is a 4-tuple 〈N,X,Pred,
Act〉 where:

– N is a place/transition net N = 〈P, T, PrePost〉.
– X is a finite set of variables.

– Pred is an application which associates with each transition a predicate that is
a Boolean expression built on the variables of X; by default, the value of the predicate
associated to a transition is True.

– Act is a sequence of instructions updating some variables of X; by default this
sequence is empty and nothing is performed.

The complete state of an interpreted net is a couple (m,V al), where m is a
marking of N and V al an application giving a value for all variables of X . The initial
state is denoted (m0, V al0).

A transition t is enabled for a state (m,V al) iff t is enabled for m in N and if the
evaluation of Pred(t) is True in the state where each variable x of X has the value
Val(x). If t fires for m in N and V al, the new state reached is (m′, V al′), where
m′ is the reached marking obtained by firing t in N and V al′ is the new value of
the variables of X resulting from the sequence of instructions Act(t). A fundamental
constraint is that the complete firing of t, all together in N and in X , is always atomic,
as in all other types of Petri nets.

The following example R17 (Figure 7.17) models a simple procedure which
determines if a number K is prime by trying to divide it by all smaller integers.

Environment
X = {integer K, x, y }

1

[ ( y  x) :  Ø ]

[ (y < x) and (x mod y 0) : y = y + 1; ]

[ ( y < x) and (x mod y = 0) :  Ø ]

[ Ø : x = K; y = 2; ] 

Figure 7.17. Interpreted net R17: test of number divisibility
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The firing of transition begin initializes the variables x = K and y = 2, puts
a token in the place Calculus. If x is divisible by y and y < x then the transition
NegativeEnd is the only one enabled and its firing putting a token in place
IsNotPrime. If y ≥ x, then the transition PositiveEnd is the only one enabled
and its firing puts a token in place IsPrime. Otherwise (when the predicate y < x
and (xmod y �= 0) is true), the transition Continue is enabled. Its firing does
not modify the marking but it increases the variable y of the environment allowing
iteration of the test.

The interpreted nets, which dissociate the modifications of the environment
variables from the control, combine programming languages and formal modeling to
allow an efficient and very flexible design. However, the choice of modeling data by
a place in the net or by an environment variable may be somewhat arbitrary. This
formalism is mainly used for simulation, prototype development, and for complex
distributed algorithms.

7.5.2. Algebraic nets

The definition of an algebraic net relies both on Petri nets (places, transitions, pre-
and post-conditions) and on the classical notions of algebraic specification to give an
interpretation to the tokens and to dynamically specify which tokens are consumed or
produced by the transitions.

An algebraic specification exploits the notions of signature, sort, term, axiom and
affectation.

A signature is a set of sorts (also called types) S = {S1, . . . , Sk} provided with a
set of operations OP with their profile (domain and codomain). Intuitively, the types
are considered as sets of values on which the operations are applied. An operation is
a function of arity n (n ≥ 0), defined from Sn to S. The operations with arity 0 are
called constants and design values in the considered sets. The role of axioms will be
presented later.

To illustrate the algebraic net formalism, let us again consider the philosopher
problem, modeled by the following colored net (Figure 7.18), where the deadlocks
are simply avoided by forcing each philosopher to simultaneously take both his forks,
then eat, then release his two forks. The problem is now to deal with more complex
arrangements of the philosophers around one or several tables.

This colored model strongly relies on the organization of the philosophers and
of the forks around the table. However, the hypotheses concerning this organization
remain implicit as well as the association between philosophers and forks which is
made by improperly identifying philosopher and fork numbers.
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Figure 7.18. Net R18: colored model of the philosophers

A purpose of algebraic nets is to make such hypotheses explicit by using abstract
types, functions and axioms to describe the neighboring relations as well as the
positions of forks with regard to the philosophers. Moreover, they allow us to study
other table configurations without needing to redesign a complete model each time:
for instance for four philosophers there may be two tables of two philosophers, or for
six philosophers a table of four and another of two. The following algebraic net makes
explicit the organization hypotheses and allows us to study such configurations.

Now there are two distinct types: the philosophers and the forks. We name the
philosophers using constants ph1, ph2, ph3, ph4. To manage different organizations
an operation is defined (in terms of profile) which associates a philosopher with his
left neighbor: Lneighbor. To associate his left and right forks with a philosopher we
define two unary operations Lfork and Rfork. We obtain the following signature:

philo_signature =

types : philosophers, forks

operations : ph1: �→ philosophers

ph2: �→ philosophers

ph3: �→ philosophers

ph4: �→ philosophers

Lneighbor : philosophers �→ philosophers

Lfork : philosophers �→ forks

Rfork : philosophers �→ forks

The definition of a signature is insufficient to precisely describe the data associated
with a problem. In our example, we know that a left and a right fork are associated
with a philosopher but we do not know which they are.
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To specify the relations between the data, the signature is enriched with a set
of axioms (also called equations), which link expressions called terms. A term is
syntactically built using constants, operation names, and variables defined within the
sorts. A term is said to be close iff it only uses constants and operations and is said to be
valid if it respects the signatures. We design by TOP the set of close and valid terms
built with the operations OP , and by TOP (X) the set of valid terms built with the
operations OP and the variables X . Bag(TOP ) and Bag(TOP (X)) are the multibags
built with these sets.

For instance, the expressions ph1, Lfork(ph1) or also Lfork(Lneighbor(ph1))
are close and valid terms. The terms Lneighbor(Lfork(ph1)) or Lfork(Rfork)
would not be valid because they do not respect the profile of the operation Lfork.

Using the two sets of variables X ⊂philosophers and Y ⊂ forks, we can
define the valid terms x, Lfork(x) or y, for x ∈ X and y ∈ Y . However, the term
Rfork(y) for y ∈ Y would not be valid.

An axiom is a couple (Term1, Term2) denoted Term1=Term2, which
specifies the relations between a set of terms. A specification consists of a signature
and a set of valid axioms for this signature.

We can now complete the preceding signature with axioms which describe the
places of four philosophers around a table. Indeed, it is convenient to impose the
conditions that for four philosophers the fourth left neighbor of x is x itself, that
no philosopher is his own neighbor, and that the left fork of the left neighbor of any
philosopher x is the right fork of x. This specification is abstract in the sense that
several concrete implementations may be associated with it.

philos_specification =

types : philosophers, forks

operations : ph1: �→ philosophers

ph2: �→ philosophers

ph3: �→ philosophers

ph4: �→ philosophers

Lneighbor : philosophers �→ philosophers

Lfork : philosophers �→ forks

Rfork : philosophers �→ forks

axioms : Lneighbor4(x) = x

Lneighbor(x) �= x

Lfork(Lneighbor(x)) = Rfork(x)
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An algebraic net may now be defined using the ideas of specification:

DEFINITION 7.22 (Algebraic net). Let SPEC = (S,OP,E) be a specification (S
the sorts, OP the operations, E the axioms) and X a set of variables in the sorts. An
algebraic net is a 〈P, T, φ, Pre, Post〉 where:

– P is the set of places and T the set of transitions.

– φ is an application which associates a sort with each place.

– Pre (resp. Post) is an application which associate with each (p, t) of P × T a
formal sum (an element of Bag(TOP (X))) compatible with the sort associated with
the place p to define the pre (resp. post) conditions associated with the transitions.

A place marking is defined as a formal sum of close terms (i.e. an element of
Bag(TOP )) compatible with the sort associated with the place. The initial marking of
an algebraic net is denoted M0.

A pre- or a post-condition is an element of Bag(TOP (X)), i.e. a formal sum of
terms using variables of X . To fire a transition, it is necessary to specify the values
of the close terms given to these variables by using an affectation, which is a function
from X to TOP . To determine the values of the consumed and produced tokens this
application is extended as an application from Bag(TOP (X)) to Bag(TOP ). The
choice of such an affectation is called an occurrencemode.

DEFINITION 7.23 (Algebraic nets firing rule). Let R be an algebraic net. A transition
t is enabled for a marking m and for an affectation β (an occurrence mode) iff
∀p ∈ P , β(Pre(p, t)) ≤ m(p)5 The new marking m′ reached by this firing is such
that ∀p ∈ P,m′(p) = m(p)− β(Pre(p, t)) + β(Post(p, t)). This firing is denoted by

m
t,β−−−→ m′.

A set of philosopher problems for several table organizations may be modeled by
the following net, R19 (Figure 7.19).

This net may be associated with the specification philos_specification
and provided with the initial marking

– m0(Pthink) = ph1 + ph2 + ph3 + ph4,

– m0(Forks) = Lfork(ph1) + Lfork(ph2) + Lfork(ph3) + Lfork(ph4),

– m0(Peat) = 0Bag(TOP ).

We obtain a model syntactically describing the philosopher problem: all
philosophers are initially in state Pthink and each left fork of a philosopher is free;

5. Order relation on Bag(TOP ).
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Figure 7.19. Algebraic net for the philosopher problem

a philosopher x must get both his left and right fork and there is still an access
conflict for the forks with his two neighbors.

However, this model is much more abstract than the colored one (Figure 7.18).
In fact, we still have to specify who is the left neighbor of a given philosopher.
For instance by stating that: Lneighbor(ph1) = ph2, Lneighbor(ph2) = ph3,
Lneighbor(ph3) = ph4, Lneighbor(ph4) = ph1, we again obtain the classical
interpretation where, for instance, philosopher i cannot eat if i + 1 or i− 1 are eating.

But another possibility would be two tables of two: Lneighbor(ph1) = ph2,
Lneighbor(ph2) = ph1, Lneighbor(ph3) = ph4, Lneighbor(ph4) = ph3, where
the philosophers ph1 and ph2 are at a different table from ph3 and ph4. Now the
philosopher ph2 may eat when ph3 also eats, which would not be possible in the first
interpretation.

Figure 7.20. Two interpretations of the algebraic net R19
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An algebraic net forces an explicit statement of the data organization and the
related hypotheses. In fact, it allows much more flexibility than other nets and may
correspond to a set of colored models, according to the associated interpretations.

7.6. Conclusion

We have studied several abbreviations of places/transitions Petri nets: colored nets,
well-formed nets, interpreted nets, and algebraic nets.

We have concentrated on colored nets and well-formed nets because both these
formalisms provide a good compromise between ease of modeling and the automatic
analysis possibilities. The following chapter will present some analytical techniques
which work directly on the high level models to obtain parametrized results. Indeed,
it is also possible to adapt some classical verification techniques to algebraic and
interpreted nets, but they are quite difficult to exploit. Therefore, these formalisms
only allow an easy design and are mainly used for prototyping and simulation.
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Chapter 8

Analysis of High Level Petri Nets

8.1. Introduction

Of the formalisms derived from Petri nets, colored nets and well-formed nets
are most used for modeling complex systems. Although they enjoy greater modeling
power, they are defined as abbreviations of Petri nets, therefore it would be possible to
reduce their analysis to the analysis of the place/transition nets obtained by unfolding
them.

However, this method comes up against the problems of the size of the unfolded
net, the combinatorial explosion of its reachability graph, and the difficulty of
interpreting the results obtained. This greatly complicates the analysis of the obtained
results and, moreover, deprives the analysis of the information introduced by the
designer concerning the symmetries occurring between the behaviors of the problem
objects.

Much research [GIR 01, DES 04] has been done on direct analysis techniques for
high level nets. In this chapter we study three of them for colored nets and well-formed
nets:

– The first one, presented in section 8.2, is the construction of the symbolic
reachability graph. It specifically applies to well-formed nets and fully exploits the
symmetries of the model to construct a very compact type of reachability graph: each
of its nodes represents a set of ordinary markings involved in an equivalence relation
based on these symmetries.

Chapter written by Claude GIRAULT and Jean-François PRADAT-PEYRE.
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– Section 8.3 presents the computation of generating families of invariants
for colored and well-formed nets. The main difficulty in comparison with the
place/transition nets comes from the management of systems of equations whose
coefficients are linear applications instead of simple integers. We give a general
algorithm for obtaining generating families, non-parametrized for colored nets and
parametrized for regular well-formed nets. We also give some insight into the
computation of generating families of flows with positive coefficients.

– Section 8.4 ends this chapter with a presentation of structural reduction
techniques for colored and well-formed nets. Indeed, it is very valuable to apply these
reductions before other analysis techniques because they simplify the model while
preserving the set of basic properties (boundedness, home states, liveness, etc.). In the
chapter on verification of temporal logic formulae it will be shown that under simple
conditions these reductions also preserve LTL formulae.

Most of these techniques have been implemented in analysis tools, including
CPN-AMI [KOR 99] and GreatSPN [CHI 95].

8.2. The symbolic reachability graph

The symbolic reachability graph aims to reduce the size of the classical
reachability graph by taking advantage of the symmetries among modeled system
objects by gathering some “equivalent” markings into symbolic markings and by
using a symbolic firing rule compatible with the classical firing rule. Therefore, this
symbolic reachability graph (SRG) is a dense but equivalent representation of the
classical graph allowing direct and efficient checking of the model properties, even
on very large specifications.

This representation relies on a data structure and a method [CHI 93]:

– A symbolic marking represents a set of equivalent markings w.r.t. some color
permutations preserving the model symmetries;

– the symbolic firing rule defines a firing relation in the SRG adequately
representing a set of classical firings.

We illustrate the building of the SRG for a simple well-formed net (see Figure 8.1)
of a peer to peer network. This net is derived from the client–server model already
presented in Chapter 7 (see Figure 7.5), but now any site can send requests to any
other, which creates a deadlock risk as we will verify by building the SRG.

Each of the n sites may play both the role of a client sending message requests
(transition csend) to a chosen server and of a server receiving a request (transition
srec) from a client before sending its answer (transition ssend) to the calling client
which receives it (transition crec). To avoid a site sending a request to itself, a guard
[xy] is added to the transition csend. This guard is a condition which restricts the
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Figure 8.1. Well-formed net R1: a peer to peer client–server system

choice of the variable y associated with the transition csend. This system may lead to
a deadlock in the case where each site is waiting for an answer from the next one.

The analysis of this net by unfolding (for a fixed value of n) and then building
of the reachability graph struggles against combinatorial explosion. The size of this
graph increases at an exponential rate with the number n of sites: it has 87 nodes and
207 arcs for 3 sites, 936 nodes and 3,124 arcs for 4 sites, 12,455 nodes and 53,575 arcs
for 5 sites. However, most of these markings represent similar states allowing similar
evolutions. Therefore it is interesting to avoid enumerating them and store them at
conditions under which they remain able to analyze the model behavior. For instance
it seems sufficient to consider only one representative of the set of all states where
only one site has sent a message to another one.

To represent such sets and their relations with sufficient accuracy, the first step
is to define the concept of symbolic marking and of SRG, and the second one is to
find a dense and manageable representation. The final step is to define a convenient
symbolic firing rule allowing the building of the SRG such that it preserves the
classical reachability graph properties.

8.2.1. Symbolic markings

Let us consider the following firing from the initial state m0: site 1 sends a request
to site 2, while site 3 remains ready (see Figure 8.2). We obtain the new marking
m1_2, defined by

m1_2 =
(
〈2〉+ 〈3〉

)
· Sready +

(
〈1〉
)
· Cwait +

(
〈1, 2〉

)
·Mess
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Figure 8.2. A set of firings in the net R1

We would obtain five other similar markings by replacing sites 1 and 2 by any
other couple of sites: for instance if site 3 sends a request to site 2, while site 1 remains
ready, the new marking would be

m3_2 =
(
〈2〉+ 〈1〉

)
· Sready +

(
〈3〉
)
· Cwait +

(
〈3, 2〉

)
·Mess.

Each one of the six similar markings may be obtained by applying a suitable color
permutation (including the identity) to the marking m1_2. As the behaviors of the
sites are symmetric, it seems natural to gather them into an equivalence class called a
symbolic marking. This leads to the following definition.

DEFINITION 8.1 (Admissible color permutation). Let Cl = {C1, . . . , Ck} be
a well-formed net with a set of colors; an admissible permutation is a family
σ = {σi}i∈I such that a permutation σi of Ci fulfills the following:

1) If a class Ci is split into static subclasses, these are respected (i.e. are mapped
onto themselves): ∀Ci,q , σi(Ci,q) = Ci,q .

2) If Ci is an ordered class then its order cannot be modified and σi is restricted
to be a rotation.

We denote by ξ the set of admissible permutations.

Given these restrictions, the action of a permutation σ on a color c of a place p,
c =
⊗

i∈I

⊗
j∈1..ei(p) cj

i ∈ C(p), is defined by σ(c) =
⊗

i∈I

⊗
j∈1..ei(p) σi(c

j
i ).

The first condition of the previous definition allows permutation of the elements
inside each subclass. The second one is needed because keeping the order inside an
ordered class is mandatory for adequately designing the successor of an element. For
ordered classes that contain several subclasses, the unique allowed permutation is the
identity.
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For our example: the permutation σ1 on C1, defined by σ1(1) = 3, σ1(2) = 2,
σ1(3) = 1, is admissible (but not if C1 is ordered). It also allows us to define an
admissible permutation on the domain C1 × C1, which is σ = 〈σ1, σ1〉.

This definition allows us to define the action of a permutation on a marking:

DEFINITION 8.2 (Marking permutation). Let m be a marking and σ ∈ ξ an admissible
permutation; then σ ·m is the marking defined by:

∀p ∈ P, ∀c ∈ C(p), σ ·m(p)
(
σ(c)

)
= m(p)(c).

For instance, applying the permutation σ = 〈σ1, σ1〉 to the marking m12 = (〈2〉+
〈3〉) ·Sready +(〈1〉) ·Cwait+(〈1, 2〉) ·Mess gives the new marking m32 = (〈1〉+
〈2〉) · Sready + (〈3〉) · Cwait + (〈3, 2〉) ·Mess.

A fundamental property of well-formed nets is that the enabling and firing rules
for a transition are preserved when applying an admissible color permutation on both
a marking and on a firing occurrence of a transition:

m
[
(t, c)

〉
m′ ⇐⇒ σ ·m

[(
t, σ(c)

)〉
σ ·m′

The markings obtained by the application of a permutation to a given marking m
are “equivalent” in terms of future behavior. Therefore a “symbolic marking” can be
defined as an equivalence class of a marking.

DEFINITION 8.3 (Symbolic marking). m ∼ m′ ⇐⇒ an admissible permutation σ
exists such that σ ·m = m′. This equivalence relation defines an equivalence class of
a marking m, named a symbolic marking, which is denoted byM.

In Figure 8.2, all the markings obtained from m0 are equivalent and form a
symbolic marking, which we may designate, for instance, by M1_2. Moreover, the
firing rule is preserved. Let us consider, for instance, only the markings m1_3 and
m3_1 in this class. Each one has five successors (we suffix their names with the letters
a to e) and the respective successors having the same suffix are still obtained using
the same permutation σ1 (see Figure 8.3). For instance as m1_2[srec(1, 2)〉m1_2a
we obtain m3_2[srec(3, 2)〉m3_2a.

Similarly as m1_2[csend(2, 3)〉m1_2c we obtain m3_2[csend(2, 1)〉m3_2c.

8.2.2. Symbolic marking representation

The first problem is the representation of a symbolic marking. Describing an
equivalence class of a set with its own elements is obviously very expensive in terms
of storage and brings no advantage compared to the explicit reachability graph.
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Figure 8.3. Firings and permutations

To tackle this problem, a first approach [HUB 86, JUN 03] represents an
equivalence class with one of its elements (i.e. a marking) but this is time consuming
when we need to decide if two markings are in the same class. This approach reduces
the storage requirement for markings but does not provide any saving w.r.t. the state
transitions issued from these markings.

An alternative approach [CHI 93] consists of a symbolic representation of both the
markings (inside an equivalence class) and the transitions issued from these markings.
Observe that the number of transitions issued from a marking of a well-formed net may
be exponential w.r.t. the size of the WFN and thus a symbolic firing rule is mandatory
in order to manage large models.

The chosen representation exploits the fact that the identity of the colors of
a symbolic marking is not important and that it is more interesting to know the
distribution of the color values inside the places.

The definition of the dynamic subclasses is always local to each symbolic marking.
The important advantage of this notation is that it distinguishes the role of the token
colors in a class without having to specify each one.

Let m be an explicit marking. We first partition the colors of every static subclass
(Ci,q) in such a way that inside the partition two colors have the same distribution of
token components corresponding to the class Ci for m. Then, forgetting the identities
of colors inside any partition but memorizing the size of this partition leads to our
symbolic marking representation.
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Figure 8.4. Examples of symbolic marking representations

More formally, we associate with every class Ci a set of dynamic subclasses
{Zj

i }1≤j≤mi such that every Zj
i has two attributes: its cardinality (card(Zj

i )) and
the index of the static subclass which includes it (d(Zj

i )). Given these partitions, the
symbolic marking (mark) is represented as an ordinary marking where the dynamic
subclasses are substituted by colors.

Net R1 has only one class with no static subclasses, which simplifies the
description. We consider the simplest treatment of a message by the loop csend, srec,
ssend, creq (see Figure 8.41). For each symbolic marking we give both the notation,
the sizes of the dynamic classes, and the whole set of the represented colored
markings.

– For the initial marking m0 the three colors have the same distribution: they
are all in place Sready. There is only one dynamic subclass Z1

1 of size 3.
This symbolic marking, simply denoted (〈Z1

1 〉) · Sready, represents the marking
(〈1〉+ 〈2〉+ 〈3〉) · Sready.

– For the classes of markings such as m1_2 and m3_2, it is sufficient to know
that there are 2 sites in place Sready, 1 in state Cwait and 1 message sent by
a site in Cwait to a site in Sready. However, the two ready sites will not have
the same future: only one may receive a message. As the three colors of C1 play
different roles, the class must be split into three dynamic subclasses of size 1. They
are denoted Z1

1 , Z2
1 , Z3

1 with |Z1
1 | = |Z2

1 | = |Z3
1 | = 1. The symbolic marking is

1. In this figure, we have slightly modified the names of the places in order to obtain a more
concise figure: Sready is denoted Sr, Cwait is denoted Cw, Sbusy is denoted Sb and Mess is
denoted M .
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denoted (〈Z1
1 〉+ 〈Z2

1 〉) ·Sready +(〈Z3
1 〉) ·Cwait+(〈Z3

1 , Z1
1 〉) ·Mess. It represents

6 colored markings (three ways of choosing a first color for the sender times two
for choosing a color for the addressee). This notation well specifies that one token in
Sready and the second field of the message have the same color Z1

1 , that the token
in Cwait and the first field of the message have the same color Z3

1 , and that the last
color Z2

1 appears only in Sready.

– The markings such as m1_2 give (by Srec) new markings such as (〈3〉) ·
Sready + (〈1〉) · Cwait + (〈1, 2〉) · Sbusy. The new symbolic marking, denoted
(〈Z1

1 〉) · Sready + (〈Z2
1 〉) · Cwait + (〈Z2

1 , Z3
1 〉) ·Mess, again represents 6 colored

markings.

– Firing the transition Ssend gives markings such as (〈2〉 + 〈3〉) · Sready +
(〈1〉) · Cwait + (〈1〉) · Answer. Here we need a subclass Z1

1 of size 2 for the two
ready sites which play symmetric roles and a subclass Z2

1 of size 1 for the last site.
The new symbolic marking, denoted (〈Z1

1 〉) · Sready + (〈Z2
1 〉) · Cwait, represents

only 3 colored markings (three ways to choose a color for the waiting site). By firing
the transition crec, it is possible to get back the initial marking m0.

However, when a class is decomposed into static subclasses, it is necessary
to distinguish their elements: the admissible permutations must preserve these
subclasses because they have different behaviors. Therefore a dynamic subclass must
be contained in a static one which is found by means of the index d. Moreover, the
sum of the sizes of the dynamic subclasses contained inside a static one must be
equal to the size of this last one.

The following definition formalizes the characteristics of a symbolic marking
representation.

DEFINITION 8.4 (Symbolic marking representation). A symbolic marking
representation of a well-formed net, M = 〈m, card, d,mark〉, is defined as
follows:

– m: I �→ N∗; defines the number of dynamic subclasses for every class Ci.
m(i) is denoted mi and Ĉi = {Zj

i | 0 < j ≤ mi} denotes the set of dynamic
subclasses of Ci.

– card:
⋃

i∈I Ĉi �→ N∗ denotes the size of every dynamic subclass Zj
i and is also

often denoted by |Zj
i |.

– d:
⋃

i∈I Ĉi �→ N∗ denotes the index of the corresponding static subclass to which
every dynamic subclass belongs. Hence d and card fulfill the following constraints:

1) d(Zj
i ) ∈ {1, . . . , si}; i.e. d(Zj

i ) is the index of a static subclass of Ci.

2)
∑

d(Zj
i )=q card(Zj

i ) = ni,q; the size of a static subclass is the sum of the
sizes of the dynamic subclasses that belong to it.
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3) ∀i ∈ I , ∀1 ≤ j < j′ ≤ mi, d(Zj
i ) ≤ d(Zj′

i ); the dynamic subclasses are
ordered w.r.t. the order of static subclasses.

– mark associates with every place p a symbolic content:

mark(p) ∈ Bag

(⊗
i∈I

(
Ĉi

))ei(p)

.

Then, dynamic subclasses act as colors for ordinary markings.

A symbolic marking defines by its semantics a set of equivalent ordinary markings.

DEFINITION 8.5 (Symbolic marking semantics). Let M be a symbolic marking
representation. Then the set �M� of associated ordinary markings is defined by
m ∈ �M� iff:

– There exists a set of mappings {ψi}i∈I that distributes the colors among the
dynamic subclasses; i.e. ∀i ∈ I , ∃ψi : Ci �→ Ĉi. As usual, we linearly extend ψi to a
mapping from Bag(Ci) to Bag(Ĉi).

– These mappings must preserve the size constraints; i.e.

∀Zj
i ∈ Ĉi,

∣∣ψ−1
i

(
Zj

i

)∣∣ = card
(
Zj

i

)
.

– These mappings must preserve the static subclass constraints; i.e.

∀Cj
i , ψ−1

i

(
Zj

i

)
⊆ Ci,d(Zj

i ).

– Place marking must be preserved by the symbolic transformation; i.e. ∀p ∈ P ,
∀c ∈ C(p) with c =

⊗
i∈I

⊗
j∈1..ei(p) ci,j

m(p)(c) = mark(p)

(⊗
i∈I

⊗
j∈1..ei(p)

ψi

(
ci,j

))
.

– When Ci is ordered, the instantiation via ψi of dynamic subclasses must preserve
the order of Ci; i.e. ∀Zj

i

∃c ∈ ψ−1
i

(
Zj

i

)
such that ψi(!c) ∈ Z

(j mod mi)+1
i

and

∀c′ �= c ∈ ψ−1
i (Zj

i ), ψi(c′) ∈ Zj
i .

Using this definition we can obtain markings m1 and m2 from the symbolic
representation:

M =
(〈

Z1
1

〉
+
〈
Z2

1

〉)
· Sready +

(〈
Z3

1

〉)
· Cwait +

(〈
Z3

1 , Z1
1

〉)
·Mess

with |Z1
1 | = |Z2

1 | = |Z3
1 | = 1.
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(<    ,     >).Mess

1Z

3
1Z

2
1Z

Ψ(2) =

Ψ(1) =
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1
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2
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3
1Z

1
1Z<     > 2

1Z<     >+ 3
1Z<     >(                       ).Sready +
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3
1Z(         ).Cwait + 2
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Figure 8.5. Examples of represented marking

It must be emphasized that it always possible to build a symbolic representation
of a set of ordinary markings but that this representation is not unique: different
representations yield the same set of explicit markings. However, it is possible to
define and compute a canonical representation as developed in [CHI 97]. Roughly
speaking, a symbolic representation is canonical if the number of dynamic subclasses
is minimal and the numbering of dynamic subclasses ensures that the representation
is minimal w.r.t. some lexicographic ordering.

Given the marking (〈2〉 + 〈3〉) · Sready + (〈1〉) · Cwait + (〈1〉) · Answer a
symbolic representation in which the color class C1 is decomposed into three dynamic
subclasses Z1

1 ,Z2
1 and Z3

1 with |Z1
1 | = |Z2

1 | = |Z3
1 | = 1 will be not minimal.

Indeed, the decomposition into only two dynamic subclasses Z1
1 , Z2

1 with |Z1
1 | = 2 is

much more compact since it fully uses the symmetry between colors 2 and 3 for this
marking.

The dynamic subclasses can be ordered w.r.t. a lexicographic order induced by the
marking. Combining the minimality and ordered criteria defines a canonical symbolic
representation.

PROPOSITION 8.1 (Canonical representation). Let M be a symbolic marking
representation. There exists a unique representation, minimal and ordered, which
defines the same set of ordinary markings as M. This representation is said to be
canonical.

8.2.3. Symbolic firing rule

The second step in the reachability graph construction is the design of a symbolic
firing rule for symbolic markings. Our goal is to “produce” and “consume” dynamic
subclasses instead of colors. A dynamic subclass is selected for each occurrence of a
class in the color domain. However, assume that we instantiate variable Xj

Ci
with the

dynamic subclass Zk
i . Such an instantiation is sound iff card(Zk

i ) = 1 (meaning that
this subclass is reduced to a single color).
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Because we want the symbolic rule to correspond to the explicit firing rule, we
need to preprocess a symbolic representation M. The goal of this preprocessing,
called splitting, is to produceM′ such that �M� = �M′� and the cardinality of every
dynamic subclass ofM′ is 1.

Once this splitting has been performed, the transition is fired as usual in colored
nets with dynamic subclasses instead of colors; this leads to a new symbolic marking.

The last step consists of the canonization of the representation described in
[CHI 97].

DEFINITION 8.6 (Symbolic instantiation). Let M be a symbolic marking, and C
be a color domain. A symbolic instantiation of C is a couple of function sets
[λ = {λi}i=1..|Cl|, μ = {μi}i=1..|Cl|] such that ∀i

– ∀x ∈ 1..ei, λi(x) ∈ 1..|Ĉi| and defines which dynamic subclass of Ĉi is chosen
for the xth occurrence of Ci in C;

– ∀x ∈ 1..ei, μi(x) ∈ 1..|Zλi(x)
i | and allows or otherwise distinction between

different instances in the same dynamic subclass;

– ∀x ∈ 1..ei, μi(x) > 1 =⇒ ∃x′ such that instantiations μi(x′) = μi(x)− 1 and
insures the representation unicity.

We denote μj
i = |{μi(x)|λi(x) = j}| the number of the distinct instantiations of

the subclass Zj
i .

For example, let C = C1×C2×C1 be a color domain such that for a given marking
we have the following partition: Ĉ1 = {Z1

1 , Z2
1 , Z3

1}, Ĉ2 = {Z1
2} with |Z1

1 | =
|Z2

1 | = 2 and |Z3
1 | = |Z1

2 | = 1. The couple [{λ1, λ2}, {μ1, μ2}] with λ1(1) =
λ1(2) = 2, λ2(1) = 1, μ1(1) = μ1(2) = 1 and μ2(1) = 1 designs the symbolic
instantiation 〈Z2

1 , Z1
2 , Z2

1 〉. We observe that as μ1(1) = μ1(2), the first and the third
component of this tuple have the same value. On the other hand, if μ1(1) = 1 and
μ1(2) = 2, we would have to choose two distinct values: 〈Z2,1

1 , Z1
2 , Z2,2

1 〉 with
Z2,1

1 �= Z2,2
1 .

If λ1(1) = 1, λ1(2) = 3, λ2(1) = 1, μ1(1) = μ1(2) = 1 and μ2(1) = 1 then we
have the symbolic instantiation 〈Z1

1 , z1
2 , Z3

1 〉.

Given a symbolic marking and a transition, once a symbolic instance of firing has
been chosen, the marking must be split to separate the chosen values from the others.
Each dynamic subclass is itself split into new subclasses. Moreover, to make the
symbolic firing rule coherent with the ordinary firing rule, each instantiated subclass
must be reduced to a single element.
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DEFINITION 8.7 (Splitting). Let M be a symbolic marking. A symbolic instantiation
[λ, μ] defines a partition ofM, [λ, μ] ·M=〈{{Zj,k

i }}, St′, Card′,Marq′〉, such that

each dynamic subclass Zj
i of Ĉi is split into {Zj,k

i }, according to the following rules:

1) If Ci is ordered, or if all the elements of Zj
i are instantiated (μj

i = |Zj
i |), then

Zj
i is decomposed into the set of subclasses: {Zj,k

i } with k = 1..|Zj
i | and |Zj,k

i | = 1.

2) Or, if at least one element of Zj
i is instantiated then Zj

i is decomposed into the
set of subclasses {Zj,k

i } with k = 0..μj
i , |Zj,k

i | = 1 for all k ∈ 1..μj
i and |Zj,0

i | =
|Zj

i | − μj
i (Zj,0

i gathers the elements which are not instantiated).

3) Or Zj
i is renamed Zj,0

i .

Each new subclass Zj,k
i is associated with the same static subclass as the one

leading to (St′(Zj,k
i ) = St(Zj

i )) and is distributed in the same manner in the new
symbolic marking (i.e. Zj

i is replaced in a marking by
∑

k Zj,k
i ).

Let m0 = (〈1〉 + 〈2〉 + 〈3〉) · Sready be the initial marking of our client-server
example (Figure 8.1, page 223). The canonical representation of the symbolic marking
associated with m0 is M0 = (Z1

1 ) · Spret with |Z1
1 | = 3. The transition cenv

distinguishes 2 values of the class C1 (denoted Site on the figure), therefore its domain
is C1 × C1. Two dynamic instantiations of Ĉ(cenv) may occur for m̂0:

– IDa = 〈{λ1(1) = λ1(2) = 1}, {μ1(1) = 1, μ1(2) = 1}〉, which distinguishes
only one value of Ĉ1;

– and IDb = 〈{λ′
1(1)=λ′

1(2)=1}, {μ′
1(1)=1, μ′

1(2)=2}〉, which distinguishes
two distinct values of Ĉ1 (μ′

1(1) �= μ′
1(2)).

Z

1Z<     >

[X=Y]

1
1Z|    |=3

[X=Y]

1,1
1Z|         | = 1 <       >1,1

1Z
Splitting
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μ1(1)=1

Sready

Mess

Cwait

<X>

<X>

<X,Y>cenv
Mess

Cwait

<X>

<X>

<X,Y>cenv

Sready

1,0
1Z|         | = 2

+<       >1,0
1

1

Figure 8.6. Splitting m0 w.r.t. IDa

The splitting of M0 w.r.t. IDa (see Figure 8.6) is the marking IDa · M0 defined
by:

IDa · M0 =
(
Z1,1

1 + Z1,0
1

)
· Sready
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with |Z1,1
1 | = 1 (the instantiated value) and|Z1,0

1 | = 2 (the other values). IDb ·M0 is
defined by:

IDb · M0 =
(
Z1,1

1 + Z1,2
1 + Z1,0

1

)
· Sready

with |Z1,1
1 |= |Z1,2

1 |=1 (the two instantiated values) and |Z1,0
1 |=1 (the other value).

As the splitting of a marking has been defined, we can now define the symbolic
firing rule. For that we identify all the color domains Ci for Ĉi.

DEFINITION 8.8 (Symbolic firing rule). A transition t is enabled for a symbolic
instantiation [λ, μ] of Ĉ(t) for the symbolic markingM if

1) the preconditions of t are satisfied for [λ, μ] · M;

2) the guard associated with t is evaluated to TRUE for [λ, μ].

The firing gives the symbolic marking M′, which is the canonical representation
of the symbolic marking obtained by applying the pre- and post-conditions of t to
[λ, μ] · M.

For example, as depicted in Figure 8.7, starting from M0 the transition csend
is enabled for the instantiation IDb because this partition (IDb · M0 = (Z1,1

1 +
Z1,2

1 + Z1,0
1 ) · Sready) distinguishes two different values.
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Figure 8.7. A symbolic firing
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We can then associate the variable X of the net with Z1,1
1 and the variable Y with

Z1,2
1 . The guard [X �= Y ] is evaluated to TRUE and IDb · M0 effectively contains

the symbolic token Z1,1
1 . This firing leads to

M1 =
(
Z1,0

1 + Z1,2
1

)
· Sready +

(
Z1,1

1

)
· Cwait +

(
〈Z1,1

1 , Z1,2
1 〉
)
·Mess

which may be rewritten in a canonical form as(
Z1

1 + Z2
1

)
· Sready +

(
Z3

1

)
· Cwait +

(
〈Z3

1 , Z1
1 〉
)
·Mess.

Conversely, csend is not enabled for the symbolic instantiation IDa because the
guard [X �= Y ] associated with csend requires two distinct values, which is not the
case for IDa.

REMARK. A symbolic marking generally represents several colored markings;
therefore a symbolic firing represents several colored firings. The example in Figure
8.7 in fact represents all the firings of the transition csend for the six instances 〈1, 2〉,
〈1, 3〉, 〈2, 1〉, 〈2, 3〉, 〈3, 2〉 and 〈3, 3〉.

8.2.4. Example of a symbolic reachability graph

Figure 8.8 presents the complete SRG of the model in Figure 8.1. It has only 19
nodes (two of them are deadlocks) and 37 arcs.

We have already explained the symbolic markings corresponding to the treatment
of a message up to the reception of its answer by the client (see Figure 8.4).

We now give details of part of the SRG to show the crucial paths which lead to
deadlocks (see Figure 8.9). In particular, we explain how the dynamic subclasses may
be split or renumbered. For that we need to distinguish the “old” subclasses of a node
before a firing and the “new” subclasses of the successor node. We also add to each
node the graph of the relation “waiting for” showing how the two deadlock cycles will
arrive: one with two sites and the other with three.

The initial state has only one subclass Z1_1 gathering the 3 ready sites. To fire the
transition Csend, this subclass is split into 3 because there are two ready states but
one new-Z1_1 remains independent while the second new-Z1_2 is the site to which
the message is addressed and the third new-Z1_3 is waiting. This leads to the second
node (〈Z1_1〉+ 〈Z1_2〉) · Sr + 〈Z1_3〉 · Cw + 〈Z1_3, Z1_2〉 ·M .

Then there are four ways of firing csend again:

1) If the addressee site Z1_2 sends a message to the waiting one Z1_3, the
independent one Z1_1 remains ready, while the two others become waiting. (Although
they seem to be symmetric their subclasses may not be gathered because the two
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Figure 8.8. Symbolic reachability graph of the net R1

messages come from one site to another one that may not be in the same class.) These
two sites become inter-blocked. Therefore in the complete SRG, no arc labeled srec
goes from this node to live ones.

2) If the independent site old-Z1_1 sends a message to the same addressee
old-Z1_2, it becomes waiting and now plays a symmetric role as old-Z1_3, therefore
these two subclasses may be gathered into the same class new-Z1_2 of size 2, while
the subclass of the addressee becomes new-Z1_1 because of the canonical numbering.

3) If the independent site old-Z1_1 sends a message to the waiting one old-Z1_3,
because of the renumbering, it becomes new-Z1_2 in state waiting, while old-Z1_2,
still ready, becomes new-Z1_1.

4) If the addressee site old-Z1_2 sends a message to the independent one
old-Z1_1, the renumbering gives the same node as in case 3: 〈new − Z1_1〉 · Sr +
(〈new−Z1_2〉+〈new−Z1_3〉)·Cw+(〈new−Z1_2, new−Z1_3〉+〈new−Z1_3,
new − Z1_2〉) ·M .
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Figure 8.9. Paths to deadlocks in the SRG

Again, from these three symbolic markings it is possible to fire csend but only for
reaching completely inter-blocked states. The complete SRG also puts in evidence the
horizontal arcs for transitions srec and vertical ones for ssend, which are the ones
allowing us to avoid deadlocks.

Correcting the deadlock problem

It would not be realistic to avoid deadlocks by forbidding a site to send a message
if a pending request for it exists, because the requests in transit are not known by the
sites. Deadlock avoidance consists of allowing a waiting client to be interrupted to
treat a message.

A first model needs two new transitions cwrec and cwsend as well as a new place
CWbusy to receive a message, perform the treatment, and send the answer while the
client is waiting (see Figure 8.10).
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Figure 8.10. Correction of the net R1 – version 1

An alternative model introduces a new class state = (I,W ) to indicate if a site is
idle or waiting. After a request, a site returns to state ready and may treat a message
but must remember its state (see Figure 8.11). Only an idle site may fire the transition
csend, because of the inscription < x, I > on its input arc, while only a waiting site
may fire the transition crec with < x,W < on its arc. The place Sbusy now has the
domain treatstate =< site, site, state > to allow a token < y, s > in the place
Sready to be given back in addition to the token <x> in Answ. In fact, the first model
may be seen as the unfolding of the second one w.r.t. the class state.

Figure 8.11. Correction of the net R1 – version 2
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Constructing the SRG of these two nets effectively shows that they are both
deadlock free.

8.2.5. Properties of the SRG

We now emphasize the net properties that may be conveniently verified using the
SRG.

The first problem comes from the fact that the SRG abbreviates the graph of all
the markings reachable not only from the initial marking but also from all equivalent
markings of its class. Indeed, this may be avoided by enforcing the condition that this
class should only contain a single element (|M0| = 1). Let RG be the reachability
graph. Provided this constraint is applied, the following properties hold.

PROPOSITION 8.2. Let (WN,m0) be a well-formed net. If |M0| = 1 then

– RG is finite (resp. infinite) iff SRG is finite (resp. infinite).

– m is reachable in RG iffM is reachable in SRG.

– m̂ is a home state in SRG iff {m′ | m′ ∈ m̂} is a home space in RG (i.e. iff
∀m1 ∈ GM , ∃s | m1[s > m′ and m′ ∈M).

– IfM0 is a home state in the SRG and if each transition appears on at least one
arc of the SRG then the marked net (WN,m0) is live.

The expressions of these properties must be slightly modified to be extended to the
case where |M0| �= 1 [CHI 93].

Other interesting properties may be obtained by extending the SRG construction.
For instance, Chapters 10 and 11 of this book show how to exploit the SRG to estimate
performances of stochastic well-formed nets.

8.3. Colored invariants

We have seen in Chapter 3 the usefulness of place invariants in the (structural)
analysis of Petri net models. In “ordinary” Petri nets, the computation of linear
invariants can be conducted with the help of resolution of the system equations
induced by the incidence matrix of the net: variables of this system are places of
the net, while equations define the incidence of the transitions on these variables.
Solving this system can be done with the help of the Gauss algorithm or with the
help of the Farkas algorithm when positive constraints are added to the coefficients
of the solutions. With the help of these algorithms we obtain a generative family of
invariants which can generate any invariants of the net by linear combinations of
elements of the family.
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Adapting this approach to high level Petri nets leads to three types of difficulty:

– How do we define linear (places) invariants of high level Petri nets and
characterize a generative family?

– How do we compute a generative family of invariants when we fix the size of the
color domains?

– How do we compute a generative family of invariants when we do not fix the
size of the color domains; i.e. how do we compute a parametrized generative family,
valid for any size of the color domains?

The first two problems can be solved by unfolding the net and by computing
invariants on the ordinary Petri nets obtained by this unfolding. However, this trivial
methodology has to deal with the size of the model obtained (which is huger compared
to the original high level net) and the interpretation in the context of the high level
model of the invariants computed on the ordinary model. Moreover, this approach
means that we first fix the size of the color domains before unfolding the net and leads
to the impossibility of obtaining a parametrized family.

Work concerning computation of invariants can be grouped into two families. A
first approach consists of limiting in the definition of high level nets the usable color
functions and the way color domains are built. These limitations induce a particular
(and regular) structure of the incidence matrix and of the invariants of the net, which
can be used to define efficient algorithms that compute generative and sometimes
parametrized families of invariants. We cite [MEM 85, VAU 87, COU 88, COU 91,
DER 07] in which some subclasses of high level nets are defined, leading to efficient
algorithms that compute generative and, for most of them, parametrized families of
invariants or positive invariants.

A second approach consists of generalizing the Gauss algorithm so that it
manipulates linear applications instead of integers for ordinary Petri nets.

Note that as yet there are no algorithms which can compute a generative and
parametrized family of invariants for well-formed nets or for general high level nets.

8.3.1. Definition of invariants of high level Petri nets

The choice of the definitions of high level Petri net invariants must satisfy at least
the two following requirements: first, high level Petri net invariants must be of high
level, i.e. they must take into account the color values of the model. For instance, if a
model defines a set of processes and a set of files, it seems natural that it is possible
for invariants of the net to refer to a particular process or to all the processes w.r.t.
a specific value of file, thus inducing properties such as “when a process X holds a
file Y, then all other processes do not hold file Y and process X does not hold files
other than Y”. Secondly, the definition of high level Petri net invariants must allow the
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building of efficient algorithms that work directly on the high level model without the
need for any unfolding.

The definition we propose here is the one widely accepted as satisfying these
requirements. It defines a places invariant as a formal weighted sum of places with
which is associated a color domain that can be understood as the interpretation domain
of the invariant. The weights associated with places are mappings from the places
color domain to the invariant color domain.

In the following definition, BagQ(A) designates the Q canonical space vectors on
the non-empty set A which includes Bag(A). We denote by W the incidence matrix
of the net (∀p ∈ P , t ∈ T , W (p, t) = Post(p, t) − Pre(p, t)) (and not C as is done
in some manuscripts, which might cause confusion with color domains in the current
context).

DEFINITION 8.9 (High level net invariant). A high level net invariant F is a formal
weighted sum of places

∑
p∈P F(p) · p defined by:

1) C(F) is the color domain of the invariant.

2) ∀p ∈ P , F(p) is a linear application from BagQ(C(p)) to BagQ(C(F)) such
that:

∀t ∈ T,
∑
p∈P

F(p) ◦W (p, t) = 0.

When we impose weighting factors on the linear applications from Bag(C(p))
to Bag(C(F)), we name these invariants positive high level invariants (also called
semi-flows); otherwise we name them flows.

Using this definition, it becomes the case that, given a high level invariant F , for
all reachable markings m we have:∑

p∈P

F(p)
(
m(p)

)
=
∑
p∈P

F(p)
(
m0(p)

)
A high level invariant may be then be interpreted as a system of equations linking the
initial marking of a subset of places to any reachable marking of this subset of places:

∀m ∈ Acc(CN,m0), ∀c ∈ C(F),
∑
p∈P

∑
cp∈C(p)

[
F(p)

(
cp

)
(c)
]
·m
(
p
(
cp

))
= cst

We will denote these equations by2,

∀c ∈ C(F),
∑
p∈P

∑
cp∈C(p)

[
F(p)

(
cp

)
(c)
]
· p
(
cp

)
= cst

2. p(cp) designates the instance cp of the place p.
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Figure 8.12. Send with acknowledgment of a message

Let us consider the net depicted in Figure 8.12, which models a set of processes
that are initially idle. The firing of transition t1 is related to the sending of a message
by a process X to all other processes All − X . When it has sent the message, the
process waits for the acknowledgement of all others processes before going back to
the state Idle (transition t2).

The reception of a message and the sending of an acknowledgement is modeled
by transition t3.

In this net, the formal sumF defined byF = 〈x〉.Mess+〈x〉.Ack−〈all − x〉.Att
with C(F) = C is a high level invariant. It can be interpreted as

∀x ∈ C, Mess(x) + Ack(x)−
∑
y �=x

Att(y) = 0

meaning that when a process x has sent or received an acknowledgement which is not
yet processed then another process yn �= x is waiting for an acknowledgement.

Another interpretation can be: “the number of messages from or to x equals the
number of processes (different to x) that are waiting (in place Att)”.

Thus, invariants give valuable information on the possible evolution of the net
without needing to build part or all of the reachability graph. In a complementary
way, it is sometimes necessary to be sure that an invariant that include a given place
does not exist. So, when we compute the invariant we try to obtain a generative family
of invariants, i.e. a finite family that generates all possible invariants of the net.

DEFINITION 8.10 (Generative family). A finite set of flows {Fi} is a generative family
of all the flows of a net iff any flow of the net can be expressed as a linear combination
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of flows Fi, such that the weighted factors of this combination are linear applications
compatible with the color domain of the flows.

The two following flows (color domain C) define a generative family of the flows
of the net depicted in Figure 8.12.

1) F1 = 〈x〉 ·Mess + 〈x〉 ·Ack − 〈all − x〉 ·Att and C(F1) = C.

2) F2 = 〈x〉 ·Repos + 〈x〉 ·Att and C(F2) = C.

For instance, the flow (color domain C) F = 〈x〉 ·Mess+ 〈x〉 ·Ack + 〈all − x〉 ·
Repos can be written F = F1 + 〈All −X〉 · F2 and thus is generated by the two
previous flows.

8.3.2. Computing flows of a high level net: principles and difficulties

The computation of high level flows can be performed by adapting the Gauss
algorithm to matrices of linear applications: we start from the incidence matrix of
the net and we note on its right the initial family of flows (at the beginning of the
computation, each one is associated with a weight equal to the identity function of the
place domain color). For the preceding net (Figure 8.12), the incidence matrix is:

W =

⎛⎜⎜⎜⎜⎜⎜⎝

t1 t2 t3

−〈x〉 〈x〉 0

〈x〉 −〈x〉 0

〈all − x〉 0 −〈x〉
0 −〈all − x〉 〈x〉

⎞⎟⎟⎟⎟⎟⎟⎠
〈x〉 ·Repos

〈x〉 ·Att

〈x〉 ·Mess

〈x〉 ·Ack

The algorithm is composed of two rules. The first one consists of adding to each
line another line premultiplied with a color function in order to make some items of
the matrix in a given column equal to zero. For instance, by adding Att to Repos and
Mess with a well-chosen premultiplier function, we obtain the following transformed
matrix.

⎛⎜⎜⎜⎜⎜⎜⎝

t1 t2 t3

0 0 0

〈x〉 −〈x〉 0

0 〈all − x〉 −〈x〉
0 −〈all − x〉 〈x〉

⎞⎟⎟⎟⎟⎟⎟⎠
〈x〉 ·Repos + 〈x〉 ·Att

〈x〉 ·Att

〈x〉 ·Mess− 〈all − x〉 ·Att

〈x〉 ·Ack



Analysis of High Level Petri Nets 243

The second rule consists of suppressing a line such that, given a column, this line
is the only line containing a non-zero item on this column and such that this item is
a one-to-one mapping3. Using this rule, we can suppress the line Att in the previous
matrix.

⎛⎜⎜⎜⎝
t1 t2 t3

0 0 0

0 〈all − x〉 −〈x〉
0 −〈all − x〉 〈x〉

⎞⎟⎟⎟⎠
〈x〉 ·Repos + 〈x〉 ·Att

〈x〉 ·Mess− 〈all − x〉 ·Att

〈x〉 ·Ack

By iterating these rules, we obtain the following two matrices:

⎛⎜⎜⎜⎝
t1 t2 t3

0 0 0

0 0 0

0 −〈all − x〉 〈x〉

⎞⎟⎟⎟⎠
〈x〉 ·Repos + 〈x〉 ·Att

〈x〉 ·Mess− 〈all − x〉 ·Att + 〈x〉 ·Ack

〈x〉 ·Ack

⎛⎝
t1 t2 t3

0 0 0

0 0 0

⎞⎠ 〈x〉 ·Repos + 〈x〉 ·Att

〈x〉 ·Mess− 〈all − x〉 ·Att + 〈x〉 ·Ack

Each line such that all its items are zero corresponds to a flow of the net. So, we
obtain here two flows: the first one describes a sequential behavior of the processes
which are either in the state Idle or Att but not in both simultaneously. The second
has already been interpreted in this section but may also be interpreted as “the total
number of messages and of acknowledgements equals N − 1 times the number of
processes that are waiting (〈all〉 ·Mess + 〈all〉 ·Ack − (N − 1)〈all〉 ·Att )”.

8.3.3. Computing a non-parametrized generative flow family

The previous method computes some flows of a net but it does not ensure that
we obtain systematically a generative family of flows. Indeed, each line such that all
its items are zero defines a flow but nothing ensures that we obtain systematically a
matrix such that all its lines are zero (which guarantees that the family obtained is a
generative one).

3. The mapping must be a one-to-one mapping from BagQ(C(t)) to BagQ(C(p)). Thus, the
mappings XC , !XC , AllC − XC are one-to-one mappings, while AllC is not.
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In particular, two difficulties may arise: 1) we cannot find a linear combination of
lines that decreases the number of non-zero items; or 2) a non-zero item isolated on a
column is not a one-to-one mapping. In both cases, the latter method does not allow
us to continue the computation of flows.

Let us illustrate these difficulties with the example depicted in Figure 8.13.

Figure 8.13. Cooperative work of two processes families

The incidence matrix W of this net is:

W =

⎛⎜⎜⎜⎝
t1 t2

−〈x〉 〈x〉
−〈y〉 〈x〉

〈x〉+ 〈y〉 −2 ∗ 〈x〉

⎞⎟⎟⎟⎠
〈x〉 · Proc1

〈x〉 · Proc2

〈x〉 · Coop

If we begin by eliminating the second line (which corresponds to t2), the
application of the two rules defined previously leads to the following matrix:

⎛⎝
t1 t2

−〈x〉+ 〈y〉 0

−〈x〉+ 〈y〉 0

⎞⎠ 〈x〉 · Proc1− 〈x〉 · Proc2

2 ∗ 〈x〉 · Proc1 + 〈x〉 · Coop

By subtracting the first line from the second, we obtain the matrix:

⎛⎝
t1 t2

−〈x〉+ 〈y〉 0

0 0

⎞⎠ 〈x〉 · Proc1− 〈x〉 · Proc2

〈x〉 · Proc1 + 〈x〉 · Proc2 + 〈x〉 · Coop
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The mapping −〈x〉 + 〈y〉 is not a one-to-one mapping, so it is not possible to
continue the computation of flows.

The choice of the line we eliminate first is not the cause: if to begin with we
eliminate the first line instead of the second one, we obtain the following matrix, and,
again, we can not go further using only the two previous rules.

⎛⎜⎜⎜⎝
t1 t2

−〈x〉 〈x〉
−〈y〉 〈x〉

0 0

⎞⎟⎟⎟⎠
〈x〉 · Proc1

〈x〉 · Proc2

〈x〉 · Coop + 〈x〉 · Proc1 + 〈x〉 · Proc2

However, it is possible to define a simple algorithm that systematically computes
a generative family of flows [COU 90] by adding a new rule to the two previous ones.
This new rule is based on the use of the “generalized inverse” or “pseudoinverse” of a
matrix [NAS 76].

DEFINITION 8.11 (Pseudoinverse [NAS 76]). Let f be a linear mapping from
BagQ(C1) to BagQ(C2). A non-unique mapping h from BagQ(C2) to BagQ(C1)
exists such that f ◦ h ◦ f = f . Such a mapping is called a pseudoinverse or a
generalized inverse of f . Furthermore, (Id − f ◦ h) is a generative solution of the
equation X ◦ f = 0.

Let W be a matrix having the specific form:

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t

f1

...

fk

g W1

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F1

...

Fk

F
F ′

1

...

F ′
q
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Let h be a pseudoinverse of g. We define a new rule Rnew that transforms the matrix
W into the matrix Wnouv defined by:

Wnouv =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t

f1 − f1 ◦ h ◦ g

...

fk − fk ◦ h ◦ g

0 W ′
1

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F1 −F ◦ f1 ◦ h

...

Fk −F ◦ fk ◦ h

F − F ◦ g ◦ h

F ′
1

...

F ′
q

In this new matrix, W ′
1 is the submatrix W1 in which we have substituted for each

line Fi = 1..k, the line Fi minus the line F composed of fi ◦ h and such that the line
F is replaced by itself multiplied by (Id - g ◦ h).

This new rule increases the number of zero items of the matrix and allows us, by
iteration, to obtain a matrix in which all items are zero. The family of flows associated
with this matrix is thus a generative one and, by equivalence, also a generative family
of flows of the initial matrix. We must emphasize that the use of the pseudoinverse
concept may lead to fixing the size of the color domain, which limits the use of this
rule to non-parametrized algorithms.

The correctness of this transformation can be justified by the fact that it can
be decomposed into three elementary transformation rules, each preserving the
generative family of flows between the original matrix and the transformed one
[COU 90].

Starting from a matrix W (see below), the first elementary transformation rule
consists of substituting two equivalent columns for column t. The first one is obtained
by composing t with the mapping (h◦g), where h is the pseudoinverse of g, while the
second one is obtained by composing t with (Id−h◦g). As (h◦g)+(Id−h◦g) = Id,
such a transformation preserves the generative family. Furthermore, by definition of
h, g ◦ h ◦ g = g and g − g ◦ h ◦ g = 0, which justify the value of the boxed items in
the following matrix
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t · (h ◦ g) t · (Id− h ◦ g)

f1 ◦ h ◦ g f1 ◦ (Id− h ◦ g)

...
...

fk ◦ h ◦ g fk ◦ (Id− h ◦ g)

g 0 W1

0 0
...

...

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F1

...

Fk

F
F ′

1

...

F ′
q

The second elementary transformation rule consists of subtracting from each line
Fi, i = 1..k the line F premultiplied by fi ◦ h. Doing this, we eliminate from column
t.(h ◦ g) all the non-zero items except that of line F . This rule is used in the Gauss
algorithm and thus also preserves the generative family of flows. We denote in the
following matrix W2 the submatrix obtained by the application of this rule to the
submatrix W1 which appears in the previous matrix.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t · (h ◦ g) t · (Id− h ◦ g)

0 f1 ◦ (Id− h ◦ g)

...
...

0 fk ◦ (Id− h ◦ g)

g 0 W2

0 0
...

...

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F1 −F ◦ f1 ◦ h

...

Fk −F ◦ fk ◦ h

F
F ′

1

...

F ′
q

The third and last elementary transformation rule is based on the observation that if
h is the pseudoinverse of g then (Id−g ◦h) generates all the solutions of the equation
X ◦ g = 0. We can then replace line F by the line (Id− g ◦h) ◦F without losing any
flow.

Applying this rule to the previous matrix leads to the following one (in which we
have suppressed the column t · (h ◦ g) for which all its items have became zero). The
matrix obtained is the one that we obtain by applying the transformation rule Rnew

directly to the original matrix.
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t · (Id− h ◦ g)

f1 ◦ (Id− h ◦ g)

...

fk ◦ (Id− h ◦ g)

0 W3

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F1 −F ◦ f1 ◦ h

...

Fk −F ◦ fk ◦ h

F ◦ (Id− g ◦ h)

F ′
1

...

F ′
q

Let us again take the example depicted in Figure 8.13. The initial incidence matrix
is: 4

W =

⎛⎜⎜⎜⎝
t1 t2

−〈x〉 〈x〉
−〈y〉 〈x〉

〈x〉+ 〈y〉 −2 ∗ 〈x〉

⎞⎟⎟⎟⎠
〈x〉 · Proc1

〈x〉 · Proc2

〈x〉 · Coop

A pseudoinverse of the linear mapping g : 〈x, y〉 �→ 〈x〉 + 〈y〉 is the linear mapping
h : 〈x〉 �→ 1/2〈x, x〉.

Note that h ◦ g : 〈x, y〉 �→ 1/2(〈x, x〉+ 〈y, y〉) and g ◦ h : 〈x〉 �→ 〈x〉.

So, if f1 : 〈x, y〉 �→ −〈x〉 and f2 : 〈x, y〉 �→ −〈y〉:
– f1 ◦ h ◦ g : 〈x, y〉 �→ −1/2(〈x〉+ 〈y〉),
– f2 ◦ h ◦ g : 〈x, y〉 �→ −1/2(〈x〉+ 〈y〉),
– 〈x〉−(−2)〈x〉◦f1 ◦h = 0Bag(C)→Bag(C), i.e. the zero application from Bag(C)

to Bag(C) denoted 0.

4. We have to take care that the color domain of t1 is C × C and thus 〈x〉 on column t1 is the
mapping 〈x, y〉 �→ 〈x〉. However, the color domain of t2 being C, 〈x〉 on column t2 is really
the mapping 〈x〉 �→ 〈x〉.
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The transformation rule Rnew leads to the matrix W ′ (in which we can suppress
the third line that induces non-solutions).

W ′ =

⎛⎜⎜⎜⎝
t1 t2

1/2(〈y〉 − 〈x〉) 0

1/2(〈x〉 − 〈y〉) 0

0 0

⎞⎟⎟⎟⎠
〈x〉 · Proc1 + 1/2 ∗ 〈x〉 · Coop

〈x〉 · Proc2 + 1/2 ∗ 〈x〉 · Coop

0Bag(C)→Bag(C) · Coop

Let us denote by g the mapping 〈x, y〉 �→ 1/2(〈x〉 − 〈y〉). A pseudoinverse of g is the
mapping h : 〈x〉 �→ 2〈x, d〉, where d is any value in C. Indeed,

– g ◦ h : 〈x〉 �→ (〈x〉 − 〈d〉),
– h ◦ g : 〈x, y〉 �→ (〈x, d〉 − 〈y, d〉), and

– g ◦ h ◦ g : 〈x, y〉 �→ 1/2(〈x〉 − 〈d〉 − 〈y〉+ 〈d〉).

and so g ◦ h ◦ g = g. Applying the transformation rule to W ′ leads to W ′′:

W ′′ =

⎛⎝
t1 t2

0 0

0 0

⎞⎠ 〈x〉 · Proc1 +
(
〈x〉 − 〈d〉

)
· Proc2 +

(
〈x〉 − 〈d〉

)
· Coop

〈d〉 · Proc2 + 1/2 ∗ 〈d〉 · Coop

As W ′′ is a zero matrix, we obtain a generative family of flows of the original net.
This family can be written more cleverly as:

– 〈x〉 · Proc1 + 〈x〉 · Proc2 + 〈x〉 · Coop,

– 〈d〉 · Proc1− 〈d〉 · Proc2.

The previous algorithm systematically computes a generative family of flows of
any colored net. However, the use of this algorithm may lead in practice to two types
of difficulty:

1) The computation of the pseudoinverse of a mapping may need to partially
unfold the net, which imposes a limit on the size of the color domains. Thus it is
not possible to predict whether or not this algorithm will produce a parametrized
generative family of flows.

2) When the modeler has used only some particular color functions (for instance
the identity and the successor functions) nothing ensures that the generative family
obtained will be written with the help of these particular color functions even if such a
writing exists. This leads to difficulties in the use of the flows obtained and may make
it necessary to operate manually some transformations of the computed family.
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Thus, when we model using a specific subclass of high level nets (regular nets,
associative nets, etc.) we may prefer to use, when it exists, a specific algorithm adapted
to this subclass.

8.3.4. Parametrized generative family of flows for regular nets

We now describe the computation of flows for regular nets (defined in the previous
chapter). Let us consider the following example (Figure 8.14).

Figure 8.14. A regular net

The flow F = 〈All〉p + 〈X〉q defines a generative family of flows that can be
obtained by the general algorithm presented previously.

We note that there is another way of writing this generative family:

1) F1 = 〈X − Y 〉q meaning ∀x, y ∈ C1, q(x)− q(y) = 0.

2) F2 = n ∗ 〈All〉p + 〈All〉q meaning n ∗∑x∈C1 p(x) +
∑

x∈C q(x) = n2 with
n = |C1|.

The first of these flows has a “differential” writing, i.e. it is written as
〈X − Y 〉(∑p∈P λp · p) and characterizes the evolution of the number of token of a
given color w.r.t. the number of tokens of another color for some places of the net.

The second of these flows has a “homogenous” writing, i.e. it is written as
〈All〉(∑p∈P λp · p) and numbers the tokens in some places independently of their
color.

Writing the generative family of flows in such a way has at least two advantages.
First, the interpretation of such flows easily gives information about the possible
evolution of the distribution of colored tokens in the net. For instance, F1 means that
the difference between the number of tokens having different colors is constant (here
zero) and F2 tells us that the number of tokens is at most n2 in place q. Second, and
it is certainly the most important, we can demonstrate that all generative families
of flows of a regular net can be obtained by iterating two operations based on this
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specific writing: a “differentiation” operation and a “homogenization” operation.
Applying these two operations will “produce” from a regular net with k elementary
color classes two regular nets with only k − 1 elementary color classes such that
the generative family of flows of the initial net can be obtained by computing the
generative family of flows of these two new nets. When, at last, the net obtained is
not colored, the generative family of flows is computed using the Gauss algorithm
extended to a polynomial with coefficients in Z.

We now detail these two operations.

Let R be a regular net and C1, . . . , Ck the elementary color classes of this net. The
differentiation will produce the net Di(R) and the homogenization will produce the
net Si(R). These two (regular) nets are built over the same set of places and transitions
but arc values of these two nets differ from the original ones as described below.

Let p be a place and t be a transition. We distinguish two cases:

1) The color domain of p involves Ci. In this case, the arc value between p and
t can be written in the net R as v = 〈f1, . . . , fq, αi ·Xi + βi ·Alli, fq′ , . . . , fq′′〉.
This value is replaced in Di(R) by Di(v) = αi ∗ 〈f1, . . . , fq, fq′ , . . . , fq′′〉, while v is
replaced in the net Si(R) by the value Si(v) = (αi+ni·βi)∗〈f1, . . . , fq, fq′ , . . . , fq′′〉,
where ni = |Ci|.

2) The color domain of p does not involve Ci. In this case, the arc value between
p and t is not modified.

Applying successive iterations, we obtain 2k non-colored nets with values using
polynomials with k variables (the size of the elementary color classes is n1, . . . , nk).

C1={1..n}

n1

<X>

<All>

D1(R) S1(R)

q:C1

t1

p:C1

q:C1

t1

p:C1

q:C1

t1

p:C1

Figure 8.15. Applying the two operations to the previous regular net (Figure 8.14)
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We then apply the Gauss algorithm to each of these non-colored nets (which define
some constraints on the parameters ni in order to distinguish zero polynomials). After
that, we “re-color” the obtained flows in such a way that the “e-coloration” takes
into account the different operations that produce the considered net. Thus, a flow
computed on a net Di(R) will be “re-colored” by the mapping 〈Xi − Yi〉 and a flow
computed on a net Si(R) will be “re-colored” by the mapping Alli.

If we apply this computation to the previous regular net (Figure 8.14), the
only flow of the net D1(R) is F = q, which when “re-colored” gives the flow
F1 = 〈X1 − Y1〉q. Similarly, the only flow of S1(R) is F ′ = n ∗ p + q which, after
“re-coloring”, gives the flow F2 = 〈All1〉 · (n ∗ p + q). These two flows constitute a
parametrized generative family of flows of the net.

8.3.5. Computation of positive flows

There is at present only one known algorithm for computing a generative family
of positive flows in colored nets [COU 91].

One of the additional difficulties involves the positive constraint on coefficients of
the solution arising from the fact that (Q+,+) is only a semigroup.

This algorithm, described here very briefly, computes a parametrized generative
family of positive flows for two subclasses of colored nets: unary regular nets
(a regular net such that there is only one elementary color class) and unary
predicate/transition nets [MEM 85].

Let us consider the case of unary regular nets and let us suppose that all places are
colored in the unique color class C (it is possible to transform any unary regular net
such that is satisfies this constraint).

Any item in the incidence matrix can be written as W (p, t)=〈αp,t ·X+βp,t ·All〉
with αp,t and βp,t in N. Let us denote by A and B the matrices P × T defined by
A(p, t) = αp,t and B(p, t) = βp,t.

Then we have the system of equations:⎧⎪⎪⎨⎪⎪⎩
(A + n ·B) ·

n∑
i=1

X(i) = 0

A ·X(1) = A ·X(2) = · · · = A ·X(n)

[8.1]

where X , a vector in ((Q+)P )n with n = |C|, is the unknown variable of the system
(X(i) denotes the ith component of X).
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This system of equations is only a rewriting of the initial system of equations
associated with the positive flows computation of a unary regular net. So, a generative
family of solutions of system [8.1] is a generative family of the positive flows of the
net.

Indeed, each solution X of this system defines a positive flow F =
∑

p∈P Fp · p
with Fp(c) = X(i)(p) · c (with a color domain equal to C).

Solving system [8.1] can be performed in a parametrized way in two steps:

1) We first solve the system A · X(1) = A · X(2) = · · · = A · X(n). This is
done by computing iteratively a finite set of vectors in QT , called direction, that will
generate all solutions of this system.

2) Each set of solutions generated by a direction is projected onto the first equation
of system [8.1] ((A+n·B)·∑n

i=1 X(i) = 0). Then a generative family of solutions of
this new system is solved using an extension of the Farkas algorithm to multi-variables
polynomials. Each solution is then a positive flow of the initial net.

For more details, the reader should refer to [COU 91] or to [EVA 07].

8.4. Structural reductions

Let π be a property, M a model. To verify that M satisfies π may be efficiently
achieved by defining a simpler model M′, equivalent to M for the property π, such
that this property is more easy to verify forM′ than forM.

For Petri nets this method is well known as reduction. A reduction is a net
transformation which decreases the net size while preserving some of its properties.
Three points characterize a reduction:

1) The application conditions: how to recognize that the reduction may be
correctly applied to a given net.

2) The net transformation: how to obtain the reduced net.

3) The preserved properties: does the reduced net present the same behaviors as
the original one with respect to a given property?

These three points raise considerations that are somewhat contradictory:

1) The application conditions must be easy to verify; in particular they must not
require construction of a reachability graph, therefore they must only rely on structural
conditions.

2) The net transformation must reduce the number of places, or of transitions, or
of reachable markings, which may introduce some behavioral changes.

3) The more important properties must be preserved but this strongly limits the
transformations.
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The main reductions of place/transition Petri nets have already been presented in
Chapter 3. We now present their extensions to high level nets.

8.4.1. Principles of extension to high level nets

Several kinds of reductions have been defined for colored nets [COL 86, GEN 91,
HAD 91]. We discuss these last ones because the author defines a general extension
method allowing a colored reduction to be obtained, starting from an ordinary one,
and successfully applies his method to several classical reductions.

This method relies on the three following principles:

1) Stay close to the ordinary application conditions; this means:
a) Do not add structural constraints to the ordinary definition.
b) Only add functional conditions needed for preserving the equivalence

between the original net and the reduced one.

2) Only consider extensions which allow a usable reduced net to be obtained.
a) Do not enlarge the color domain of transitions.
b) Only compose color functions or their inverses to define new color

functions.

3) Always keep the same set of preserved properties.

A clean methodology is to study the sufficient conditions such that a colored
reduction may be considered as a preliminary unfolding followed by a sequence
of classical reductions and concluded by a reverse folding. Therefore we study
how to directly recognize the application conditions in a colored net and apply the
transformation rules corresponding to a sequence of reductions of the unfolded net as
shown in Figure 8.16.

Reduced unfolded net

"colored" reduction

unfolding

folding

series of "ordinary" reductions

Colored Net Unfolded net

Reduced colored net

Figure 8.16. Extension methodology

In addition to the simple structural conditions (a place has only one input transition,
a transition has only one output place, etc.), it is important to characterize the color
functions with respect to the structure they induced on the unfolded net. For instance,
a transition may have only one output place in the colored net, while in the unfolded
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Figure 8.17. Example of modified structure in the unfolded net

one an instance of this transition may have a set of outplaces. This is the case when
broadcast functions are used as in Figure 8.17.

The following definitions give sufficient conditions to insure that the unfolding
will produce a net having a convenient structure.

DEFINITION 8.12 (Function properties). A function f from C to Bag(C ′) is said to
be:

– unary iff ∀c ∈ C, c′ ∈ C ′, f(c)(c′) = 0 or f(c)(c′) = 1;

– orthonormal iff C =C ′ and a permutation σ on C exists such that f(c)=σ(c);
– quasi-injective iff ∀c1, c2 ∈ C, ∀c′ ∈ C ′,

f
(
c1

)
(c′) �= 0 and f

(
c2

)
(c′) �= 0 =⇒ c1 = c2;

– quasi-surjective iff ∀c′ ∈ C ′, ∃c ∈ C such that f(c)(c′) �= 0;

– quasi-bijective iff C = C ′ and ∀c ∈ C, ∃!c′ ∈ C such that f(c)(c′) �= 0.

A unary function may only produce values equal to 0 or 1 in the unfolded net. An
orthonormal function is, apart from a permutation, an identity function on a domain C.
The other characterizations correspond to the usual concepts of injection, surjection
or bijection, except that they go from a domain to a domain of multisets.

Practically, the syntax of well-formed nets allows the sufficient conditions for these
properties to be easily tested. For instance a quasi-injective function on an arc from a
place p to a transition t may not use a projection: it is sufficient to test that the domain
of t is smaller, in the sense of the Cartesian product, than the domain of p, and that this
function is a tuple using all the variables instantiated by t and not using the function
All on the color classes belonging to both the domains of t and of p.

We now study how to extend the agglomeration of transitions and then the deletion
of an implicit place.

8.4.2. Pre-agglomeration and post-agglomeration of transitions

The idea of pre-agglomeration and post-agglomeration of transitions is to consider
two disjoint sets of transitions (denoted H and F ) and to define hypotheses ensuring
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equivalence between the initial net, where the transitions h of H and f of F are
successively fired, and the reduced net, where the couples h, f will be atomically fired.
For pre-agglomeration, for which H must be a singleton containing only one transition
h, structural hypotheses ensure that it is possible to delay the firing of a transition h up
to the firing of a transition of F without modifying the set of basic properties. Atomic
combined firing allows deletion of an intermediary state, thereby reducing the size of
the reachability graph. Similarly, for post-agglomeration, structural hypotheses insure
that it is possible to advance the firing of a transition of F as soon as a transition of H
has been fired so both these firings may be grouped atomically.

8.4.2.1. Pre-agglomeration of transitions

This reduction is extended to colored nets by adding to the structural conditions
(1.a, 1.b, 3.a and 4) new conditions (1.c, 1.d and 3.b) concerning the domains and the
color functions.

DEFINITION 8.13 (Pre-agglomerable transitions). Let (CN,m0) be a colored net. A
set of transitions F is pre-agglomerable with a unique transition h not belonging to
F iff the following conditions are satisfied:

1) There exists a place p, modeling an intermediate state between the firing of h
and the firing of a transition of F :

a) m0(p) = 0;

b) •p = {h} and p• = F ;

c) C(p) = C(h) and Post(p, h) is an orthonormal color function;

d) ∀f ∈ F, Pre(p, f) is a unary and quasi-surjective color function.

2) h has only p as an output place: h• = {p}.
3) h is not in conflict with any other transition:

a) ∀q ∈ •h, we have q• = {h}; and

b) Pre(q, h) is an injective color function.

4) h has at least one input place •h �= ∅.

Two examples show why the conditions on color functions must be added to the
structural ones. In the first net (Figure 8.18), the function Post(p, h) = All−X is not
orthogonal, therefore the unfolded net (on its right) does not have a structure allowing
pre-agglomeration.

In the second example (Figure 8.19), the empty function on the arc from place r to
transition h generates a conflict in the unfolded net (on its right) between the instances
h1, h2, h3 for their input place r, forbidding pre-agglomeration.
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Figure 8.18. The function Post(p, h) must be orthonormal

Figure 8.19. The functions Pre(q, h) must be quasi-injective

In Figure 8.20, the conditions for pre-agglomeration are verified in the colored
net. Therefore, in the unfolded net (on its right), it is possible to apply a sequence of
pre-agglomerations to all couples of generated transitions h(1) with f(1), then h(2)
with f(2), then finally h(3) with f(3).

The results of these three reductions are shown on the right hand part of Figure
8.21, which after re-coloring gives the equivalent colored net (on the left).

Indeed our purpose is to perform the transformation of the colored net directly:
agglomeration of h with the set of transitions f of F ; each becomes a composed one,
which is denoted here by new − f to distinguish it from f in the original net.

The only difference between the classical transformation and the colored one
is that we need to compose functions for defining the new pre-conditions of the
transitions new − f (third point of the next definition). In fact a token consumed
by the firing of transition new − f in a place q of the reduced net is a token that,
in the original net, was initially consumed by h in q and modified by the function
Post(q, h).
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Figure 8.20. Satisfied conditions for pre-agglomeration

Figure 8.21. Agglomeration in the unfolded net and in the reduced colored net

DEFINITION 8.14 (Pre-agglomerated net). A pre-agglomeration of a transition h with
a set of transitions F in the net (CN,m0) produces the reduced net (CNr,m0r)
defined by:

1) Places and transitions of the reduced net:
- Pr = P \ {p}, Tr = T \ {h};
- ∀t ∈ Tr,∀q ∈ Pr, Cr(t) = C(t), Cr(q) = C(q) et m0r(q) = m0(q).

2) Unmodified preconditions and postconditions: ∀t ∈ Tr,
- ∀q ∈ Pr,Postr(q, t) = Post(q, t);
- ∀q ∈ Pr \ •h, Prer(q, t) = Pre(q, t).

3) New preconditions: ∀f ∈ F , ∀q ∈ •h,

Prer(q, f) = Pre(q, h) ◦
(
Post(p, h)

)−1 ◦ Pre(p, f).

A more complex example is given in Figure 8.22 to illustrate the transformations
according to the previous definition (definition 8.14).
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Figure 8.22. Example of pre-agglomeration

First, the set F contains two transitions f1 and f2 having different kinds of
inscriptions on their input arcs. The transitions f1 require for firing a complete set of
tokens 〈X1, C2 · all〉, which is obtained after several occurrences of h firings have
occurred for the same X1 associated, one by one, with all X2. The agglomeration
of h with f1 finally requires in q, for the reduced transition hf1, a set of tokens
〈X1, C2 · all, C3 · all〉, where C3.all comes from h and C2.allfrom f1. Similarly,
the agglomeration of h with f2 produces a hf2 which requires a set of tokens
〈C1 · all − X1, X2, C3 · all〉. Of course, the conflict that may occur in the original
net between f1 and f2 remains in the reduced net between hf1 and hf2.

8.4.2.2. Post-agglomeration of transitions

The conditions required for the post-agglomeration of two sets of transitions F
and H insure that each transition f of F is immediately firable after the firing of a
transition h of H . Again the differences between the ordinary version and the colored
one only concern the inscriptions on the arcs around p and also on the color domains
(points 1.c and 1.d).

DEFINITION 8.15 (Post-agglomerable transitions). Let (CN,m0) be a colored net. A
set of transitions F is post-agglomerable with a set of transitions H disjoint from F
(H ∩ F = ∅) iff the following conditions are verified:

1) There exists a place p modeling an intermediate state between the firing of a
transition of H and the firing of one of F :

a) m0(p) = 0;
b) •p = H and p• = F ;
c) ∀h ∈ H , C(h) = C(p) × Ch and Post(p, h) is the composition of an

orthonormal colored function on C(h) and of a projection from C(h) in C(p);
d) ∀f ∈ F , C(p) = C(f) and Pre(p, f) is an orthonormal color function.

2) The transitions of F have no other input place than p: •F = {p}.
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3) There exists a transition f of F having an output place: F • �= ∅.5

In the post-agglomerated case the transitions of H and F are merged and denoted
fh. The arc inscriptions on the arcs take these modifications into account.

DEFINITION 8.16 (Post-agglomerated net). A post-agglomeration of a set of
transitions F with a set H in the net (CN,m0) produces the reduced net (CNr,m0r )
defined by:

1) Places and transitions of the reduced net:

Pr = P \ {p}, Tr = T ∪ (H × F ) \ (H ∪ F )

(we denote by hf the transition (h, f) of H × F ).

2) Unmodified part of the net ∀t ∈ Tr \ (H × F ), ∀q ∈ Pr:
- Cr(t) = C(t) and Cr(q) = C(q).
- Prer(q, t) = Pre(q, t) et Postr(q, t) = Post(q, t).
- m0r (q) = m0(q).

3) New transitions ∀hf ∈ (H × F ), ∀q ∈ Pr:
- Cr(hf) = C(h) and Prer(q, hf) = Pre(q, h).
- Postr(q, hf) = Post(q, h) + Post(q, f) ◦ Pre−1(p, f) ◦ Post(p, h).

The definition of the reduced net remains the same. The following example (see
Figure 8.23) illustrates this reduction .

Figure 8.23. Example of post-agglomeration

If the set F is reduced to a singleton (F = {f}), it is possible to relax the
constraints concerning the color functions on the arcs from H to the intermediate

5. This condition may be refined as: ∀c ∈ C(p), ∃f ∈ F , ∃q ∈ P , such that Post(q, f)(c) �= 0.
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place p (a unary color function is sufficient) and the transition h may have any color
domain. The condition 1.c may be written as

∀h ∈ H, Post(p, h) is a unary color function.

8.4.3. Deletion of an implicit place

The implicit place reduction consists of suppressing a place that can never
alone forbid the firing of transitions: therefore this place is useless. Such a place is
characterized by 1) conditions concerning the initial marking (at the beginning it is
useless); and 2) a condition on a place invariant existence insuring that the initial
conditions always remain verified. This reduction allows deletion of a place and
therefore simplifies the pre-conditions and post-conditions of the net. Although it
does not reduce the size of the reachability graph, its great interest is its help in
continuing with other reductions.

DEFINITION 8.17 (Implicit place). Let (CN,m0) be a colored net. A place p is said
to be implicit iff there exists P ′ ⊂ P , with p /∈ P ′, such that:

1) There exists a flow on the domain C(p) F ≡ Fp · p−
∑

q∈P ′ Fq · q with
- Fp a linear quasi-bijective application on Bag(C(p)), and
- Fq linear applications from Bag(C(q)) to Bag(C(p)).

2) ∀t ∈ T , ∀ct ∈ C(t),

Fp

(
m0(p)

)
−
∑
q∈P ′

Fq

(
m0(q)

)
≥ Fp

(
Pre(p, t)(ct)

)
−
∑
q∈P ′

Fq

(
Pre(q, t)

(
ct

))
.

8.4.4. Application examples

We first give an example for which the reduction process leads to a complete
reduced model. However, not all colored nets can be completely reduced. We also
study a second example where the reduction simplifies the model without reducing it
to a single transition. Even in this case, further analysis is drastically simplified.

The database model reduction

We again consider the example of a replicated database discussed in Chapter 7 (see
Figure 7.12) and depicted again in Figure 8.24.

It is easy to verify that the transition t4 is post-agglomerable with the transition
t3. Indeed the structural schema is verified: the place Update is initially unmarked,
its only input is t3, and its only output is t4; and t4 has only one pre-condition, which
is the place Update. Moreover, the functional constraints are also verified: Update
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Figure 8.24. Model of a replicated database

has the same color domain as t3 and t4, and the function <X1,X2> is effectively
orthonormal. Applying this reduction gives the net in Figure 8.25, where the place
Update has disappeared and the transition t3 has been merged with t4, giving the
new transition t3t4.

Figure 8.25. First reduction by post-agglomeration of t3 and t4

In this new model the place StartUpdate is implicit because it will always be
marked with All1 and therefore will never forbid firing of the transition t3t4. This
place may be suppressed without modifying the fundamental properties of the net. The
resulting net is shown in Figure 8.26.

After deleting this implicit place, we may post-agglomerate the transition t1 with
t3t4, which was not possible while StartUpdate remained in the net. We obtain
the left hand net of Figure 8.27.
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Figure 8.26. Second reduction by deletion of implicit place StartUpdate

Figure 8.27. Three last reductions

In this new model the place Ack is implicit (while the place WaitAcks is not) as
it is shown by the following flow of domain

C1 × C2 : 〈X1, X2〉 ·Ack − 〈All1 −X1, X2〉 ·WaitAcks = 0.

After deleting this implicit place, we obtain the middle net in Figure 8.27, where
we can post-agglomerate the transition t1t3t4 with t2, giving the net on the right
of the same figure.

Now the remaining places StartModif and Files are implicit and can be deleted.
Therefore the initial model is equivalent with respect to the fundamental properties of
boundedness, liveness, and home state of the net reduced to the transition t1t3t4t2
which obviously enjoys all these properties.
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Conversely some properties are lost during the reduction steps. To verify some
properties more acute than liveness, such as some of those expressed by temporal
logic formulae [POI 00], it is necessary to keep some places and transitions which
appear in the corresponding formulae. For instance, to verify that site 1 cannot work
on the same file as site 2, the places Files and WaitAcks must be kept. Nevertheless,
all the reductions up to the central net of Figure 8.27 remain useful since they simplify
property verification with a much simplified reachable marking graph.

The dining philosophers model reduction

Let us now reconsider the model of philosophers proposed in Chapter 7 (see Figure
7.16) to illustrate ordered nets. This model leads to deadlocks. A tentative way to avoid
this is to introduce tickets which the philosophers must claim before trying to get their
forks and which they must return as soon as they have got their second fork. This
leads to the net in Figure 8.28, where, for sake of simplicity, we have reduced the
indeterminism by assuming that all philosophers begin by getting (and also putting
down) their left fork first.

Figure 8.28. Net for philosophers with tickets

Several post-agglomerations are possible, allowing deletion of the intermediate
places Eat, releaseL and releaseR, finally giving the reduced net of Figure
8.29, which cannot be reduced any further.

Therefore the net is live iff the number of tickets is strictly less than the number of
forks.
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Figure 8.29. Reduction of the net for philosophers with tickets

This control is achieved by the invariant introduced by the place Ticket, which
insures that the number of waiting philosophers having already taken a fork (place
PwaitR) is less than or equal to the number of initial tokens in the place Ticket.
The occurrence, or not, of a deadlock depends thus upon the initial marking of this
place, and such a condition is difficult to characterize by structural conditions.

8.5. Conclusion

We have studied three techniques for verifying colored nets and well-formed nets:
the construction of the symbolic reachability graph, the computation of generating
families of invariants, and the application of structural reductions. The main points
of interest of these techniques is that they can be directly applied to high level nets
without needing to unfold them or build their complete reachability graphs, and
that their results are easily interpretable on the original model. Their cost remains
acceptable, even if they may need to use formal calculus techniques.

Note that there are many other verification techniques for high level nets. Some of
them are specific to application domains, or oriented towards particular properties, and
will be presented in other chapters in this book, in particular the performance analysis
of stochastic well-formed nets (Chapters 9, 10, 11) and the verification of temporal
logic formulae for well-formed nets (Chapter 14).
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Chapter 9

Stochastic Petri Nets

9.1. Introduction

One of the main interests of Petri nets is to combine qualitative analysis (i.e.
property verification) and quantitative analysis (i.e. performance evaluation) [FLO 78,
MOL 81, REI 98a, REI 98b]. In comparison, concurrency models such as process
algebra [HIL 96] have only recently been extended with stochastic features, and
although first results are promising, there is still more research to be done on
performance evaluation of stochastic Petri nets. Similarly, the usual models for
performance evaluation, such as queueing networks [KLE 75], do not include
synchronization mechanisms and adding them using ad hoc constructions [FDI 86,
DAL 97] does not achieve the generality and the simplicity of concurrency modeling
with Petri nets.

Stochastic Petri nets were introduced in a pragmatic way at the end of the 1970s,
in order to benefit from Markov chain evaluation methods. This approach leads
to immediate results but conceals the semantic features underlying the definition
of stochastic Petri nets and cannot be easily generalized to different probability
distributions. So in the three chapters devoted to stochastic Petri nets, we proceed as
follows. First we tackle the semantic level, i.e. the level of the stochastic processes,
and we study their properties with the aim of designing analysis methods. Here we
have chosen to emphasize the principles which characterize every method. So, we
omit programming features related to numerical computations. Indeed, these features
are not specific to stochastic Petri nets and are covered by a number of excellent
books [STE 94, BOL 98]. Then we present models (and extensions) of stochastic
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Petri nets which generate such stochastic processes. Thus the constraints that appear
in the definition have an intuitive explanation. Finally, we develop analysis methods
at the stochastic Petri net level, which demonstrate the links with the qualitative
methods described in other parts of this book.

This chapter begins by characterizing stochastic processes associated with
discrete event systems. We describe the family of random variables of these
processes and interpret them w.r.t. realization of an execution. Then we briefly recall
renewing theory, which ensures, under weak conditions, the existence of a stationary
distribution of the discrete event system. We mainly cover the study of systems in the
long run. Then we list, with respect to increasing complexity order, typical processes
for which the renewing theory can be applied, beginning with Markov chains.

We then develop the key points of stochastic semantics for Petri nets. This
includes the specification of a random variable associated with the firing delay of a
transition, the choice criteria between enabled transitions, the handling of the firing
degree in samplings of the random variable associated with a transition, and the
memorizing of the previous samplings once the firing is performed. We then restrict
the type of distributions, which leads to the stochastic processes previously studied.
Among the different families of stochastic nets, Petri nets with exponential and
immediate distributions, called generalized stochastic Petri nets, are considered as the
standard model [MAR 95]. We show, for every family, how to compute the stationary
distribution based on the reachability graph (when it is finite).

The basic algorithms have a complexity of the same order of magnitude as the size
of the reachability graph for simple models and greater for models with more general
distributions. Thus the more elaborate technique splits into two families: the first one
aims at obtaining a complexity smaller than the size of the graph (e.g. by restricting the
class of Petri nets), and the second one aims at obtaining the same order of complexity
as the size of the graph but for extended models.

The last section describes some of these methods in order to cover the diversity of
approaches. Two other methods, applicable to well-formed nets, are presented in the
next chapters. Those covered here are:

– research of a product form: a formula that expresses the stationary probability
of a marking including the net parameters and the place marking as variables of the
formula. This method illustrates the extension of a technique first applied in queueing
networks.

– research on bounds (e.g. on the rates) using the structure of the net. Here we
observe that linear programming eases the quantitative and qualitative analysis of Petri
nets.

– approximation methods that take advantage of a net decomposition or of a
transformation of the stochastic process.
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– a resolution method for nets with a single unbounded place. The application of
this method shows that conditions on the structure of Markov chains can be naturally
translated in terms of Petri nets.

9.2. A stochastic semantics for discrete event systems

9.2.1. The stochastic model

We assume that the bases of probability theory are known by the reader [FEL 68,
FEL 71, TRI 82].

Notations:

– Pr(E) denotes the probability of event E and Pr(A | B) the probability of A
knowing B.

– R (resp. R+) denotes real numbers “reals” (resp. non-negative reals).

– A measure on R is given by a function F , increasing, right continuous, such that
limx→−∞ F (x) = 0. F (x) represents the measure of interval ]−∞, x]. The mass of
the measure (finite or not) is limx→∞ F (x).

– A distribution is a measure with mass 1.

– Usual integration is denoted ds, where s is the integration variable. Integration
w.r.t. a measure F is denoted F{ds}.

– The word almost, in expressions like almost everywhere or almost surely, means
“for a set of probability 1”.

Execution of a discrete event system (DES) is characterized by a sequence of
events {e1, . . . , en, . . .} (sequence assumed to be infinite) occurring after time delays.
Only events can change the state of the system.

Formally, the stochastic behavior of a DES is determined by two families of
random variables:

– X0, . . . , Xn, . . . taking their values in the (discrete) state of the system
{s1, . . . , sk, . . .}. X0 represents the initial distribution of the system and Xn (n > 0)
the distribution after the nth event. The occurrence of an event does not necessarily
modify the state of the system, consequently Xn+1 may be equal to Xn.

– T0, . . . , Tn, . . . taking their values in R+, where T0 represents the time interval
before the first event and Tn, (n > 0) represents the time interval between the
nth and (n + 1)th event. Observe that this interval can be zero (e.g. a sequence of
instructions considered as instantaneous compared to database transactions including
inputs/outputs).

A priori, no restriction should be required for these families of random variables.
However, to avoid the pathological character of some executions, we exclude the
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possibility of a DES executing an infinite number of actions in finite time. In other
words, we establish sufficient conditions to fulfill the following equation:

∞∑
n=0

Tn = ∞ almost surely [9.1]

This restriction enables us to define the state of the system at any instant. Let N(t)
be the random variable defined by:

N(t) = inf

{
n such that

n∑
k=0

Tk > t

}

Using equation [9.1], N(t) is defined almost everywhere. As can be seen in
Figure 9.1, N(t) presents jumps of amplitude greater than 1. The state Y (t) of the
system at time t, is XN(t). Observe that Y (t) is not equivalent to the stochastic
process, but that it allows us, in most cases, to proceed to standard analyses. The
scheme in Figure 9.1 presents a possible execution of the process and illustrates
the interpretation of the random variables previously introduced. In this example,
the process is initially in state s4 and remains in it until t0, when it moves to state
s6. At time t0 + t1, the system successively visits, in a zero time, states s3 and s12

before reaching state s7 where it sojourns for some time. The observation Y (t) in
continuous time conceals the vanishing states s3 and s12 of the process.

Figure 9.1. A realization of the stochastic process
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9.2.2. Analysis with renewing theory

The performance evaluation of a DES leads to two kinds of analysis:

– The study of transient behavior, i.e. the computation of measures for
performance indices depending on elapsed time since the initial state. This study
covers the initializing stage of systems and terminating systems. Application areas
include dependability and safety analyses [LAP 95, MEY 80, TRI 92].

– The study of stationary behavior. For numerous applications, what interests the
modeler is the behavior of the system once the initial stage is left and it stabilizes.

This supposes that such a stationary behavior exists. This can be summarized,
denoting π(t) the distribution of Y (t), by:

lim
t→∞

π(t) = π [9.2]

where π is also a distribution, called the stationary distribution. In this case, we call
the process an ergodic process. A sufficient condition for this asymptotic behavior is
the existence of a repetitive phenomenon corresponding to some event occurrences
such that the process behaves identically after every such occurrence.

DEFINITION 9.1. A stochastic process is a renewing process if there exists a family of
random variables: I1, . . . , Ik, . . . (defined almost everywhere) taking values in N such
that:

– Ik < Ik+1;

– ∀k, k′, {XIk+n, TIk+n}n∈N and {XIk ′+n, TIk ′+n}n∈N are probabilistic
replicates of a fixed process.

A renewing process is fully determined by its behavior between two renewing
instants. Let us call:

– F the distribution of time between two renewing instants;

– d the mean, assumed to be finite, of this distribution;

– pk(t) the probability that, t time units after a renewing instant, a new renewing
instant has not occurred and that the process is in state sk.

Observe that 1 − F (t) =
∑

k pk(t). Hence family {pk}k∈N determines the
stochastic process.

We must distinguish two cases depending on the type of distribution F since
some distributions lead to periodic behaviors. Let us pick an elementary DES (a
semi-Markovian process with deterministic delays, see later), visiting three states s1,
s2, s3. We consider entrance into s1 as a renewing instant. The DES sojourns 1 t.u. in
state s1 then moves to state s2 where it remains during 2 t.u.. With probability 1/2, it
returns to state s1 or moves to state s3, where it remains 3 t.u., before returning to s1.
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Assume that the process starts in state s1. Then every 3n t.u., the process either
is in s1, or in s3 and every (3n + 1) t.u. the process is either in s2 or in s3. So there
is no stationary distribution. These periodic behaviors are generated by arithmetic
distributions.

DEFINITION 9.2. A distribution is arithmetic if it is concentrated on points {n ·τ}n∈N

for some τ . The period of an arithmetic distribution is the greatest τ fulfilling this
property.

Below is the main result concerning the existence of stationary behavior.

THEOREM 9.1 ([FEL 68, FEL 71]). Given a renewing process defined by {pk}k∈N, if
F is not arithmetic then

lim
t→∞

π(t)[sk] =
1
d
·
∫ ∞

0

pk(t)dt

If F is arithmetic with period τ and if the process starts at a renewing instant,

lim
n→∞

π(t + n · τ)[sk] =
τ

d
·

∞∑
i=0

pk(t + i · τ)

If these two formulas are relatively simple, their application requires us to know
more about the stochastic process, as will be seen in the next sections. These formulas
can be generalized to every performance index independent of the behavior of the
process before the last renewing instant (e.g. the elapsed time since the last renewing
instant).

9.2.3. Discrete time Markov chains

9.2.3.1. Presentation

A discrete time Markov chain (DTMC) has the following characteristics:

– The time interval between instants Tn is the constant 1.

– The next state following the current state only depends on this state and the
transition probabilities are constant over time:

Pr
(
Xn+1 = sj | X0 = si0 , . . . , Xn = si

)
= Pr(Xn+1 = sj | Xn = si) = pij = P[i, j]

We will use both notations for state transitions.

The process is characterized by its initial distribution π0 and matrix P. If πn is
the distribution of Xn then πn = π0.Pn.
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9.2.3.2. Conditions for a stationary distribution

It is clear that every entrance into some given state constitutes a renewing instant.
However, two conditions need to be checked:

– There must be almost surely an infinite number of renewing instants.

– The mean time between two renewing instants must be finite.

This leads to a classification of states:

– A state is transient if the probability of return is less than 1. Such a state cannot
constitute a renewing process since the number of returns is almost surely finite. For
obvious reasons, its occurrence probability goes to 0. A state is called recurrent if it is
not transient.

– A state is zero recurrent if the mean time for return is infinite. This state cannot
ensure the existence of a stationary distribution. Intuitively, once reached, this state
will occur after intervals whose mean length will go to infinity and consequently its
occurrence probability goes to 0. This intuitive reasoning is mathematically sound.

– A state is non-zero recurrent if the mean time for return is finite. It is then
sufficient that the state can be reached almost surely from the initial distribution in
order to ensure the existence of a stationary distribution.

Let us elaborate this point and consider the graph (possibly infinite) built as
follows:

– The set of vertices is the set of states.

– There is an arc from si to sj if pij > 0.

Let us study the strongly connected components (s.c.c.) of this graph. If a s.c.c.
has an exit arc, then, necessarily, the states of this s.c.c. are transient. If there are
two terminal s.c.c. (i.e. without exit arcs) then the stationary distribution depends on
the probability of reaching them. Consequently, the independence of the stationary
distribution from the initial distributions requires a single terminal s.c.c. reachable
almost surely.

We call a terminal s.c.c. an irreducible chain. In an irreducible chain all states are
of the same kind. Let us examine the irreducible chain defined by:

∀i, pi i+1 = 1− ei and pi 1 = ei, with 0 < ei < 1

Then Pr(to not return in s1) =
∏∞

i=1(1−ei). A logarithmic transformation shows that
this probability is non-zero iff

∑
ei is convergent. Assume that states are recurrent;

the mean time for a return to s1 is equal to 1 +
∑∞

k=1

∏k
i=1 ei. Thus states are zero

recurrent if this sum is divergent, and non-zero recurrent otherwise. Classification
criteria exist (see below). In a finite graph, the existence and uniqueness (whatever the
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initial distribution) of a stationary distribution are ensured as soon as there is a single
terminal s.c.c.

In a discrete time Markov chain, the distribution of return to a state is arithmetic
and its period is a multiple of 1. However, since the sojourn in a state lasts at least 1 t.u.,
if the period is 1 the arithmetic case of theorem 9.1 is reducible to the general case
and there is a stationary distribution. We call such states ergodic and the chain is said
to be aperiodic. If the period (k) is greater than 1, we can divide the states into subsets
S0, S1, . . . , Sk−1 such that from states of Si we reach states of S(i+1) mod k. If we
consider the state changes every k t.u. (transition matrix Pk), we obtain k independent
chains over states Si with period 1.

9.2.3.3. Computation of the stationary distribution

Once the existence of the stationary distribution is ensured, the computation is
relatively easy. Indeed, we have πn+1 = πn · P. Taking the limits (which is sound
here), we obtain π = π ·P. Furthermore, if the chain is aperiodic then π is the single
distribution of:

X = X ·P [9.3]

and the existence of a solution which is a distribution ensures that the irreducible chain
is ergodic.

In the finite case, in order to solve equation [9.3], we can perform a direct
computation by adding the normalization equation X · 1T = 1, where 1T denotes the
column vector every component of which is 1. But iterative computations are more
interesting, the simplest consisting of iterating Xn+1 ← Xn ·P [STE 94].

9.2.4. Continuous time Markov chains

9.2.4.1. Presentation

A continuous time Markov chain (CMTC) has the following characteristics:

– The time interval between instants Tn is a negative exponential random variable
whose rate depends only on state Xn. In other words

Pr(Tn ≤ t | X0 = si0 , . . . , Xn = si, T0 ≤ t0, . . . , Tn−1 ≤ tn−1)

= Pr(Tn ≤ t | Xn = si) = 1− eλi·t

– The state following the current state depends only on this state and transition
probabilities are constant over time:

Pr(Xn+1 = sj | X0 = si0 , . . . , Xn = si, T0 ≤ t0, . . . , Tn−1 ≤ tn−1)

= Pr(Xn+1 = sj | Xn = si) = pij = P[i, j]

In continuous time Markov chains, due to the lack of memory of the exponential
distribution, the evolution of the DES depends only on the current state.
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Unlike discrete time chains, the stochastic process may present the pathological
behavior discussed at the beginning of the chapter. This behavior is excluded if, for
instance, there is a finite upper bound to the set of λi or if the discrete chain defined
by matrix P, and called an embedded chain, is irreducible and recurrent.

The process is characterized by its initial distribution π(0), matrix P and the λi’s.
Let us call π(t) the distribution of Yt, and πk(t) = π(t)[sk]. If δ is small, between t
and t + δ, the probability of occurrence of more than one event is negligible and the
probability of occurrence of a state change from k to k′ is approximatively equal to
λk · δ · pkk′

πk(t + δ) ≈ πk(t) · (1− λk · δ) +
∑
k′ �=k

πk′(t) · λk′ · δ · pk′k

Consequently

πk(t + δ)− πk(t)
δ

≈ πk(t) · (−λk) +
∑
k′ �=k

πk′(t).λk′ · pk′k

And finally

dπk

dt
= πk(t) · (−λk) +

∑
k′ �=k

πk′(t) · λk′ · pk′k

Let us define matrix Q by: qkk′ = λk · pkk′ for k �= k′ and qkk =
−λk(= −∑k′ �=k qkk′). Then the previous equation can be written:

dπ

dt
= π ·Q [9.4]

Taking the limits, we obtain the transient behavior of the process:

π(t) = π(0) ·
∞∑

n=0

tn

n!
·Qn = π(0) · et·Q [9.5]

where the second equality is a definition. We call Q theinfinitesimal generator of the
process.

9.2.4.2. Existence and computation of a stationary distribution

Assume that π(t) converges towards a stationary distribution. It is reasonable to
suppose that dπ

dt goes to 0. Hence equation [9.4] becomes π.Q = 0. Indeed, the
existence of a distribution, solution of equation:

X ·Q = 0 and X · 1T = 1 [9.6]
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is a necessary and sufficient condition and here again this equation can have at most
one solution (if the embedded chain is irreducible). The computation is performed
similarly to that for discrete time chains.

9.2.5. Semi-Markovian processes

9.2.5.1. Presentation

Here we describe a restricted notion of semi-Markovian processes. This is for
two reasons. First, this definition allows a simplified computation of stationary
distributions; and, the next section presents a family of processes more general than
the family of semi-Markovian processes. A semi-Markovian process is an extension
of CTMCs where sojourn times in states may have any distribution. This process has
the following characteristics:

– The time interval between instants Tn is a random variable that only depends on
state Xn. In other words:

Pr(Tn ≤ t | X0 = si0 , . . . , Xn = si, T0 ≤ t0, . . . , Tn−1 ≤ tn−1)

= Pr(Tn ≤ t | Xn = si) = Pr(Di ≤ t)

where Di is a random variable with a finite mean, denoted di.

– The state following the current state only depends on this state and transition
probabilities are constant over time:

Pr(Xn+1 = sj | X0 = si0 , . . . , Xn = si, T0 ≤ t0, . . . , Tn−1 ≤ tn−1)

= Pr(Xn+1 = sj | Xn = si) = pij = P[i, j]

Observe that here, again, the sequence of states (Xn) constitutes a DTMC
embedded in the process.

9.2.5.2. Existence and computation of a stationary distribution

Here we state only a sufficient condition for the existence of the stationary
distribution which covers the most frequent cases. First we assume that the embedded
chain is irreducible with a distribution solution of X · P = X and that one of the
distributions Di is not arithmetic.

Here again entrance to a state (si) can constitute a renewing process. Given some
state, the fact that it occurs infinitely only depends on transition probabilities pij and
is ensured by our first hypothesis. The mean return time must be carefully examined.
Indeed, every visit to si gives rise to a sojourn with mean time di. Thus, although the
mean number of visits before a return is finite, the mean return time could be infinite.
Let us call π′ (π′

k = π′[sk]) the distribution solution of equation [9.3]. Then the mean
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number of visits of sk between two visits of si is π′
k

π′
i
. Consequently, the mean return

time to si is equal to:

di +
∑
k �=i

dk ·
π′

k

π′
i

=
1
π′

i

·
∑

k

dk · π′
k

In other words, the existence of a stationary distribution is ensured if
∑

k dk · π′
k is

finite. Since Di is not arithmetic, we easily deduce that the distribution of returns is
not arithmetic.

With the same reasoning, we conclude that the ratio πk
πi

corresponds to the mean
sojourn time in sk between two returns in si divided by the mean sojourn time in si:

πk

πi
=

dk · π′
k

π′
i

di
=

dk · π′
k

di · π′
i

This leads to the stationary distribution:

πk =
π′

k · dk∑
k′ π′

k′ · dk′
[9.7]

Observe that the way we have proceeded allows some distributions Di to be
concentrated in 0 (see section 9.3.3).

9.2.6. Regenerative Markovian processes

9.2.6.1. Presentation

A regenerative Markovian process (or semi-regenerative process) includes a subset
of states, called regenerative states since entrance to any of these states constitutes
a renewing process. We call this subset S′. Such a process is fully determined by
its behavior between two consecutive entrances to regenerative states. Formally, we
define for every k, k′ ∈ S′ and every i ∈ S the following quantities:

– Fk(t) represents the distribution of time between entrance to sk and entrance to
a new regenerative state.

– dk is the mean of this distribution, assumed to be finite.

– fki(t) is the probability that, after t t.u. since entrance to sk, there have been no
new entrances to some regenerative state and that the process is in state si.

– Gkk′(t) is the probability that after entrance to sk, the process has reached a new
regenerative state sk′ in time ≤ t. Gkk′ represents a measure of mass ≤ 1.



280 Petri Nets

9.2.6.2. Existence and computation of a stationary distribution

We simultaneously describe sufficient conditions for the existence of a stationary
distribution and its computation. First, we suppose that the probability of reaching in
the future a new regenerative state from any regenerative state is always equal to 1,
which means that Fk is a probability distribution.

We study the embedded Markov chain representing visits to regenerative states
whose matrix is P. This matrix can be computed by:

pkk′ = Gkk′(∞) =
∫ ∞

0

Gkk′{dt}

We assume that this chain is ergodic and we note the distribution solution π′.
We need to compute the mean sojourn time in a state si between entrance to sk and
entrance to a new regenerative state (denoted dki):

dki =
∫ ∞

0

fki(t)dt

The stationary distribution (π) is now deduced by weighting these sojourn times
by the probabilities of visits to the regenerative states:

πi =
∑

k∈S′ π′
k · dki∑

k∈S′ π′
k · dk

The main difficulty is related to the determination of fki’s and Gkk′’s. In some
cases, this can be performed by the transient analysis of a Markov chain (see
section 9.3.4).

9.3. Stochastic Petri nets

9.3.1. Stochastic Petri nets with general distributions

The stochastic feature of Petri nets is introduced by considering that a transition
has a random firing delay (taking values in R+). The different families of stochastic
Petri nets are defined by restricting the type of distributions. For the moment, we
do not make any hypothesis about distributions. The definition of distributions is not
sufficient to characterize the stochastic process. We are going to successively study
the problems related to this characterization.

REMARK. Most of the parameters of the process can depend on the current marking.
For the sake of simplicity, we will not mention this in what follows.
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9.3.1.1. Choice policy

Given the initial marking, we need to determine the next transition to fire among
the firable ones. There are two possible strategies:

– A probabilistic choice w.r.t. a distribution associated with the subset of firable
transitions. This is a pre-selection since the choice takes place before sampling of the
delay.

– An independent sampling for every delay followed by the choice of the shortest
delay. In the case of equal delays, we also perform a probabilistic choice called
post-selection.

The second solution is always chosen as on the one hand it corresponds to a
more natural modeling, and because, on the other hand, with the help of immediate
transitions (see section 9.3.3), pre-selection can be simulated by post-selection.
Observe that unless the distributions are continuous, we need to specify the
distributions of selections.

9.3.1.2. Service policy

If a transition has an enabling degree e > 1, we can consider that the marking
provides e clients to the transition viewed like a server. So, when sampling the delay,
three options are possible, depending on the event modeled by the transition:

– A single sampling is performed; the transition offers only one service at a time
(single-server policy).

– e samplings are performed; the transition is a “parallel” server (infinite-server
policy).

– Min(e,deg(t)) samplings are performed; the transition can offer at most deg(t)
simultaneous services. This case generalizes the other ones (with deg(t) = 1 or ∞)
(multiple-server policy). The modeler must specify deg(t) for every transition.

9.3.1.3. Memory policy

Once transition t is fired, what is the effect of a sampling that has not been chosen
for another transition t′ for the next firing?

The first possibility consists of forgetting the sampling that has been performed. If
transition t′ remains firable, this takes place for a new sampling (resampling memory).
With such a semantics, t could model the failure of a service specified by t′.

The second possibility consists of memorizing the sampling decreased by the
sampling of t, but only if t′ remains firable (enabling memory PRD (Preemptive
Repeat Different)). If t′ is disabled, this mechanism models a time-out (t′) disarmed
by t.
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The third possibility is the same as for the previous one for a transition which is still
firable, but let the sampling be unchanged if t′ is disabled. This sampling will be used
again when t′ is firable (mode enabling memory PRI (Preemptive Repeat Identical)).
A disabled transition t′ could model a job aborted by t that should be restarted.

The fourth possibility consists of memorizing the sampling decremented by the
sampling of t. A disabled transition t′ could model a job suspended by t (age memory
also called PRS (Preemptive ReSume)).

To complete this policy, we must take into account the case of multiple-server
transitions, which requires the choice of which samplings should be memorized,
decremented, or forgotten. The simplest solution is a FIFO policy for samplings. The
last performed sampling is the first forgotten. Other policies (like suspend or forget
the least engaged client) are not necessarily compatible with some analysis methods.

It is clear that once these three policies are defined, the stochastic process is fully
determined. So, we now focus on the distributions for transition delays.

9.3.2. Stochastic Petri nets with exponential distributions

In the basic model [FLO 85, MOL 81] every transition (t) has an exponential
distribution with rate w[t] (which will be denoted wk = w[tk]).

Let us examine the stochastic process generated by a stochastic Petri net with the
single-server policy. Let m be some marking, t1, . . . , tk the firable transitions from
m. The following are fulfilled:

– the sojourn time is an exponential with rate w1 + · · ·+ wk;

– the probability of picking ti as the next firing is equal to wi
w1+···+wk

and it is
independent from the sojourn time in the marking;

– the distribution of the remaining firing delay of ti if tj is fired is equal to the
initial distribution (absence of memory).

In other words, only the new marking determines the future behavior of the
stochastic process. Thus it is a continuous time Markov chain, isomorphic with the
reachability graph of the Petri net, all parameters of which are given by states (i.e. the
markings). This reasoning is also valid for other service policies.

If the graph is finite, formula [9.5] gives the transient behavior of the net and if,
furthermore, it has a single terminal s.c.c. then the solution of equation [9.6] provides
the stationary distribution of the net.
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Using the stationary distribution, other performance indices can be computed as
the mean throughput (number of firings per time units) of transitions given by:

χk =
∑

m reachable

πm · services
(
m, tk

)
· wk [9.8]

where services(m, tk) indicates the number of clients in state m served by transition
tk; this number depends on the enabling degree and the service policy of the transition.

9.3.3. Generalized stochastic Petri nets

Modeling an algorithm or a protocol requires representation of choices, loops and
other control structures. These actions are logical operations and have a negligible
duration w.r.t. a data transmission for instance. Modeling them by an exponential
distribution with a high rate is unsatisfactory since, on the one hand, the choice of the
rate is arbitrary, and, on the other hand, numerical computations suffer from values
with very different orders of magnitude. To overcome this difficulty, immediate
transitions (i.e. with a distribution concentrated in 0) have been introduced. In this
new model [MAR 84], called GSPN for Generalized Stochastic Petri Nets, the
markings are partitioned into two categories: tangible markings from which no
immediate transition is firable and vanishing markings.

Let us examine the stochastic process generated by a GSPN from a given marking
m. If m is tangible then the process is identical to that of a Markovian SPN. Let
us examine the case of a vanishing marking; there is at least one firable immediate
transition. Almost surely the sampling of exponential transitions is > 0. Thus, the
choice of transition is made by a post-selection between immediate transitions. Since
the delay of immediate transitions is zero and the distributions of other transitions are
without memory, the remaining delays are identical to the initial delays and the state
of the process only depends on the new marking.

So, this is a semi-Markovian process whose sojourn times in tangible markings
follow an exponential distribution and sojourn times in vanishing markings are zero.
The transition probabilities (matrix P) are obtained either from the rates, or from
parameters of post-selection.

The analysis in section 9.2.5.2 is applicable here. However, in this particular
case, an improvement is possible. Observe that in the stationary distribution (see
equation [9.7]) the vanishing markings have a zero occurrence probability. Thus we
want to eliminate them before resolution of the embedded chain. With this aim,
we consider the process as a Markovian regenerative process whose regenerative
states are tangible markings. We need to compute the transition probabilities between
regenerative states, so we decompose matrix P into sub-matrices:
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– PV V , transitions between vanishing markings;

– PTT , transitions between tangible markings;

– PV T , transitions from vanishing markings to tangible markings;

– PTV , transitions from tangible markings to vanishing markings.

By reasoning on the number of encountered vanishing markings, when going from
a tangible marking to another tangible marking, we check that the new transition
matrix (P′) is given by:

P′ = PTT +
∞∑

n=0

PTV ·
(
PV V

)n ·PV T

= PTT + PTV ·
(
IdV V −PV V

)−1 ·PV T

where IdV V is the identity matrix on vanishing markings.

If IdV V −PV V is not invertible, it means a pathological behavior (i.e. a non-zero
probability of infinitely remaining in the vanishing states). Otherwise the two
expressions can be used to compute P′.

This kind of elimination of vanishing states is applicable to more general models
(e.g. deterministic SPNs) under some hypotheses.

The GSPN model is the one that has yielded the greatest number of specifications
and analyses of systems [MAR 95]. The tool GreatSPN [CHI 95] has contributed to
its expansion. Observing that these analyses are based on a finite reachability graph,
several extensions have been introduced: inhibitor arcs, guards on transitions, rates
depending on the current marking (called functional dependencies), etc. We will
mention the consequences of these extensions on the more elaborate methods.

9.3.4. Deterministic stochastic Petri nets

If the exponential distributions are appropriate for modeling events whose
temporal distribution is unknown, some operations have a duration included in a time
interval or even assimilable to a constant. In this case, the choice of an exponential
distribution leads to very approximative results. So, an extension of the GSPN model
including deterministic transitions has been introduced [MAR 87, LIN 98].

These nets are usually called deterministic stochastic Petri nets (DSPN) . Several
variations have been successively proposed for covering different situations. Here
we only describe a basic version in order to more easily explain the stochastic
process. We exclude immediate transitions since their handling is performed by the
technique described in the previous section. We also forbid functional dependencies:
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in particular, rates of exponential transitions and delays of deterministic transitions
are independent of the current marking. The net executes with single-server and
enabling-memory PRD policies. The main hypothesis is that at any time at most one
deterministic transition is firable, which restricts the application area of this model.
Recent work does not rely on this hypothesis at the cost of increasing complexity.

Different methods have been proposed for the analysis of these nets [GER 99,
LIN 98, LIN 99]. We present such a method whose efficiency has been experimentally
proved. Let us examine the stochastic process generated by the net. We can define
regenerative points:

– Every time the process reaches a marking where no deterministic transition is
firable, the future of the process only depends on the marking.

– Every time the process fires a deterministic transition and a deterministic
transition tk is then firable, the future of the process only depends on the marking
since the firing delay of tk is the initial delay, denoted dk.

– Every time the process fires an exponential transition and a deterministic
transition tk is then firable, the future of the process only depends on the marking
since the firing delay of tk is the initial delay, denoted dk.

Be careful: in the last two cases, the regenerative point is characterized both by the
reached marking and by the conditions of firing since the same making can be reached
by a firing that does not lead to a regenerative point. To distinguish regenerative points
from markings, we denote by mr, the regenerative point associated with a marking m,
and by mc a state reached with marking m and which is not a regenerative point.

Let us calculate the parameters of the process behavior between two regenerative
points in order to apply the results of section 9.2.5. Observe that when we enter a
regenerative point, we fire a sequence of exponential transitions possibly ended by
firing of the active deterministic transition. For the first kind of regenerative point,
every firing leads to a new point. The parameters of the behavior are thus given by the
rates of the firable transitions.

For the other kinds of regenerative points (mr), the firing of exponential transitions
corresponds to the evolution of a Markov chain whose states are mc

i and which ends
by:

– either the firing of the deterministic transition dk t.u. later;

– or the firing of an exponential transition, at most dk t.u. later, that leads to mr
j .

Let us call Cmr the Markov chain composed of mc (considered to be the initial
state), and these mc

i and mr
j (these last ones being without successors in the chain).

Let us denote by Qmr its infinitesimal generator, which is directly obtained by the
rates of exponential transitions. We say that this is a subordinated chain. πmr

t is



286 Petri Nets

the distribution at instant t of this chain, knowing that the initial distribution πmr

0

is concentrated in mc. Let us recall that πmr

t = πmr

0 .et.Qm r .

The transition probabilities between regenerative points (matrix P) are deduced
from the state of this chain at instant dk:

P
[
mr,mr

1

]
= πmr

dk

[
mr

1

]
+

∑
m2[tk >m1

πmr

dk

[
mc

2

]
which means that mr

1 has been the first regenerative point reached no later than dk,
or that no regenerative point has been reached before dk, and then that the firing of
the deterministic transition has led to m1. The mean sojourn time in a marking before
reaching the new regenerative point is given by:

sojournmr

(
m1

)
=
∫ dk

0

πmr

t

[
mc

1

]
dt

To perform these computations efficiently, different techniques are possible
[JEN 53, GRO 84]. However, this solution is more expensive in terms of time and
space than that of GSPNs.

9.3.5. Phase-type stochastic Petri nets

A phase-type distribution [NEU 81] is defined by a Markov chain with an
absorbing state (i.e. without successors) and an initial distribution. If F denotes
the distribution then F (t) is the probability of being in the absorbing state at time
t. Using 9.2.3.2, F is a probability distribution iff the absorbing state is the single
terminal s.c.c. of the graph associated with the chain. In this case, F is defined by
equation [9.5]. The states of the chain (except the last one) are called stages.

It has been established that, in some sense, every distribution is a limit of
phase-type distributions [COX 55]. For instance, an exponential distribution is
a phase-type distribution with a single stage and an immediate distribution is a
phase-type distribution without stages. A deterministic distribution with duration d is
approximated by a distribution with n consecutive stages whose rate is n

d .

So phase-type stochastic Petri nets (PH-SPN) have great expressive power.
However, such a net generates a stochastic process of the same kind as that of GSPNs.
Indeed, sampling of a phase-type distribution can be seen as a random sampling of
the choice of the first stage, a sampling of the exponential distribution of the stage,
a new random sampling of the choice of the next stage, etc. until the absorbing state
is reached. So, rather than considering transition firings as the events of the SED,
we select a more elementary step: the stage change of the distributions. This requires
completion of the state of the SED. A state is defined by:
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– a marking;

– for every transition, a descriptor which includes a sequence of samplings not yet
used to fire the transition. For every sampling, its current stage is memorized. If the
transition works with the enabling memory policy, the number of firings is exactly the
number of services offered by the transition. If it works with the age memory policy,
this number can be greater since it takes into account the suspended services.

Every step that reaches an absorbing state is an external transition since it updates
the marking. The new descriptor is computed w.r.t. the different policies of the net.
The internal transitions leave the marking unchanged and in the descriptor a single
sampling is updated.

The semi-Markovian process is built as a reachability graph starting from the initial
state and firing the internal and external transitions. More elaborate constructions are
possible by noting that, for instance, some markings lead to the same set of descriptors.

However, the problem is the number of states of this process, which has the
same order of magnitude as the product of the size of the reachability space and the
number of descriptors. We will see in the following chapters how to obtain stationary
probabilities of the net without building the process.

9.4. Some standard analysis methods

9.4.1. Research of a product form

We describe this method within the framework of exponential SPNs using an
example in order to illustrate its principles without entering the algorithmic details.

pt1,  w1 t2,  w2

Figure 9.2. Modeling of a queue by a Petri net

Let us look at the net in Figure 9.2, which models a queue. The steady-state
distribution of this (unbounded) net is given by (for w1 < w2):

π[n · p] =
(

1− w1

w2

)
·
(

w1

w2

)n

In this equation, we observe that the marking n of the place appears as an exponent in
the distribution.
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So the first idea is to generalize this formula as a product whose terms are
expressions obtained from the rates of k′ transitions and whose exponents are
markings of k places:

π

[
k∑

i=1

ni · pi

]
=

1
G
·

k∏
i=1

(
fi

(
w1, . . . , wk′

))ni

G, the normalizing constant, is defined as the sum of the set of reachable markings, of
products occurring in the right hand term of the equation.

p1

p4

p2

p5

p3

t1,  w1 t2,  w2

t4,  w4

t3,  w3

t5,  w5

Figure 9.3. A Petri net with a product form

Let us examine the net in Figure 9.3. We observe that the transitions can be
divided into two subsets Ta = {t1, t2, t3} and Tb = {t4, t5}. Inside every subset,
pre-conditions of a transition are post-conditions of another one and vice versa. For
instance, from marking m we can fire t1, iff m is obtained by firing t3 from another
marking. Let us denote by Qa (resp. Qb) matrix Q where all rates are canceled
except those of Ta (resp. Tb), Q = Qa + Qb.

The second idea is to substitute equation X ·Q = 0 by two equations X ·Qa = 0
and X · Qb = 0. Solving these two systems is not equivalent but a solution of the
second system provides a solution of the first system. In this context, the first system
is called global balance equations and the second one is called local balance equations.

Combining these two ideas, we look for a product form as follows:

π(m) =
1
G
· f1(m) · f2(m)

where f1 (which depends on w1, w2, w3) is unchanged by a firing in Tb and f2 (which
depends on w4, w5) is unchanged by a firing in Ta. Assume that this form exists and
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detail a local balance equation.∑
m′[t′>m, t′∈Ta

1
G
· f1(m′) · f2(m′) ·w[t′]

=
∑

m[t′′>m′′, t′′∈Ta

1
G
· f1(m) · f2(m) ·w[t′′]

Since f2(m) = f2(m′), the equation is equivalent to:∑
m′[t′>m, t′∈Ta

f1(m′) ·w[t′] =
∑

m[t′′>m′′, t′′∈Ta

f1(m) ·w[t′′] [9.9]

The main difficulty in obtaining a solution is the constraint that f1 is unchanged
by a firing in Tb. In the example, markings of p2 and p3 are unchanged by a firing in
Tb and those of p4 and p5 are unchanged by a firing in Ta.

So we write:

f1(m) = (w1)a1·m(p2)+b1·m(p3) · (w2)a2·m(p2)+b2·m(p3) · (w3)a3·m(p2)+b3·m(p3)

Let us recall that from m:

– t1 is fired iff m is reached by a firing of t3;

– t2 is fired iff m is reached by a firing of t1;

– t3 is fired iff m is reached by a firing of t2.

Equalizing these terms in equation [9.9], leads (after simplification) to:

(w1)b1 · (w2)b2 · (w3)b3+1 = w1

(w1)−a1+1 · (w2)−a2 · (w3)−a3 = w2

(w1)a1−b1 · (w2)a2−b2+1 · (w3)a3−b3 = w3

The only solution (for any possible value of rates) is then:

f1(m) =
(

w1

w2

)m(p2)

·
(

w1

w3

)m(p3)

Similarly:

f2(m) =
(

w4

w5

)m(p4)
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In general, conditions for the existence of this decomposition are fulfilled by
a subclass of nets called Product Form Stochastic Petri Nets (PF-SPN) [HEN 90].
Furthermore, [HAD 01, HAD 05] establish a necessary and sufficient condition, fully
structural, that such a net can have a product form whatever its stochastic parameters.
A final difficulty remains. If the computation of the normalizing constant is naively
performed, this requires enumeration of reachable states. This reduces the interest of
the method. Fortunately, the presence of invariants characterizing the reachability
space greatly simplifies this computation [SER 93].

In conclusion, methods based on the product form have a weak computation
complexity but they are applicable to models whose components have simple
synchronizations.

9.4.2. Bound computations

The stochastic bounds that we state here are valid for every distribution (with finite
mean) of transition delays [CHI 93]. They only rely on the existence of a steady-state
distribution of markings and on steady-state throughput of transitions. Hence these
bounds are valid for all nets presented in this chapter, including nets with an infinite
state space. On the other hand, these bounds will be accurate when the performance
measures are not sensitive (i.e. only depend on the means of distribution) or weakly
sensitive. This analysis is extended in [LIU 95] where the author inserts constraints
related to the variance of distributions.

The general idea is:

– to represent the performance indices by variables;

– to establish linear constraints between variables;

– to maximize or minimize, with linear programming, a linear function of variables
(which represents the performance index to be evaluated) subjected to the previous
constraints.

Numerous algorithms are possible for this last step; the more efficient ones perform
in polynomial time w.r.t. the size of constraints [NEM 89]. So, we only describe the
first two points.

For every place p, variable mp denotes the mean marking of p. For every transition
t, variable χt denotes the mean throughput of t. Finally, variable σt is the number of
occurrences of t in a pseudo firing sequence since this number is not necessarily an
integer. These variables occur in the constraint but not in the function to be optimized.

The first constraint is defined by:

∀p, ∀t, mp ≥ 0, χt ≥ 0, σt ≥ 0
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The mean marking m is a mean, weighted by π, of reachable markings m, every
marking being reached by a sequence σm (with occurrence vector −→σ m) from m0.
Consequently

m = m0 +
∑

m reachable

πm ·
(
Post[p, t]−Pre[p, t]

)
· −→σ m

The second term is the product of the incidence matrix by a weighted mean
of sequences that can be substituted by variables σt. This leads to the following
constraint:

mp = m0(p) +
∑

t

(
Post[p, t]−Pre[p, t]

)
· σt

There are two other kinds of constraints: the first ones are obtained by an analysis
of the steady-state situation, and the second ones by establishing a relation related
to the behavior of the process until an arbitrary instant and studying the asymptotic
behavior of this relation when time goes to infinity. This last technique is called
operational analysis.

We show a few examples of these two kinds of constraints. Assume that two
transitions t and t′ are simultaneously firable or not and that the choice probabilities
between t and t′ are constant. This is the case, for instance, with exponential
transitions whose rates are constant and which follow a single-server policy. Let rt

and rt′ denote these probabilities. Obviously

χt

rt
=

χt′

rt′

Since the steady-state distribution of the marking exists, the input flows of a place
must be equal to the output flows. Consequently

∀p,
∑

t

Pre[p, t] · χt =
∑

t

Post[p, t] · χt

Let t be a transition with mean delay 1
wt

, working with the infinite-server policy
and having only a single input arc labeled by 1 and connected to place p, which has
only t as output. Observe the process between 0 and θ. Let mp(s) denote the number
of tokens at time s, let mp(θ) be the mean number of tokens between 0 and θ:

mp(θ) =
1
θ

∫ θ

0

mp(s)ds

Let us introduce V (θ), the sum of the sojourn times of tokens in p that are
consumed before θ, and U(θ) the sum of the sojourn times of tokens in p that are
produced before θ or are present in the initial marking.
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To establish a relation between these quantities, assume that the client tokens of
the transition pay a uniform cost of rate 1: in other words, a token present in an interval
with length ds pays ds euros. If tokens which arrive before θ pay for their presence
until time θ,

∫ θ

0
mp(s)ds is the amount that the transition has gained between 0 and

θ. If the tokens which arrive before θ pay for their presence when they leave, V (θ) is
the amount that the transition has gained between 0 and θ. If the tokens which arrive
before θ pay for their presence when they arrive, U(θ) is the amount that the transition
has gained between 0 and θ. Consequently

V (θ) ≤ θ ·mp(θ) ≤ U(θ)⇐⇒ V (θ)
θ

≤ mp(θ) ≤
U(θ)

θ
[9.10]

Let us analyze the asymptotic behavior. Let N(θ) be the number of tokens which
arrive between 0 and θ. Since the net has a steady-state distribution, the input flow of
p is equal to the output flow.

lim
θ→∞

N(θ)
θ

= χt

Since there is a steady-state distribution of the marking

lim
θ→∞

mp(θ) = mp

Furthermore, every token has a sojourn time equal to the firing delay of the
transition. Let us call dn the sojourn time of the nth token. Using the law of great
numbers:

lim
n→∞

∑n
i=1 di

n
=

1
wt

Let us establish a relation between these quantities.

χt

wt
= lim

θ→∞

(
N(θ)

θ

)
·
(∑N(θ)

i=1 di

N(θ)

)
= lim

θ→∞
U(θ)

θ

Using analytical reasoning [STI 74] we prove that:

lim
θ→∞

U(θ)
θ

= lim
θ→∞

V (θ)
θ

Passing to the limit, equation [9.10] provides another constraint:

χt

wt
= mp

This constraint is a variation of the Little formula. Let us note that the bound
computation has also been applied to stochastic well-formed nets, since symmetries
of the model ease specification of constraints.
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9.4.3. Approximation methods

9.4.3.1. Approximation by decomposition

Here we are interested in a subclass of SPNs called stochastic marked graphs
(SMG) whose underlying net is an event graph (see Chapter 3). This class is often used
for modeling product flows, for instance in manufacturing systems [SIL 97, VAL 97].

In these nets, every place is the output of a single transition and input of a single
transition. Moreover, the net, viewed as a graph, is strongly connected. We assume
that the net works with an infinite-server policy. There are similar methods for the
other policies.

All throughputs of transitions in steady-state behavior (i.e. the number of firings
per time unit) are equal. Indeed, a path links every pair of transitions (t1, t2) and the
(new) tokens in this path are produced by t1 and consumed by t2. If the throughput
of t1 was greater than that of t2, the number of tokens would grow infinitely, which is
impossible since this number is bounded by the initial number of tokens of a circuit
including this path. From symmetry, we deduce that the throughput of t1 is equal to
that of t2. So, we can say that the net has a throughput. To compute the throughput of
the net, we can establish the steady-state distribution of the net: pick a transition and
apply formula [9.8].

The goal of approximation by decomposition is to substitute for construction of
the reachability graph of the net, construction of graphs for subnets obtained by
decomposition [CAM 94]. Indeed, for appropriate decompositions, the size of the
whole graph has the same order of magnitude as the product of the sizes of the graphs
of the subnets. The algorithm includes two steps:

– the decomposition into subnets;

– the approximate computation of the throughput.

In order to obtain a decomposition, we choose a set of places, called a cut, which
divides the net into two connected components. This choice must be guided by the
behavior of the system. As a general rule, we want to minimize the size of the cut. In
Figure 9.4, the cut is the set of places pa, pb and pc. Let R1 and R2 be the two subnets;
each consists of a connected component, the cut and transitions connected to the cut.
To complete these nets, places p61, p62 and p43 are added to the subnets. Every such
place corresponds to a pair of transitions at the boundary of a subnet. For instance, p61

corresponds to the pair (t6, t1).

Places p61, p62 (resp. p43) represent an abstraction of the first (resp. second)
component. The initial marking of p61 is defined as the minimum of the marking of a
path from t6 to t1 in this component. We apply the same process for the other places.



294 Petri Nets

R 12
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R
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Figure 9.4. Decomposition and abstraction of a stochastic event graph
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Net R12 constitutes a full abstraction of the initial net. Due to the structural
properties of event graphs, all these abstractions do not modify languages (omitting
the transitions that do not occur in the abstraction) and the set of reachable markings
(omitting the places that do not occur in the abstraction).

Computation of the throughput of the net is performed iteratively. We explain this
with an example. The rate of t3 in net R1 will be updated at the beginning of each
stage in order to express the activity of the other component. We do this similarly for
rates of t1 and t2 in R2. We initially select a rate for t3 in R1, for instance its value in
R. Then each stage includes four steps:

– Using the steady-state distribution, we compute the throughput of net R1,
denoted χ1, and the mean marking of p61 and p62. Observe that these mean markings
are proportional to the service time of t1 and t2 for these places (i.e. the mean time for
consumption of a token of p61 and p62) since production is simultaneous and we have
chosen an infinite-server policy.

– The ratio of rates of t1 and t2 in R2 is now determined by the previous step.
We now have to compute the scaling factor. This is done in R12, where for different
values of this factor, we compute the steady-state distribution and throughput of the
net in order to be as close as possible to χ1. The graph of R12 is very small. Hence
this step is of reasonable complexity.

– The third step is symmetric w.r.t. the first step. We compute the throughput χ2

of R2 with rates of t1 and t2 obtained by the previous step. In this example, since t3 is
the single transition which leads from R2 to R1, the computation of ratios is useless.

– We again examine the net R12 to compute the rate of t3 to be used in R1.
Different values are tried so that the throughput of R12 is as close as possible to χ2.

We finish the iterations when values χ1 and χ2 are close enough for us to assume
that they correspond to the throughput of net R. There is no theoretical guarantee for
convergence, or for the precision of the result. This lack of guarantee usually holds
for almost all approximation methods. However, experimentation shows a very fast
convergence (less than 10 iterations) and an error less than 1%. These good results are
due to the fact that the quantitative approximation is based on an appropriate functional
decomposition.

9.4.3.2. Approximation by mean values

This analysis is applicable a priori to any kind of Petri nets, although the tools
are limited to uniform, exponential, deterministic distributions and some of their
combinations. We present the analysis for transitions working with single-server and
enabled memory PRD policies.

The method is based on the construction of a graph called a probabilistic state
graph [JUA 91]. Every vertex of the graph includes a marking and distributions
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associated with every transition. The initial vertex includes the initial marking and
the specified distributions.

We determine the firable transitions {tk}k∈K and compute the probability of
firing every transition. We then assume that the distributions are continuous. This is
equivalent to calculating the probability that the sampling of every transition is the
smallest one and this is expressed by the following formula:

Pr(tk fired) =
∫ ∞

0

∏
k′ �=k

(1− Fk′(s))Fk{ds}

where Fk is the distribution associated with tk. In the general case of discontinuous
distributions, we must include the parameters of post-selection, which complicates the
expressions but does not change the principle of the method.

The mean sojourn time in the vertex is similarly expressed by the formula:∫ ∞

0

∏
k∈K

(
1− Fk(s)

)
ds

We build one successor per possible transition firing. Here is the approximation
since we consider that the transition is fired after a deterministic time that is computed
by:

θk =
1

Pr
(
tk fired

) ∫ ∞

0

s.
∏

k′ �=k

(1− Fk′(s))Fk{ds}

The random variable has been substituted by its mean. The new distribution of a
transition which is still firable is:

F ′
k′(t) =

Fk′(t + θk)− Fk′(θk)
1− Fk′(θk)

The other distributions are the initial distributions. If the reachability graph and
the intermediate distributions are finite then the probabilistic state graph is finite.
Sufficient conditions of the Petri net exist for this property. If the graph is infinite,
a stopping mechanism for cutting branches is introduced which takes into account
branching probabilities to eliminate vertices supposed to be reached with a weak
probability.

This graph is now viewed as a regenerative process specified by the branching
probabilities and sojourn times. The solution is performed as indicated in
section 9.2.5.1.

Unfortunately it is difficult to establish criteria which ensure a good
approximation. For instance, numerous uniform distributions diminish the accuracy
of the approximation. Furthermore, some reachable states can be missed by the
construction, even without the stopping mechanism.
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9.4.4. Unbounded Petri nets

Until now, most of the methods that we have presented apply to bounded nets. We
end this chapter with an exact method applicable to infinite state systems [FLO 89,
HAV 95]. Here we only study SPNs but this analysis is also applicable (with some
adaptations) to GSPNs and even to PH-SPNs. When the nets have a single unbounded
place p, it is possible to compute the steady-state distribution with additional weak
constraints (other conditions are also possible):

– arcs connected to place p are labeled by 1;

– two arbitrary values of m(p) greater than some threshold k0 yield the same
transition rates and the same firing conditions in the possible functional dependencies.

In this case, reachable markings are divided depending on the marking of p in a
family {Sk}∞k=0, where Sk is the subset of reachable markings such that m(p) = k.
The constraints imply that from Sk, either we reach Sk−1 or Sk+1, or we remain in
Sk. Also, if m(p) > k0, place p has no more effect on the behavior of the net. So
matrix Q of the infinitesimal generator of the net presents beyond k0 regularities that
are expressed by the existence of three matrices:

– A0 is the transition submatrix from Sk to Sk+1;

– A1 is the transition submatrix from Sk to Sk;

– A2 is the transition submatrix from Sk to Sk−1.

Assume that the chain is irreducible and ergodic with a steady-state distribution
π and denote by πk the distribution of states Sk. The equilibrium equation can be
rewritten for k > k0:

πk ·A0 + πk+1 ·A1 + πk+2 ·A2 = 0

We want to establish a recurrence between πk and πk+1. Using the structure of
Q, A1 is invertible and −A−1

1 is a positive matrix. Consequently

πk+1 + πk ·A0 ·A−1
1 = −πk+2 ·A2A−1

1 ≥ 0

We improve this relation by defining a sequence of increasing matrices:

R0 = −A0 ·A−1
1 and Rn+1 = −

(
A0 +

(
Rn

)2 ·A2

)
·A−1

1

We show by recurrence that the left hand term below remains positive (and
decreases since the Rn are increasing). Indeed:

πk+1 − πk ·Rn+1 = πk+1 + πk ·A0 ·A−1
1 + πk ·

(
Rn

)2 ·A2 ·A−1
1

= −
(
πk+2 − πk ·

(
Rn

)2) ·A2A−1
1
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= −
(
πk+2 − πk+1 ·Rn +

(
πk+1 − πk ·Rn

)
·Rn

)
·A2A−1

1

≥ 0

Since every component of πk is non-zero, matrices Rn are bounded and the
sequence converges to a matrix R which fulfills (by passing to the limit):

πk+1 − πk ·R ≥ 0 for k > k0 [9.11]

R = −
(
A0 + R2 ·A2

)
·A−1

1 [9.12]

Let us define a vector π′ by:

∀k ≤ k0, π′
k = πk and ∀k > k0, π′

k = πk0+1 ·R(k−k0−1)

Then, using equation [9.12], this vector is the solution of equation X · Q = 0,
and, using equation [9.11], it is less than or equal to π, component per component.
Hence the sum of its components is finite. Normalizing it (i.e. dividing it by this
sum), we obtain π′′, a distribution solution. But the distribution solution is unique,
so π = π′′ = π′.

The normalizing equation can be written as:

k0∑
k=0

πk · 1T +
∞∑

k=k0+1

πk0+1 ·R(k−k0−1) · 1T

=
k0∑

k=0

πk · 1T + πk0+1 · (Id−R)−1 · 1T = 1

Once matrix R (e.g. by approximating it with Rn for large n) and (Id−R)−1 are
computed, we proceed to a linear solution in a finite space. The system to be solved
is X · Q = 0, reduced to states of {Sk}k≤k0+1 and completed by the normalizing
equation [HAV 98].

This procedure has also been successfully employed to approximate finite systems
where a place reaches huge values. The threshold k0 is often much smaller than
the bound of the place. If, furthermore, the system fulfills a set of conditions for
quasi-reversibility [KEL 79], this approximation becomes an exact result [HAV 93].

9.5. Conclusion

Stochastic Petri nets were initially introduced as another formalism for
representing stochastic DES with exponential distributions. In the last 30 years,
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modeling needs have led to the extension of this model to more general distributions
(deterministic, phase-type, arbitrary), including zero delay. These extensions generate
families of SPNs whose properties depend on multiple choices, sometimes subtle,
related to the stochastic semantics of the model. Most of these nets generate
stochastic processes that are renewing processes. Furthermore, research has also
developed appropriate analysis methods for these processes. Some of them adapt
results obtained in queuing network theory. However, most of them are partly based
on structural properties related to ordinary nets. The next two chapters present two
characteristic examples of such approaches: stochastic well-formed nets and tensorial
methods for SPNs.
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Chapter 10

Stochastic Well-formed Petri Nets

10.1. Introduction

Introducing high level Petri nets allows us to cope with the complexity of systems
during the design phase. However, the lack of structure of expressions and arc or
transition guard functions makes using this concision impractical, or even impossible,
for verification purposes. To overcome this drawback, several subclasses of high
level nets have been proposed, among them the well-formed Petri net [CHI 93a].
Its numerous verification possibilities make it possible to study many systems. One
of the reasons for this theoretical success is the explicit symmetry derived from the
syntax of the domains and the color functions.

Since we have the same modeling needs for stochastic systems, research work has
focused on:

– bringing to the fore techniques taking advantage of possible symmetries of the
stochastic process;

– how to express constraints on the stochastic high level model leading to
symmetries in the process.

The Markov chain aggregation technique [KEM 60] is perfectly suited to the
first goal. This method aims at substituting macro-states for states of the Markov
chain where each visit to a macro-state corresponds to a subset of states. To obtain a
Markov chain of macro-states, it is necessary for the visit of two given states of one
macro-state to determine the future of the macro-process in the same way. If these
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hypotheses are met, and if the process is ergodic, then the macro-process stationary
probability of a macro-state is the sum of the initial process stationary probabilities
of its states. Moreover, a similar hypothesis for the past of the process implies
equiprobabilities of states inside a macro-state. In this case, the macro-process is a
sufficiently complete abstraction to obtain the stationary distribution of the process.
We present the Markovian aggregation in section 10.2.

Several attempts to exploit the aggregation technique have been proposed for high
level nets. The first approach [ZÉN 85] starts from the reduced reachability graph
of a colored net by the Jensen method [HUB 84]. However, there is no guarantee
that the macro-process is a Markov chain. In the second approach [LIN 88], the
macro-process is necessarily a Markov chain but no algorithm is provided for
building the macro-process. A last, more sophisticated approach [CHI 88], groups
states according to a partition deduced from a supposed symmetry and then refines
the partitions until aggregation conditions are satisfied. Unfortunately, this technique
requires building of the whole reachability graph.

In the third section, we show how to add stochastic semantics to well-formed Petri
nets such that aggregation conditions are met for symbolic markings. We detail a
model of a multiprocessor system with stochastic well-formed Petri nets. This model
is representative of types of applications for which this technique provides solutions
to the combinatorial exploding of the Markov chain.

In the last section, we present the main ideas about the proof of the validity of
aggregation. Moreover, we show how to directly compute the parameters of the
macro-process from the symbolic graph. The multiprocessor model illustrates the
complexity savings provided by the symbolic graph.

Figure 10.1 presents the principle of the approach. In the best case, an a posteriori
aggregation requires an explicit (net) unfolding or an implicit one when generating
the state graph, and the underlying Markov chain. Besides, directly solving this
chain is often impossible due to its size. In contrast, the symbolic graph allows the
a priori building of the aggregated chain. Moreover, the aggregates – the symbolic
markings – may be interpreted from the model and are usually sufficient to obtain
significant performance indices. Finally, the steady-state probability of each state
may be computed from the aggregated solution and from the symbolic graph.

Other theoretical developments for stochastic well-formed nets increase the
applicability of this model. In the next chapter, Markovian aggregation is combined
with tensor decomposition, which reduces the size of the built graphs accordingly.
[FRA 93] proposes a bounding method for color domains made of static subclasses
with the same qualitative behavior but with different quantitative parameters. This
method avoids partitioning the domain during the computation of the symbolic graph,
which reduces its size. In the same way, a stochastic simulation using symbolic
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Figure 10.1. General stochastic colored net/well-formed stochastic net

markings is much faster. Indeed, the number of successors of a symbolic marking
is significantly lower than that for an ordinary marking [CHI 93b]. Most of these
methods have been implemented in the GreatSPN tool [CHI 95].

10.2. Markovian aggregation

All aggregation techniques substitute a simpler system, supposed to reflect the
original system with regard to some criteria, for a more complex system. In the
performance evaluation area, this criterion is most often the fact that a synthesis of
the stationary indices of the original system may be computed from the stationary
indices of the reduced system. In the previous chapter, we saw how to approximate
the stationary throughput of a stochastic marked graph (SMG) from the iterative
evaluation of reduced SMG. In this case, aggregation lies in the model which
generates the stochastic process. Conversely, we can look for aggregation conditions
of the stochastic process leading to exact results.

Let us look at Figure 10.2. On the left, we have an excerpt of a discrete time
Markov chain (DTMC). States are grouped in two subsets Ek = {ek

1 , ek
2} and Eh =

{eh
1 , eh

2 , eh
3}. We note that:

Pr
(
Xn+1 ∈ Eh | Xn = ek

1

)
= Pr

(
Xn+1 ∈ Eh | Xn = ek

2

)
=

5
6

In other words, the probability of the process reaching Eh, knowing it is in the subset
of states Ek, does not depend on the specific visited state.

Intuitively, if the partition satisfies this property for transitions between any pair of
subsets, the aggregated process will also be a Markov chain. A formal expression of
this fact is given in definition 10.1 and proposition 10.1.
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Figure 10.2. Markovian aggregation

DEFINITION 10.1. A discrete or continuous Markov chain {Yt}t∈R+ may be

aggregated with respect to the partition (Ek)k=1,...,K , if the process {Y (a)
t }t∈R+

with state space Ẽ = {Ek | k = 1, . . . , K}, defined by:

∀t ≥ 0, Y
(a)
t = Ek iff Yt ∈ Ek

is a Markov chain.

PROPOSITION 10.1 (Strong aggregation condition [KEM 60]). A chain may be
aggregated whatever its initial distribution if ∀h, k ∈ {1, . . . , K}, ∀e, e′ ∈ Ek∑

eh ∈Eh

pe,eh =
∑

eh ∈Eh

pe′,eh
def
= p̃k,h (discrete time)

∑
eh ∈Eh

qe,eh =
∑

eh ∈Eh

qe′,eh
def
= q̃k,h (continuous time)

[10.1]

The transition probabilities matrix (respectively the generator of the aggregated
chain) is then P̃ = [p̃k,h] for a discrete time Markov chain (resp. Q̃ = [q̃k,h] for a
continuous time Markov chain).

The definition itself of the aggregated process allows us to give the relationship
between the stationary distributions.

PROPOSITION 10.2. Let {Yt}t∈R+ be a chain satisfying the aggregation condition and

{Y (a)
t }t∈R+ its aggregated chain. If {Yt} is ergodic and has a stationary distribution

π, then {Y (a)
t } is ergodic and has a stationary distribution π(a) satisfying:

π(a)
[
Ek
]

=
∑

e∈Ek

π[e]
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In the general case, we have K !∑k |Ek| so that the computation complexity of
the steady-state probabilities is significantly reduced for P̃ (resp. Q̃) with respect to
P (resp. Q).

It is unusual for the aggregated stationary distribution to allow us to recognize
the stationary distribution of the initial chain. However, this is the case if the process
satisfies a condition of its past similar to the aggregation condition. We present the
result within the framework of discrete time Markov chains (DTMC), but it also
applies for continuous time Markov chains (CTMC).

PROPOSITION 10.3 (Equiprobability of ordinary markings). Let there be a discrete
ergodic Markov chain satisfying the aggregation condition and let π(a) be the
stationary distribution of the aggregated chain. If ∀h, k ∈ {1, . . . , K}, ∀e, e′ ∈ Eh:∑

ek∈Ek

pek ,e =
∑

ek∈Ek

pek ,e′
def
= p̃

(in)
k,h [10.2]

then, the chain can have a stationary distribution π[e] = π(a )[Eh ]
|Eh | where |Eh|

represents the cardinality of Eh.

Proof. Let us recall that p̃k,h =
∑

eh ∈Eh pe,eh for all e ∈ Ek.

Let us first prove that |Eh|p̃(in)
k,h = |Ek|p̃k,h. The total flow from Ek to Eh is

F (k, h) =
∑

e∈Ek

∑
e′∈Eh pe,e′ . Then, we have: F (k, h) =

∑
e∈Ek p̃k,h = |Ek|p̃k,h

and F (k, h) =
∑

e′∈Eh p̃
(in)
k,h = |Eh|p̃(in)

k,h.

We have, for every e ∈ Eh,

K∑
k=1

∑
e′∈Ek

π[e′]pe′,e =
K∑

k=1

π(a)
[
Ek
]∣∣Ek

∣∣ ∑
e′∈Ek

pe′,e =
K∑

k=1

π(a)
[
Ek
]∣∣Ek

∣∣ p̃
(in)
k,h

=
1∣∣Eh
∣∣ K∑

k=1

π(a)
[
Ek
]
p̃k,h =

π(a)
[
Eh
]∣∣Eh

∣∣ = π[e]

10.3. Presentation of stochastic well-formed Petri nets

We refer the reader to Chapter 7 for the definition of well-formed (colored) Petri
nets and we concentrate on introducing a stochastic semantics into the model.

Our approach is illustrated by the example in Figure 10.3 showing a transition t
of a well-formed Petri net. This transition models a synchronization between requests
(place R) of different kinds (a and b) and servers (place S) belonging to three
categories (u, v and w).
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F

Figure 10.3. Transition and firing rates

10.3.1. The stochastic process of a well-formed Petri net

Introducing a stochastic semantics for well-formed Petri nets aims to:

– be consistent with the stochastic semantics for Petri nets given in Chapter 9;

– allow the user to specify it at the well-formed net level;

– keep symmetries such that the symbolic reachability graph could be used for
quantitative evaluation.

The easiest way is to define the stochastic semantics as that of the unfolded
(stochastic) Petri net. This is sufficient to ensure a coherent definition of a stochastic
extension of well-formed Petri nets. Among the various stochastic models of Petri
nets, we choose the GSPN model, which represents an acceptable trade-off between
expressiveness and analysis potential.

Let us examine the three policies to be defined. Obviously, the policy of choice
will be to choose the shortest sampled delay if no immediate transition is enabled;
otherwise a probabilistic selection conditioned on the weights of the enabled
immediate transitions will be selected. A transition could, a priori, have immediate
and exponential firing instances. However, interpretation of the transition in the
modeled system would be difficult and it is easy to replace it with two transitions: an
immediate one and an exponential one. So, we are led to define the kind of transition
rather than the kind of firing instance of a transition.

The choice of memory policy is not important here since we only use exponential
and immediate distributions.

We remind the reader that GSPN allows us to specify dependencies of stochastic
parameters with respect to the current marking. It is then easy to simulate an
infinite-server policy with a single-server policy, knowing that the minimum of k
exponential random variables with rate λ is an exponential random variable with rate
k.λ. So, the problem is reduced to studying what kinds of functional dependencies
we would like to introduce in stochastic well-formed Petri nets.
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Let w[t](r, s,m) be the rate of the firing instance of t for the color couple (r, s)
in a marking m. For an immediate transition, this expression is its weight among the
probabilistic choices. Let us assume that we have the following values:

w[t](a, u,m) =
(
m[S](a) + m[S](b)

)
· λ

w[t](b, u,m) =
(
m[S](a) + m[S](b)

)
· λ

w[t](a, v,m) =
(
m[S](a) + m[S](b)

)
· λ

w[t](b, v,m) =
(
m[S](a) + m[S](b)

)
· λ

w[t](a,w,m) = λ, w[t](b, w,m) = λ

We first note that each service (u, v, w) does not depend on the number of servers
for a given color (m[S](s)); only one instance of server is required to be served and
two u servers (for instance) do not speed up the service. In contrast, servers u and v
are sensitive to the number of requests since their rates are proportional to this number
(infinite-server policy), whereas w is a constant (single-server policy). Finally, the
request type does not impact how it is processed by the servers (from the quantitative
point of view).

In brief, a and b have qualitative and quantitative equivalent behaviors. u, v,and
w have a qualitative equivalent behavior but w has a specific quantitative behavior.
This means that C(R) may consist of only one static subclass, while C(S) must
consist of two static subclasses {u, v} and {w}. If the subclasses are defined before
the stochastic semantics, then functional dependencies have only to depend on static
subclasses. We will formalize this point in the next section.

A final note about the example: as specified, the choice of server for processing
a request depends on the processing time known only at the end of processing! A
better model would be to introduce choice (immediate) transitions before the service
transition.

10.3.2. Definition of stochastic well-formed Petri nets

To formalize the restriction on functional dependencies, we introduce the idea of a
static subclass domain corresponding to a color domain and the image of a color in the
associated domain. This will allow us to define firing rates based only on projections
of the firing instance and on the current marking on the static subclasses.

DEFINITION 10.2. Let C(r) =
∏n

i=1 Cei
i be the color domain of a node r. Let C̃i =

{Ci,q | 1 ≤ q ≤ si} be the set of static subclasses of Ci. The static subclass domain
of r is

C̃(r) =
n∏

i=1

ei∏
j=1

C̃i =
n∏

i=1

C̃ei
i
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For c ∈ C(r), c̃ ∈ C̃(r) is the tuple of static subclasses to which each cj
i belongs:

c̃ = (Ci,qi,j )
ei
n with, ∀i, j, cj

i ∈ Ci,qi,j

Hence, C̃(r) is the set of all possible static subclass tuples of a node. The next
definition extends this transformation to markings.

DEFINITION 10.3 (Static partition of a marking). The static partition of a marking m
is m̃ ∈∏p∈P Bag(C̃(p)) with:

∀p ∈ P, ∀c̃ ∈ C̃(p), m̃[p](c̃) =
∑

c′, c̃′=c̃

m[p](c′)

m̃[p](c̃) gives the number of tokens of m[p], components of which are in the same
static subclasses as c.

We are now in a position to give the formal definition of a stochastic well-formed
Petri net.

DEFINITION 10.4 (Stochastic well-formed Petri net (SWN)). A stochastic well-formed
Petri net (SWN) is a pair (S,w) where S = (P, T,Pre,Post, Inh,pri, Cl, C,Φ) is
a well-formed Petri net and w a vector of functions defined on T such that:

w[t] : C̃(t)×
( ∏

p∈P

Bag
(
C̃(p)

))
−→ R+

If pri[t] > 0, t is immediate and w[t][c̃, m̃] represents the weight of t. The firing
probability of t(c) in m is:

w[t][c̃, m̃]∑
(t′,c′) w[t′][c̃′, m̃]

with pri[t′] = pri[t] and m
[
t′(c′)

〉
If pri[t] = 0, t is timed and w[t][c̃, m̃] represents the mean firing rate of any instance
of t(c) enabled in m.

10.3.3. Modeling a multiprocessor system

In this section, we present a detailed example of a multiprocessor system modeled
with a stochastic well-formed Petri net. The interest of this example is threefold:

– it provides an overview of the modeling process with stochastic well-formed
Petri nets;

– it allows comparison of sizes of the symbolic graph and the reachability graph;
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– it was used in a study to find a stochastic Petri net the reachability graph of which
would be an aggregated version of the initial graph. This analysis is rather difficult
and would probably not be generally applicable to more complex modeling; with the
symbolic graph, the modeler effortlessly obtains the same reduction ratio!

The multiprocessor architecture analyzed in this example is shown in Figure 10.4
[MAR 84, DUT 89, DUT 91]. Each processor pi has a local memory made up of two
parts: a private memory (PMi) and a common memory (CMi). The private memory
may only be reached by its processor through its private bus (PBi). The common
memory may be reached by all processors of the system. The processor pi reaches
the common memory (CMi) through its private bus and its local bus (LBi). Other
processors access this memory through the global bus (GB) and the local bus.

P 1 P M 1 C M 1

P B LB

. . .
P n P M n C M n

P B LB

G B

Figure 10.4. A multiprocessor system with private and common memories

Access conflicts arise when using either GB or local buses (and common
memories). A processor is suspended when it tries to get an already used resource.
We assume that external accesses to common memories have priority over local
accesses and cause their preemption. We can describe the global behavior of the
system as follows: processors alternate between duty periods involving only private
memory accesses (so called CPU burst), and duty periods with common memory
accesses. To simplify the exposition, we assume that the system is made up of n
identical processors.

To build the SWN model, it is interesting to list the possible states of a processor:

– ACTIVE: the processor works with its private memory;

– LOCAL: the processor works with its common memory;

– DISTANT: the processor works with another common memory;

– WAITING: the processor waits for the global bus;

– BLOCKED: the processor waits to access its common memory.



312 Petri Nets

The behavior of this system is described by the SWN in Figure 10.5. There is
only one color class, the class P of processors (sets pi, PMi, CMi). X and Y denote
processor variables.

S

S

Run

ReqPr ivMem

M e m R e q Se lMem

Beg inOwnAcc EndOwnAcc

ReqExtAcc Queue BeginExtAcc EndExtAcc

ExtBus

Ex tMemAcc

M e m

O w n M e m A c c

X

X
X

X <X,Y>X <X,Y>

X

<X,Y>
Y

Y
<X,Y>

[X <> Y]

X

X
X X

XX

Figure 10.5. Initial stochastic well-formed Petri net of the multiprocessor system

Places represent the states of the processors. Run holds one token per processor in
state ACTIVE (hence the S term, which corresponds to one token for each color). In
the same way, ExtMemAcc and Queue represent respectively the states DISTANT
and WAIT. The place OwnMemAcc represents either the state LOCAL, or the state
BLOCKED, depending on whether or not there is a token with the same color in
the place Mem. A probabilistic choice between private, local or external accesses
is modeled by the immediate transitions in conflict ReqPrivMem, BeginOwnAcc
and ReqExtAcc.

In this last case, the variable Y represents the choice of a common external memory
(�= X). Finally, the place ExtBus represents the availability of the global bus.

Even if this net is correct and easily understood, it is not necessarily the most
compact one. For instance, the three conflicting immediate transitions may by
pre-agglomerated with the exponential transition MemReq applying a reduction
rule which preserves the qualitative and quantitative behavior of the net [HAD 89].
Moreover, the exponential transition resulting from the fusion of MemReq and
ReqPrivMem may be discarded since its firing does not modify the state of the
system. Finally, the external memory choice may be delayed until firing of the
transition BeginExtAcc. This transformation is justified because the marking of the
place Mem holds all the processors when the place ExtBus is marked. This domain
reduction of the place Queue leads to a significant reduction in the state space.

Applying all the simplifications, we finally obtain the net in Figure 10.6 with six
places:
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Figure 10.6. Simplified stochastic well-formed Petri net of the multiprocessor system

– Active holds tokens of processors in state ACTIVE.

– Queue holds tokens of processors in state WAITING.

– ExtMemAcc holds pairs (processor, common memory) representing current
external accesses. With only one global bus, there is at most one token in this place.

– OwnMemAcc holds tokens of processors in state LOCAL or in state
BLOCKED, the last ones being distinguished by no corresponding token in place
Mem.

– Mem holds common memories not used by an external processor.

– ExtBus with neutral domain, holds a token when GB is available.

Let us now look at the stochastic parameters. The transition BeginExtAcc is
immediate since bus arbitration and bus release durations are negligible. Moreover,
we assume that CPU burst and common memory access times are independent
random variables with exponential distributions. The external memory choice is
equidistributed (probability 1

n−1 ) as the resolution of conflicting global bus accesses.
This leads to weight 1 for all instances of the immediate transition BeginExtAcc.
Quantitative parameters of our model are: n, the number of processors; 1

λ , the mean
time of a CPU burst period; (λ is the rate of the transition EndOwnAcc); and 1

μ the
mean common memory access time (μ is the rate of the transition EndExtAcc). An
important auxiliary parameter ρ = λ

μ represents the load ratio of the system.

10.4. From the symbolic graph to Markovian aggregation

Since we are dealing with a semi-Markovian process and we want to apply the
aggregation technique (valid for Markov chains) we proceed in two steps:
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– We focus on the embedded chain at changing state times, as defined in Chapter 9.
We prove that this chain may be aggregated and that its aggregated version is
isomorphic to the symbolic graph.

– Then we prove that sojourn times in a symbolic marking do not depend on the
ordinary marking, which concludes the proof.

For computation of the parameters of the aggregated chain, we use formulae on
cardinalities of the symbolic arcs and cardinalities of the symbolic markings. The
same formulae provide sojourn times.

10.4.1. Verification of the aggregation condition

We denote by P the state transition matrix of the embedded Markov chain of the
semi-Markovian process associated with the SWN.

THEOREM 10.1 (Aggregated Markov chain of a SWN). Let C be the embedded
Markov chain of a stochastic well-formed Petri net. The symbolic markings partition
of the state space satisfies the aggregation condition.

Proof. By definition, pm,m′ =
∑

t(c),m [t(c)〉m ′ w[t](c,m)∑
t(c),m [t(c)〉 w[t](c,m) is the jump probability from m

to m′.

Let m̂ and m̂′ be two symbolic markings. We have to show that:

∀m1,m2 ∈ m̂,
∑

m′∈m̂′
pm1,m′ =

∑
m′∈m̂′

pm2,m′

Let us first show that, for an admissible permutation s and for two markings m1 ∈
m̂, m′ ∈ m̂′, pm1,m′ = ps·m1,s·m′ (s ·m represents the image of m by s).

We know that:

– in a well-formed Petri net, m1[t(c) > m′ iff s ·m1[t(s · c) > s ·m′;

– w[t](c,m1) depends only on the static subclasses composing c and on the static
subclasses to which dynamic subclasses of m1 belong. Since static subclasses are
invariant through admissible permutations:

w[t]
(
c,m1

)
= w[t]

(
s · c, s ·m1

)
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The equalities below are then valid since summation indices are interrelated with
s and because interrelated summation terms are equal.

pm1,m′ =

∑
t(c),m1[t(c)〉m′ w[t]

(
c,m1

)∑
t(c),m1[t(c)〉 w[t]

(
c,m1

)
=

∑
t(s·c),s·m1

[
t(s·c)

〉
s·m′ w[t]

(
s · c, s ·m1

)
∑

t(s·c),s·m1

[
t(s·c)

〉w[t]
(
s · c, s ·m1

) = ps·m1,s·m′

Let m1,m2 ∈ m̂. By definition, there is an admissible permutation s such that
m2 = s ·m1. Applying the previous result, we obtain:∑

m′∈m̂′
pm1,m′ =

∑
s·m′∈m̂′

ps·m1,s·m′ =
∑

s·m′∈m̂′
pm2,s·m′ =

∑
m′∈m̂′

pm2,m′

The first equality derives from the previous result and we get the last equality by
permutating indices of the sum with s−1. Hence, we have got the aggregation
condition.

We supplement this result with equiprobability of the ordinary markings of a
symbolic marking in the stationary distribution. This allows us to compute, if needed,
the steady-state probability of an ordinary marking from the probabilities of the
aggregated chain.

THEOREM 10.2 (Equiprobability inside a symbolic marking). Let C be the embedded
Markov chain of a stochastic well-formed Petri net. If C is ergodic, then all markings
of a tangible symbolic marking have same the steady-state probability.

Proof. Let m1,m2 ∈ m̂. By definition, there is an admissible permutation s such that
m2 = s ·m1. Hence, we have:∑

m′∈m̂′
pm′,m1 =

∑
s·m′∈m̂′

ps·m′,s·m1 =
∑

s·m′∈m̂′
ps·m′,m2 =

∑
m′∈m̂′

pm′,m2

The first equality comes from the intermediate result of the previous proof and we get
the last equality by permutating indices of the sum with s−1. We have obtained the
sufficient condition of proposition 10.3, which concludes the proof.

We now have to go back to the semi-Markovian process with the help of sojourn
times.

THEOREM 10.3 (Equality of sojourn times). All markings of a tangible symbolic
marking of a stochastic well-formed Petri net have the same sojourn time.
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Proof. Let m1 be an ordinary marking,

1
sjtime

(
m1

) =
∑

t(c),m1[t(c)〉
w[t]
(
c,m1

)
=

∑
t(s·c),s·m1[t(s·c)〉

w[t]
(
s · c, s ·m1

)
=

1
sjtime

(
s ·m1

)
As for the first theorem in this section, the above equalities are valid since summation
indices are interrelated by s and since interrelated terms of the summation are equal.

We denote by sjtime(m̂) = sjtime(m) the sojourn time of any marking m of the
tangible marking m̂.

10.4.2. Computation of the parameters of the aggregated chain

The SWN model is interesting because it also allows us to compute the parameters
of the aggregated chain defined by the symbolic reachability graph, from the definition
of the net and from this graph. Since we use the embedded chain method, it is sufficient
to show how to compute the coefficient p̂m̂,m̂′ of the transition probabilities matrix of
this chain and sjtime(m̂), the sojourn time in an ordinary marking of the tangible
marking m̂.

In the following, we denote by m̂[t(λ, μ)〉 a symbolic firing and by m[t(c)〉 any of
the ordinary firings corresponding to the symbolic firing.

All ordinary firings denoted by a symbolic arc are projected on the same
static subclasses in the sense of definition 10.2. Likewise, all ordinary markings
of a symbolic marking are projected on the same static partition in the sense of
definition 10.3.

Hence, the stochastic parameter of the ordinary firing w[t][c̃, m̃] does not depend
on the choice of the ordinary firing and derives directly from the symbolic marking
and from the symbolic firing. We denote this by ŵ[t](λ, μ, m̂).

Expressions of the coefficients of the matrix of the embedded aggregated chain
and the sojourn times are then given by the formulae:

p̂m̂,m̂′ =

∑
〈t,λ,μ〉,m̂

〈t, ,μ 〉−−−−→m̂′
ŵ[t](λ, μ, m̂)

∣∣m̂ 〈t,λ,μ〉−−−−−→
∣∣

∑
〈t,λ,μ〉,m̂

〈t, ,μ 〉−−−−→ ŵ[t](λ, μ, m̂)
∣∣m̂ 〈t,λ,μ〉−−−−−→

∣∣
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sjtime(m̂) =
1∑

〈t,λ,μ〉,m̂
〈t, ,μ 〉−−−−→ ŵ[t](λ, μ, m̂)

∣∣m̂ 〈t,λ,μ〉−−−−−→
∣∣

where the second formula applies only to tangible symbolic markings and where

|m̂ 〈t,λ,μ〉−−−−−→ | is the number of colored firings from a fixed marking of m̂, represented
by the symbolic example 〈t, λ, μ〉. However, we show [DUT 91, CHI 93a]:

∣∣m̂ 〈t,λ,μ〉−−−−−→
∣∣ = h∏

i=1

mi∏
j=1

card
(
Zj

i

)
!(

card
(
Zj

i

)
− μj

i

)
!

where h is the number of unordered classes, mi is the number of dynamic subclasses
of Ci in the representation and μj

i is the number of examples in Zj
i .

Finally, if we want to obtain the steady-state probability of an ordinary marking m,
we simply have to divide the probability of its symbolic marking with the cardinality
of the latter which is:

1∣∣S(m̂)
∣∣
(

h∏
i=1

si∏
q=1

|Ci,q|!∏
d(Zj

i )=q card
(
Zj

i

)
!

)
n∏

i=h+1

v(i)

with si the number of static subclasses of Ci, v(i) = |Ci| if mi > 1 and si = 1, and
1 otherwise and S(m̂) the admissible permutations of the symbolic marking m̂, that
is the number of permutations defined on dynamic subclasses leaving the symbolic
marking unchanged (see [DUT 91] for more details).

10.4.3. Performance indices of the multiprocessor system

We apply the technique just described to our multiprocessor system. We choose
two significant indices:

– a, the mean ratio of active processors with respect to the total number of
processors, given by the formula

a =
1
n

∑
m̂

π(a)[m̂] ·
∑

Zj
1∈m̂(Active)

card
(
Zj

1

)
where m̂ is tangible and belongs to the symbolic graph.

– u, the mean utilization of the global bus, given by the formula

u =
∑

m̂[ExtBus]=0

π(a)[m̂]

where m̂ is tangible and belongs to the symbolic graph.
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The results, computed with the GreatSPN software [CHI 95], are presented in
Table 10.1. TSRS is the tangible symbolic reachability set and TRS is the tangible
reachability set of the net. We note that the increase in size of the symbolic graph is
almost linear with respect to the number of processors, whereas the reachability graph
reaches nearly 2 million states for 10 processors. Numerical results confirm that the
global bus is very quickly the bottleneck of the system. Hence, it would be interesting
to supplement these results by varying the number of global buses.

n ρ |TSRS| |TRS| a u

2 0.2 6 10 0.6752411 0.27009645

0.5 0.4285714 0.42857145

1.0 0.2608695 0.52173917

5 0.2 36 1652 0.6227463 0.62274684

0.5 0.3444203 0.86105182

1.0 0.1882871 0.94143486

10 0.2 146 1772494 0.475696106 0.95139024

0.5 0.199762593 0.99881109

1.0 0.099993149 0.99992986

Table 10.1. Performance results of the multiprocessor system

10.5. Conclusion

Markovian aggregation methods reduce the size of the Markov chain to be solved
to obtain the performance indices of discrete event systems. Stochastic well-formed
Petri nets take advantage of Markovian aggregation for systems modeled with
stochastic Petri nets and with behavioral symmetries. Taking these symmetries into
account in the definition of colored nets, we have developed efficient resolution
methods, that is without computing the non-aggregated Markov chain. With the help
of the symbolic reachability graph built from the description of the well-formed net,
we are able to define and analyze an aggregated Markov chain of the Markov chain
of the colored stochastic Petri net. Moreover, the states of each aggregate, a set of
colored markings, are equiprobable. The reduction ratio of the size of the studied
Markov chain is obviously related to the symmetry level in the system, and may be
very high as shown by many examples. In the next chapter, we present the tensorial
approach, the goal of which is also to reduce the resolution complexity of the Markov
chain, and we show how to combine these two methods.
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Chapter 11

Tensor Methods and Stochastic Petri Nets

11.1. Introduction

To obtain a stationary distribution of Markovian models we have to solve a system
of equations such that the number of equations and the number of unknowns equal
the number of states of the Markov chain. Various methods allow us to obtain this
distribution by lowering the complexity of the computations. For a specific structure
of Petri nets (studied in Chapter 9), the stationary distribution can be represented in
a product form that we can compute from the invariants of the net. With stochastic
Petri nets (Chapter 10), we substitute an aggregated chain in the Markov chain. The
stationary distribution of this new chain leads straightforwardly to the non-aggregated
distribution. We now present a method based on system decomposition.

As we show in section 11.2, the applicability conditions of this method are
expressed at the Markov chain level: the state space is a Cartesian product of
subspaces and transitions between states are either local (modifying only one
component of the state), or else synchronized (in the converse case). Then, the
infinitesimal generator may be written as an expression for which operands are
matrices indexed by states of the subspaces, and operators are the tensor sum and
the tensor product. Tensor1 algebra properties ensure that the generator matrix
product may be obtained from submatrices only. Hence, product-based iterative
resolution methods may be used without calculating the generator. Time and memory
complexities are then linear with respect to the sizes of the subspaces.

Chapter written by Serge HADDAD and Patrice MOREAUX.
1. The reader will find two sets of names: Kronecker algebra, product, etc. and tensor algebra,
product, etc. in the literature. We use the term tensor in this chapter.
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This method was first proposed by [PLA 85, PLA 91] for stochastic automata
networks (SAN), a model equivalent to the composition of Markov chains. Then, it
was extended to synchronous composition of generalized stochastic Petri nets (GSPN)
by [DON 94] (i.e. with transitions fusion). The main advantage of the GSPN model is
the factorization of synchronized transitions of the Markov chain on the net transitions,
reducing significantly the size of the tensorial expression. Whatever the application
model, the Cartesian product of the subspaces is always a super-space of the state
space, which minimizes complexity savings (in a substantial way in worst cases).
To apply the tensorial method to asynchronous composition of nets (through place
fusion), each subnet must have an abstract view of the other subnets [BUC 93] to build
finite subspaces. Following this idea, we include the state space in a union of Cartesian
products of subspaces, which leads to a decomposition of the generator in blocks
of submatrices where each submatrix is defined by a tensor expression [CAM 97].
This decomposition benefits from tensor algebra at the submatrix level and allows
us to cope with the ratio of the state space and its super-space. We have the same
decomposition of the state space of a stochastic Petri net with phase-type distribution
(PH-SPN) between markings and descriptors of the residual distributions [DON 98].
In this case, we show that the state space is exactly the union of the Cartesian products.
This result leads us to regard PH-SPN as one of the most efficient solutions for
modeling general distributions. After presenting the tensor analysis of stochastic Petri
nets in section 11.3, we study in the last section the combination of aggregation and
tensor decomposition with the help of the stochastic well-formed Petri net model.
The two approaches are not orthogonal and two difficulties must be overcome before
using them simultaneously. On the one hand, modeling the system may force the
designer to choose between a stochastic well-formed Petri net (SWN) and a SPN
composition. On the other hand, if the modeling comes out on SWN composition,
most often the tensor composition of the aggregated chains of the SWN is not an
aggregation of the chain of the composed SWN. Therefore, the authors of this chapter
have demonstrated sufficient syntactic conditions for asynchronous and synchronous
composition of SWNs.

For simplicity, we restrict ourselves to calculating steady-state distributions of
the models. However, the applicability of these methods usually extends to transient
analysis. Finally, since some results are rather technical, we refer the reader to the
bibliography for a detailed mathematical exposition.

11.2. Synchronized Markov chains

The principle of decomposition methods consists of exploiting the distinction
between local actions and actions with global impact, and translating this distinction
at the level of the matrices of the Markov chains of the stochastic processes modeling
entities carrying out these actions.
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In this section, we study a Markov chain X with values in the space S =
∏K

k=1 Sk,
each2 Sk being of cardinality nk. Hence X = (X1, X2, . . . , XK). We order S with
respect to the lexicographical order of the components: a state s = (s1, . . . , sK) of S,
component sk which has index ik, has as a global index, the integer

i =
K−1∑
k=1

(
ik − 1

)( K∏
j=k+1

nj

)
+ iK

In the following, we identify states and integers when no confusion may arise and
i is identified by (i1, . . . , iK) in the “multi-base” (n1, . . . , nK) [DAV 81]. Also, the
projection of i on Sk is denoted by ik (by extension).

Then, for each transition τ of X , we can identify the components involved in
the modification of the state, named the domain of τ , and the other components.
This allows us to distinguish transitions modifying only one component k without
taking other components into account (subspace Sk local event), from transitions
modifying several components and/or expecting a given state in several components
(synchronized event in several Sk).

DEFINITION 11.1 (Synchronized continuous time Markov chain). A synchronized
continuous time Markov chain (CTMC) is a CTMC on a space S =

∏K
k=1 Sk.

A transition τ is fully defined by its rate λ(τ), its domain dom(τ) =∏
k∈K(τ)={i1,...,im } Sk, its input constraints si1 , . . . , sim and its output constraints

s′i1 , . . . , s
′
im

. For all states s and s′, s
τ−−→ s′ iff

– the projections of s and s′ on dom(τ) are equal to its input and output
constraints;

– the projections of s and s′ on the complementary domain of τ (
∏

k∈K\K(τ) Sk)
are equal.

A transition τ is local (to Xk) iff its domain is reduced to only one subspace (Sk). A
transition τ is a synchronization transition if it is not local.

Hence, a local transition may modify only one component of a state. Let us
note that the Q[s, s′] element of the generator of X is then, for s �= s′: Q[s, s′] =∑

τ,s−−→s′ λ(τ).

In the following, all matrices have real values. We denote byMn,p the set of n×p
matrices and we setMn =Mn,n.

2. For ease of writing, K denotes, depending on the context, the integer K, as here, or the set
of integers K {1, . . . , K} if no confusion may arise.
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11.2.1. Tensor products

The tensor product allows us to obtain a tensor expression of the transition
probabilities matrices of discrete time processes with K components. But it also
translates at the generators level of the CTMC of continuous time processes,
the impact of synchronization transitions which simultaneously produce state
modifications in several subsystems. It is mainly this property that we will use since
we will study continuous time models.

DEFINITION 11.2 (Tensor product). Let A ∈ Mn1,p1 and B ∈ Mn2,p2 . The tensor
product (

⊗
) of A and B is the matrix C ∈Mn1n2,p1p2 :

C = A
⊗

B with cij = ai1j1bi2j2

where i = (i1, i2) in the multi-base (n1, n2) and j = (j1, j2) in (p1, p2).

EXAMPLE 11.1. If

A =
(

a11 a12 a13

a21 a22 a23

)
and B =

⎛⎜⎜⎜⎝
b11 b12

b21 b22

b31 b32

b41 b42

⎞⎟⎟⎟⎠

A
⊗

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11b11 a11b12 a12b11 a12b12 a13b11 a13b12

a11b21 a11b22 a12b21 a12b22 a13b21 a13b22

a11b31 a11b32 a12b31 a12b32 a13b31 a13b32

a11b41 a11b42 a12b41 a12b42 a13b41 a13b42

a21b11 a21b12 a22b11 a22b12 a23b11 a23b12

a21b21 a21b22 a22b21 a22b22 a23b21 a23b22

a21b31 a21b32 a22b31 a22b32 a23b31 a23b32

a21b41 a21b42 a22b41 a22b42 a23b41 a23b42

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The definition of the tensor product is straightforwardly extended to K matrices:

K⊗
k=1

Mk = M1

⊗
· · ·
⊗

MK = M with mij =
K∏

k=1

mik jk

where i = (i1, . . . , iK) in (n1, . . . , nK) and j = (j1, . . . , jK) in (p1, . . . , pK).

The fundamental interest in the tensor expression of the generator Q of a Markov
chain is the saving in memory required to store Q. If matrices Mk and M are dense,
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saving is obvious (
∑

n2
k versus

∏
n2

k) and it remains important in the case, frequently
encountered in the SPN context, of sparse, or even very sparse matrices. However,
this saving involves more complex solution algorithms for π ·Q = 0 than for direct
representations of Q.

Computation of π ·A⊗B

Due to the size of Q, iterative resolution methods of π · Q = 0 (with a sparse
representation of Q) are the only usable ones. Among these methods, we mainly
use (ordered by increasing convergence speed in most cases) the power method,
the Jacobi, and the Gauss-Seidel algorithms [STE 94], which do not modify Q. For
instance, with the power method, the nth step computes π(n+1) = π(n)(I + 1

β Q),
where β>maxi |qi,i|. In all these techniques, the key point is the efficient computation
of vector-matrix products, in the form x ·⊗K

k=1 A(k). Two types of method are used.

The first, introduced in [PLA 85], is based on two technical elements. On the one
hand, permutations denoted by σk (with associated matrices Mσk ), called “perfect
shuffles” [DAV 81], reorder vector components. On the other hand, the relation
x ·⊗K

k=1 A(k) =x ·∏K
k=1 MT

σk
· (Ink

⊗
A(k)) ·Mσk transforms a K terms tensor

product into K ordinary products (nk = n
nk

and MT
σk

is the transpose of Mσk ).

The second method translates the relation ai,j = a
(1)
i1,j1

a
(2)
i2,j2

· · · a(K)
iK ,jK

into
code using expression of the indices i and j in the multi-base (n1, . . . , nK): i =
(· · · ((i1 − 1)n2 + (i2 − 1))n3 · · · )nK + iK . Algorithm 1 corresponds to this method
of calculating the product x.A

⊗
B. The body of the external loop (on i) computes

the contribution of xi to y. Each of the internal loops completes the computation of
the product ai1,j1bi2,j2 . The most internal loop finishes the computation multiplying
with xi. At the same time, each of the two loop levels contributes to the computation
of the index l2 of the component of the vector y to be modified.

Algorithm 1 (Computation of y = x ·A⊗B)

begin
Initialize y to 0
For i from 1 to n = n1.n2 do /* i = (i1, i2), j = (j1, j2) */

For each j1 such that ai1,j1 �= 0 do
l1 ← (j1 − 1).n2 /* also avoid the product in the internal loop */
c1 ← ai1,j1 /* speed up accesses in the internal loop */
For each j2 such that bi2,j2 �= 0 do

l2 ← l1 + j2 − 1
yl2 ← yl2 + xi.c1.bi2,j2

done
done

done
end
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Complexity analysis of these methods [BUC 97, FER 98] shows that, as a general
rule, the additional cost of the tensor methods increases with the sparsity of the
matrices (with models derived from SPN, matrices are always sparse, and sparsely
stored). More precisely, let us denote by η(M) the number of non-zero elements of a

matrix M and αk = η(A(k ))
nk

the filling ratio of A(k). For simplicity, we assume that
all αk have the same value α. The complexity (number of floating point operations)
of the computation of the product y = x · A (with A =

⊗K
k=1 A(k)) is of the

order O(η(A)) = n · αK when A is stored explicitly. If A is stored implicitly
through matrices A(k), the complexity of the direct computation of y is of the order
O(K · η(A)). We can check that the complexity of the perfect shuffle method is of
the order O(n · K · α). Type two methods have a complexity O(K · η(A)) for very
sparse matrices, and O(η(A)) for sparse matrices. Thus, for sparse matrices, or even
very sparse matrices, the additional cost of tensor decompositions for the resolution
remains low.

11.2.2. Tensor sum and continuous time Markov chains

The tensor sum allows us to express the generator of the CTMC of K components
processes, with those of its components. It translates the autonomous behavior of the
components resulting from local transitions.

DEFINITION 11.3 (Tensor sum). Let A ∈ Mn and B ∈ Mp be two square matrices.
The tensor sum (

⊕
) of A and B is the matrix C ∈Mn·p:

C = A
⊕

B = A
⊗

Ip + In

⊗
B

Hence:

cij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ai1j1 + bi2j2 if i1 = j1 and i2 = j2

bi2j2 if i1 = j1 and i2 �= j2

ai1j1 if i1 �= j1 and i2 = j2

0 if i1 �= j1 and i2 �= j2

EXAMPLE 11.2. If

A =

(
a11 a12

a21 a22

)
and B =

⎛⎜⎝b11 b12 b13

b21 b22 b23

b31 b32 b33

⎞⎟⎠
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A
⊕

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 + b11 b12 b13 a12

b21 a11 + b22 b23 a12

b31 b32 a11 + b33 a12

a21 a22 + b11 b12 b13

a21 b21 a22 + b22 b23

a21 b31 b32 a22 + b33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

We also extend the tensor sum to K matrices Mk:

K⊕
k=1

Mk =
K∑

k=1

⊗
1≤k′<k

Ink ′

⊗
Mk

⊗
k<k′≤K

Ink ′ =
K∑

k=1

Ilk

⊗
Mk

⊗
Iuk

with: lk =
∏

k′<k nk′ and uk =
∏

k′>k nk′ .

Local transitions of a synchronized CTMC generate, in the expression of the
generator Q, a tensor sum rendering the independence of these transitions, and each
synchronization transition generates a tensor product rendering the simultaneous
modification of several components. The fundamental theorem below is the base for
structured descriptions of generators used for SANs and composition of stochastic
Petri nets.

THEOREM 11.1 (Generator of a synchronized CTMC). Let X = (X1, . . . , XK) be a
synchronized CTMC and Ts be the set of its synchronization transitions. The generator
of X is

Q =
K⊕

k=1

Q′
k +

∑
τ∈Ts

λ(τ)

[
K⊗

k=1

Ck(τ)−
K⊗

k=1

Ak(τ)

]
[11.1]

where Q′
k is the restriction of Q to local transitions of Sk and, for τ ∈ Ts, with rate

λ(τ), such that i
τ−−→ j:

Ck(τ) = Ak(τ) = Ink if Sk is not in the domain of τ

Ck(τ) = 1nk (ik, jk) and Ak(τ) = 1nk (ik, ik) otherwise, if τk(ik) = jk

where 1n(j, j′) is theMn matrix all terms of which are zero except the one with index
(j, j′) (equal to 1), and τk is the projection of τ on Sk (we identify a state s with its
index i and we identify its components sk with their index ik in Sk).

Matrices Ink “spread”, in Q, jumps in each Sk where τ produces a state
modification. Matrices Ak(τ) ensure the diagonal compensation of the Ck(τ) such
that Q is a generator.
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Proof. Translating the state modifications due to transitions of X , we get

Q =
∑

τ

λ(τ)

[
K⊗

k=1

Ck(τ)−
K⊗

k=1

Ak(τ)

]
Decomposing Q according to local and synchronization transitions, we get Q =
Ql+Qs. Ql refers only to local transitions. Then, we group for each k these transitions
(termed k-local transitions):

Ql =
∑

k

∑
τ, k-local

⊗
k′<k

Ik′ · λ(τ) ·
[
Ck(τ)−Ak(τ)

]
·
⊗
k′>k

Ik′

Note that we can factorize the two tensor products and we then recognize the tensor
sum of the theorem.

The main interest of the fundamental theorem lies in the computation of the
steady-state solution (and also the transient solution) of the continuous time Markov
chain. Starting from equation [11.1], we can use many numerical solution methods
for the equation π.Q = 0 exploiting this expression, without explicitly calculating
Q. In contrast, we only use Q′

k,Ck and Ak matrices, generally far smaller than Q,
without significantly increasing computation times of the steady-state solution (see
section 11.2.1).

Note that if the CTMC has no synchronization transition, we have an independent
CTMC composition and expression [11.1] reduces to a tensor sum.

Principle of two levels methods

Theorem 11.1 applies when the state space is a subset of a Cartesian product
of local spaces. This result is extended in the following way. At the first level, a
super-set of the state space is divided with respect to an equivalence relation R. Each
equivalence class is then a Cartesian product of local subspaces. Reordering the states
with respect to equivalence classes ofR, Q may be seen as a block (Q[m̂, m̂′]) matrix,
where m̂ is the class of m. Each Q[m̂, m̂′] matrix is then written in the form of a tensor
expression analogous to equation [11.1].

During the nth iteration of the resolution using an iterative method, the sub-vector
π

(n+1)
m̂ of the product π(n) ·Q is computed with the expression:

π
(n+1)
m̂ =

∑
m̂′

π
(n)
m̂′ ·Q[m̂′, m̂]

Then, the tensor method applies to each term of this sum.

Including the state space in a union of Cartesian products noticeably reduces the
number of fictitious states added to the effective state space. However, for a general
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model, it is difficult to demonstrate an equivalence relation R defined at the syntactic
level. The reader should refer to section 11.3.3 for an example of an application of this
approach.

11.3. Tensor algebra and SPN

In expression [11.1], we usually have a very large number of matrices Ck each
having only one non-zero term. Hence, we look for conditions on higher level models
(stochastic automata networks, stochastic Petri nets, etc.) so that their underlying
generators have a tensor expression with state transition factorization corresponding
to the same high level event.

A tensor decomposition of states gives a system structure made up of several
interacting subsystems, each one having a greater or lesser degree of behavioral
autonomy. The model is then built taking this structure into account, with conditions
to be enforced to obtain a factorized tensor expression.

Application of tensor methods to decomposable GSPN and to PH-SPN are detailed
below.

The Petri net model is essentially a “flat” model and the reachability graph is a
priori an unstructured graph. Numerous approaches have devised structuring methods
for Petri nets to structure the reachability graph. Among these, composition of
subnets allows us to take into account the two fundamental co-ordination mechanisms
between systems. We speak about decomposition into subnets if we try, conversely to
composition, to define subnets of a global net. From the point of view of Markovian
models, the two approaches are identical. This is not the case at the structural level of
Petri nets: composition is usually more complex to define formally. Since we focus
on tensor methods, we adopt the decomposition method.

11.3.1. Synchronous decomposition of generalized stochastic Petri nets

Rendez-vous synchronization, or synchronous co-ordination, as in rendez-vous in
the ADA language, corresponds to an event arising simultaneously in the subsystems.
In Petri nets, it is modeled by fusion of transitions of each subnet. Introduced
by [DON 94], the synchronous decomposition corresponds to a given partition of the
places of the net into subsets P1, . . . , PK . Each subset induces a classification of the
transitions: a transition is k-local iff its input and output places are in Pk; a transition
is otherwise termed a synchronization transition. For instance, in Figure 11.1, the net
is decomposed through place subsets P1 = {p11, p12, p13} and P2 = {p21, p22},
and the only synchronization transition is t. So we define K subnets, each consisting
of places Pk and of all transitions and arcs bound to Pk. These subnets have
common transitions (the synchronization ones, t in the example) and they are called
superposed generalized stochastic Petri nets (SGSPN). We denote by TS the set of
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p11 p21

p13 p12 p22

t22tt13

t12

t14

N2N1

Figure 11.1. Synchronous decomposition of GSPN

synchronization transitions, TSk the transitions of TS which are in the kth subnet
and mk[t(k)〉m′

k, the fact that t, considered as a transition of Nk, is enabled in mk

and produces the marking m′
k.

The interest of this decomposition is twofold. On the one hand, it allows us to
express the reachability set of the net as a subset of the Cartesian product of the
reachability sets of the K subnets, termed the potential reachability set (PRS) of the
net. Obviously, this presupposes that each subnet stays bounded when it is studied
in isolation. On the other hand, we can show, by inspecting possible firings, that the
generator of the underlying continuous time Markov chain of the net is a “submatrix”
of a tensor expression involving only matrices which may be computed in each subnet
in isolation. Hence, we have the following result.

THEOREM 11.2 (Generator of the synchronous composition of GSPN [DON 94]). The
generator of the CTMC of net S, synchronous composition of Sk, is a submatrix of

Q′ =
K⊕

k=1

Q′
k +

∑
t∈TS

w[t]

[
K⊗

k=1

Ck(t)−
K⊗

k=1

Ak(t)

]
[11.2]

with, if t /∈ TSk:

Ck(t) = Ak(t) = Ink

and if t ∈ TSk:

ck(t)mk ,m′
k

= 1 if mk

[
t(k)

〉
m′

k and 0 otherwise

ak(t)mk ,m′
k

=

⎧⎪⎨⎪⎩
∑

m′′
k �=mk

ck(t)mk ,m′′
k

if m′
k = mk

0 if m′
k �= mk
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and where matrices Q′
k are the elements of the generators of the CTMC of tangible

markings of Sk in isolation, that is to say only taking into account local transitions of
Nk.

We see that firings of synchronization transitions are factorized to get a tensor
expression, elements of which are autonomously calculable in each subnet.

The submatrix means that non-zero terms of Q for a given pair of states are equal
to those of Q′ and that if m is reachable in S, then q′m,m′ = 0 if m′ is unreachable in
S. This theorem may be extended to GSPN with immediate transitions which are not
synchronization transitions: coefficients are modified to take into account immediate
firing sequences which may occur after a synchronized firing.

The schema of the elementary computation algorithm of a performance measure
is then the following (RGk is the reachability graph of the subnet Sk):

1) For k = 1, . . . , K, compute RGk.

2) For k = 1, . . . , K, compute the matrix Q′
k from RGk, using only local

transitions.

3) a) For k = 1, . . . , K, compute RGk:
b) for k = 1, . . . , K, compute the matrix Q′

k from RGk, using only local
transitions;

c) for each t ∈ TS,

for k = 1, . . . , K, compute Ck(t) and Ak(t) from RGk:
compute ck(t)mk ,m′

k

compute ak(t)mk ,m′
k

as the diagonal compensation
of the (ck(t)mk ,m′

k
);

d) compute the performance measures via the tensor expression of Q′.

This last calculus never directly uses Q′, but rather matrices Q′
k, Ck and Ak.

In the general case, Q′ has more non-zero terms than Q for two reasons: on the
one hand, building the TRG of Sk generates markings which are not projections of a
global reachable marking; on the other hand, these unreachable local markings may
build up global states (falsely) enabling a synchronization transition.

This problem of deviation, which may be very large, between the potential
and the actual reachability sets is at present handled in two ways. At the marking
analysis level, we define “macro-views” of the subnet markings. Then, we can
apply the so-called two levels method that we detail below for the asynchronous
composition, which is the most suitable context for this approach. At the level of
numerical resolution methods for π · Q = 0, the problem is to design algorithms
allowing an efficient encoding of the reachability set in the potential reachability
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set [KEM 95, KEM 96] or to directly store the reachability set exploiting its structure
[MIN 99].

Work carried out in recent years on the application of tensor decomposition
methods to GSPN has virtually eliminated problems with generator storage. These
studies show that the algorithmic problem is now mainly the storage of the solution
vector (a vector of floating numbers with as many components as tangible markings,
that is around 10 million on a workstation today) and the possibility of using an
iterative method to solve large linear systems [CIA 99].

In most of the studies, the synchronization transitions are not immediate. This
corresponds to the fact that an immediate synchronization transition will not be
“visible” in the generator of the CTMC of the net. It is still possible [CIA 96]
to get a tensor expression, but significantly more complex, with an immediate
synchronization transition.

11.3.2. Asynchronous decomposition of generalized stochastic Petri nets

Asynchronous co-ordination, such as sending a message from the subsystem A to
the subsystem B, models the case where an event arises in B, after arising in A. This
kind of co-ordination is translated in Petri nets by interface places receiving tokens
from transitions controlled by other subnets. Thus, asynchronous decomposition,
studied initially by [BUC 92] corresponds to dividing the set of transitions of the
net into subsets T1, . . . , TK . Each subset leads to a classification of places: a place
is k-local if it is only connected to transitions from Tk. A place is an interface
place in the other case. A transition with output places which are interface places of
other subnets is a synchronization transition. For instance, in Figure 11.2 the net is
decomposed via subsets T1 = {tx1, t12, t13} and T2 = {t21, t22, tx2} of transitions.
The two interface places are p21 and p12 and the two synchronization transitions are
tx1 and tx2. We define K subnets in this way, each one comprising the transitions of
Tk, the k-local places, and the corresponding arcs. In most of the proposed models,
interface places connected to Tk are added, with associated arcs, to the kth subnet.

p11 p21

p22

p23

p24

p12

t13 t12

tx1

tx2

t22

t21N1 N2

Figure 11.2. Asynchronous decomposition of GSPN
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We notice immediately the fundamental difference from synchronous
composition: the subnets cannot be studied in isolation since they exchange tokens
with other subnets. To take advantage of tensor methods, we have to introduce the
notion of “environment” of a subnet, summarizing interactions of this subnet with the
remainder of the net. But this environment may only be defined as soon as we have,
for each subnet, a subnet summing up its own behavior, which we call an “abstract
view” of a subnet.

Hence, the approach is as follows: for each subnet, we define an abstract view; we
then build K extended subnets N k made up of a subnet Nk and of the abstract views
of the K − 1 other subnets (see Figure 11.3 representing the extended subnet N 1);
we study each extended subnet in isolation; the reachability set of the initial net is
in bijection with a subset of the Cartesian product of the reachability sets of Sk. The
generator of the initial net may also be written as a tensor expression using elements
of Sk. In practice, we get abstract views in a structural way [CAM 97] or a posteriori
from the markings [BUC 93].

p11 p2

p12

t13 t12

tx1

t2

N1

av(N 2)

Figure 11.3. Extended subnet of the subnet N1 in Figure 11.2

The idea of abstract views obviously leads to reduction of the potential state space
thanks to the two levels methods introduced in section 11.2. The principle is to build,
generally with the help of abstract views of the subnets, an abstract global view of a
marking which leads to a division of the markings of the net into subsets having the
same abstract global view.

11.3.3. Tensor analysis of phase-type Petri nets

Another application domain of tensor methods to SPN consists of phase-type
distribution nets (see Chapter 9) for transitions having various semantics (multiple/
single-server, enabling/age memory, etc.). In this case, due to phase-type distributions,
the Markov chain is much larger than the reachability graph. Tensor methods allow us
to maintain a reasonable ratio between these two sizes. Let us recall that a Markovian
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state is made up of a marking of the net and of the set of states of the phase-type
distributions (descriptors), that is a tuple (m, d1, . . . , dK) if we have K phase-type
distribution transitions.

The idea is to apply a two levels method (see theorem 11.1) [DON 98]. The
abstract view of a Markovian state, termed extended marking, consists of its marking
and of the number of interrupted clients in each service of phase-type distributions
(there may be a number of interrupted clients for the same marking). To this end,
we build the extended reachability graph which holds transitions between extended
markings.

It must be emphasized that, in this specific case, we get, under slightly restrictive
technical conditions not detailed here, the exact description of the Markovian state
space denoted by MS:

MS =
⊎

ei∈EI
[ei]×D1

(
ei1
)
× · · · ×DH

(
eiH
)

[11.3]

where ei is an extended marking, [ei] is the set of corresponding markings (of the net),
EI is the set of all extended markings, and Dh(eih) is the set of possible states of the
phase-type distribution of the transition th under conditions ei.

Moreover, it should also be noted, we can derive the ergodicity properties of the
continuous time Markov chain of the net from its structural characteristics.

Finally, the block matrices of the generator of the net are tensor expressions made
up of terms which can be computed from each subspace. The reader will find exact
expressions in [DON 98].

11.4. Tensor decomposition of stochastic well-formed Petri nets

To extend the application sphere of performance evaluation methods to more and
complex systems, it is attractive to combine Markovian aggregation methods and
tensor decomposition methods. In this way, we hope to get an aggregated CTMC
which is a “tensor composition” of smaller aggregated CTMC. The stages of the
method are then:

– Build a decomposition of the state space E, giving E ⊆ E′ =
∏K

k=1 Ek.

– Use an aggregation method satisfying the strong aggregation condition (see
Chapter 10) for each of the CTMC (Ek,Qk), leading to Ẽk = {E(j)

k | j = 1, . . . , nk}
with generators Q̃k.

– Build the product (Ẽ′ =
∏K

k=1 Ẽk, Q̃ = f(Q̃1, . . . , Q̃K)) of the aggregated
CTMC and define the aggregated image Ẽ ⊆ Ẽ′ of E.
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Unfortunately, as a general rule, (Ẽ′, Q̃) is not a super-set of an exact aggregation
of (E,Q). So, we need to [HAD 95, HAD 96b] find conditions under which such a
combination of methods is feasible. In this section, we explain the problems raised by
this approach and the results obtained.

11.4.1. Problems

Two fundamental problems arise for a combination of these methods: the first
one concerns the specification of the studied system and the second one concerns
the resolution method used.

11.4.2. The specification problem

If the system to be modeled has synchronization between the same types of entities
(server processes for instance), we can build a “synchronized product” of submodels,
each one modeling the behavior of one entity; but, since we model each entity with
one submodel, there is no entity class and we cannot introduce aggregation.

An elementary example of this kind of situation is a system of sites running
sequential code with a critical section the execution of which is allocated in a cyclic
way to each site (virtual token ring). The GSPN and the SWN of such a system (with
four sites) are presented in Figure 11.4: starting from the idle state, each site executes
an initial task (transition t1), then waits for the mutual exclusion token to go on
(transition t2). When the critical section is over, the site releases the mutual exclusion
token (transition t4) and goes back to idle. In the SWN model, we have only one base

site
1

site
3

site
2

site
4

Idle3

Idle4

Idle1

Idle2

sitest2

t1

t4

t3

!X

card(Z1)=1

X

X
X

X

X

X

X X

Z1

S

X

Idle

Figure 11.4. GSPN and SWN of a virtual token ring
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class, Cs, for the sites. The marking S means that all sites are idle in the initial state
and the marking Z1 (dynamic subclass) shows that this place holds some token of the
color class Cs.

As we see in this example, with Petri net modeling, synchronization between
objects of the same kind is translated by “folding” the uncolored net into a single
colored net. Note that we could also decompose the net into four GSPN (one of them
is drawn with thick lines) and an asynchronous composition.

We summarize this situation in the term internal synchronization, since it is a
matter of synchronization between objects of the same kind. Conversely, we say that
the system exhibits an external synchronization if there is synchronization between
entities of different kinds.

So, in the case of internal synchronization, we have to choose between a model
decomposition into submodels (SAN or synchronized GSPN) and a possible
aggregation (SWN).

11.4.3. The resolution problem

A system with external synchronization may be modeled as a SWN N ,
synchronous or asynchronous composition of K SWN Nk: in this way, we hope
to make use of aggregation at the level of each subnet and to apply the tensor
(de)composition to the global net.

Let us give an example of such a composition with a system built from two
subsystems: in each subsystem, the activity begins with the choice of the kind of
task to be done (represented by the class C); then, the task may be completed either
in an autonomous way in each subsystem, or else jointly by both, for the same kind
of task in the two subsystems. The SWN in Figure 11.5 is a model of this system.

p12 p22

p11 p21

t

t11
X X

XX
N1 N2

t21

t22t12

X X

Figure 11.5. Synchronous composition of SWN with memory
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t
t22

t21

t11

t12

t21
t21

t11

t11

t12

t12

t22
t22(1)

(3)

(5)

(4)(2)

idle

active job
in  N2

active job
in N1

same active job
in N1 and N2

distinct active jobs
in N1 and N2

Figure 11.6. Synchronous composition of SWN with memory: SRG of S

The net is the composition of two SWN N1 and N2 through t: tasks are carried out
either autonomously in N1 through t12 (resp. N2 through t22), or else, for the same
kind of task (which is translated by the same X function for arcs linking p12 and p22

to t) in both nets through t. The color domain of p12 and p22 is the class C and the
color domain of p11 and p21 is the neutral color. The color domain of all transitions
is C. We give in Figure 11.6 the symbolic reachability graph (SRG) of S and, in
Figure 11.7, the SRG of S1, S2, and of their “synchronized product”, in an informal
way.

(1')

SRG2

idle

active job

t22 t21
t

SRG1idle active job

t11

t12 t

active job in  N2

idle active job in N1

active jobs
in  N1 and N2

t

t22

t21

t11

t12

t21

t11

SRG1 + SRG2

t12

t22

(2') (4')

(3')

Figure 11.7. Synchronous composition of SWN with memory: SRG of S1, S2

and SRG of their “synchronized product”
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The autonomous work in N1 (resp. N2) is translated in Figure 11.6 by the firing
sequences (t11, t12) (resp. (t21, t22)). We also note that t is enabled in only one
symbolic marking (4) which represents markings with the same kind of available
objects in p12 and p22, while in the marking (5), p12 and p22 hold different kinds of
objects.

By contrast, in Figure 11.7, we have only one “symbolic marking” (4’) with tokens
in p12 and p22: the relative identity of these tokens (defined by the firings of t11 and
t21) is lost and (4’) is the gathering of (4) and (5), which is an incorrect aggregation
since (4) enables t but (5) does not.

We call such transitions (t), synchronization transitions with memory.

As a general rule, we cannot use a straightforward extension of the composition of
GSPN to solve the initial CTMC because the composition, i.e. the sum of the graphs3

of the aggregates given by the symbolic reachability graphs of Sk is not an aggregation
of the CTMC of the whole model satisfying the aggregation condition of Kemeny and
Snell [KEM 60] (Chapter 10, proposition 5).

This situation is mainly due to the fact that the firing of a synchronization
transition generates modifications of markings which will forbid some admissible
color permutations, that is they will reduce the possible symmetries in each subnet.
We can say that the (stochastic) transition system must “memorize” these firings, and
a direct composition of such systems does not allow this.

Let us emphasize that this memory problem is a general one and we encounter it
with all models (SWN, SAN, GSPN, . . .): for instance [PLA 85] introduces auxiliary
automata to store specific states of the system. In contrast, we do not want to modify
the initial net to apply a decomposition.

Finally, even if we succeed in defining a “synchronized product” of SWN, we still
need to express the firing rate of external transitions from information given by their
SRG.

11.4.4. A tensor decomposition method for SWN

Figure 11.8 summarizes the approach used and places it in its context. To compute
performance measures of modeled systems, the basic method (left branch of the
diagram) computes the reachability graph of the net (arcs “G” Graph building) and
derives Q (arcs “M” Markov chain) from it.

3. The sum of G1 = (V1, E1) and G2 = (V2, E2) is the graph G = G1 + G2 = (V1 × V2, E)
with ((u1, u2), (v1, v2)) ∈ E iff (((u1, v1) ∈ E1), and ((u2 = v2), or ((u2, v2) ∈ E2))), or
(((u2, v2) ∈ E2), and ((u1 = v1), or ((u1, v1) ∈ E1))).
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Figure 11.8. Approach and context of the decomposition of SWN

The two methods, described above and in Chapter 10 are:

– the tensor decomposition method (right branch of the diagram, with RGk, Q′);

– the aggregation method (SRG branch, Q̃) used by the SWN model.

The validity of the expressions of the new generator (Q̃, Q′) for these two methods
(arcs “C” Consistency) has been established.
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The proposed approach consists of combining aggregation and decomposition
(central branch of Figure 11.8). There are three points to study:

1) build a modified SWN, that is to say extended (denoted by Nk), of the
subsystems, allowing us to memorize the synchronization;

2) derive an expression for the generator Q
′

of the underlying CTMC of the
composition of the SRG (denoted by SRGk) of the (Sk), analogous to the ones
obtained for GSPN;

3) prove that this expression is a “super-matrix” of an aggregation of Q.

In this context, we have defined kinds of synchronous and asynchronous
compositions for which we give explicit building methods for the extended subnets
(point 1). We also get an expression for the generator Q

′
with adapted matrices Ak(t)

and Ck(t) for each case (point 2), and we prove the consistency of these expressions
(point 3).

11.4.5. Application in the asynchronous case

For simplicity, we describe only the asynchronous case. We first present the
extension method of subnets: we clarify the structure of the synchronization, and
then we point out how to build extended SWN which will be studied in isolation.
Next, we define syntactic conditions, that is at the structural level of the net (color
domains of places and transitions, arc functions, flows, etc.), satisfied by many nets
decomposable into subnets with some “autonomy”, for which the tensor composition
of aggregates may apply.

Finally, we give an overview of the computation algorithms and associated
consistency proofs. We refer the reader to [HAD 96a, HAD 97, MOR 96] for detailed
expositions of results presented below.

Here, we first have to build an extension of a subnet allowing us both to study
it in isolation taking its environment into account, and to define an (asynchronous)
decomposition of subnets. This is done by definition of an abstract view of each
subnet: each color class modeling entities “moving” from one subnet to another is
called a global class and the abstract view of a subnet Nk is made up of one place
for each global class of Nk, and of the set of transitions TSk modified accordingly.
Let us emphasize that this abstract view is formally defined, in contrast with other
work on this subject, and so it may be automatically computed, thanks to symbolic
partial flows (see Chapter 7). The extension of a given Nk is then Nk enlarged with
the abstract views of all other subnets.

Figure 11.9 is an example of asynchronous composition of stochastic well-formed
Petri nets. N is made up of three parts and models a client (local work) – server
(remote work) with a repair device (server repair). Clients are initially in the local
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Figure 11.9. Example of asynchronous decomposition of SWN

part (place p13) and servers are in the remote site (place p25). Clients send requests
neighbor paired (variables X and !X , the client class Cc is ordered). Requests are
served at the remote site (transitions t21, t22 and t23) by the servers (class Cs). A
server may fail: in this case, it must be repaired through two tasks in the repair site
(transitions t31, t32 and t33).

Thus, the basic color classes are Cc and Cs and the color domains of places and
transitions (not given in the figure for clarity) are:

– Cc for p11, p12, p13, p21, p22, t11, t12 and t13;

– Cs for p25, p31, p32, p33, p34, t24, t31, t32 and t33;

– Cc × Cs for p23, p24, t21 and t22;

– Cc × C2
s for t23.

Figure 11.10 gives the extension N 1 of N1. We see that, in the abstract view of
N2, we have two places (p2c and p2s) for colors Cc and Cs. The corresponding partial
flows of N are:

f2c = Xc · p21 + Xc · p23 + Xc · p22 + Xc · p24

f2s = Xs · p25 + Xs · p23 + Xs · p24
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Figure 11.10. Extension N 1 of the net N1 in Figure 11.9

In the abstract view of N3, we have only one place (p3s) for Cs. The associated
partial flow is:

f3s = Xs · p31 + Xs · p33

Transitions t13, t23, t24 and t33 are also modified according to the definition of an
abstract view.

We can define a set of syntactic conditions which allows us to use the method
[HAD 97, MOR 96]. Intuitively, these conditions give three properties:

– On the one hand, all activities must keep their identity when going from one
subnet to another; for instance, we find for the output of t23, one client X and its
successor !X , which are in its input places p23 and p24. Generally speaking, this
condition is expressed by a property binding the flows of the abstract view to the
colors of the control places of the synchronization transitions.

– On the other hand, there may be only transfer of activities between subnets, but
no creation or destruction; for instance, the arc functions of t24 induce the transfer of
only one server to the repair service.

– Finally, at any time, activities of a given global color are restricted to only one
subnet; the flow Xc.p11 + Xc.p12 + Xc.p13 + f2c in N ensures this property for any
color of the client class (thus, this condition is ensured by symbolic flows).
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11.4.5.1. Algorithm for computing performance measures

The matrix Q is a submatrix of

Q′ =
K⊕

k=1

Q′
k +

∑
t∈TS

∑
d

w[t](d)

[
K⊗

k=1

Ck(t, d)−
K⊗

k=1

Ak(t, d)

]
[11.4]

where w[t](d) is the rate4 of the transition t and d is a choice of static subclasses
for the symbolic firings of t. This formula extends the relation [11.2] for GSPN
composition. The computation algorithm of Q′ has the same steps as the one presented
in section 11.3.1; however, it must be adapted to colored firings, which implies a
careful analysis of the firings of synchronization transitions.

11.4.5.2. Sketch of proof of the algorithm

We denote by SRGk (resp. by SRSk), the SRG (resp. SRS) of N k and by
Mk its symbolic markings. XSRS is the Cartesian product of the SRSk and its
elements are denoted by M (hence M = (Mk)k=1,...,K ). We first show5 that the
reachability set RS of the net is a subset of {(Mk)k∈K | ∃M ∈ XSRS such that
∀k ∈ K, Mk ∈Mk} which may be seen as a “disaggregated” state space of XSRS.

Then, we prove that A(M) = M ∈ XSRS is an aggregation function on RS
which ensures exact aggregation.

Finally, we show that the transition rate (in the sense of the Markov chain) from a
stateM of XSRS to another stateM′

is indeed given by the proposed algorithm.

The proof of the first two points is established in several steps [MOR 96]:

– definition of a set of semantic conditions, that is to say at the marking level;

– verification of the strong aggregation condition as a consequence of the previous
semantic conditions (this is the main part of the proof);

– proof that the syntactic aggregation conditions imply these semantic conditions.

Finally, a minutely detailed examination of the firing colors of the synchronization
transitions allows us to prove that the generator of the aggregated CTMC is a
submatrix of the matrix Q′ of the algorithm.

Introducing an intermediate semantic level is justified by two reasons:

4. We assume that the rate is independent of the marking.
5. The structure of the proof is analogous in the asynchronous and the synchronous cases.
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– Semantic conditions help us to look for syntactic conditions: for each of the
former, we try to establish a syntactic translation.

– For a given set of semantic conditions, we may find several sets of syntactic
conditions for specific classes of nets. In this way, we reduce the consistency proof to
the derivation of the semantic conditions from these new syntactic conditions.

11.5. Conclusion

Tensor methods are based on decomposition of discrete event systems into
synchronized subsystems. Applying these methods to various classes of stochastic
Petri nets takes advantage of structural and behavioral properties of these nets. For
GSPN, we compose several subnets in a synchronous or an asynchronous manner.
For phase-type distribution nets, we describe the state space and the generator of
the Markov chain tensorially, taking into account the possible states of phase-type
activities. In all cases, subtle implementation techniques allow us to exploit the tensor
properties as much as possible, thus increasing the size of the systems we are able to
analyze. Finally, combination of tensor methods and methods based on behavioral
symmetries (stochastic well-formed Petri nets), takes advantage of the two kinds of
complexity reduction when these two methods are not incompatible.
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Chapter 12

Verification of Specific Properties

12.1. Introduction

Chapter 3 presented how to verify the general properties, such as boundedness
and liveness, that must be fulfilled by almost all Petri nets that represent systems.
If boundedness or liveness give initial feedback about the correctness of the general
behavior of a Petri net, these verification approaches must be complemented by the
analysis and validation of more application-related specific properties, i.e. properties
that must be fulfilled by the system under consideration.

Generally speaking, a designer defines the application by a set of functions and
requirements that are expressed by a specification. Then, while the system is being
designed, or when it has been designed, a model of this designed system is produced.
Finally, starting from both the specification and the model, verification is conducted
by checking that the design model conforms to the targeted specifications.

To develop algorithms and tools to support this verification, the concept of
specification has to be formalized. Two main approaches have been studied to describe
specifications:

– using an adequate set of logic formulas (in an adequate logic system);

– using an adequate behavioral model.

In real designs, it appears that these two approaches are in practice complementary:
some properties will be expressed more easily using formulas, and others more easily

Chapter written by Serge HADDAD and François VERNADAT.



350 Petri Nets

using behaviors. As an example, consider a simplified resource allocation problem
based on mutual exclusion: two clients are competing for the same resource, and only
one can get it at any given time (see Chapter 1).

As the specifications must give an abstract definition of access control, the
properties to be checked for proving mutual exclusion are as follows:

– P1 “the resource must be used by at most one client”, and, by analogy with the
philosophers’ problem,

– P2 “a client requesting the resource will eventually receive access to it (within a
finite time)”,

– P3 “a client first requests the resource (a), second, it receives an agreement to
use it (b), and finally (c) it sends a message to release the resource after using it”.

It now appears that P1 and P2 can be quite simply expressed by temporal logic
formulas, while P3 is expressed more precisely by a behavior, such as the one given
on the left of Figure 12.1.

In fact, P1 can be expressed only very indirectly by a behavior, such as the
one shown in Figure 12.1, where, between two consecutive accesses to the critical
section (event ? Ack), inevitably the client that is in the critical section will release
it (event ! Rel). This is because there is always a Release event between two (Ack)
authorizations.

Idle Wait

Work

! Req

? Ack! Rel

? Ack1

? Ack2

! Rel2

! Rel1

Figure 12.1. Examples of behavioral specifications

For a logic to be applied to system behaviors which have events, it must be able to
handle the concept of executing a (finite or infinite) sequence of states. Moreover, it
must be able to express:

– a safety property: “There is always at most only one process executing the critical
section” (see P1);

– liveness properties: “If a process requests entry to a critical section then
eventually it will enter the critical section” (see P2); and
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– equity properties: “Any process requesting entry to a critical section infinitely
often (in an infinite number of states) will receive (from the scheduler) the right to
enter the critical section an infinite number of times”. The key concept here is that
time is seen as a discrete sequence of instants, or events, and the logic that integrates
this concept is called temporal logic.

Different temporal logics exist and are distinguished by two axes. The first axis
concerns “parallelism and/or non-determinism”, which lead to the existence of various
possible executions. Then:

– either the set of all possible executions is represented as a tree, where the
different successors of a state are the possible instances of the events that can appear
in this state, leading to a branching time temporal logic;

– or the set of all possible executions is represented by all possible (linear)
execution sequences, leading to a linear time temporal logic.

The second axis is defined by the nature of the components of the sequence:

– either a sequence is considered as a sequence of states, these states being
characterized by a set of atomic propositions, leading to a state-based temporal
propositional logic;

– or a sequence is considered to be a sequence of elementary transitions, each
transition being labeled by an event, leading to an event-based temporal logic.

The first part of this chapter therefore introduces the logical approach, and more
precisely the syntax and semantics of a propositional branching time logic called
CT L∗, with two of its more interesting fragments CT L and LT L. It will then show
how to verify or check formulas characterizing finite states models, and finally explain
how to adapt propositional and event-based logics when they are related to Petri nets,
i.e. how to account in a suitable way for the various types of possible Petri net firing
sequences (finite, maximum finite or infinite).

After having presented the logical approach, the second part of this chapter
presents the “behavioral” approach. While the logical approach is sometimes called a
“double model” approach, as it needs a logic to specify the properties to be checked,
and a model to represent the system behavior (a “Kripke structure” defined by the
reachable markings graph for Petri nets), the behavioral approach is sometimes called
a “simple model” approach, in the sense that it only needs one structure, a “labeled
transitions system” (a structure close to the reachable markings graph for Petri Nets),
to represent both the system behavior and its specification.

The behavioral approach is based, using various relations of equivalences (or
pre-orders), on checking two behaviors: the two behaviors fulfill the same properties
if and only if they are equivalent. Various behavioral equivalences have been
introduced to take into account several properties or several classes of properties that
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can be considered for analyzing the behavior of a system. Among these different
properties or views, there are again parallelism and non-determinism. As for temporal
logics, two families of relations of behavioral equivalences exist: the “equivalences
of traces” family, which considers the execution of a system to be the set of its
sequences of executions (linear temporal logics) and the “bisimulations” family,
which considers the execution of a system to be a “tree” of executions (branching
time temporal logics). Again, these two families can also be defined either by using
the “states” (state-based temporal logics) or the events (event-based temporal logics)
that constitute the execution.

To present these approaches and families, the first section informally introduces
various possible solutions that can be used to compare the behaviors of two systems.
The second section presents the concepts of bisimulation and simulation, together with
the associated decision procedures. The third section addresses the notion of “weak”
equivalences to compare systems described at various levels of abstraction. Finally,
the last section shows the links that exist between the behavioral approach and the
logical approach: in particular it introduces the HML [HEN 85] logic, which gives
a modal characterization of the bisimulation relation. It will also present Browne’s
results [BRO 88], which give a behavioral characterization of temporal logic CT L∗.

The last part of this chapter will analyze the decidability: a) of evaluating
temporal logic formulas on Petri nets; and b) of checking bisimulation of a marked
net using a labeled transitions system. More precisely, it will establish that, for a
propositional temporal logic, the evaluation is undecidable both for the CT L and
the LT L fragments. This result can be extended to event-based arborescent logic.
In these three cases, the formulas only require a very limited number of temporal
operators, which shows the robustness of the result (see for example [ESP 98]). Using
similar reasoning, it can be shown that testing the bisimulation of two marked nets is
also undecidable [JAN 95].

Fortunately, for an event-based (very expressive) linear temporal logic (the linear
μ-calcul), the evaluation of formulas is decidable [ESP 97]. In the case of maximum
finite sequences, the procedure is based on the decidability of the reachability
[MAY 84], and, for infinite sequences, techniques of the shortest sequences are
used (see Chapter 14 of this volume and also [RAC 78, YEN 92]). Also, testing
bisimulation of a marked net and of a finite transitions system becomes decidable
(here still using the accessibility test) [JAN 99]. Note that this is a rather important
result because, very often, the specifications of services are given by such finite
transition systems, and validation consists of comparing this specification with the
Petri net that implements it.

12.2. Kripke structures and transitions systems

Labeled Kripke structures are able to describe in a generic way the behavior of
general systems. They consist of a set of states for which certain propositions have to
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be verified and of a set of binary relations between successive states indexed by the
relevant system events.

DEFINITION 12.1. A labeled Kripke structure LKS = 〈AP,Σ, S, { a−−→}a∈Σ, ν〉 is
defined by:

– AP is a set of atomic proposals;

– Σ is a finite alphabet of events;

– S is a set of states;

–
a−−→ is a binary relation ⊂ S × S;

– ν: S → 2AP is a labeling which associates each state ν(S) with the set of atomic
propositions holding in s.

It is assumed that a labeled Kripke structure has one initial state s0, and the
structure is denoted by (SKE, s0). When events are not taken into consideration, it is
called a Kripke structure; when atomic propositions are not taken into consideration,
it becomes a labeled transition system. The following definitions formalize these two
cases.

DEFINITION 12.2. A Kripke structure KS = 〈AP, S,→, ν〉 is defined by:

– AP is a set of atomic proposals;

– S is a set of states;

– → is a binary relation ⊂ S × S;

– ν: S → 2AP is a labeling which associates in each state ν(S) the set of atomic
propositions holding in s.

DEFINITION 12.3. A labeled transitions system LT S = 〈Σ, S, { a−−→}a∈Σ〉 is defined
by:

– Σ is a finite alphabet of events;

– S is a set of states;

–
a−−→ is a binary relation ⊂ S × S.

Let us use s
a−−→ s′ to indicate that (s, a, s′) ∈ S × Σ × S. In general, we will

use σ ∈ Σ∗ : s
σ−−→ s′ to indicate that s is accessible from s by the sequence of

actions (the word) σ. As the considered systems can be non-deterministic, we will
write s ∈ S, E ⊂ S and a ∈ Σ : s

a−−→ EσE = {s′ ∈ S : s
s−→ s′}.

Finally, let us use s
a

�→ to indicate that s is not succeeded by action a and s �→ to
indicate that s does not have a successor (i.e. is a blocking, or deadlock, state).
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12.3. Temporal logic

12.3.1. Syntax and semantics

Dynamic discrete events systems have in common: a set of states and a succession
relation (reachability) between these states. As an example, a state of a distributed
applications is characterized by the state of the processes (the values of the variables,
instruction counter, etc.) and the state of the environment (e.g. messages in the
channels). Because of the many possible representations, these values will be
represented by a suitable abstraction, i.e. a set of atomic propositions (denoted
P,Q, . . .). Starting from a given state, the succession relation leads to a set (generally
infinite) of sequences of states starting from an initial state, also called a “path” in
temporal logic terminology. It follows that the propositional arborescent logic that
will be used, CT L∗, is defined inductively by a syntax expressing the formulas in the
state and the path of the states [EME 96].

DEFINITION 12.4 (Syntax of CT L∗). Let AP be a set of atomic propositions. Then
the formulas of CT L∗ are defined by the following rules:

S1 Each atomic proposition P is a state formula.

S2 If f and g are state formulas then f AND g and NOT f are state formulas.

S3 If f is a path formula then E f and A f are state formulas.

P1 Each formula of state is a path formula.

P2 If f and g are path formulas then f AND g and NOT f are path formulas.

P3 If f and g are path formulas then X f and f U g are path formulas.

Only rules S3, P1 and P3 require explanations. What needs to be done is to check
a set of sequences starting from a state. Thus E f is verified if, starting from this state,
there exists a sequence which verifies f . A f is verified if, starting from this state,
all the sequences verify f . If f is a state formula, then f is interpreted as a formula
that is evaluated on the first state of the sequence. X f (X for “next”) consists in
evaluating f on the private subsequence of the first state. Finally f U g (U for “until”)
is verified if there exists a suffix of the sequence for which g is verified and such that
all the preceding suffixes verify f . In other words, f remains verified until g becomes
verified and g will eventually be true. Let us now formalize the semantics of CT L∗ by
introducing the concept of a model and of satisfying a formula by a model.

DEFINITION 12.5 (Model of CT L∗). A model of CT L∗ is a Kripke structure KS =
〈AP, S,→, ν〉 such that → is a total binary relation: ∀S ∈ S, ∃T ∈ S such that
s → t.

Traditionally, temporal logic considers infinite sequences (to address fairness
properties). This explains the constraint on the relation →, where a sequence
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σ = (s0, s1, . . .) is an infinite sequence of states such that ∀I ∈ N, si → si+1. Note
that later we will relax this constraint for Petri nets. Also, the sequence σi indicates
the suffix of σ, (si, si+1, . . .), and σ0 = σ.

Let AP = {NOT P | P ∈ AP}. For simplification, let us consider in the
following that the labeling function ν takes values in 2AP∪AP with the following
obvious constraint:

∀P, s
∣∣{P, NOT P} ∩ ν(s)

∣∣ = 1 (an atomic proposition is either true or false).

DEFINITION 12.6 (Semantics of CT L∗). Let KS be a model, s a state of SK and
σ = (s0, s1, . . .) a sequence ofKS. Then, satisfying a formula of CT L∗ on this model
is defined by:

S1 KS, s0 |= P if and only if P ∈ ν(s0).
S2 KS, s0 |= F AND g if and only if KS, s0 |= f and KS, s0 |= g. KS, s0 |=

NOT f if and only if there are not KS, s0 |= f .

S3 KS, s0 |= Ef if and only if ∃σ resulting from s0 such as KS, σ |= f . KS, s0 |=
Af if and only if ∀σ resulting from s0, KS, σ |= f .

P1 If f is a state formula, KS, σ |= f if and only if KS, s0 |= f .

P2 KS, σ |= F AND g if and only if KS, σ |= f and KS, σ |= g. KS, σ |=
NOT f if and only if NOT (KS, σ |= f ).

P3 KS, σ |= FUg if and only if ∃i such as KS, σi |= g and ∀jn such as
pr /∈ PROM(em).

In practice, CT L∗ is enriched by abbreviations to simplify the expression of
properties:

(OR) f OR g ≡ NOT (NOT f AND NOT g).
(true) true ≡ NOT P OR P .

(false) false ≡ NOT true.

(F) F f ≡ true U f .

(G) G f ≡ NOT F NOT f .

(W) f W g ≡ f U g OR G f .

F f means that f is true for a suffix of the considered sequence. G f means that
f is true for all suffixes of the considered sequence. Contrary to fUg, note that fWg
(W for “weak until”) does not imply that g will be true for a suffix. In this case, f is
true for all suffixes. As an example, G F ⇔ F W false.
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CT L∗ is a very expressive language. In order to define efficient evaluation
algorithms, this language has been restricted. The two most important restrictions are
CT L and LT L.

CT L is the language formed of the syntactic rules S1, S2, S3 and P0:

P0 If f and g are state formulas then X f and f U g are path formulas.

CT L focuses on the concept of state. Its syntax can be entirely described without
defining the path formulas obtained by the four operators AX f (for any state successor
of the state considered, f holds); EX f (there is a state successor of the considered
state for which f holds); A F U g (for any sequence resulting from the considered
state, f holds until g holds and g will eventually become true); and E F U g (a
sequence exists starting from the considered state such that f holds until g and g
will eventually become true). The interest of CT L lies in the fact that, on the one
hand, it is sufficiently expressive to specify almost all the usual properties and, on the
other hand, the algorithms needed to verify the satisfaction of a formula by a model
have a complexity proportional to the size of the model and to the size of the formula.
However, unfortunately, a few properties of fairness are not expressible in CT L. This
has led to various extensions of the model by adding operators such as AGF f (for any
sequence starting from the considered state, f is true in an infinite number of states
of the sequence), able to express the usual concepts of fairness. These extensions are
also manipulated by verification algorithms of polynomial complexity. More details
are given in [EME 81, EME 82, EME 85].

EXAMPLE 12.1. The formula AG (A req U serv) expresses that starting from any state
which contains a request, in any sequence, the request will last until it is served.

LT L, the language formed of the syntactic rules S1, P1, P2 and P3, focuses
on the concept of sequence. Its syntax can be described (without defining the state
formulas) by considering that the atomic propositions are path formulas to be verified
for the first state of the sequence.

Using such a logic is justified by considering observers that cannot interact with
the system, and, in such a case, only sequences are meaningful. One of the interests of
LT L, illustrated in the following chapters, is its applicability to symmetry and partial
order techniques to reduce the complexity of the verification algorithms. Generally a
model KS is initialized in a state s0 and the verification of the formulas is checked
on KS, s0. Given a formula LT L path f , let us use the generalization KS, s0 |= f to
indicate that KS, s0 |= Af .

EXAMPLE 12.2. The formula GF p · exec OR F G p · block expresses the property
that, during any execution, either the process p is infinitely blocked when starting from
a given state, or this process is selected an infinite number of times by the scheduler.
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12.3.2. Methods evaluation

The objective of an evaluation method is to verify whether a formula is satisfied by
a particular model. This section only discusses finite models (the verification of infinite
models, such as the reachability graphs of unbounded Petri nets, will be considered at
the end of the chapter).

In the following, KS will denote the model, f0 the formula to be verified and s0

the initial state of the model. Then, the problem to be solved is to verify whether
KS, s0 |= f0 holds.

12.3.2.1. Checking of formulas CT L∗

Let us first show that if an evaluation method exists for LT L, then a method of
evaluating CT L∗ can be built, using quite a simple construction principle. First, the
operator E is replaced by its equivalent expression NOT A NOT. Then, let us consider
the syntactic tree of a state formula f0 of CT L∗:

– A node labeled by A, which does not include in its subtree this same operator A
prefixing g a formula of LT L.

– g is then evaluated for all states of the model and we create a new proposition
[AG]. This proposition is assigned to the states of the model according to the result of
the evaluation of g.

– In f0, Ag is substituted by [AG] and we iterate the process as long as the operator
A exists in the sequence.

– The resulting formula is then a formula of propositional logic that can be
evaluated locally on each state.

Let us call the requested verification method “ CT L∗-checks” and the verification
method of the LT L formulas “LT L-checks” . The method is as follows.

CT L∗-checks (KS, s0, f0)
While ∃f = Ag subformula of f0 where f ∈ LT L Do

Introduce a new atomic proposition [f ]
For each state s Do

If LT L-checks (KS, S, g) Then
add [f ] to ν(s)

Else
add NOT[f ] to ν(s)

End if
End for
Substitute [f ] for f in f0

End While
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// f0 is now a propositional logic formula
If s0 |= f0 Then

return(TRUE);
If not

return (FALSE);
End if

Let us apply this method to the formula A(FAG P AND G AF Q) AND R:

– AGP is a formula of the required type.

– We evaluate GP for each state and consequently update [AG P ].
– We transform the initial formula, which becomes:

A(F[AG P ] AND G AF Q) AND R.

– Then the formula is again transformed into A(F[AGP ]ANDG[AFQ])ANDR.

– The final formula is a propositional formula:

[A(F[ AG P ] AND G[ AF Q])] AND R.

12.3.2.2. Verification of LT L formulas

Let us now consider the verification ofLT L formulas, using a three-step approach:

– We “normalize” the formula so as to push back the operator NOT in front of the
f atomic propositions.

– We define the automata with promises, which accept infinite sequences of a
model. Then we demonstrate the construction of an automaton that exactly accepts
the sequences that verify a given formula.

– Finally, from an initialized model, we show how it can be verified that this model
includes at least a sequence that is accepted by a given automaton.

The verification method then consists of building the automaton associated with
NOTf0 and verifying that the model (KS, s0) does not include a sequence accepted
by this automaton.

Normalization of LT L formulas

Let us normalize the formula using the OR and W (“weak until”) operators.
The normalization of a formula f , denoted as norm(F ), locates the NOT
operator immediately before the atomic propositions. The following normalization
equivalences are easy to verify starting from the definitions, e.g.

NOT (f U g)⇐⇒ (NOT g AND f) W (NOT f AND NOT g).
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– norm(P ) = P , norm(NOT P ) = NOT P , norm(Xf) = X norm(f)
– norm(f OR g) = norm(f) OR norm(g)
– norm(f AND g) = norm(f) AND norm(g)
– norm(fWg) = norm(f)W norm(g), norm(fUg) = norm(f)U norm(g)
– norm(NOT NOT f) = norm(f)
– norm(NOT (f AND g)) = norm(NOT f) OR norm(NOT g)
– norm(NOT (f OR g)) = norm(NOT f) AND norm(NOT g)
– norm(NOT Xf) = X norm(NOT f)
– norm(NOT (fUg)) = (norm(NOT g) AND norm(f))

W(norm(NOT f) AND norm(NOT g))

– norm(NOT (fWg)) = (norm(NOT g) AND norm(f))

U(norm(NOT f) AND norm(NOT g))

Automata and LT L formulas

The next step consists of building an automaton that recognizes exactly the infinite
sequences that verify a (normalized) LT L formula. The aim of this automaton is to
construct a proof based on the propositions verified by the initial state (of the sequence
σ), and on a formula to be verified by the suffix σ1. Thus, a formula to be verified
corresponds to each state.

Let us assume we have to verify formula P W Q. According to the equivalence
f W G ⇔ G OR (F AND X(F W G)):

– either in the initial state, Q is verified and σ1 has no formula to verify;

– or in the initial state, P is verified and σ1 must again verify P W Q.

This leads to the automaton given in Figure 12.2.

PWQ true

{P}

{Q}

Figure 12.2. An automaton recognizing P W Q
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A similar equivalence can be used for the “until” operator:

f U G ⇐⇒ G OR (F AND X (F U G)).

However, this automaton must accept a sequence where P is true an infinite number of
times and Q never holds. The key point is that for the operator U, we cannot infinitely
choose the second alternative of OR. Let us denote as Xp an operator that is a promise
to check later on an “until” formula by selecting the first alternative of the OR (this is
a promise for the future). The automaton of the formula P U Q is given in Figure 12.3.
The semicolon on the arc furthest to the left separates the propositions to be verified
and the promises to hold.

PUQ true

{p};{XpPUQ}

Q

Figure 12.3. An automaton recognizing P U Q

Let us now present the syntax and the semantics of the automata with promises.

DEFINITION 12.7. An automaton with promises A = 〈AP,Q, q0, PROM,E〉 is
defined by:

– AP a finite set of atomic propositions;

– Q a finite set of states;

– q0 ∈ Q the initial state;

– Prom a finite set of promises;

– E a finite set of arcs such as for e ∈ E:
- in(E) ∈ Q indicates the source of the arc;
- out(E) ∈ Q indicates the target of the arc;
- label(E) ⊂ AP ∪AP indicates the propositions of the arc;
- prom(E) ⊂ Prom indicates the promises associated with the arc.

DEFINITION 12.8. Let σ = (s0, s1, . . . , sn, . . .) be an infinite sequence of a model
KS. σ is recognized by A = 〈AP,Q, q0, P rom,E〉 if and only if there is a path
(q0, e0, q1, e1, . . .) such that:

– ∀n, in(en) = qn, out(en) = qn+1, label(en) ⊂ ν(sn)

– ∀n, ∀pr ∈ prom(en), ∃m > n such that pr /∈ prom(em)
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A sequence that verifies the first condition will be said to be recognized by the
path.

Let us build an automaton that is equivalent to a formula f . As seen in the
previous examples, a formula is transformed into a disjunction of clauses where each
clause is a conjunction of atomic propositions (and of negations of propositions)
and of formulas that have to be verified on the obtained subsequence. Let tr(F ) be
the transformed formula where the formulas to be verified on the subsequence are
replaced by propositions (noted as before between square brackets). The operator
Xp is used to denote the equivalence applied to the operator “until”: it indicates a
promise to hold. Let us construct this formula, but note that it is not syntactically a
disjunction of conjunctive clauses. This syntactic transformation results by iteratively
applying the equivalence f AND (g OR h) ⇔ (f AND g) OR (f AND h) (this
transformation will be carried out during the construction of the automaton).

If f = P Then tr(f) = f
If f = NOT P Then tr(f) = f
If f = h OR g Then tr(f) = tr(h) OR tr(g)
If f = h AND g Then tr(f) = tr(h) AND tr(g)
If f = Xg Then tr(f) = [Xg]
If f = gUh Then tr(f) = tr(h) OR (tr(g) AND [XpgUh])
If f = gWh Then tr(f) = tr(h) OR (tr(g) AND [XgWh])

The automaton is built as follows:

– The initial state of the automaton is created and labeled by the formula to be
verified.

– The transformation described above is applied to the formula. Each clause
corresponds to an outgoing arc of the state. The target of the arc is a node labeled
with the conjunction of the formulas of the clause prefixed by the next-time operator.
The arc is labeled by the atomic propositions and the promises of the clause.

– The process is iterated until there is no new formula. This eventually occurs since
each formula is a conjunction of subformulas of the initial formula.

– For simplicity, the state labeled by true is created; it has a loop on itself with
no proposition and no promise (this state is not necessarily reachable from the initial
state).

A more formal description of the algorithm is given below. Let Aut(F ) be the
automaton associated with f .
Create the state (qtrue, true)
Create the arc etrue with in(etrue) = qtrue, out(etrue) = qtrue,
etiq(etrue) = ∅, prom(etrue) = ∅
Create the state (q0, f0)
Insert (q0, f0) in TODO
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While TODO �= ∅ do
Extract (q, f ) from TODO
Compute tr(f)
Express tr(f) in the form of a disjunction of conjunctive clauses
// tr(f) = ORc∈Cl

For each clause c ∈ Cl do
// c = ANDi∈IPi ANDj∈J NOT Qj ANDk∈K [Xfk] ANDl∈L[Xpgl]

If f ′ = ANDk∈Kfk ANDl∈Lgl labels a state Then
Let (q′, f ′) that state

Else
Create (q′, f ′)
Insert (q′, f ′) in TODO

End If
Create an arc e with in(e) = q, out(e) = q′

etiq(e) = {Pi}i∈I ∪ {NOT Qj}j∈J , prom(e) = {Xpgl}l∈L

End For
End While

EXAMPLE 12.3. Let f = Q U g with g = (P OR XP )WR. Then:
tr(f) = tr(g) OR (Q AND [Xpf ])
tr(g) = R OR ((P OR [XP ]) AND [Xg]) = R OR (P AND [Xg]) OR ([XP ]
AND [Xg])

Consequently, tr(F ) is the disjunction of four clauses:

– R, which leads to the state labeled by true (nothing more to verify).

– Q AND [Xpf ], which loops on the initial state. (Note that the infinite path which
follows this arc is not accepted by the automaton because the promise Xpf never
holds).

– P AND [XG], which leads to the state labeled by g.

– [XP ] AND [XG], which leads to the state labeled by P AND g.

Using tr(G), it can be checked that the built automaton is as given in Figure 12.4.

f true

g

{Q};{Xpf}

∅;∅

∅;∅

∅;∅

{P};∅

{R};∅

{R};∅

{R};∅

{P};∅

{P};∅

P∧g

Figure 12.4. The automaton with promises of QU((P OR XP )WR)
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THEOREM 12.1 (Correction of the automaton). If f is a formula of LT L, then the
sequences satisfying f are exactly those accepted by Aut(F ).

Proof. Let cl be a clause of tr(F ). By definition, cl ⇒ tr(F ). We inductively define
on the size of f a set of subformulas g of f such as cl ⇒ tr(G). This set will be
denoted dev(Cl, F ).

If f = P OR f = NOT P OR f = Xg Then
dev(cl, f) = {f}

Elsif f = h AND g Then
dev(cl, f) = {f} ∪ dev(cl, g) ∪ dev(cl, h)

Elsif f = g OR h Then
If cl ⇒ tr(g) Then

dev(cl, f) = {f} ∪ dev(cl, g)
Else //cl ⇒ tr(h)

dev(cl, f) = {f} ∪ dev(cl, h)
End if

Elsif f = g U h Then
If cl ⇒ tr(h) Then

dev(cl, f) = {f} ∪ dev(cl, h)
Else //cl ⇒ tr(g) AND [XpgUh]

dev(cl, f) = {f} ∪ dev(cl, g)
End if

Elsif f = g W h Then
If cl ⇒ tr(h) Then

dev(cl, f) = {f} ∪ dev(cl, h)
Else

cl ⇒ tr(g) AND [X g W h]
dev(cl, f) = {f} ∪ dev(cl, g)

End if
End if

Let σ = (s0, . . . , si, . . .) be a sequence accepted by a path of Aut(F ), (q0, e0, . . . ,
qi, ei, . . .). Let fi be the formula associated with qi and cli the clause which
produces the arc ei. Let us show by recurrence on the size of the formula g that
∀G ∈ Dev · (cli, fi) σi |= g.

If g = P or g = NOT P then g is a term of cli, thus g ∈ ei, which implies that
g ∈ ν(si)σi |= g.

If g = X H then [X H] is a term of cli, thus h is a term of the conjunction of fi+1.
By the assumption of recurrence, σi+1 |= h, which implies σi |= Xh.

If g = g1 AND g2 then ∀K, gk ∈ Dev · (cli, fi). By the assumption of recurrence,
∀K σI |= gk, which implies σi |= g.
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If g = g1 OR g2 then ∃gk ∈ Dev.(cli, fi). By the assumption of recurrence,
∃K σI |= gk, which implies σi |= g.

If g = g1 U g2 then

1) Either cli ⇒ tr(g2) and g2 ∈ Dev · (cli, fi). By the assumption of recurrence,
σI |= g2, which implies σi |= g.

2) Or cli ⇒ tr(g1) AND [Xpg1Ug2].
Then g1 ∈ Dev · (cli, fi), Xpg ∈ PROM(ei) and g is a term of the conjunction

which constitutes fi+1. By the assumption of recurrence, σI |= g1. Since g is a term
of the conjunction which constitutes fi+1, we can apply the same reasoning to σi+1,
σi+2, â¦ until the first alternative of the reasoning applies to σj with j > i. This
will eventually occur, because, if not, ∀J ≥ I , Xpg ∈ PROM(ej), contradicting the
acceptance of the sequence by the path. Thus ∀i ≤ k < j σk |= g1 and σj |= g2, then
σi |= g.

If g = g1Wg2 then

1) Either cli ⇒ tr(g2) and g2 ∈ dev(cli, fi). By the assumption of recurrence,
σi |= g2 and σi |= g.

2) Or cli ⇒ tr(g1) AND [Xg1Wg2]. Then g1 ∈ dev(cli, fi) and g is a term of the
conjunction which constitutes fi+1. By the assumption of recurrence, σi |= g1. Since
g is a term of the conjunction which constitutes fi+1, the same reasoning applies to
σi+1, σi+2, . . . and:

- either the first alternative of the reasoning applies up to a sequence σj with
j > i. In that case, ∀i ≤ k < j σk |= g1 and σj |= g2. Consequently, σi |= g,

- or ∀j ≥ i, σi |= g1 and consequently σi |= g.

Since f = f0, σ |= f .

Let us now assume that σ |= f . Let us now build a path in Aut(f) which
recognizes σ. First, let us recursively define a clause of tr(f) depending from σ:

cl(f, σ) = ANDi∈IPi ANDj∈J NOT Qj ANDk∈K

[
Xfk

]
ANDl∈L

[
Xpgl

]
such that:

σ |= ANDi∈IPi ANDj∈J NOT Qj ANDk∈KXfk ANDl∈LXgl.

Its definition is:
If f = P Then cl(f, σ) = f
Elsif f = NOT P Then cl(f, σ) = f
Elsif f = Xg Then cl(f, σ) = [Xg]
Elsif f = g AND h Then cl(f, σ) = cl(g, σ) AN D cl(h, σ)
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Elsif f = g OR h Then
If σ |= g Then

cl(f, σ) = cl(g, σ)
Else // σ |= h

cl(f, σ) = cl(h, σ)
End if

Elsif f = gUh Then
If σ |= h Then

cl(f, σ) = cl(h, σ)
Else // σ |= g AND Xf

cl(f, σ) = cl(g, σ) AND [Xpf ]
End if

Elsif f = gWh Then
If σ |= h Then

cl(f, σ) = cl(h, σ)
Else // σ |= g AND Xf

cl(f, σ) = cl(g, σ) AND [Xf ]
End if

End if

Let e be the arc associated with cl(f, σ), q1 = out(e) and f1 the formula associated
with q1. By construction, prop(e) ⊂ ν(s0) and σ |= Xf1. Then σ1 |= f1 and it is
possible to iterate the construction leading to a path that recognizes σ. Let us suppose
there a promise XpgUh occurs on the path at a given rank i. By construction of the
clause, σi |= gUh but in that case there is a rank j ≥ k such that σj |= h and
consequently the clause associated with σj does not include the promises. Finally,
this path accepts σ.

LT L formulas can be represented by others models of automata. Here, we
followed the approach described in [COU 99]. The most widespread model is the
Büchi automaton [BUC 62], whose syntax and semantics are given below (the
interested reader may refer to [VAR 96] for a detailed study of temporal logic and
automata).

DEFINITION 12.9. A Büchi automaton B = 〈AP,Q,Q0,→, F 〉 is defined as follows:

– AP is a finite set of atomic propositions;

– Q is a finite set of states such that for q ∈ Q, etiq(q) ⊂ AP ∪ AP is the set of
atomic propositions which holds in that state;

– Q0 ⊂ Q is the subset of initial states;

– → is the transition relation ⊂ Q×Q;

– F ⊂ Q is the subset of success states.
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DEFINITION 12.10. Let σ = (s0, s1, . . . , sn, . . .) be an infinite sequence of the
model KS. σ is recognized by B = 〈AP,Q,Q0,→, F 〉 if and only if there is a path
(q0, q1, . . .) with q0 ∈ Q0 such that:

– ∀n, qn → qn+1 and etiq(qn) ⊂ ν(sn)
– ∃f ∈ F such that ∀n ∃m > n qm = f

Note that the propositions are no longer associated with the transitions but with
the states, that we have a set of initial states, and also that the condition of acceptance
is defined by a set of success states for which at least one state must be reached an
infinite number of times by the path.

The expressiveness of Büchi’s automaton and of automata with promises is
identical. It is important to note that LT L has an expressiveness weaker than these
automata models [WOL 83]. Another (less intuitive) language of formulas, the linear
μ-calcul, has an expressiveness equivalent to these models [DAM 92].

Let us now discuss the translation of an automaton with promises into a Büchi’s
automaton. It can be informally explained as follows:

– Let us suppose that there are n promises. For each arc e of the automaton
with promises, build n + 1 states of the Büchi’s automaton {(qe, I)}I∈1...n+1 with
etiq((qe, I)) = etiq(E).

– The initial states of the automaton are (qe, 1) such as in(E) = q0.

– For i ≤ n, there is an arc of (qe, I) towards (qe′ , I) if out(E) = in(e′) and if
Pri belongs to prom(e′).

– For i ≤ n, there is an arc of (qe, I) towards (qe′ , i + 1) if out(E) = in(e′) and
if Pri does not belong to prom(e′).

– There is an arc of (qe, n + 1) towards (qe′ , 1) if out(E) = in(e′).
– The success states are the states {(qe, n + 1)}.

The transformation of arcs into states is as usual and does not specifically need to
be commented on. When, during the recognition of a sequence, a state (qe, I) with
i ≤ n is reached, it is necessary to wait until promise Pri holds. If it does not hold
in the next state, we check one of the states having the same index i; otherwise a new
state having the index i + 1 is checked.

Upon reaching a state of index n + 1, all the promises held have been verified at
least once, and checking of promises starts again. Thus, if the promises are indefinitely
held, the states of index n + 1 will be reached an infinite number of times, whereas
in the opposite case, we will be stuck in a subset of states having an index i ≤ n.
A transformation translating a Büchi’s automaton into an automaton with promises is
illustrated in Figure 12.5.
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Figure 12.5. Transformation of an automaton with promises into a Büchi automaton

To simplify, the non-accessible states were removed from the figure. The white
states correspond to index 1, the dark gray states correspond to index 2 and the light
gray states correspond to index 3. The initial states are marked by an entering arc.
The bold arcs indicate transitions between states having the same index, whereas the
non-bold arcs represent changes of the index values.

Existence of a sequence accepted by a Büchi automaton

The existence of an infinite sequence σ of a model KS accepted by a Büchi
automaton is verified using a standard construction, the so-called synchronized
product.

DEFINITION 12.11. Let KS be a model and B a Büchi automaton, then KS × B =
(AP ′, S′,→′, ν′) is defined as follows:

– AP ′ = AP is a finite set of atomic propositions.

– S′ = {(s, q) | s ∈ S, q ∈ Q, etiq(q) ⊂ ν(s)}.
– (s, q) →′ (s′, q′) ⇔ s → s′ and q → q′.

– ν′(s, q) = ν(s).
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Clearly, the synchronized product generates the infinite sequences whose first
component (an infinite sequence of KS) is recognized by the second component (an
infinite path of Q). It has to be verified that the synchronized product contains an
infinite sequence starting with (s0, q0) with q0 ∈ Q0, and whose second component
contains an infinite number of occurrences of states of F . This is proved by
Theorem 12.2. Remember that a strongly connected component (s.c.c.) of a graph is
elementary if the subgraph associated with this s.c.c. is a unique vertex without loops
(in other words, it is not possible to build an infinite path in this s.c.c.).

THEOREM 12.2. LetKS be a finite model, s0 a state ofKS andB a Büchi’s automaton
then: ∃σ = (s0, s1, . . .) a sequence KS accepted by B ⇔ ∃C a nonelementary s.c.c.
of KS × B accessible from one (s0, q0) ∈ S′ with q0 ∈ Q0 containing a state (s, f)
with f ∈ F .

Proof. Let σ = (s0, s1, . . .) be a sequence ofKS accepted by (q0, q1, . . .). A path ofB
is by construction ((s0, q0), (s1, q1), . . .) a sequence of KS ×B that reaches the states
(s, f) with f ∈ F an infinite number of times. Since KS × B is finite, one of these
states (denoted (s∗, f∗)) is reached an infinite number of times by the sequence. Since
from (s∗, f∗) this state is again reached by a non-zero sequence, the s.c.c. containing
(s∗, f∗) is non-elementary. Since the first state of the sequence is (s0, q0), this s.c.c.
is accessible from (s0, q0).

If the right member of the equivalence is checked, then a finite sequence σ1 from
(s0, q0) to (S, F ) exists and one non-zero finite sequence σ2 from (S, F ) to itself.
Consequently, σ = σ1 · σ∞

2 is an infinite sequence whose second component (a path
in B) accepts the first component (a sequence of KS).

This result provides an effective means of verification: once the synchronized
product has been built, the s.c.c. is calculated by means of Tarjan’s algorithm
[AHO 74] and they are examined. The size of the synchronized product is
proportional to the sizes of the model and the formula. The algorithm operates in
polynomial time according to the size of the synchronized product.

Unfortunately, efficiency is poor. On the one hand, the size of the execution
model is very large compared to the size of the specification model (e.g. the size
of the reachability graph w.r.t. the size of the Petri net). In addition, the size of the
automaton can grow exponentially as a function of the size of the formula. Note
that the latter limitation is not so critical, because the formulas are generally very
small. To reduce these complexity problems, different optimization techniques
were therefore proposed: checking the formula on a smaller, but equivalent, model
of execution (see the following chapters); checking a formula without completely
developing the synchronized product by computation methods called “on-the-fly”
[GOD 93, GER 95]; or reducing the size of the data representation by appropriate
BDD diagrams (binary decision diagrams) [BRY 86].
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12.3.3. Temporal logic and Petri nets

The specification of propositional temporal logic formulas for Petri nets implies
the definition of atomic properties. Since formulas of temporal logic are evaluated on
the reachability graph, a state of the model is a reachable marking. Then, any Boolean
expression whose scope is the set of reachable markings is appropriate. In practice,
the corresponding expressions are easily evaluated. Let p be the marking of p in the
current state.

Here are some examples of formulas of interest:

– Two places p1, p2 are mutually exclusive: AG (p1 · p2 = 0).
– For any reachable marking, place p will inevitably be marked:

AG AF (p > 0).

– For any reachable marking, place p can always be marked:

AG EFF (p > 0).

– For any execution sequence, place p is infinitely marked and infinitely unmarked:

AG
(
F (p > 0) AND F (p = 0)

)
.

– A transition t is live (always firable in the future of any state):

AG EFF ANDp∈P

(
p ≥ Pré(p, y)

)
.

As will be illustrated in the final example, it is possible to reason on the firability
of a transition. However, this is not actually the firing itself because it would require
evaluation of the evolution of the marking between two successive states. As a
consequence, the language CT L∗ is extended by considering the operator X{E},
whose semantics is defined by: σ |= X{e}f if and only if KS, σ1 |= f and the first
transition of σ is labeled by e.

In this section, let us assume that a transition of a Petri net is never labeled as an
empty string. The verification methods described above can be easily extended to this
new logic, which is at the same time state- and event-based. Let us assume that the
labeling function of a net is the identity. We can express that a transition t is fired an
infinite number of times in all sequences by: AG F X{t}true.

To study the decidability of the verification of temporal logic formulas of Petri
nets, the following cases need to be considered:

– state-based propositional logic CT L∗ (and its fragments) which prohibits these
new operators;
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– event-based logic CT L∗ (and its fragments) if the only atomic propositions are
true and false.

The semantics of temporal logic is based on infinite sequences, but finite sequences
also need to be considered. For example, we would check whether a place p is always
marked in a dead marking.

The formula AG(ANDt∈T NOT X{t}true ⇒ p > 0), which seems to be
appropriate, is in fact not correct because it is a tautology. Indeed, an infinite sequence
never satisfies ANDt∈T NOT X{t}true.

To take verification fully into account, it is necessary to distinguish which types the
considered sequences are, and to introduce appropriate validity semantics. Since we
consider sequences, let us assume that path formulas are represented by an automaton
such that the arcs of this automaton are labeled by the labels of the Petri net transitions.
In order to simplify this section, i.e. to simplify the enumeration of all possible cases,
an event-based linear logic defined by labeled Büchi automata will be considered.

DEFINITION 12.12. A labeled Büchi automaton LB = 〈Σ, Q,Q0, { a−−→}a∈Σ, F 〉 is
defined by:

– Σ a finite alphabet;

– Q a finite set of states;

– Q0 ⊂ Q the subset of the initial states;

–
has−−−→, a binary relation ⊂ S × S;

– F ⊂ Q a subset of success states.

DEFINITION 12.13. For an infinite sequence σ = (t1, t2, . . . , tn, . . .) of a Petri net
R, σ is accepted by LB = 〈Σ, Q,Q0, { a−−→}a∈Σ, F 〉 if and only if there is a path
(q0, q1, . . .) with q0 ∈ Q0 such that:

– ∀N , qn
L(tn +1)−−−−−−→ qn+1;

– ∃F ∈ F s.t. ∀N ∃m > n qm = f .

The other types of sequences of interest are finite sequences and finite maximal
sequences (i.e. sequences that end by a dead marking). We then check a path in the
automaton that ends at a success state. A second possibility for considering finite
maximal sequences for bounded Petri nets consist of adding a loop arc to all dead
markings, labeled by a special action. Thus any maximal sequence of this new graph
is infinite and the ones artificially extended are recognized by the occurrence of this
special action.
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DEFINITION 12.14. For a finite sequence (possibly maximal) σ = (t1, t2, . . . , tf ) of a
Petri net R, σ is recognized by LB = 〈Σ, Q,Q0, { a−−→}a∈Σ, F 〉 if and only if there is a

path (q0, q1, . . . , qf ) with q0 ∈ Q0 and qf ∈ F such that: ∀n < f, qn
l(tn +1)−−−−−→ qn+1.

Note that introducing the labeling of a transition as empty, i.e. a non-observable
transition, greatly increases the complexity of the verification semantics, and
introduces the divergence problem.

A divergent sequence is an infinite sequence having a suffix that consists
exclusively of non-observable (empty) transitions. This problem will be considered
using a behavioral approach in the next sections.

12.4. Behavioral approach

Many equivalence relations have been proposed for comparing and analyzing
concurrent systems, from trace or language equivalences [AHO 74], to observational
equivalences [MIL 89], by including refusal models and test equivalences [LED 91,
BRI 88]. See [DEN 87, ARN 92, OLD 86, VAN 90] for a review of existing
equivalences.

This large number of equivalences comes, first, from the difficulty of formally
defining universal semantics for concurrent systems [ARN 92], second, from the
different specific properties these systems have to fulfill, and third, from the different
viewpoints that can be taken for their analysis, i.e. verification or test. This section
will only consider verification.

The behavioral approach is conceptually different from the logical approach.
Behavioral verification deals with the information associated with (action) labels and
does not normally consider the information associated with states. As a consequence,
the structure that will be handled by a behavioral verification is a labeled transition
system (see definition 12.3).

Before presenting the corresponding formalization, let us illustrate a few points of
view that are of interest when analyzing transition systems. The supporting example is
the simple behavior of a coffee machine: the consumer inserts a coin, and then chooses
the drink by pressing the appropriate button.

The transition systems below, 〈D, 0〉, 〈D′, 0′〉 and 〈D′′, 0′′〉, represent a behavior
“similar” to that of this vending machine. The behavioral approach, using various
behavioral equivalences, will be used to formalize various concepts of “similarity”.

It was shown in Chapter 3 that a language can be associated with any ILTS.
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Figure 12.6. Three vending machines: 〈D, 0〉, 〈D′, 0′〉 and 〈D′′, 0′′〉

DEFINITION 12.15 (Language associated with an ILTS). Let 〈LT S, s0〉 be an ILTS
with LT S = 〈Σ, S, { a−−→}a∈Σ〉:

L
(
〈LT S, s0〉

)
=Def

{
σ ∈ Σ∗ : ∃ ∈ S such that sO

σ−−→
}

As they are not finite states automata, ILTSs can have an infinite number of
states, but they have only one initial state, and do not introduce the notion of a final
state [AHO 74]. Any state of an ILTS can thus be regarded as a final state and the
language recognized by an ILTS is prefix closed: any prefix of a recognized word is
itself recognized.

DEFINITION 12.16 (Language equivalence). Languages can be used to define a first
concept of equivalence between two transitions systems, based on the equality of their
respective languages.

Let LT S=〈Σ, S, { a−−→}a∈Σ〉 and LT S ′=〈Σ′, S′, { a−−→}a∈Σ′〉 be two transitions
systems, s0 and s′0 their respective initial states:

〈LT S, s0〉 ≡ 〈LT S ′, s′0〉 iff L(〈LT S, s0〉) = L(〈LT S ′, s′0〉).

Language: A first comparison of the vending machines comes from their languages.

Here L(〈D, 0〉) = L(〈D, 0′〉) = L(〈D′′, 0′′〉) = {ε, Part, Coin.Coffee, Coin.Tea}.
It follows that, for the language equivalence, these three LTSs are equivalent.
In particular, from the point of view of the owner of the vending machine, each
dispenses a drink only if payment has been made.

Maximal traces: Language equivalence does not consider deadlocks (blocking
states, i.e. states without successors); it states that these three LTSs have the same
behavior, whereas they clearly present different deadlock states. The notion of
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“maximal trace” differentiates these behaviors. When using maximal traces, the LTSs
are always considered as language acceptors, but now only maximal sequences are
recognized, where maximal sequences are the sequences that are either infinite or that
lead to a deadlock (sink) state.

DEFINITION 12.17 (Maximal traces). An LT S = 〈Σ, S, { a−−→}a∈Σ〉 and an ILTS
〈LT S, s0〉 are associated with Lmax(〈LT S, s0〉), the set of its maximal traces,
defined as follows:

LMax

(
〈LT S, s0〉

)
=Def

(
L
(
〈LT S, s0〉

)
∩ Σ∞)

∪
{
σ ∈ L

(
〈LT S, s0〉

)
: ∃s′ ∈ S such that s

σ−−→ s′ and s′ �→
}

DEFINITION 12.18 (Maximal traces equivalence). Using the notion of maximal traces,
the relation of trace equivalence can now be defined as follows:

let 〈LT S, s0〉 and 〈LT S ′, s′0〉 be two transitions systems, s0 and s′0 their
respective initial states:

〈LT S, s0〉 ≡Max 〈LT S ′, s′0〉 iff LMax(〈LT S, s0〉) = LMax(〈LT S ′, s′0〉).

REMARK (Language and maximal traces). From an operational point of view, the
concept of “maximal traces” can be expressed starting from the concept of language,
from an “extension” of the ILTS (or the automaton) obtained by adding a state ⊥ for
the set of nodes (⊥ �∈ S) and a label fail to the alphabet, Σ (fail �∈ Σ) and by
connecting all deadlock states to the state ⊥ by a transition labeled by fail.

PROPERTY 12.1 (Language and maximal traces). For an LTS

LT S = 〈Σ, S, { a−−→}a∈Σ〉,

Max(LT S) is defined as follows:

Max(LT S) =Def LT S ′ = 〈Σ′, S′, { a−−→}a∈Σ′〉

where:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Σ′ = Σ ∪ {fail},
S′ = S ∪ {⊥},{ a′

−→′
a∈Σ′

}
=Def

{ a−→a∈Σ

}
∪
{
s

fail−−−→ ⊥ : s ∈ S such that
s

�→
}

Lmax

(
〈LT S, s0〉

)
= Lmax

(
〈LT S ′, s′0〉

)
σ

L
(
〈max(LT S), s0〉

)
= L
(
〈max(LT S ′), s′0〉

)
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Now,

LMax(〈D, 0〉) = LMax(〈D′, 0′〉) =
{

Coin.Coffee, Coin.Tea
}

but

LMax(〈D′′, 0′′〉) =
{

Coin, Coin.Coffee, Coin.Tea
}
.

According to maximal trace equivalence, only D and D′ are equivalent. Now, from
the point of view of the customer, it is important to differentiate the distributor D′′ that
can accept a coin without delivering a drink. Nevertheless, from the customer’s point
of view, it is not acceptable to be unable to distinguish between D and D′: D leaves the
choice of drink to the customer while D′ chooses the drink using an internal decision
(not the customer).

Refusal and acceptance: The maximal trace equivalence only takes into account
the notion of “total deadlock”. Another equivalence relation has been defined, based
on the concept of refusal or acceptance. Specifically, it enables analysis of partial
blockings, and, in particular, the possibility of “refusing” an action. This leads to
consideration of, in addition to the allowed sequences, the possibility of refusing or of
accepting actions (events).

DEFINITION 12.19 (Basic elements of refusal semantics [VAN 90, LED 91]). Let
〈LT S, s0〉 be an ILTS for s ∈ S, σ ∈ �Σ and A ⊂ Σ:

1) s ref A ⇔Def ∀a ∈ A, s
a

�→
2) s |= after σ ⇔Def {s′ ∈ S : s

σ−−→ s′}
3) s |= after σ ref A⇔Def ∃s′ ∈ “s after σ′′ such that s′ ref A

4) LT S |= after σ ref A ⇔Def s0 |= after σ ref A

(1) Defines partial blocking using the refusal set that can be associated with a
node. (2) Denotes the subset of nodes that are accessible starting from node s using
the sequence σ. (3) Stipulates that “starting from node s, it is possible, using sequence
σ, to reach a node that will refuse all actions in A”.

DEFINITION 12.20 (Conformance relation [BRI 88, LED 91]). Let 〈LT S, s0〉 and
〈LT S ′, s′0〉 be two ILTSs and L the union of their respective alphabets (L = Σ∪Σ′).

LT S conf LT S ′ ⇔Def

{
∀σ ∈ L

(
〈LT S, s0〉

)
, ∀A ⊂ L :

If LT S after σ ref A then LT S ′ after σ ref A

Informally, an implementation LT S conforms to a specification LT S ′ if, for any
sequence σ of the considered behavior, the implementation can evolve using σ, then
the sets of actions A it can refuse are at the most those that the specification can refuse
after σ [DRI 92].
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DEFINITION 12.21. Testing equivalence is defined as follows:

LT S te LT S ′ ⇔Def

{
L(〈LT S, s0〉) = L(〈LT S ′, s′0〉)
LT S conf LT S ′ and LT S ′ conf LT S

For semantics based on refusal, the LTSs D and D′ are not “testing equivalent”
(not D te D′). Indeed D′ can refuse the event Tea or Coffee after the Coin action,
while D, after the Coin action, is always able to deliver Tea or Coffee. By again using
the terminology of definition 12.19, it follows, for example:

0′ after Coin ref {Tea, Coin} and 0′ after Coin ref {Coffee, Coin} while the only
action refused from 0 is Coin, i.e. 0 after Coin ref {Coin}.

We will not develop these refusal semantics (or failure semantics) more deeply,
and the interested reader is referred to [ARN 92], Chapter 8.

12.4.1. Bisimulation relations

The three previous equivalences follow a “linear” point of view as they focus on
the sequences of executions of the LTS and do not consider their tree structure. As an
example, let us consider a coffee machine where the only drink available is sweetened
coffee: the customer inserts a coin and must obtain first a coffee then the sugar.

The machines given in Figure 12.7 are not distinguishable by the semantics based
on refusal or testing equivalences [BRI 88]. The two machines can refuse the sugar
after having delivered the drink. For s ∈ {0, 0′} we have:

s after Coin ref {Coin, Sugar} and s after CoinCoffee ref {Coin, Coffee, Sugar}.
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Figure 12.7. Two coffee machines: 〈M, 0〉 and 〈Me, 0′〉
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For a customer, these two machines are not acceptable. A customer able to test
these two machines for as long as necessary is unable to distinguish between them.
For each of them, some experiments will result in obtaining a sweetened coffee and
others in a coffee without sugar.

For the analysis, and in particular to understand why it cannot be guaranteed that a
customer will obtain a sweetened drink, these two behaviors need to be distinguished.
In the first case, the absence of sugar comes from the non-determinism associated
with the Coin action, while in the second case it results from the non-determinism
associated with the Coffee action. The concept of bisimulation, which takes into
account the tree structure of the LTS (and not just its linear structure), will lead to
distinguishing between these two machines.

The concept of bisimulation, introduced by [PAR 81], constitutes the basis of many
equivalence relations used for verifying and comparing communicating systems.

DEFINITION 12.22 (Bisimulation relation). LetLT S = 〈Σ, S, { a−−→}a∈Σ〉 be an LTS;
B, a binary relation (B ⊂ S × S), is a bisimulation relation if it verifies:

∀(p, p′) ∈ B and ∀t ∈ Σ:[
∀q ∈ S If p

t−→ q then ∃q′ ∈ S : p′
t−→ q′ and (q, q′) ∈ B

]
and [

∀q′ ∈ S If p′
t−→ q′ then ∃q ∈ S : p

t−→ q and (q′, q) ∈ B
]

Two states s1, s2 ∈ S are in bisimulation iff a bisimulation relation B exists, such
that (s1, s2) ∈ B.

DEFINITION 12.23 (Bisimulation between transitions systems). Let LT S =
〈Σ, S, { a−−→}a∈Σ〉 and LT S ′ = 〈Σ′, S′, { a−−→}a∈Σ′〉 be two LTSs such that S∩ = ∅
and for which we write S = S ∪ S′.

A binary relation B (B ⊂ S × S) is a relation of bisimulation between LT S and
LT S ′ if it verifies:

∀(p, p′) ∈ B and ∀t ∈ Σ ∪ Σ′

[
∀q ∈ S If p

t−→ q then ∃q′ ∈ S : p′
t−→ q′ and (q, q′) ∈ B

]
and [

∀q′ ∈ S If p′
t−→ q′ then ∃q ∈ S : p

t−→ q and (q′, q) ∈ B
]
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DEFINITION 12.24 (Bisimilar transitions systems). The previous definition can be
extended in a canonical way to initialized transitions systems by stating that two ILTSs
〈LT S, s0〉 and 〈LT S ′, s′0〉 are in bisimulation (or are bisimilar) if a bisimulation
relation connects their initial respective states, i.e. 〈LT S, s0〉 and 〈LT S ′, s′0〉 are
in bisimulation if ∃ a bisimulation B ⊂ S × S between LT S and LT S ′ such that
(s0, s

′
0) ∈ B.

EXAMPLE 12.4. 〈E, 0〉, 〈E′, 0′〉, represented in Figure12.8, are in bisimulation by the
relation

B =
{
(0, 0′)(1, 1′), (2, 2′)(3, 3′)(4, 2′)

}
.

〈D, 0〉, 〈D′, 0′〉 and 〈D′′, 0′′〉, associated with the vending machines given in
Figure 12.6 are not bisimilar. Let us show, for example, that 〈D, 0〉 and 〈D′, 0′〉 are
not in bisimulation. Let us suppose that a bisimulation B exists between D and

D′ with (0, 0′) ∈ B. Like 0 Coin−−−−→ 1, we must have (1, 1′) ∈ B or (1, 3′) ∈ B.

(1, 1′) ∈ B is impossible because 1 Tea−−−→ and 1′
Tea
�→ . In the same way (1, 3′) ∈ B

involves a contradiction because 1 Coffee−−−−−−→ and 3′
Coffee
�→ .
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Figure 12.8. Two bisimilar LTSs: 〈E, 0〉, 〈E′, 0′〉

The ILTS 〈M, 0〉, 〈M ′, 0′〉 associated with the coffee machines represented in
Figure 12.7 are not bisimilar. Even if these ILTSs are small, it becomes difficult to
show “by hand”, starting from the definition of a bisimulation (see definition 12.22),
whether a bisimulation exists or not.

Section 12.4.1.1 gives an algorithm for deciding whether a bisimulation exists.

In section 12.4.3.4, by introducing Hennesy-Milner logic, we will show how it is
possible to distinguish these two systems without ambiguity and show that they are
not bisimilar.

PROPERTY 12.2 (Properties of bisimulations [ARN 92]). The following properties
hold:
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– The inverse relation of a bisimulation is also a bisimulation.

– The composition of two bisimulations is a bisimulation.

– The union of two bisimulations is a bisimulation.

These properties define a specific relation of bisimulation, called strong
equivalence, which is the largest bisimulation.

DEFINITION 12.25. Strong equivalence, denoted ∼, is defined by:

p ∼ q ⇔Def there exists a bisimulation B such as (p, q) ∈ B.

∼ is reflexive because the identity is a bisimulation. Symmetry and transitivity
follow because bisimulations are stable by inversion and composition.

12.4.1.1. Decision algorithm for bisimulation
This section shows how to build, if it exists, a bisimulation relation for any finite

transition system. The property 12.3 is the basis of the decision algorithm. Let us now
present some concepts and properties needed for defining efficient computations.

DEFINITION 12.26 (Finitary LTS). An LTS LT S = 〈Σ, S, { a−−→}a∈Σ〉 is called
finitary, or is said to have a “finite image” accessibility relation, if:

∀S ∈ S and ∀a ∈ Σ, the set
{
Q ∈ S such that S

a−−→ Q
}

is finite.

DEFINITION 12.27 (∼N equivalences). In an LTS LT S = 〈Σ, S, { a−−→}a∈Σ〉,
consider the sequence of relations indexed by i, denoted ∼I : ∀p, q ∈ S.

– p ∼0 q

– p ∼n+1 q iff ∀a ∈ Σ

∀p′ ∈ S p
a−−→ p′ =⇒ ∃q′ ∈ Q : q

a−−→ q′ such that p ∼n p′

∀q′ ∈ S q
a−−→ q′ =⇒ ∃p′ ∈ Q : p

a−−→ p′ such that q ∼n q′

Intuitively, testing the ∼n-equivalence between two systems is conducted as
follows. For each system, build the tree of sequences of length less than or equal to
n (given by considering the occurrences of the same state as a different state); then,
verify that these two trees are bisimilar. The following property defines the relations
between ∼n-equivalence and bisimulation.

PROPERTY 12.3 (∼N -equivalences and bisimulation). The following hold:

1) For any LTS, LT S = 〈Σ, S, { a−−→}a∈Σ〉, the following property holds:

∀N ∈ N, ∼ ⊂ ∼n+1 ⊂ ∼n
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2) If, furthermore, LT S = 〈Σ, S, { a−−→}a∈Σ〉 is finitary then:

∼ =
⋂

N≥0

∼N

3) If, moreover, LT S = 〈Σ, S, { a−−→}a∈Σ〉 is finite then:

∼ = ∼ns where ns = |S|

1) Use recurrence on n.

2) Let R = ∩N≥0 ∼N .

According to point 1 of the property, ∼ ⊂ R. To show that R ⊂ ∼, knowing that
∼ is the union of the bisimulations, it is enough to prove that R is a bisimulation. Let
s R s′ and s′

a−−→ t′.

Then by definition of R,∀n, ∃tn such that s
a−−→ tn and t′ ∼n tn. Since the system

of transitions is finitary, ∃t such that t = tN for an infinity of n. This means that ∀n,
∃n′ > n such that t′ ∼n′ t. This implies, according to the first point, that t′ ∼N t,
thus t′ R t. The second part of the proof is similar to the first.

3) According to point 1, ∼n+1⊂∼N . Moreover if for a transition system (finite or
infinite) ∼n+1=∼N , then ∼n+1=∼, since replacing ∼N by ∼n+1 in the definition
gives ∼n+1, which is a relation of bisimulation. Finally, let us assume that for S, all
relations ∼I per 0 ≤ I ≤ ns are different; then the number of equivalence classes
strictly increases according to i, which is absurd since this number must be less than
or equal to ns. Thus, n ≤ ns exists such that ∼n=∼ and consequently ∼ns=∼.

The second property (see property 12.3) is particularly important since it gives an
algorithm for deciding whether a bisimulation holds in the case of finite LTSs.

PROPERTY 12.4 (Application, equivalence and quotient set). Let f be an application
of A �→ B:

1) Let ≡f be the binary relation ⊂ A × A, defined by a1 ≡f a2 ⇐⇒ f(has) =
f(b).

≡f is an equivalence relation.

2) πf (A) =Def

⋃
B∈f(A) f−1(b).

πf (A) define a partition of A.

3) πf (A) = A/≡f .

Point 1 is obvious since “=” is itself an equivalence relation. Point 2: ΠA is a
covering of A, whose “blocks” are disjoined since f−1 is injective. Point 3 follows
because ∀π ∈ πf (A) : a1 and a2 ∈ π ⇒ a1 ≡f a2.
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DEFINITION 12.28 (Output of a state). For LT S = 〈Σ, S, { a−−→}a∈Σ〉, let us consider
the application OutputLT S : S �→ P(Σ), which associates with each state q ∈ S, the
subset of Σ defined as: OutputS(s) =Def {a ∈ Σ such that s

a−−→}.

For simplicity, when there is no ambiguity in the LTS, let us write Output(S)
instead of OutputLT S(S).

PROPERTY 12.5 (Equivalent characterization of the ∼1-equivalence). Using the
notations introduced in property 12.4, let us consider the equivalence relation≡Output.

For any LTS,

LT S = 〈Σ, S, { a−−→}a∈Σ〉 :∼1=≡Output .

Two states are equivalent at order 1 iff they produce the same actions. It is enough
to note that∼1 is defined starting from∼0, for which two states are always equivalent
(i.e. ∼0= S × S).

Property 12.5 can easily compute the set of equivalence classes of S for ∼1

(in other words, the quotient of S by ∼1), by using the partition of S defined by
the application Output−1. A second obvious property that can limit the required
computation consists of noticing that the bisimulation relation (and more generally
any behavior equivalence) cannot distinguish two deadlock states.

PROPERTY 12.6 (Bisimulation and deadlock). For any LTS,

LT S = 〈Σ, S, { a−−→}a∈Σ〉,

and any pair of states p, q ∈ S:[
Output(p) = Output(q) = ∅

]
=⇒ p ∼n q, ∀n ∈ N.

EXAMPLE 12.5. Application to the coffee machines 〈D, 0〉 and 〈D′, 0′〉 represented
in Figure 12.7.

Let us check whether 〈D, 0〉 and 〈D′, 0′〉 are bisimilar.

As the sets of states of these machines (S and S′) are disjoin, let us denote
S = S ∪ S′ and look for the greatest bisimulation (i.e. ∼) contained in S. 〈D, 0〉
and 〈D′, 0′〉 will be bisimilar if 0 ∼ 0′. Then, let us compute ∼ by considering the
sequence of ∼K-equivalences (see definition 12.27 and property 12.3).

Computing ∼1

The table below represents the graph of the application Output−1 (definition
12.28). Property 12.5 gives: S/∼1 = {{0, 0′}, {1′}, {3′}, {2, 2′, 3, 4′}}.
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P(Σ) P(Σ) �→ S P(Σ) �→ P(Σ) �→ S∪
Σ ∅ ∅ ∅

{Tea, Coffee} {1} ∅ {1}
{Tea, Coin} ∅ ∅ ∅
{Coffee, Coin} ∅ ∅ ∅

{Coin} {0} {0′} {0, 0′}
{Coffee} ∅ {1′} {1′}
{Tea} ∅ {3′} {3′}
∅ {2, 3} {2′, 4′} {2, 2′, 3, 4′}

Computing ∼

0 �∼2 0′ because 0 Coin−−−−→ 1 and none of the successors of 0’ by Coin (i.e. 1′ and
3′) is equivalent to order 1 to 1 (i.e. 1′ �∼1 1 and 3′ �∼1 1). It can be directly deduced
that 〈D, 0〉 and 〈Of, 0′〉 are not bisimilar.

Property 12.6 ensures that {2, 2′, 3, 4′} ∈ S/∼. Apart from class {2, 2′, 3, 4′},
the other classes are reduced to a singleton and thus are minimal. It follows that
S/∼ = S/∼2 = {{0}, {0′}, {1′}, {3′}, {2, 2′, 3, 4′}}.

Operational characterization

The process previously described in section 12.4.1.1 is able to give the
largest bisimulation included in a given binary relation R as the limit of the
decreasing sequence of equivalence relations 〈∼N 〉N≥0. Each term of the sequence
can be described, in an equivalent way, by a partition of the set of states. The
computation of these decreasing terms is similar to the problem of refining a partition
(multi-relational coarsest problem partition) [PAI 87] used initially for automata
minimization [AHO 74]. This approach gives the most powerful algorithms in
O(Δ · log(S)), where Δ is the number of transitions and S the number of states of
the graph [FER 89].

Π-Bisimulation

The standard relation of bisimulation is the one presented in [PAR 81, MIL 89]. It
only considers event labels, and does not take into account the states of the system.
The concept of Π-bisimulation [CLE 89] generalizes the concept of bisimulation
by imposing the bisimulation relation to be included in an – a priori given –
equivalence relation. Using this new relation, it becomes possible to account for
states when computing the bisimulation. We will use this concept of bisimulation
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in section 12.4.3.1 to consider an extension of the Hennessy-Milner logic, taking
into account state propositions, and also in section 12.4.2.5 to make observational
equivalences able to capture the notion of divergence.

DEFINITION 12.29 (Π-Bisimulation). Let LT S = 〈Σ, S, { a−−→}a∈Σ〉 be an LTS and
Π a relation of equivalence on S (i.e. π ⊂ S × S); a binary relation B on S is a
relation of Π-bisimulation if it verifies: B ⊂ Π and ∀(p, p′) ∈ B and ∀T ∈ Σ[

∀q ∈ S If p
t−→ q then ∃q′ ∈ S : p′

t−→ q′ and (q, q′) ∈ B
]

and [
∀q′ ∈ S If p′

t−→ q′ then ∃q ∈ S : p
t−→ q and (q′, q) ∈ B

]
Let us note that if π = S × S, it becomes the standard concept of bisimulation.

The general decision procedure given in section 12.4.1.1 can be easily extended to
Π-bisimulations: it is enough to initialize the sequence of equivalence relations by
taking ∼0= Π.

12.4.1.2. Simulation and co-simulation

It has been seen that a bisimulation induces an equivalence relation on LTSs.
Now, the concept of simulation leads to the definition of a pre-order (a reflexive
and transitive binary relation) on LTSs, because simulation is defined by breaking
the symmetry of the bisimulation definition.

DEFINITION 12.30 (Simulation). Let LT S = 〈Σ, S, { a−−→}a∈Σ〉 and
LT S ′ = 〈Σ′, S′, { a−−→}a∈Σ′〉; a binary relation R (R ⊂ S × S) is a simulation
between LT S and LT S ′ if it verifies: ∀(p, p′) ∈ R and ∀t ∈ Σ:

∀q ∈ S If p
t−→ q then ∃q′ ∈ S′ : p′

t−→ q′ and (q, q′) ∈ R

Extension to the ILTS: As for the bisimulation relation, the simulation relation can
be extended to initialized labeled transition systems as follows: 〈LT S, s0〉 simulates
〈LT S ′, s′0〉 if there is a simulation relation connecting their respective initial states:
i.e. there is a simulation relation R containing (s0, s

′
0).

Now, the co-simulation concept defines a relation of equivalence using the
simulation pre-order.

DEFINITION 12.31 (Co-simulation). LT S co-simulates LT S ′⇔Def LT S, simulates
LT S ′ and LT S ′ simulates LT S.
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1’ 2’
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Figure 12.9. Two LTSs that are co-similar and not bisimilar

EXAMPLE 12.6. Let us consider R = {(0, 0′), (1, 1′), (2, 2′), (3, 1′)} and check that
there is a simulation between 〈S, 0〉 and 〈S′, 0′〉.

0 A−−→ {1, 3} and 0′ A−−→ 1′ with (1, 1′) ∈ R1 and (3, 1′) ∈ R1

1 B−−→ 2 and 1′ B−−→ 2′ with (2, 2′) ∈ R1

As 2 and 3 are deadlock states, nothing more can be checked. R1 is thus a
simulation containing (0, 0′), therefore 〈S, 0〉 simulates 〈S′, 0′〉.

Conversely, it is also in a similar way that the relation R2 ={(0′, 0), (1′, 1), (2′, 2)}
is a simulation relation between 〈S′, 0′〉 and 〈S, 0〉. Indeed, we have: 0′ A−−→ 1′ and

0 A−−→ 1 with (1′, 1) ∈ R2 and 1′ B−−→ 2′ and 1 B−−→ 2 with (2′, 2) ∈ R2.

As a consequence, 〈S, 0〉 simulates 〈S′, 0′〉 and, finally, 〈S, 0〉 and 〈S′, 0′〉 are
co-similar.

On the other hand, 〈S, 0〉 and 〈S′, 0′〉 are not bisimilar.

To show this, it is sufficient to consider B to be a bisimulation relation. It must
include at the minimum (0′, 0). Consequently, as 0 A−−→ {1, 3} and 0′ A−−→ 1′, B

should also contain the couples (1′, 1), (3′, 1). As 1′ B−−→ 2 and 3
B

�→ (1′, 3) ∈ B
cannot hold, which is a contradiction.

NB: The relation B′ = {(3, 2′), (2, 2′)} is the largest bisimulation between S and S′.

REMARK. The previous example shows that the co-simulation concept is weaker
than bisimulation. Bisimulation can, however, be defined in terms of simulation as
follows: a simulation relation R, whose symmetrical relation R−1 is itself a simulation
relation, is a bisimulation. Section 12.4.3.4 will present the modal characterization of
behavior equivalences, which will specify the relations that exist between the concepts
of simulation, co-simulation and bisimulation.
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12.4.1.3. Decision procedure for simulation

The decision procedure needed for simulation is very close to that described in
section 12.4.1.1 for bisimulation. Instead of using a succession of relations (the
∼K-equivalences of definition 12.27), a function E is introduced to reach, by
successive iterations, its smallest fixed point which is, in fact, the simulation relation.
The interested reader will find the complete construct and proofs in [ARN 92].

Let us now present the more general form for computing the Π-simulation
concept in a way similar to that for the concept of Π-bisimulation, introduced in
definition 12.29. This computation builds, starting from an arbitrary binary relation
R, the greatest simulation (if it exists) contained in R.

DEFINITION 12.32 (Simulation generated by a relation). LetLT S=〈Σ, S, { a−→}a∈Σ〉
and LT S ′ = 〈Σ′, S′, { a−−→}a∈Σ′〉 be two LTSs.

From the mapping E : P(S×) �→ P(S×), which associates with any binary
relation R ⊂ S × S′, the relation E(R) on S × S′ defined by:

(s, s′) ∈ E(R) ⇔Def (1) ∧ (2)

where:

(1) (s, s′) ∈ R;

(2) ∀t ∈ Σ, ∀q ∈ S : s
t−→ q ⇒ ∃ q′ ∈ S′ : s′

t−→ q′ such that (q, q′) ∈ R.

PROPERTY 12.7 (Characterization of a simulation). Let LT S = 〈Σ, S, { a−−→}a∈Σ〉
and LT S ′ = 〈Σ′, S′, { a−−→}a∈Σ′〉 be two LTSs.

1) The following property holds:

∀N ∈ N, En+1(R) ⊂ EN (R) ⊂ R.

2) If, moreover, S and S′ are finitary, then:
the sequence of relations N≥0 admits as a limit Rω with
Rω =

⋂
N≥0 EN (R).

Rω is the greatest fixed point of the function E,
i.e. E(Rω) = RΩ and E(A) = A ⇒ A ⊆ Rω.

3) If, moreover, S and S′ are finite then:

Rω = EK(R) where k = max(|S|, |S′|).

The previous property is similar to the one characterizing bisimulations (see
property 12.3). Item 2 shows that Rω is the greatest simulation between Σ and
Σ′ included in R. As E is a decreasing application of a powerset in itself, the
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convergence of the sequence follows [ARN 92]. By construction, Rω is included in R
and constitutes the greatest solution for the equation E(R) = E, and Rω is thus the
largest simulation included in R. Item 3 provides a means of deciding if a simulation
holds between two finite LTSs.

12.4.2. Weak equivalences

The equivalence relations considered up to now assume that the compared
transition systems have the same sets of transition labels.

Unfortunately, this constraint strongly limits the applicability of the equivalence
or pre-orders concepts: it is not possible, for example, to compare two systems
described at different levels of abstraction: the previous various vending machines
clearly represent in a highly abstract way the “service” of the drink machine;
obviously, a real distributer would be much more complex. In many real systems, the
behavioral approach can be used only if it is able to compare systems described at
various levels of abstraction, i.e. to compare systems by “abstracting” in a LTS a set
of events (actions) that are not relevant for the considered level.

The first step for reaching this goal consists of defining an observation criterion for
the system; this is done by defining two sets of events: the observed events and those
not observed, the abstracted events.

A simple solution for doing this consists of considering a subset O, of observable
actions, in the set of all (events) labels Σ.

Then, it is necessary to define what abstracting a not observable event means.
A first alternative is to re-use the concept of projection already defined in language
theory.

DEFINITION 12.33 (Projection of a language). Let O be a subset of Σ, σ a word of
Σ∗; the projection of σ out of O, denoted σ�O, is recursively defined by:

λ�O =Def λ and (σ · a)�O =Def

{
σ�O · a if a ∈ O
σ�O sinon

Projection operates as a “gum” that erases from a word all the letters that do not
belong toO. This projection operator is easily extended in a canonical way to a set of
words: L ⊂ Σ∗: L�O =Def {σ�O : σ ∈ L}.

DEFINITION 12.34 (Weak language equivalence). Comparison of the two systems (i.e.
one with all events and the other one with only observable events) is now defined with
respect to a well-defined criterion of observation (i.e. the set of observable events):
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the two systems are equivalent if the projections of their two languages with respect
to this observation criterion are equal.

Let LT S = 〈Σ, S, { a−−→}a∈Σ〉 and LT S ′ = 〈Σ′, S′, { a−−→}a∈Σ′〉 be two
transitions systems, s0 and s′0 their respective initial states, and O a common
criterion of observation, i.e. O ⊂ Σ ∩ Σ′.

〈LT S, s0〉 ≡O 〈LT S ′, s′0〉σL(〈LT S, s0〉)�O = L(〈LT S ′, s′0〉)�O
NB: This equivalence generalizes the language equivalence presented in definition
12.16. Indeed, by taking O = Σ∪Σ′, then 〈LT S, s0〉 ≡O 〈LT S ′, s′0〉σ〈LT S, s0〉 ≡
〈LT S ′, s′0〉.

EXAMPLE 12.7 (Application of weak language equivalence). Let us consider the three
coffee machines 〈M, 0〉, 〈M ′, 0′〉 and 〈M ′′, 0′′〉 given in Figure 12.101; let us compare
these machines by observing only the alphabet O, made up of the actions Coin, Tea
and Coffee.

0 1

Coin

Tea+ Coffee

0’

3’ 2’

1’

Coin

i′1 i′2

Coffee Tea

0"

3" 2"

1"

Coin

Coffee Tea

i′′1 i′′2

Figure 12.10. Three other coffee machines

These three systems can be represented, after projection, by the same language,
given by the following rational expression: (Coin · (Tea + Coffee))∗; they are thus
language equivalent for O: 〈M, 0〉 ≡O 〈M ′, 0′〉 ≡O 〈M ′′, 0′′〉.

Nevertheless, from the customer’s point of view, 〈M ′′, 0′′〉 is different from
the other two, since this machine “chooses in an autonomous way” which drink is
delivered to the customer. In state 1, “M ” is ready to offer Tea or Coffee, but the
actions i′′1 and i′′2 , which are taken as an abstraction, have an influence on the service
offered (note that depending on their occurrences, Tea or Coffee will be delivered).

This example means that the actions that are selected to become abstracted
({i′1, i′2, i′′1 , i′′2}) can disappear, by definition of the “gum”, by the projection. Note
that for some i′1 and i′2, other selected abstractions are also legitimate in the sense that

1. Label “Tea + Coffee” connecting states 1 to 0 means that it is possible to go from state 0 to
state 1 either by the Tea action or by the Coffee action.
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they do not modify the “observable” behavior of the system; but, for other events,
such as i′′1 and i′′2 , the abstraction is not legitimate because these actions have an
observable influence on the system behavior.

Of course, the real difficulty is in selecting a priori whether it is “reasonable” to
hide an action. The observational equivalence, introduced by Milner in his calculation
for communicating systems (c.c.s.) [MIL 89], introduces the concept of “abstract
experiment”, which provides a solution to this problem.

12.4.2.1. Experiment, saturation

The concept of abstract experiment leads to an abstraction that is less constrained
than the concept of projection (which by definition erases all inobservable actions). In
these abstract experiments, the inobservable actions are renamed by a common symbol
τ . So, a new transition relation, known as “abstract experimentation” and denoted⇒,
can be defined by taking into account the original transitions (→) and the inobservable
sequences of actions. Let us now give the definition and derivation of this new concept
using the example of saturation presented in Figure 12.8.

DEFINITION 12.35 (Abstract experiment: ⇒). Let LT S = 〈Σ, S, { a−−→}a∈Σ〉 be an
LTS, O a subset of Σ and τ a symbol not belonging to Σ.

⇒⊂ S × Σ ∪ {τ} × S can be defined as follows:⇒=Def
τ⇒ ⋃∪o∈O[ o⇒] where

• τ⇒ the relation of transition for inobservable experiments is obtained by taking
the reflexive and transitive closure of the union of the relations of the inobservable
transitions:

τ⇒ =Def

[ ⋃
i∈Σ\O

i−→
]∗

NB:
τ⇒ renames all inobservable labels by a common label τ .

The transitivity of
τ⇒ makes it possible to consider a sequence of inobservable

actions to be equivalent to an “atomic” inobservable action. Furthermore, the
reflexivity of

τ⇒ ensures that from any state of the LTS, it is possible to introduce an
inobservable action: this only needs addition of an inobservable “neutral” transition
as a loop to any state of the LTS.

• a⇒, the relation related to the observable experiments, is defined as the composition
(on the right and on the left) of the inobservable action

τ⇒ with the observable
transition relation

a−−→.

a⇒ =Def
τ⇒ o

a−−→ o
τ⇒ for a ∈ O.
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NB:
a⇒ extends the concept of observable transition by integrating into it the

sequences of inobservable transitions. As
τ⇒ is reflexive,

a⇒ includes the observable
transition relation:

a−−→. The right and left double composition regards as one
observable “atomic” action any observable action which is preceded and followed
by a sequence of inobservable actions.

DEFINITION 12.36 (Saturation of a labeled transition system). The LTS obtained by
substituting the experiment relation (⇒) in the original transition relation (→) is
called a saturated LTS.

Let LT S = 〈Σ, S, { a−−→}a∈Σ〉 be an LTS, and O a subset of Σ, and τ a symbol
not belonging to Σ.

Sat�O(LT S) =Def 〈Σ ∪ {τ}, S, { a⇒}a∈Σ∪{τ}〉.

NB: If Σ = O, a saturation simply consists of adding to each state of the initial system
a loop labeled by τ .

Sat�Σ(LT S) = 〈Σ ∪ {τ}, S, [{ a→}a∈Σ ∪ {p τ−−→ p : p ∈ S}〉.

EXAMPLE 12.8. Example of saturation Figure 12.11 presents saturation of the systems
M ′ and M ′′ (given in Figure 12.10) when O = {Coin, Tea, Coffee}.

0’

3’ 2’

1’

Coin

τ τ

Coffee Tea

CoinCoin
Coffee Tea

0"

3" 2"

1"

Coin

Coffee Tea

τ τ

CoinCoin
Coffee Tea

Figure 12.11. Sat�O(M ′) et Sat�O(M ′′)

To simplify the figure, the τ loops resulting from the reflexive closure
τ⇒ normally

associated with each state are not represented.

The inobservable labels (i′1, i
′
2, i

′′
1 , i′′2 ) were renamed in the saturated systems. This

renaming and the double composition of the inobservable actions lead in general to a

non-deterministic relation
O⇒.

Note that saturation can lead to a non-deterministic LTS, even starting from a
deterministic LTS. Thus, from 1′ in Sat�O(M ′), the experiment Coffee will lead to 3′
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or 1′ respectively if only the action Coffee occurred or if this action has been followed
by the inobservable action i′1. In the same way, from state 0′′ in Sat�O(M ′′), the
experiment can lead to Coin state 1′′, where the actions Tea and Coffee are possible,
or to state 2′′, where only the action Tea is possible, or to state 3′′, where only the
action Coffee is possible.

The abstraction that does not observe the actions i′′1 , I ′′2 does not alter the fact that
machine M ′′, rather than the customer, can select a drink.

12.4.2.2. Weak bisimulation, observational equivalence

The observational equivalence of two systems [MIL 89] can be defined directly
starting from the bisimulation (definition 12.22) by considering the bisimulation
relation between saturated systems.

DEFINITION 12.37 (Weak bisimulation). Let LT S = 〈Σ, S, { a−−→}a∈Σ〉 and LT S ′ =
〈Σ′, S′, { a−−→}a∈Σ′〉 be two LTSs and O ⊂ Σ ∩ Σ′ a set of common action labels.

A binary relation B ⊂ S × S′ is a �OBisimulation between LT S and LT S ′ if
B is a bisimulation between Sat�O(LT S) and Sat�O(LT S ′).

This bisimulation, parameterized by a set of observable actions, is often described
as “weak” with respect to the standard bisimulation, which is called “strong” (which
takes into account all action labels). The observational equivalence introduced in c.c.s.
[MIL 89] is the largest weak bisimulation.

The concepts of strong and weak bisimulations coincide when all labels are defined
as observable (i.e.O = Σ∪Σ′): B is a bisimulation (strong) between LT S and LT S ′

if B is a �(Σ∪Σ′)Bisimulation between Sat�Σ(LT S) and Sat�Σ′(LT S ′).

12.4.2.3. Decision of weak bisimulations

As weak bisimulation is defined as a strong bisimulation between saturated
systems, the decision procedure given for the strong bisimulation can be applied to
the weak bisimulation.

When a saturated system is considered, property 12.5 remains valid (it can be
simplified by noting that any state of the saturated system has τ in its Output). This
also holds for property 12.6, but it becomes inoperative in saturated systems, as any
state has at least one τ -successor (itself). In the case of weak bisimulation, the property
12.6 is reformulated in terms of weak blocking (definition 12.8).

PROPERTY 12.8 (Weak bisimulation and weak blocking). For any LTS LT S =
〈Σ, S, { a−−→}a∈Σ〉, any subset O of Σ, and any pair of states p, q ∈ S[

OutputSat�O(LT S)(p) = OutputSat�O(LT S)(q) = {τ}
]

=⇒ p ∼O q.
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EXAMPLE 12.9 (Example 12.8 (continued)). Let us consider again the ILTS
〈M ′, 0′〉 and 〈M ′′, 0′′〉 in example 12.8. Let us look at whether there is a bisimulation
between 〈M ′, 0′〉 and 〈M ′′, 0′′〉. Let S = S ∪ S′.

Property 12.6 defines the equivalence for order 1:

S/∼1 =
{
{0′, 2′, 3′, 0′′}, {1′, 1′′}, {2′′}, {3′′}

}
.

For order 2, it is easy to see that 1′ �∼2 1′′. Indeed, there are 1′′ τ⇒ 2′′, whereas
1′ has only one τ -successor, 1′ itself, which is not equivalent for order 1 to 2′′. Going
on, it can be shown that, for order 3, 1′ and 1′′ are not equivalent. Thus 〈M ′, 0′〉 and
〈M ′′, 0′′〉 are not observationally equivalent.

Note that the ILTS 〈M, 0〉 and 〈M ′, 0′〉 are observationally equivalent.

12.4.2.4. Abstract and quotient models

The equivalences or pre-orders already presented can be used to compare a
system and its specification when they are both expressed by a graph. The behavioral
approach, working by comparison, can be used to verify that the system and its
specification have the same properties (the same behavior), modulo the abstraction
criterion selected for the comparison.

For the equivalences relations, projection or “introspection” can also be used.
Instead of comparing two LTSs, we can build the smallest equivalent LTS2 Such an
approach is called projection or abstract modeling.

DEFINITION 12.38 (Observational projection). For an LTS LT S=〈Σ, S, { a−−→}a∈Σ〉,
a subset O ⊂ Σ from observable labels, and ∼O, the associated observational
equivalence relation, we denote by LT S/∼O the quotient of LT S by ∼O.

LT S/∼O =Def 〈S/∼O,O ∪ {τ}, { a∼∼>}a∈O∪{τ}〉

where:

1) S/∼O is the quotient of S by ∼O.

2)
a∼∼> is the smallest relation verifying:

a) (a ∈ O and q
o⇒ q′) ⇒ q/∼O

o∼∼> q′/∼O.

b) (a �∈ O and q
o⇒ q′ and q �∼O q′) ⇒ q/∼O

τ∼∼> q′/∼O.

2. With respect to the number of states.
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2a means that any observable transition is kept by the projection. 2b means that
only the inobservable transitions connecting two non-equivalent states are kept by
the projection.

EXAMPLE 12.10 (Example of projection). Let us consider 〈X, 0〉, the ILTS
represented on the right. When observing O = {A,B}, then, in this case, X/∼O =
{{0}, {1}, {2, 3, 4}}

0 1 2

3 4

I2

A

A

B

I1

The ILTS 〈X/∼O, C0〉 obtained by projection is represented on the right. It has
three states: C0 = {0}, C1 = {1}, C2 = {2, 3, 4}. Note that a few inobservable

transitions remain (1 I1−−→ 4, which shows that the possibility of blocking after A

appears in the form C1
τ∼∼> C2), while other blocking possibilities can disappear.

Furthermore, transition 1 I2−−→ 1 shows that the system has a possible inobservable
infinite execution sequence, and such a behavior is called “divergence” (see section
12.4.2.5). This possibility of divergence is included in class C1.

C0 C1 C2

A B + τ

A

By construction, the ILTS obtained by projection (〈X/∼O, C0〉) is equivalent to
the ILTS projected 〈X, 0〉. Projection is minimal with respect to the number of states,
but is not minimal with respect to the number of transitions. Consider 〈Y,Q〉, the ILTS
represented below. There are again 〈Y,Q〉 ∼O 〈X, 0〉 but 〈Y,Q〉 has fewer transitions
than 〈X/∼O, C0〉.

q r s

A B + τ
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EXAMPLE 12.11 (Example 12.8 (continued)). From the results of example 12.8, we
have:

S/∼ =
{
{0′, 2′, 3′}, {0′′}, {1′}, {2′′}, {3′′}

}
.

A simple projection3 leads to the relation ∼ from each ILTS:

S/∼ =
{
{0′, 2′, 3′}, {1′}

}
and S′/∼ =

{
{0′′}, {1′′}, {2′′}, {3′′}

}
.

The figure below shows the various computation steps, i.e. on the left, the initial
system, in the middle, the saturated system and, on the right, the projected system.

0’

3’ 2’

1’

Coin

i′1 i′2

Coffee Tea

0’

3’ 2’

1’

Coin

τ τ

Coffee Tea

CoinCoin
Coffee Tea C0 C1

Coin

Tea+ Coffee

Figure 12.12. 〈M ′, 0′〉, Sat�O(M ′) and 〈M ′/∼O, 0′/∼O〉

For 〈M ′′, 0′′〉, the equivalence classes, S′′/∼O, are reduced to singletons, and
the projected LTS system is identical (isomorphic with appropriate renaming of the
inobservable actions i′′1 and I ′′2 by τ ) to the initial LTS.

0"

3" 2"

1"

Coin

Coffee Tea

i′′1 i′′2

0"

3" 2"

1"

Coin

Coffee Tea

τ τ

CoinCoin
Coffee Tea

C0"

C3" C2"

C1"

Coin

Coffee Tea

τ τ

Figure 12.13. 〈M ′′, 0′′〉, Sat�O(M ′′) and 〈M ′′/∼O, 0′′/∼O〉

3. Projection in the usual sense: projection of the partition on the sets of states respectively
associated with each one of the LTSs.
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The projection of 〈M ′/O, 0′/O〉 again gives 〈M, 0〉 (see Figure 12.6); these two
LTSs are observationally equivalent.

For 〈M ′, 0′〉, the fact that only one class including states 0′, 2′ and 3′ is obtained
allows the “internalization” of the two transitions (i′1 and i′2) that were selected
for the abstraction. Computing the observational equivalence leads a posteriori to
legitimization of this choice: the occurrence of these events does not modify the
“observed” system behavior.

For 〈M ′′, 0′′〉, ignoring actions i′′1 and I ′′2 does not make sense, since, depending
on their occurrences, the customer will or will not be able to choose the drink.

12.4.2.5. Observational equivalence and divergence

The previous example has shown that observational equivalence gives a relatively
reasonable abstraction for a set of selected inobservable (hidden) events. Note
that while the weak language equivalence a priori removes all hidden events, the
observational equivalence can keep as “visible” a few events that were not a priori
selected as observable. This is in particular true in the case of events that are not
observable but which remain present in the quotient LTS (i.e. they are unobservable
events connecting inequivalent states).

Among the important concepts “lost” by observational equivalence, is the concept
of divergence, already seen in the example of projection (Figure 12.10). In the case of
finite LTSs, divergence is directly related to the existence of cyclic paths labeled by
inobservable labels, which will be called τ -cycles.

The fact of not observing all events leads to refinement of the standard concept of
a blocking (deadlock) state. Indeed, it is important to distinguish two different types
of states: the states from which the system (without being blocked) may perform only
not observable actions (weak blocking states), and the states from which the system
can carry out an infinite number of inobservable actions (divergent states).

DEFINITION 12.39 (Weak deadlock, divergence). For an LTS LT S =
〈Σ, S, { a−−→}a∈Σ〉, O a subset of Σ and s a state of S:

1) s is a weak deadlock for O if OutputSat�O(LT S)(s) = {τ}.
2) s is a divergence state for O if ∃σ ∈ L(〈S, s〉) ∩ (Σ \ O)∞.

A weak deadlock corresponds to a state in which the system cannot evolve in an
observable way (the only actions carried out are not observable): an observer cannot
thus distinguish between a weak deadlock state and a deadlock state. Note that, unlike
a weak deadlock, from a divergence state, the system can evolve in an observable way,
but it can also evolve infinitely in a not observable way.
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EXAMPLE 12.12. Let us consider 〈L, 0〉 represented on the right. Only action A is
observed (O = {A}); 5 and 6 are sink states; 2, 4, 5, and 6 are weak sink states; 0, 1,
2, 3 and 4 are states of divergence.

0 1 2

II II

3 4

5 6

I I

A I

DEFINITION 12.40 (τ -cycles). Let LT S = 〈Σ, S, { a−−→}a∈Σ〉 be an LTS and O ⊂ Σ
a subset of observable labels.

Two states s1, s2 ∈ S are connected by one τ -cycle if:

∃σ1 ∈ (Σ\O)∗,∃σ2 ∈ (Σ\O)∗ such that s1
σ1−−→ s2 and s2

σ2−−→ s1.

PROPERTY 12.9 (τ -cycle and weak bisimulation). Two states s1, s2 ∈ S belonging to
the same τ -cycle are obviously bisimilar.

It is enough to note that states s1 and s2 admit exactly the same derived states,

i.e.: ∀t ∈ O∪{τ}, ∀s ∈ S: s1
t⇒ s⇔ s2

t⇒ s.

In terms of quotient LTS, a corollary of this property is that if a pair of states
s1 and s2 are connected by a τ -cycle, then all the elementary transitions constituting
this τ -cycle are “hidden” inside the equivalence class of s1 (i.e. that of s2). In other
words, an observational projection ignores all τ -cycles.

EXAMPLE 12.13. Observational equivalence and divergence Let us consider the
coffee machine 〈Div,C〉 shown in Figure 12.14. Until nowO = {Coin, Tea, Coffee}.
States d1, d2 and d3 are connected by one τ -cycle, and by applying property 12.9, we

d0

d3 d2

d1

Coin

Coffee Tea

i1

i2

i3

i4

D0 D1

Coin

Tea+ Coffee

Figure 12.14. 〈Div, 0〉 and its quotient
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obtain d1 ∼O d2 ∼O d3. So ∼O= {{d0}, {d1, d2, d3}}. By noting that D0 = {d0}
and D1 = {d1, d2, d3}, the quotient LTS follows. All not observable transitions
belong to τ -cycles and disappear into equivalence classes.

It has already been shown (see section 12.13) that the LTSs 〈D, 0〉 and 〈D′, 0′〉
represented below are weak bisimilar. It can be shown in the same way that
〈D, 0〉 ∼O 〈Div, 0〉. By transitivity, these three LTSs are in weak bisimulation, but
their behaviors are different:

〈D, 0〉 and 〈D′, 0′〉 deliver “inevitably” one drink after payment has been made,
while for 〈Div, 0〉, the delivery of a drink is only “potential”.

0 1

Coin

Tea+ Coffee

0’

3’ 2’

1’

Coin

i′1 i′2

Coffee Tea

Figure 12.15. 〈D, 0〉 and 〈D′, 0′〉: two LTSs bisimilar with 〈Div, do〉

12.4.3. Modal characterizations of behavioral equivalences

Logical verification is based on properties expressed by a specific language
(for example temporal logic). Checking that the system satisfies these properties is
equivalent to showing that the system is a model for these properties. The behavioral
approach only handles behaviors. It checks the equivalence between the behavior of
the system and the behavior of its specification, and deduces, from the equivalence,
that the system satisfies its specifications. However, we have never explicitly stated
the properties that were associated with the specification, and have never specified
the nature of the properties that are preserved by the considered equivalence.

Hennessy and Milner [HEN 85] clarify the links that exist between these
two verification approaches. They give, in particular, a “logical” definition of the
behavioral equivalences, and this definition specifies the type of properties that can
be verified.

12.4.3.1. Definition ofHML
Intuitively, a logic can be associated with a given behavioral equivalence (a logic

in adequacy with an equivalence), so that the equivalent behaviors are the behaviors
satisfying the same properties (the properties now being expressed in the adequate
logic).
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DEFINITION 12.41 (HML: Hennessy-Milner logic). The following apply:

Syntax:HML is the smallest set verifying:

true ∈ HML, f, g ∈ HML =⇒ f ∧ g, ¬g ∈ HML;

f ∈ HML, a ∈ Σ =⇒ 〈a〉f ∈ HML.

Semantics: The semantics ofHML formulas is defined with respect to an LTS LT S.
As for modal logics, let us use s ∈ S and f ∈ HML : LT S, s |= f to indicate that
formula f is satisfied in state s of the structure (here of the LTS) LT S. As usual, the
semantics of a formula ofHML is defined by induction on the structure of the terms.
In the following f and g ∈ HML and a ∈ Σ.

|=, the relation of satisfaction, is the smallest relation verifying:

LT S, s |= true ∀s ∈ S;

LT S, s |= f ∧ g iff LT S, s |= f and LT S, s |= g;

LT S, s |= ¬f iff Not (LT S, s |= ¬f);

LT S, s |= 〈a〉f iff ∃s′ ∈ S such that s
a−−→ s′ and LT S, s′ |= f.

Abbreviations: false ≡ ¬true, f ∨ g ≡ ¬(¬f ∧ ¬g), [a]f ≡ ¬〈a〉¬f

〈σ〉f ≡ 〈a1〉〈a2〉 · · · 〈an〉f for σ = a1 · a2 · · · · an.

The semantics of a formula of HML (i.e. |=, the relation of satisfiability) is
defined, as in modal logic, by manipulating the LTSs to be Kripke structures. Two
differences must be noted: on the one hand, HML does not use atomic propositions.
More precisely, the set of propositional variables only contains the variable true which
is true in any state. Using again the notations introduced in section 12.2: P = {true}
and ν(s) = {true} : ∀s ∈ S; on the other hand, the accessibility relation between the
“worlds” of the structure is now labeled.

EXAMPLE 12.14 (Examples of properties expressed usingHML).

LT S, S |= 〈a〉true. An a-experiment is possible starting from s.

LT S, s |= 〈a〉(〈b〉true ∧ 〈c〉true).

From s, an a-experiment can lead to a state where a b-experiment and a c-experiment
are both possible.

LT S, s |= [a]false. From s, no a-experiment is possible.

Again, let us consider the LTS 〈D, 0〉, 〈D′, 0′〉 and 〈D′′, 0′′〉 given in Figure 12.6
and the properties FI : I ∈ [1, 4] below. The table below gives the evaluation of the
formulas FI for each of the LTSs.
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F1 ≡ 〈a〉[b]F
F2 ≡ 〈a〉(〈b〉T ∧ 〈c〉T )
F3 ≡ [a](〈b〉T ∧ 〈c〉T )
F4 ≡ 〈a〉((〈b〉T ∧ [c]F ) ∨ (〈c〉T ∧ [b]F ))

|= F1 F2 F3 F4

D, 0 F V V F

D′, 0′ V F F V

D′′, 0′′ V V F F

12.4.3.2. Modal characterization of bisimulation

State theory: For a logic L, let us denote by TH : S �→ L, the mapping which
associates with a state s S the set of the properties f of L that are satisfied (its theory).
THL(S) =Def {F ∈ L : S |= F}.

PROPERTY 12.10 (Hennessy-Milner’s theorem [HEN 85]). HML characterizes the
bisimulation in a modal way. Two states are bisimilar if they satisfy the same logical
propertiesHML:

s ∼ q iff THHML(s) = THHML(q).

EXAMPLE 12.15 (Returning to the examples in Figures 12.6, 12.7 and example 12.8).
The LTSs of Figure 12.6 are not bisimilar. Again taking the formulas of Table 12.14,
it can be concluded that these LTSs are 2 to 2 not equivalent in behavior:

– F3 only holds for D, thus D is neither equivalent to D′ nor to D′′;

– F4 only holds for D′, thus D′ is neither equivalent to D nor to D′′.

The LTSs of Figure 12.7 are not bisimilar. Let us consider the following formula
ofHML:

– G ≡ 〈Coin〉((〈Coffee〉〈Sugar〉T ) ∧ (〈Coffee〉[Sugar]F )). M, 0 �|= G while
M ′, 0′ |= G.

The LTSs of Figure 12.8 are not bisimilar. Let f ≡ [Coin](〈Coffee〉true ∧
〈Tea〉true). f can be formulated as follows: after any occurrence of the action Coin,
there is always the possibility of carrying out the actions Coffee and Tea. M ′, 0′ |= f
while M ′′, 0′′ �|= f .

12.4.3.3. HML and atomic propositions of states

Is has been seen that HML, in its original form, is based only on events, and the
relation of π-bisimulation (see definition 12.29) can be used to explicitly take into
account the concept of states.
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Instead of considering only one labeled transitions system, let us consider a labeled
Kripke structure

LKS = 〈AP,Σ, S, { a−−→}a∈Σ, ν〉,

where in each state of S, the valuation ν associates a set of propositional variables
∈ 2AP (see definition 12.1).

DEFINITION 12.42 (HML(AP )). Let us denote by HML(AP ) the extension of
HML to a set of atomic propositions AP as follows:

Syntax:HML(AP ) is the smallest set verifying:

AP ⊂HML(AP ), f, g∈HML(AP ) ⇒ f ∧ g∈HML(AP ), ¬f ∈HML(AP ).

f ∈ HML(AP ), a ∈ Σ ⇒ 〈a〉f ∈ HML(AP ).

Semantics: The semantics of the formulas HML(AP ) is defined with respect to a
labeled Kripke structure LKS = 〈AP, Σ, S, { a−−→}a∈Σ, ν〉.

|=, the relation of satisfaction, is the smallest relation verifying:

LKS, s |= P iff P ∈ ν(P ).

LKS, s |= f ∧ g iff LKS, s |= f and LKS, s |= g.

LKS, s |= ¬f iff Not (LKS, s |= ¬f).

LKS, s |= 〈a〉f iff s
a−−→ s′ and LKS, s′ |= f.

PROPERTY 12.11 (Modal characterization of π-bisimulation). Again using the
notations introduced in definition 12.4, let us consider the partition πν(S) of
S defined by the application ν and consider the associated π-bisimulation (see
definition 12.29).

HML(AP ) gives a modal characterization of the πν(S)-bisimulation: two states
are πν(S)-bisimilar iff they satisfy the same formulas of logicHML(AP ).

∀p, q ∈ S : p ∼π q iff THHML(AP )(q) = THHML(AP )(q)

EXAMPLE 12.16 (HML and divergence). It has been said that observational
equivalence ignores divergence (see section 12.4.2.5): it follows that the concept of
an “inevitable event” cannot be expressed inHML.

Again using the notations of section 12.3.3, let us write 〈M, S〉 |= AFX{T}true to
mean that the execution of event t is inevitable from state s. The property of adequacy
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(property 12.10) provides a simple means of showing that AFX{T}true cannot be
expressed inHML.

Let us consider the LTS shown in Figure 12.16. 1 |= AFX{A}true, 0 �|=
AFX{A}true, obviously 1 ∼ 0, and consequently THHML(1) = THHML(0). Then
AFX{T}true cannot be expressed byHML.

0 1 2
τ Aτ

Figure 12.16. Divergence and inevitability

Let us consider again the three coffee machines shown in Figure 12.10; all their
states satisfy the property AFX{Tea,Coffee}true, and in particular states 1, 1′ and 1′′,
which correspond to states where a drink has been paid for but not yet delivered. Let
us consider the LTS 〈Div, d0〉 presented in Figure 12.14: none of the states satisfies
AFX{Tea,Coffee}true and, in particular, the state d1. The fact of having paid for the
drink does not guarantee that it will be delivered within a finite time.

The extension of HML to atomic propositions (see section 12.4.3.3) provides a
simple approach, in the case of a finite LTS, to extending HML in order to take into
account the concept of divergence.

Let LT S = 〈Σ, S, { a−−→}a∈Σ〉 be an LTS, and O ⊂ Σ a subset of observable
labels. Let Div(S) be the subset of S defined as follows: Div(S) =Def {S ∈ S :
∃ω ∈ Σ \ O∞ and s

ω−−→}. Thus, for the LTS in Figure 12.13 we have Div =
{d1, d2, d3}.

We consider APDiv =Def {true,Div} and the valuation ν defined by true∈ν(S)
∀S ∈ S and Div ∈ ν(s)σs ∈ Div(S). By construction, HML(APDiv) logic and
∼Div , the associated π-bisimulations, are sensitive to the divergence.

As an example, let us compare the LTSs 〈M ′, 0′〉 and 〈Div, d0〉 given respectively
in Figures 12.10 and 12.14.

∼Div 0 = {{d1, d2, d3}, {d0, 0′, 1′, 2′, 3′}}

∼Div 1 = {{d1, d2, d3}, {d0, 0′, 2′, 3′}, {1′}}

∼Div 2 = {{d1, d2, d3}, {d0}{0′, 2′, 3′}, {1′}}
∼Div 3 =∼Div 2 and consequently ∼Div = ∼Div 2



400 Petri Nets

The respective initial states of the two LTSs (0, d0) are not in a relation
of bisimulation (0 �∼Div d0) and consequently 〈M ′, 0′〉 and 〈Div, d0〉 are not
“Div”-bisimilar.

12.4.3.4. Modal characterizations of other equivalence relations

Let us consider the subsets ofHML defined as:

M =Def

{
F ∈ HML, F does not contain ∧

}
;

and

N =Def

{
F ∈M, F does not contain ¬

}
.

[HEN 85] show thatM is a modal characterization of co-simulation, whileN is a
modal characterization of language equivalence.

Strict inclusion betweenN andHML explains the fact that language equivalence
is strictly coarser than observational equivalence. Thus, N does not allow
expression of [A] or false, which are essential in defining the property of deadlock:
observational equivalence preserves deadlocks, and language equivalence does not.
Observational equivalence does not preserve divergence, but can be reinforced to
preserve it [DEN 90].

[BRO 88] gives a behavioral characterization of CT L∗ logic. The equivalence
relation now applies to the Kripke structures given in definition 12.1. Its presentation
is very close to the ∼N equivalences given in definition 12.27.

DEFINITION 12.43 (Equivalences of Kripke structures). LetKS = 〈AP, S,→, ν〉 and
KS = 〈AP, S′,→′, ν′〉 be two Kripke structures sharing the same set of propositional
variables AP .

Let us define a sequence of equivalence relations EK0 , EK1 , . . . on S × S′ as
follows:

sEK0s
′ iff ν(s) = ν′(s′).

sEKn +1s
′ iff :

1) ν(s) = ν′(s′).
2) ∀s1 ∈ S : (s → s1) ⇒ ∃s′1 ∈ S′ : s′ → s′1 and sEKn s′.

3) ∀s′1 ∈ S′ : (s′ → s′1) ⇒ ∃s1 ∈ S : s→ s1 and s1EKn s1.

Finally, equivalence between Kripke structures is defined as follows:

sEKs′ iff sEKis
′ : ∀i ≥ 0.
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The behavioral characterization of CT L∗ is given by the following property:

PROPERTY 12.12 (Behavioral characterization of CT L∗). sEKs′ ⇒ ∀f ∈
CT L∗[s |= f ⇔ s′ |= f ].

[BRO 88] also introduced stuttering equivalence, which gives a behavioral
characterization of the temporal logic CT L∗_X, namely CT L∗ without using its next
time operator.

12.5. Decidability of bisimulation and of evaluation of formulas

Let us now consider the fundamental decidability results concerning the
bisimulation of Petri nets and the evaluation of formulas of temporal logic for Petri
nets. Chapter 4 shows that all generic properties are decidable (i.e. boundedness,
accessibility, etc.). Moreover, the complexity of the verification of a few properties
is completely characterized (e.g. the boundness property is EXPspace-complete),
while for others the problem is still open (accessibility is EXPspace-hard but the
algorithm of decision is not primitive recursive). As has been seen in the previous
sections, using temporal logic and bisimulation to characterize the behavior of a
labeled Kripke structure is a better method than using generic properties. Also, it
can be expected that the decision procedures are more difficult, but the problem of
accessibility is easily expressed in LT L and CT L.

EXAMPLE 12.17.

– in LT L, m not accessible from (R,m0) ⇔ (R,m0) |= G OR p∈P p �= m(p).
– in CT L, m non-accessible since (R,m0) ⇔ (R,m0) |=AG OR p∈P p �= m(p).

12.5.1. Undecidability results

The usual technique for showing that a problem is undecidable consists of reducing
it to another problem known to be undecidable. The more general problem we will
study is the termination of a program.

THEOREM 12.3 (Termination of a program with parameters). The problem of the
termination of a program prog, parameterized by an integer x is undecidable.

Proof. We show this result by contradiction. Let us suppose that there is a program
teststop with two integer parameters: a representation (by an integer) of a program
prog and an initial value for this program. The choice of the representation of the
program is of no importance here; for example, we could represent the integer
corresponding to the sequence of bits of the program. We will use prog to denote this
representation. teststop returns true if prog terminates with the provided value and,
if not, returns false. The behavior of teststop is unspecified if the first parameter is
not the representation of a program.
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We then build a program foo, with a single parameter, whose behavior is:

– foo checks that its parameter x is the representation of a program prog (as done
by a compiler). If this is not the case, it terminates.

– foo calls teststop(X,X). In other words, it tests if the program prog terminates
by taking its representation as an entry.

– If teststop(X,X) returns true, then foo goes into an endless loop, and, if not,
it terminates.

Let us examine the behavior of foo(foo). If foo(foo) then teststop(foo, foo)
returns true and consequently foo(foo) does not terminate, which is a contradiction.

In the opposite case, teststop(foo, foo) returns false and consequently foo(foo)
terminates, which is a contradiction. It does not exit any program teststop.

The fact that the program has a single parameter as its entry is not important,
as indicated by the following corollary. In addition, it illustrates the principle of
reduction.

COROLLARY 12.1 (Termination of a program without parameters). The problem of
the termination of a program prog without parameters is undecidable.

Proof. Let us show that the problem of the termination of a program with a single
parameter is reducible to the problem of the termination of a program without
parameters. We suppose that there is a program teststopbis for the problem of the
corollary and we describe how to build a program teststop. Let prog be a program
with a parameter and x an integer value. Then teststop behaves as follows:

– teststop builds the representation of the program prog′ without parameters
which consists of calling prog(X).

– Then teststop calls teststopbis(prog′) and returns the corresponding result.

Then teststopbis cannot exist.

The choice of the programming language (or of the model of computation)
is unimportant as long as it includes the minimal constructors conferring an
expressiveness equivalent to a Turing machine. In our case, we will choose the
programs with counters model. The variables of such a program are counters that
are positive integers, initialized to 0. The program is a sequence of instructions; each
instruction is preceded by a label. The different kinds of instructions are:

– the unconditional jump lab : GOTO lab′;

– the conditional jump lab : IF x = 0 THEN GOTO lab1 ELSE GOTO lab2;

– the termination lab : HALT this instruction is necessarily the last instruction of
the program;
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Figure 12.17. Weak simulation of a program with counter

– the incrementation lab : x := x + 1;

– the decrementation lab : x := x− 1.

Without loss of generality, we only consider programs that test positivity of a
counter before its decrementation.

This program prog has only one execution (starting with the first instruction),
which can either be infinite, or abort or terminate when the program reaches the last
instruction. We describe a weak simulation of a program with counters by a Petri net
denoted by Rprog (this name will also apply to the various variants of simulation). We
associate with each label a place that, when marked, indicates that the instruction
is the next instruction to be executed; initially only the place of the label of the
first instruction contains a token. Each counter is translated into a place, initially
not marked. The translation of the instructions introduces transitions as indicated
in Figure 12.17. Each transition is labeled by an instruction (inc, dec, goto, end,
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zero, nzero). Simulation is weak in the sense that a labeled transition zero can be
fired although the place x is marked. An exact simulation would require an inhibiting
arc from the place x towards the labeled transition zero. In other words, among the
maximum sequences (finite or infinite), only one of them corresponds to an exact
simulation of the program, while the other sequences “cheat” by inadequately firing
at least a labeled transition zero, whereas the corresponding counter is not null. It is
then obvious that:

prog terminates

⇔
All maximal runs of Rprog “cheat” or mark place halt.

This leads to the first results of undecidability.

THEOREM 12.4 (Evaluation of a propositional formula LT L or CT L). In a Petri net,
the problem of the evaluation of a propositional formula LT L or CT L is undecidable.

Proof. It is enough to express the second term of equivalence. In LT L: F (ORx·lab∈P

(x · lab = 1 AND x > 0) OR halt = 1). And in CT L: AF (ORx·lab∈P (x · lab = 1
AND x > 0) OR halt = 1).

Note that this result is presented within the semantics of maximal finite or infinite
sequences. We can easily restrict this to infinite sequences by adding a transition that
loops at place halt. This remark holds for the following result.

x

error

lab2

lab1

x.lab1

nzerozero

lab

lab : IF x = 0 THEN GOTO lab1

ELSE GOTO lab2

Figure 12.18. Another weak simulation of the conditional jump

By modifying the translation of the conditional jump as indicated in Figure 12.18,
we obtain a complementary result.

THEOREM 12.5 (Evaluation of an event-based formula CT L). In Petri nets, the
problem of evaluation of an event-based formula CT L is undecidable.
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x

halt

y

y

y’t2

t1

t3

lab lab

lab2

nzero

zerozero

lab1

zeroend

Figure 12.19. A third weak simulation

Proof. The equivalence previously mentioned is still valid and it is sufficient to
express the second term of equivalence in event-based logic CT L:

AF
(
EX{error} true OR EX{end} true

)
Note that the branching logic operator EX enables testing of the firability, which

is not possible with event-based linear logic. We will now once again transform our
weak simulation to deal with the case of bisimulation. We add to our network two new
“complementary” places y and y′ so that a token can be present either in y or in y′,
but never simultaneously in both places.

For such a marking m, let us use the notation m, the marking obtained by reversing
the contents of y and y′. Let us again modify the conditional jump, but also the last
instruction as indicated in Figure 12.19.

The initial marking m0 is defined by a token in the label of the first instruction
and a token in place y. Here still, one of the maximal sequences of execution
corresponds to simulation of the program with counters. When we “deviate” from
the exact simulation by firing a labeled transition zero, whereas the corresponding
counter is marked, we can either swap the contents of y and y′ (by t2 or t3), or
leave it unchanged (by t1). The transitions of type t2 and t3 are not used in an exact
simulation.

THEOREM 12.6 (Bisimulation of Petri nets). The problem of the bisimulation of two
marked nets (R,m0) and (R′,m′

0) is undecidable.

Proof. We will show that a program with counters prog terminates if and only if
(Rprog,m0) and (Rprog,m0) are not bisimilar.

1. prog terminates

Let suppose us that m0 and m0 are not bisimilar. Let m0,m1, . . . , mn be the
sequence of markings corresponding to the exact simulation of prog. We show by
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recurrence that for i < n, mi and mi are bisimilar. Since mi corresponds to a step of
the exact simulation of prog, it is possible to speak about the next instruction to be
executed. If this instruction is an incrementation, a decrementation, an unconditional
jump or the non-zero branch of a conditional jump then a single transition labeled
with the corresponding action is firable from mi and mi leading to mi+1 and mi+1,
respectively. If this instruction corresponds to the zero branch of a conditional jump
connection, then here also only one transition (t1) is firable from mi and mi, since the
tested (x) counter is not marked; the firing of t1 leads to mi+1 and mi+1. Let us now
examine mn−1 and mn−1. The transition labeled by fin is firable from mn−1 but is
not firable from mn−1, since y is not marked. The markings mn−1 and mn−1 are not
bisimilar and consequently m0 and m0 are not bisimilar.

2. prog does not terminate

We define the relation R containing (m0,m0) and show that R is a bisimulation.
R = {(m,m′) | m = m′, where m is a marking reached by the exact simulation of
prog and m′ = m}. Of course, it is enough to prove that R is a bisimulation only
for the second type of pair of markings. Let m be a marking reached by the exact
simulation of prog. Since prog does not terminate, the transition labeled by end is
not firable from m. In the case of abort, no more transitions are firable from either m
or m. If the next transition executed is not the zero branch of a conditional jump then
a single transition (corresponding to the simulation) is firable from m and m. This
transition corresponds to the simulation of prog and consequently the pair of reached
markings belongs to R. If the next transition is a non-zero branch then there are two
choices from a conditional jump m (respectively m): to continue the simulation by
firing the transition labeled nzero or to “diverge” from the simulation by firing a
transition labeled zero t1 or t2 (respectively t1 or t3). We show that m simulates m
(the converse is symmetric).

– If transition nzero is fired from m, the same transition is fired from m and the
pair of reached markings corresponds to the next step of the simulation of prog.

– If transition t1 is fired from m, t3 is fired from m and the reached markings are
identical.

– If transition t2 is fired from m, t1 is fired from m and the reached markings are
identical.

Note that the proof can be applied to any type of equivalence – from language
equivalence to bisimulation – since if prog terminates then two nets are not language
equivalent.

In the same way, as for the marked nets f the proof, two transitions t and t′ are
never firable concurrently (i.e. m ≥ Pre(t) + Pre(t′)), the result remains valid for
equivalences which include concurrent firing.



Verification of Specific Properties 407

12.5.2. Decidability results

This section will use various concepts introduced in Chapter 4 (semi-linear sets,
technique of shorter sequences, etc.). We strongly advise the reader to refer to it as
needed.

12.5.2.1. LT L formulas

Let us first study the verification of an event-based temporal logic formula
(for instance from linear μ-calcul), for a language that can be represented by an
automaton [DAM 92]. The terminal states are interpreted as usual in the case of a
finite sequence semantics, or as Büchi automaton terminal states in the cases where
the semantics is expressed in terms of infinite sequences.

The verification procedure for finite systems consists of:
– building the automaton associated with the negation of the formula;
– building the synchronized product between the labeled transition system of the

model (i.e. the reachability graph) and the automaton;
– finding a finite sequence (respectively infinite) reaching a terminal state a finite

(respectively an infinite) number of times.

This procedure is obviously not possible in the case of infinite transition systems,
but the key is to build a Petri net that generates the product labeled transitions system
and then to test the existence of an adequate sequence in this new net.

a

b

a

t’1 (a)

t’2 (b)

t’3 (a)

t2 (λ)

t1 (a)

t3 (b)

t2 (λ)

t3 . t’2 (b)

t1 . t’1 (a)
t1 . t’3 (a)

ProdNetInitNet

Aut SMA

Figure 12.20. Synchronized product between a Petri Net and an automaton

Building a “product” Petri net will be recalled briefly here (see Figure 12.20).

– The automaton (Aut) is translated into a Petri net (in fact a one-safe state
machine) (SMA).
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– The product net (ProdNet) is built from the net associated with the model
(InitNet) and from the state machine as follows:

- the set of the places of the product net is defined as the (disjoint) union of the
sets of places of the two nets, and the initial marking as the sum of the initial markings,

- a transition is added for each pair of transitions sharing the same label; the
input and output arcs of that transition are obtained by union of the corresponding arcs
in the initial nets. The transitions of the initial net labeled as empty are left unchanged.

It obviously follows that the observable traces of this net are exactly the words
generated by the initial net and recognized by the automaton (without taking into
account the terminal states). This is the starting basis for the evaluation algorithm.

THEOREM 12.7 (Evaluation of an event-based LT L formula). In a Petri net, the
evaluation of an event-based LT L formula is decidable (and more generally of any
formula whose negation is representable as an automaton).

Proof. This result is valid for any sequence: finite, finite maximal, infinite, divergent.
Here we will only consider the first three.

1. Case of finite sequences

We need to find a finite sequence in the net that marks a place associated with
a terminal state of the automaton. In other words, for each of these places, we try
to cover the marking defined by the presence of a token in that place. The covering
problem has already been addressed and the shorter sequences method gives a
procedure whose complexity is EXPspace.

2. Case of finite maximal sequences

We need to find a finite maximal sequence in the product net which marks a place
associated with a terminal state of the automaton. Let Term be the subset of these
places. In other words, the net must be deadlocked in a marking where one of the
places of Term is marked. The set of these markings is a computable semi-linear set
∩t∈T {m | NOT m ≥ Pre(t)}∩∪p∈Term{m | m ≥ −→p }. We therefore need to know
if one of the markings of a semi-linear set is reachable. Since a semi-linear set is a finite
union of linear sets, we have to successively test the accessibility of each linear set.
Finally, for each linear set E = {w | ∃λ1, . . . , λm in N, t.q. w = u +

∑m
i=1 λi · vi}

we add to the net a transition ti for i from 1 to m such that Pre(ti) = vi and
Post(ti) =

−→
0 . Then, we test, in this modified net, to see if u is reachable, which

can be computed by a non-recursive primitive algorithm.

3. Case of infinite sequences

We need to find an infinite sequence in the product net which marks infinitely
often a place associated with a terminal state of the automaton; in other words, this
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means that one of the transitions, having one of the places as an input place, is fired
infinitely often. We again have the problem of finding an infinite sequence in which
a given transition t admits an infinite number of occurrences; such a sequence has
the form σ = σ1 · σ2 · · · · · σi · · · · , where t appears in each σi. By applying the
extraction lemma given in Chapter 3 to the intermediate markings reached by the
sequences σ1 · σ2 · · · · · σi, it can be deduced that the existence of such an infinite
sequence is equivalent to the existence of a sequence of the form m0[σ1〉m1[σ2〉m2,
where m1 ≤ m2 and t occurs in σ2. Finally, by adding an output place pt to t,
the initial problem is equivalent, in this modified net, to that of finding a sequence
m0[σ1〉m1[σ2〉m2 with m1 ≤ m2 and m1(pt) < m2(pt). This last problem is also
solved using the technique of shorter sequences (see [RAC 78, YEN 92] for more
details) and again leads to a procedure with a EXPspace complexity.

An interesting question is to know whether decidability is preserved when
considering extensions of Petri nets. In fact, this evaluation becomes undecidable
for almost all of the extensions of Petri nets. It is for instance the case for recursive
Petri nets and even for restricted models [BOU 96]. However, when considering
only sequential semantics of the firing of an abstract transition, the problem remains
decidable [HAD 00].

12.5.2.2. Bisimulation

Let us now study the bisimulation of a marked net and a finite transition system.
We will use the ∼N -equivalences, introduced in definition 12.27, to characterize the
bisimulation for finite STEs (see property 12.3).

To avoid ambiguity in our notation, in particular with respect to the considered
states, the name of the STE will be given explicitly. Thus, we will write 〈LT S, S〉 to
clarify the fact that the state s is a state of the STE LT S.

Let us also introduce two useful notations. Let LT S = 〈Σ, S, { a−−→}a∈Σ〉 be a
labeled transition system,

– IncLT S
n denotes the set of initialized systems incompatible with LT S for ∼n:

IncLT S
n = {〈LT S ′, s′〉 | ∀s ∈ S NOT 〈LT S ′, s′〉 ∼n 〈LT S, s〉}.
–

∗−→ denotes the transitive and reflexive closure of the union of the
a−−→. In other

words, 〈LT S, s〉 ∗−→ 〈LT S, s′〉 iff s′ is reachable from s.

LEMMA 12.1. Let LT S = 〈Σ, S, { a−−→}a∈Σ〉 be a finite labeled transition system
(ns = |S|) and LT S ′ = 〈Σ′, S′, { a−−→}a∈Σ′〉 a labeled transition system, then:
∀s ∈ S, ∀s′ ∈ S′,

〈LT S, s〉∼〈LT S ′, s′〉⇔

⎧⎪⎨⎪⎩
〈LT S, s〉 ∼ns 〈LT S ′, s′〉
AND

�〈LT S ′, s′′〉∈IncSTE
ns

s.t. 〈LT S ′, s′〉 ∗−→〈LT S ′, s′′〉
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Proof. For the implication from left to right, if 〈LT S, S〉 ∼ 〈LT S ′〉, then according
to property 12.3 〈LT S, s〉 ∼ns 〈LT S ′, s′〉. In addition, by an obvious recurrence
on the number of transitions

a−−→ which lead from 〈LT S ′, s′〉 to 〈LT S ′, s′′〉, using
the definition of ∼, it can be shown that there exists s1 accessible from s (with the
same number of transitions) such that 〈LT S ′, s′′〉 ∼ 〈LT S, s1〉 and consequently
〈LT S ′, s′′〉 ∼ns 〈LT S, s1〉.

For the implication from right to left, let us define the relationR as follows:

〈LT S, s1〉R〈LT S ′, s′1〉

iff

⎧⎪⎨⎪⎩
〈LT S, s1〉 ∼ns 〈LT S ′, s′1〉
AND
�〈LT S ′, s′′〉∈IncLT S

ns
t.q. 〈LT S ′, s′1〉

∗−→〈LT S ′, s′′〉

Let us show thatR is a bisimulation relation.

Let us suppose that 〈LT S, s1〉 a−−→ 〈LT S, s2〉; then there exists 〈LT S ′, s′2〉 such
that

〈LT S ′, s′1〉
a−−→ 〈LT S ′, s′2〉 and 〈LT S, s2〉 ∼ns−1 〈LT S ′, s′2〉.

Since 〈LT S ′, s′2〉 is accessible from 〈LT S ′, s′1〉, we have:

�〈LT S ′, s′′〉 ∈ IncLT S
ns

t.q. 〈LT S ′, s′2〉
∗−→ 〈LT S ′, s′′〉.

In particular, 〈LT S ′, s′2〉 /∈ IncLT S
ns

. Thus there exists 〈LT S, s3〉 ∼ns 〈LT S ′, s′2〉.

By transitivity and because ∼n⊂∼n−1, 〈LT S, s3〉 ∼ns−1 〈LT S, s2〉, and, from
property 12.3, 〈LT S, s3〉 ∼ns 〈LT S, s2〉. Again, by transitivity: 〈LT S, s2〉 ∼ns

〈LT S ′, s′2〉.

The case 〈LT S ′, s′1〉
a−−→ 〈LT S ′, s′2〉 is similar.

This characterization gives the basis of the following result.

THEOREM 12.8 (Bisimulation between a net and a finite system). The bisimulation
between a marked net 〈R,m0〉, without transition labeled by the empty word, and a
finite labeled transition system 〈LT S, s0〉, is decidable.

Proof. As before, ns = |S|. To decide if 〈R,m0〉 ∼ns 〈LT S, s0〉, it is enough to
verify that:

– for each transition labeled by a firable from m0 and leading to m1, there exists
s1 such that 〈LT S, s0〉 a−−→ 〈LT S, s1〉 and 〈LT S, s1〉 ∼ns−1 〈R,m1〉;
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– for all s1 such that 〈LT S, s0〉 a−−→ 〈LT S, s1〉, there exists a transition labeled
by a firable from m0 and leading to m1 such that

〈LT S, s1〉 ∼ns−1 〈R,m1〉.

This obviously leads to a recursive procedure whose depth is limited to ns.

It remains for us to test if there is a marking m1 accessible from m0 such that
m1 ∈ IncLT S

ns
. Let us consider first the markings belonging to IncLT S

ns
. According

to the preceding recursive procedure, to test ∼ns it is only necessary to consider
firing sequences of length ≥ ns. Let us denote by v the maximal valuation of an
arc of R and B = v · ns. Let us take two markings m and m′ such that ∀p ∈ P ,
m(p) �= me(p) ⇒ m(p) ≥ B AND me(p) ≥ B. These two markings are
equivalent for ∼ns . Let us take a marking m bounded by B, and let us denote it
SupB(m) = {me | me ≥ m AND ∀p ∈ P, m(p)}.

Clearly, all markings in SupB(m) are equivalent for ∼ns (note that any marking
necessarily belongs to SupB(m) for a m bounded by B).

The decision procedure proceeds in two steps. First, for each marking m bounded
by B, it tests – using the previous procedure – whether m ∈ IncLT S

ns
. Then, for each

of these m, it checks if m′ ∈ SupB(m) with m′ reachable from m0 exists. This check
consists of testing the accessibility of m in a net augmented with a transition tp for
each place p such that m(p) = B, this transition being defined by Pre(tp) = −→p and

Post(tp) =
−→
0 .

[JAN 99] presents more techniques and results, e.g. the existence test of a finite
labeled transition system that bisimulates a Petri net.

12.6. Bibliography

[AHO 74] AHO A.V., HOPCROFT J.E. and ULLMAN J.D., The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, 1974.

[ARN 92] ARNOLD A., Systèmes de transitions finis et sémantique des processus
communicants, Masson, Paris, 1992.

[BOU 96] BOUAJJANI A. and HABERMEHL P., “Constrained properties, semilinear systems,
and Petri nets”, in CONCUR’96, vol. 1119 of LNCS, 1996.

[BRI 88] BRINKSMA E., “A theory for the derivation of tests”, in PSTV’88, Elsevier Science
Publishers B.V., North Holland, 1988

[BRO 88] BROWNE M.C., CLARKE E.M. and GRUMBERG O., “Characterizing finite Kripke
structures in propositional temporal logic”, Theoretical Computer Science, vol. 59,
pp. 115–131, 1988.



412 Petri Nets

[BRY 86] BRYANT R., “Graph based algorithms for boolean function manipulation”, IEEE
Transactions on Computers, vol. 35, no. 8, pp. 677–691, 1986.

[BUC 62] BUCHI J.R., “On a decision method in restricted second order arithmetic”, in Proc.
Internat. Congr. Logic, Method and Philos. Sci. 1960, pp. 1–12, Stanford University Press,
Stanford, USA, 1962.

[CLE 89] CLEAVELAND R., “Testing equivalence as a bisimulation equivalence”, in Proc. of
CAV ’89, vol. 407 of LNCS, pp. 24–37, Springer-Verlag, 1989.

[COU 99] COUVREUR J-M., “On-the-fly verification of linear temporal logic”, in Proc. of the
Formal Methods’99, vol. 1708 of LNCS, pp. 253–271, Springer-Verlag, 1999.

[DAM 92] DAM M., “Fixed points of Büchi automata”, in Foundations of Software Technology
and Theoretical Computer Science, 12th Conference, vol. 652 of LNCS, pp. 39–50, New
Delhi, India, December 1992.

[DEN 87] DE NICOLA R., “Extensional equivalences for transitions systems”, Acta
Informatica, vol. 24, pp. 211–237, 1987.

[DEN 90] DE NICOLA R. and VAANDRAGER F., “Three Logics for branching bissimulation”,
in Proc of 5th IEEE Symp. on Logic in Computer Science, 1990.

[DIC 86] DICKY A., “An algebraic and algorithmic method for analyzing transition systems”,
Theoretical Computer Science, vol.46, 1986.

[DRI 92] DRIRA K., Transformation et composition des graphes de refus: analyse de la
testabilité, Thesis, P. Sabatier University, Toulouse, Report LAAS: 92435, 1992.

[EME 81] EMERSON E.A. and CLARKE E.M., “Characterizing correctness properties of
parallel programs as fixpoints”, in Proc. of ICALP’81, vol. 85 of LNCS, Springer-Verlag,
1981.

[EME 82] EMERSON E.A. and CLARKE E.M., “Using branching time temporal logic
to synthesize synchronisation skeletons”, Science of Computer Programming, vol. 2,
pp. 241–266, 1982.

[EME 85] EMERSON E.A. and HALPERN J.Y., “Decision procedures and expressiveness in
the temporal logic of branching time”, Journal of Computer and System Sciences, vol. 30,
no. 1, pp. 1–24, 1985.

[EME 96] EMERSON E.A., “Automated temporal reasonning about reactive systems”, in
Logics for Concurrency: Structure versus Automata, vol. 1043 of LNCS, pp. 41–101,
Springer-Verlag, 1996.

[ESP 97] ESPARZA J., “Decidability of model-checking for infinite-state concurrent systems”,
Acta Informatica, vol. 34, pp. 85–107, 1997.

[ESP 98] ESPARZA J., “Decidability and complexity of Petri net problems – an introduction”,
in Lectures on Petri Nets I: Basic Models, vol. 1491 of LNCS, pp. 374–428,
Springer-Verlag, 1998.

[FER 89] FERNANDEZ J.C., “An implementation of an efficient algorithm for bissimulation
equivalence”, Science Computer Programming, vol. 13, pp. 219–236, 1989.



Verification of Specific Properties 413

[GER 95] GERTH R., PELED D., VARDI M.Y. and WOLPER P., “Simple on-the-fly automatic
verification of linear temporal logic”, in Proc. 15th Workshop on Protocol Specification,
Testing and Verification (PSTV’95), Warsaw, Poland, June 1995.

[GOD 93] GODEFROID P. and HOLZMANN G.J., “On the verification of temporal properties”,
in Proc. 13th Workshop on Protocol Specification, Testing and Verification (PSTV’93),
pp. 109–124, Liege, Belgium, May 1993.

[HAD 00] HADDAD S. and POITRENAUD D., A model checking decision procedure for
sequential recursive Petri nets, Technical Report 2000/024, LIP6, Pierre and Marie Curie
University, September 2000.

[HAD 01] HADDAD S., “Décidabilité et complexité de problèmes de réseaux de Petri”, in
DIAZ M., Les Réseaux de Petri. Modèles fondamentaux, Hermes Science, Traité IC2
Information-Commande-Communication, Chapter 4, pp. 119–158, 2001.

[HAD 01] HADDAD S. and VERNADAT F., “Méthodes d’analyse des réseaux de Petri”, in
DIAZ M., Les Réseaux de Petri. Modèles fondamentaux, Hermes Science, Traité IC2
Information-Commande-Communication, Chapter 3, pp. 69–117, 2001.

[HEN 85] HENNESSY M., “Acceptance trees”, Journal of the A.C.M, vol. 32, no. 4,
pp. 896–928, 1985.

[HEN 85] HENNESSY M. and MILNER R., “Algebraic laws for nondeterminism and
concurrency”, Journal of the A.C.M, vol. 32, no. 1, pp. 137–161, 1985.
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[JAN 99] JANČAR P., ESPARZA J. and MOLLER F., “Petri nets and regular processes”, Journal
of Computer and System Sciences, vol. 59, no. 3, pp. 476–503, 1999.

[LED 91] LEDUC G., “Comformance relation, associated equivalence and new canonical
tester in Lotos”, in PSTV’91, Elsevier Science Publishers B.V., North Holland, 1991.

[MAY 84] MAYR E.W., “An algorithm for the general Petri net reachability problem”, SIAM
Journal of Computing, vol. 13, pp. 441–460, 1984.

[MIL 89] MILNER R., Communication and Concurrency, Prentice Hall, 1989.

[OLD 86] OLDEROG E.R. and HOARE C.A., “Specification-oriented semantics for
communicating processes”, Acta Informatica vol. 23, pp. 9–66, 1986.

[PAI 87] PAIGE R. and TARJAN R.E., “Three partition refinement algorithms”, SIAM J.
Comput, 1987.

[PAR 81] PARK D., “Concurrency and automata on infinite sequences”, 5th Conf. On
Theoretical Computer Sciences, vol. 104 of LNCS, pp. 167–183, Springer-Verlag, 1981.

[RAC 78] RACKOFF C., “The covering and boudedness problems for vector addition systems”,
Theoretical Computer Science, vol. 6, no. 2, pp. 223–231, 1978.

[VAN 90] VAN GLABBEEK R.J., “The linear time – branching time spectrum”, CONCUR ’90,
vol. 458 of LNCS, pp. 278–297, Springer-Verlag, 1990.



414 Petri Nets

[VAR 96] VARDI M.Y., “An automata-theoretic approach to linear temporal logic”, in
Logics for Concurrency: Structure Versus Automata, vol. 1043 of LNCS, pp. 238–266,
Springer-Verlag, 1996.

[WOL 83] WOLPER P., “Temporal logic can be more expressive”, Information and Control,
vol. 56, no. 1-2, pp. 72–93, 1983.

[YEN 92] YEN H-C., “A unified approach for deciding the existence of certain Petri net
paths”, Information and Computation, vol. 96, pp. 119–137, 1992.



Chapter 13

Petri Net Unfoldings – Properties

13.1. Introduction

This chapter is devoted to the presentation of a set of “partial order” methods
for optimizing the verification of finite systems (i.e. systems having a finite number
of states). The main principle of these methods differs from those presented in the
previous chapter. Indeed, the goal of “covering step graphs” is to obtain a reduced
reachability graph preserving the information relevant to the verification. The methods
discussed in this chapter are based on an explicit representation of the partial order
binding the events of the studied system. The model chosen for this representation is a
Petri net belonging to a subclass (occurrence net) which is associated with a labeling
function (a homomorphism). The occurrence net describes the partial order between
events, while the homomorphism allows us to match the events with the transitions
of the studied net they represent. This association is known in the literature by the
term branching process and was initially introduced in [NIE 81, ENG 91] for the
representation of the branching semantics of Petri net partial orders.

For a system (even bounded), the number of events is generally infinite (i.e. if an
infinite sequence of firings is feasible). Then the exhaustive and explicit representation
of the (partial) order which causally links these events is impossible. This relation is
called unfolding of the system. The verification methods which we present here are
based on the construction of a finite prefix of the unfolding. The first major difficulty
with these methods is ensuring that the represented part is large enough to allow the
development of verification algorithms. McMillan [MCM 92, MCM 95a] described
the construction of a finite prefix in which all reachable states are represented. He

Chapter written by Jean-Michel COUVREUR and Denis POITRENAUD.
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showed how this branching process could be used for the detection of deadlock states
or applied to reachability problems. A second important difficulty lies in the detection
of infinite behavior represented in this part of the initial unfolding. Many authors
([ESP 94, COU 96, POI 96, GRA 97, COU 99, COU 00, ESP 00]) have proposed
methods for detecting infinite behaviors and then verifying temporal properties.

After introducing the basics (section 13.2) on which verification methods are
based, we present the fundamental structure, which is the unfolding of a Petri net
(section 13.3). The rest of the chapter is devoted to the study of proper verification
methods. Section 13.4 is dedicated to the construction of finite prefixes of unfoldings
from which algorithms for the verification of safety properties are developed. It also
shows how infinite behaviors can be detected using finite prefixes.

The proofs of the propositions presented in this chapter have been omitted.
Interested readers can find them in [COU 03].

13.2. Elementary concepts

After having established the general assumptions for Petri nets which we consider
in this chapter, complementary notations are introduced. The rest of this section is
dedicated to the presentation of two essential concepts on which unfolding methods
are based:

– homomorphisms of nets, which specify how behavior of a Petri net can be
simulated by another net; and

– occurrence nets, which form a particular class of Petri nets used for this
simulation.

13.2.1. Preliminary information

The Petri nets which are considered in this chapter are not necessarily finite,
meaning that the number of places and/or transitions may be infinite. However,
we impose the condition that nets have a finite synchronization, meaning that for
any transition t, Pre(t) and Post(t) have a finite support (we also assume they are
non-empty). The last restriction concerns the initial marking of nets. The support of
this also has to be finite.

The notations used in this chapter are those defined in the previous chapters,
extended by the following elements.

Let E and F be two sets. An application h : E �→ F can be extended to vectors

with natural coefficients (h : NE �→ NF ) by ∀v ∈ NE , h(v) =
∑

e∈E v(e) · −−→h(e).

Let E be a set and X be a subset of E. The vector �X of NE is defined by
∑

x∈X �x.
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If s is an element of P ∪T , then ∗s (resp. s∗) corresponds to the set of its direct and
indirect predecessors (resp. successors) in the net. ∗s and s∗ are inductively defined
by:

– s ∈ ∗s ∧ ∀r ∈ P ∪ T , r• ∩ ∗s �= ∅ ⇒ r ∈ ∗s

– s ∈ s∗ ∧ ∀r ∈ P ∪ T , •r ∩ s∗ �= ∅ ⇒ r ∈ s∗

These last notations are usually extended to subsets of P ∪ T .

13.2.2. Net homomorphisms

As stated in the introduction, the goal is to represent explicitly the partial order
of the events of the considered system through a Petri net. To do this, we employ the
concept of net homomorphism, which indicates how a net can be (partly) simulated
by another net.

DEFINITION 13.1 (Net homomorphisms). Let 〈R1,m01〉 and 〈R2,m02〉 be two
marked nets, with Ri = 〈Pi, Ti, Prei, Posti〉 for i = 1, 2. Let h be an application
h : P1 ∪T1 �→ P2 ∪T2 such that h(P1) ⊆ P2, h(T1) ⊆ T2. h is a net homomorphism
from 〈R1,m01〉 to 〈R2,m02〉 if

– ∀t1 ∈ T1: Pre2(h(t1)) = h(Pre1(t1)),

– ∀t1 ∈ T1: Post2(h(t1)) = h(Post1(t1)),

– m02 = h(m01).

First of all, the definition requires that the type of nodes is preserved by the
application h. The first two conditions of the definition ensure that the environment
of the transitions is also preserved by the application h. The third one requires that
the initial markings of the two nets correspond.

The pair (〈R1,m01〉, h) can be seen as a labeled Petri net.

EXAMPLE 13.1. Figure 13.1 shows a marked Petri net and one of its homomorphisms.
The nodes of the homomorphism are labeled by the node of the net they represent (i.e.
their images by the application h).

The following proposition clarifies the notion of simulation. Indeed, it states that
all behaviors of the first net can be interpreted as behavior of the second (through the
homomorphism linking them).

PROPOSITION 13.1 (Behavior preservation). Let 〈R1,m01〉 and 〈R2,m02〉 be two
marked nets. Let h : 〈R1,m01〉 �→ 〈R2,m02〉 be a net homomorphism. Let m1,m1

′

be two markings of R1 and t1 a transition of R1 such that m1[t1〉R1m1
′. Then, in R2,

h(m1)[h(t1)〉R2h(m1
′).
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Figure 13.1. A marked net and one of its homomorphisms

By induction, proposition 13.1 can be extended to the sequences of transitions.
One immediate consequence of this proposition is that the sets of reachable markings
of the two nets satisfy the property:

h
(
A
(
R1,m01

))
⊆ A

(
R2,m02

)
EXAMPLE 13.2. For the example in Figure 13.1, it is clear that a single transition
of the homomorphism is enabled from the initial marking and that the corresponding
transition is also enabled in the net.

13.2.3. Occurrence nets

The Petri net used for the representation of partial order has a particular structure.
This subclass of nets corresponds to the occurrence nets introduced by Nielsen et al.
in [NIE 81].

DEFINITION 13.2 (Occurrence nets). A marked net 〈R,m0〉 is an occurrence net if

– R is an elementary net (i.e. ∀t ∈ T , ∀p ∈ P , Pre(t)(p) ≤ 1 and
Post(t)(p) ≤ 1),

– ∀p ∈ P : |•p| ≤ 1,

– ∀p ∈ P : |•p| = 1 ⇒ m0(p) = 0,

– ∀p ∈ P : |•p| = 0 ⇒ m0(p) = 1,

– 〈R,m0〉 is quasi-live (see definition 3.6).

The structure of the net completely determines its initial marking. To simplify
the notations, we designate an occurrence net 〈R,m0〉 solely by the net R. When
necessary, the initial marking (

∑
p∈P,|•p|=0 �p) is designated by Min(R).
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The following proposition demonstrates that occurrence nets form a class adequate
for the representation of a partial order (especially on the events represented here by
the transitions of the net).

PROPOSITION 13.2 (Occurrence nets). An occurrence net forms a graph with no cycle
and each node is preceded by a finite number of nodes, i.e. ∀x ∈ P ∪ T , the set ∗x is
finite.

To be a good candidate, the same transition of an occurrence net cannot be fired
more than once in the same sequence starting from the initial marking. Indeed,
transitions are designed to represent the events of the studied system. A dual role is
assigned to the places of the occurrence net, which must represent the presence of
tokens. Consequently, it is a requirement that occurrence nets are safe (that is to say
that for every reachable marking, the number of tokens contained in the same place is
bounded by 1).

PROPOSITION 13.3 (Occurrence nets). An occurrence net is safe. Moreover, the
characteristic vectors of the firing sequences are also safe.

The particular structure of an occurrence net allows definition of relations on the
nodes of the underlying graph. These structural relations will allow us to characterize
the behaviors and reachable markings of such a net.

DEFINITION 13.3 (Causality, conflict and concurrency). Let R be an occurrence net.
Let x and y ∈ P ∪ T :

– x precedes y (denoted x ≤ y) if x ∈ ∗y. In this case, y is said to be causally
dependent on x.

– x and y are in conflict (denoted x�y) if there exist two distinct transitions tx and
ty such that tx ≤ x ∧ ty ≤ y ∧ •tx ∩ •ty �= ∅.

– x are y concurrent (denoted x‖y) if ¬(x ≤ y) ∧ ¬(y ≤ x) ∧ ¬(x�y).

Intuitively, the causal relation between two transitions indicates that the first
transition can be fired only if the second has been previously fired. The conflict
relation indicates that both transitions cannot be fired in the same sequence. The
concurrency relation characterizes transitions which can be fired simultaneously.

The possible behaviors of an occurrence net are captured by the concept of
configuration.

DEFINITION 13.4 (Configuration). Let R be an occurrence net. A configuration C of
R is a subset of T satisfying:

– ∗C ∩ T = C,

– ∀t1, t2 ∈ C,¬(t1�t2).
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We denote by Conf(R) the set of configurations of the occurrence net R.

The following proposition shows that a configuration is a representation of
possible behaviors of the considered occurrence net and then, for any sequence of
firing, corresponds to a given configuration.

PROPOSITION 13.4 (Behavior). Let R be an occurrence net and C a subset of T . C is
a configuration of R if and only if ∃σ ∈ T ∗ such that Min(R)[σ〉∧−→C = −→σ . Moreover,

the marking reached by the firing of σ from Min(R) is Min(R)+
−→
C•−−→•C. We denote

by Cut(C) this marking.

Knowing that the reachable markings of an occurrence net are safe, the marking
Cut(C) corresponding to a configuration C is completely characterized by its support.
Note that this support is composed of places in concurrence two by two. To be more
precise, a reachable marking of an occurrence net corresponds to a maximal set (in
the sense of inclusion) having this characteristic. In the literature, such a set is called a
cut. In our study, we focus on the behavior of the net and not more specifically on the
concept of cut. However, proposition 13.9 gives an important property of the reachable
markings of occurrence nets.

By definition, transitions composing a configuration cannot be in conflict and are
therefore linked either by causality or concurrency relations. These relations allow
us to characterize the firing sequences represented by the configurations. An initial
proposition takes advantage of the causality relation to characterize the firing order of
the transitions.

PROPOSITION 13.5 (Causality). Let R be an occurrence net and C one of its
configurations. Let σ = t1 · · · tn be a sequence of transitions such that

−→
C = −→σ . σ is

a firing sequence from Min(R) if and only if ∀i, j, ti ≤ tj ⇒ i ≤ j.

Similarly, if in a firing sequence two concurrent transitions are adjacent, their
permutation leads to a new firing sequence. If we consider two firing sequences of
the same support, we can go from one sequence to another by applying this kind of
permutation.

PROPOSITION 13.6 (Concurrency). Let R be an occurrence net and C be one of its
configurations. Let σ = t1 · · · tn be a firing sequence from Min(R) such that

−→
C = −→σ .

Let 1 ≤ i < n. ti‖ti+1 ⇒ Min(R)[t1 · · · ti+1ti · · · tn〉.

In this way, a configuration defines an equivalence class of firing sequences.

The quasi-liveness property of occurrence nets may be rewritten in terms of
self-conflict.
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PROPOSITION 13.7 (Auto-conflict). Let R be an occurrence net. ∀t ∈ T,¬t�t.

Accordingly, for any transition t, there exists at least one firing sequence
containing an occurrence of t and therefore a corresponding configuration. The
following proposition characterizes the smallest (in the sense of inclusion) of these
configurations.

PROPOSITION 13.8 (Local configuration). Let t be a transition of an occurrence
net R. The set (∗t ∩ T ) (denoted by [t]) is a configuration of R. Moreover, this
configuration is the smallest containing t.

In terms of verification, it is often necessary to determine if a partial marking can
be covered by a reachable marking. The following proposition exploits the notion of
concurrence to characterize the sequences leading to such a covering marking.

PROPOSITION 13.9 (Covering). Let R be an occurrence net and A be a set of pairwise
concurrent places. The set of transitions [A] = ∗A ∩ T is the smallest configuration

covering A :
−→
A ≤ Cut([A]).

We will see that this characteristic of occurrence nets is used for (incomplete)
construction of the partial order linking the events of a system.

13.3. Branching processes and unfoldings

Occurrence nets associated with homomorphisms allow the representation of
explicit order partial on the events of a system. The concept of a branching process
embodies this association. In this section, we show that all the behaviors (potentially
infinite) of a net can be represented within a single branching process. Such a
structure is called an unfolding.

In the rest of this chapter, we consider a Petri net 〈R,m0〉.

13.3.1. Branching processes

The following definition characterizes the association of an occurrence net with a
homomorphism linking it to the considered net.

DEFINITION 13.5 (Branching process). Let S = 〈B,E, In,Out〉 be an occurrence
net. Let h be a net homomorphism from 〈S,Min(S)〉 to 〈R,m0〉. The pair 〈S, h〉 is a
branching process of 〈R,m0〉 if

∀e1, e2 ∈ E :
(
In
(
e1

)
= In

(
e2

)
∧ h
(
e1

)
= h
(
e2

))
=⇒ e1 = e2.

The sets B and E are respectively called the conditions and the events of the
branching process. Definition 13.5 requires that a single event is represented in a
unique way within a branching process.
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EXAMPLE 13.3. Figures 13.2 and 13.3 respectively present a marked Petri net and a
branching process of this net. The node identifiers of the branching process are roman
while their labels are in italics.
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Figure 13.2. A marked Petri net

w w

w

w

w

p

a

q

b

r

d

s

c

p

a

q p

d

q

c

r

b

p

a

d

p

a

q

l

l

l

l

l

l l

l l

l

l

r

r

r

r

r

r

r

r

r

r

r

r

1b

e1

b

e

b

b

b

e

e

b b b

e

e

b

e

b

eee

b b b b

e

bbb

2

4
3

2

3

6 7 8 9

4 5

6 7 8 9

10 11 12 13 14 15

10 11

16 17 18

qr

b5

Figure 13.3. A branching process of the net in Figure 13.2
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The following property is essential. Indeed, it demonstrates that any firing
sequence of a marked net may be simulated (represented) by a branching process.

PROPOSITION 13.10 (Firing sequence). Let σ be a firing sequence of R from m0.
There exists a branching process 〈S, h〉 of 〈R,m0〉 and a firing sequence σS of S
from Min(S) such that h(σS) = σ.

EXAMPLE 13.4. The sequence ar · br · cr · dr is enabled in the net in Figure 13.2 and
is represented by the sequence e2 · e4 · e8 · e11 of the branching process of Figure 13.3.

13.3.2. Unfoldings

Having demonstrated that a firing sequence can always be represented by a
branching process, we show here that the set of all possible behaviors (and therefore
reachable markings) can also be described by a branching process. To do so, we must
have the capacity to compare branching processes between them. This comparison is
made possible by the notion of homomorphisms of a branching process.

DEFINITION 13.6 (Homomorphism of a branching process). Let 〈S1, h1〉 and 〈S2, h2〉
be two branching processes of 〈R,m0〉. A net homomorphism g : 〈S1,Min(S1)〉 �→
〈S2,Min(S2)〉 is a homomorphism of branching process g : 〈S1, h1〉 �→ 〈S2, h2〉
satisfying h1 = h2 ◦ g.

Two branching processes are equivalent if they can be linked by a bijective
homomorphism; in this case, both simulate exactly the same behaviors.

DEFINITION 13.7 (Equivalence relation). Let β1, β2 be two branching processes of
〈R,m0〉. β1 and β2 are equivalent (denoted by β1 = β2) if an isomorphism of β1 to
β2 exists.

A branching process is smaller than another if it can be obtained from the second
by eliminating events and conditions. Hence, a branching process will represent fewer
behaviors than a process which is taller than it. We say that this process is a higher
prefix. To be compatible with the equivalence relation, this order is formalized by
connecting the two processes with an injective homomorphism.

DEFINITION 13.8 (Partial order). Let β1, β2 be two branching processes of 〈R,m0〉.
β1 is smaller than β2 (denoted by β1 " β2) if an injective homomorphism from β1 to
β2 exists.

We are now in a position to affirm the existence of a branching process representing
all possible behaviors of a Petri net. It is a maximal branching process in the sense that
it includes (in terms of prefixes) all possible branching processes.
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PROPOSITION 13.11 (Unfolding). Let 〈R,m0〉 be a marked net. There exists a unique
(up to equivalence) greatest (in the sense of ") branching process of 〈R,m0〉. This
branching process is called the unfolding of 〈R,m0〉.

Because all branching processes of a net are prefixes of its unfolding, all possible
behaviors (and reachable markings) of this net are represented. We can say that where
the net can realize an infinite firing sequence, its unfolding is itself infinite.

13.4. Finite prefixes

From the viewpoint of verification, it is not desirable to have to handle a potentially
infinite structure. The main principle is to consider only a finite prefix of the unfolding
of the net. The main problem is that all information relevant to the verification must
be contained in this prefix. The definition of such a prefix is achieved by appointing
the events of the unfolding from which the latter is no longer taken into account.

In the rest of this chapter, it is assumed that the marked net 〈R,m0〉 is finite. This
restriction is reasonable because a significant part of systems can be modeled by such
nets. Moreover, to simplify the notations, definitions and propositions reference the
branching process 〈S, h〉 as the unfolding of 〈R,m0〉.

13.4.1. Definition

A finite prefix of unfolding is characterized by all events from which unfolding is
no longer considered. Subsequently, such an event is called a cutoff of the finite prefix.

DEFINITION 13.9 (Finite prefix). A finite prefix Cutoff of 〈S, h〉 is a subset of events
of S satisfying

– E \ Cutoff∗ is finite,

– ∀e, e′ ∈ Cutoff , e �≤ e′.

The first constraint imposed by definition 13.9 assures us that the prefix is finite
(that is it contains only a finite number of events). The second constraint is more
technical. It requires that the set of cutoffs of the prefix is consistent.

In order to simplify definitions and propositions, we introduce the following
notations which allow us to respectively designate the (internal) events and the
configurations of a prefix Cutoff of 〈S, h〉 as well as the reachable markings of
〈R,m0〉 which are represented by the prefix.

– Event(Cutoff) = E \ Cutoff∗

– Conf(Cutoff) = {C ∈ Conf(S) | C ∩ Cutoff = ∅}
– A(Cutoff) = {h(Cut(C)) | C ∈ Conf(Cutoff)}

It is important to note that Conf(Cutoff) as well as A(Cutoff) are finite sets.
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In the context of a verification method, it is common to require that all the
reachable markings of the studied net are represented in the finite prefix. Such a
prefix is said to be complete.

DEFINITION 13.10 (Complete finite prefix). A finite prefix Cutoff of 〈S, h〉 is
complete if A(Cutoff) = A(R,m0).

13.4.2. Adequate orders and complete finite prefixes

It is now time to define sufficient conditions for obtaining this completeness. These
conditions will cover the choice of cutoffs delimiting the finite prefix. An intuitive
approach is to ensure that states represented in the wake of a cutoff have an image
within the prefix. The first successor marking corresponds to the one reached after
firing the local configuration of the cutoff and, if it is already represented in the prefix,
its successors should be. The formalization of this constraint consists of imposing
on a prefix Cutoff that ∀e ∈ Cutoff,∃C ∈ Conf(Cutoff) such that h(Cut([e])) =
h(Cut(C)).

From the earliest work on finite prefixes, McMillan [MCM 92] highlighted that
this condition was not sufficient. The counter example 13.5, inspired by McMillan’s
demonstration and presented in Figures 13.4 and 13.5, illustrates this fact.

EXAMPLE 13.5. Figure 13.4 shows a marked net and Figure 13.5 gives an initial part
of its unfolding. For the conditions, only the labels were represented in the figure. The
finite prefix Cutoff = {e6, e8} (events represented in black) respects the constraint
given above. Indeed, we have

– h([e6]) = −→a3 +
−→
b2 +−→c2 +

−→
d3 = h({e1, e2, e5})

– h([e8]) = −→a2 +
−→
b3 +−→c3 +

−→
b2 = h({e3, e4, e7})

a1

ab

a2 b2 c2 d2

ad bc

ac

b1 c1 d1

a3 d3b3 c3

bd cd

Figure 13.4. Completeness counter example
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5 8 6 7

Figure 13.5. An incomplete finite prefix of the counter example

However, although reachable, the marking −→a3 +
−→
b3 + −→c3 +

−→
d3 does not belong to

A(Cutoff). On the contrary, if e5 (resp. e7) is selected as the cutoff in place of e6

(resp. e8) then the resulting finite prefix is complete.

The right choice of cutoffs delimiting the prefix is essential. To ensure
completeness, the choice is made on the basis of a partial order on the considered
configurations. Before presenting the properties of this partial order, we introduce the
concept of extension of a configuration.

DEFINITION 13.11 (Extension). Let C be a configuration of S and t a transition
of R. There exists a t-extension of C if ∃et ∈ h−1(t) \ C such that C ∪ {et} is a
configuration.

We denote by C · t the set of t-extensions of a configuration C. The partial orders
for which the completeness is ensured are called adequate orders [ESP 96].

DEFINITION 13.12 (Adequate orders). A partial order # on the configurations of an
unfolding 〈S, h〉 is an adequate order if:

– # refines ⊆,

– # is well founded (an infinite strictly decreasing chain of configurations does
not exist),

– # is compatible with the extension: for any transition t, for any pair of
configurations C1, C2 of S such that h(Cut(C1)) = h(Cut(C2))

C1 ≺ C2 =⇒ ∀C ′
2 ∈ C2 · t, ∃C ′

1 ∈ C1 · t : C ′
1 ≺ C ′

2.
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In [MCM 92], a configuration is smaller than another if it is composed of fewer
events. It is easy to show that this is an adequate order. In [ESP 96] a more precise (and
total) order to optimize (in terms of size) considered finite prefixes is proposed. We
are now in a position to define sufficient conditions under which all reachable states
are represented within a single finite prefix.

DEFINITION 13.13 (Adequate finite prefix). A finite prefix Cutoff of 〈S, h〉 is
adequate if and only if there exists an adequate order # and an application
φ : Cutoff �→ Conf(Cutoff) such that

∀e ∈ Cutoff : h
(
Cut

(
φ(e)

))
= h
(
Cut

(
[e]
))
∧
(
φ(e) ≺ [e]

)
.

PROPOSITION 13.12 (Adequate finite prefix). If a finite prefix is adequate then it is
complete. Moreover, if 〈R,m0〉 is bounded then at least one adequate finite prefix
exists for each adequate order.

It is important to note that in the case of a finite system (in terms of the number
of reachable markings), it is always possible to define an adequate prefix. However,
in the worst case, this prefix may contain more events than the number of reachable
markings. On the other hand, if the order relation is total, the number of events is
bounded by the number of reachable markings.

EXAMPLE 13.6. Consider the branching process in Figure 13.2 as an initial part
of the unfolding of the net in Figure 13.3. The event set {e5, e7, e8} defines a
finite prefix of this net. If we consider the adequate order used by McMillan (i.e.
C ≺ C ′ ⇒ |C| < |C ′|), this finite prefix is adequate with respect to this order. It is
possible to verify that this prefix is complete.

13.4.3. Verification of safety properties

The general principle of the algorithm for constructing a complete finite prefix is
simple. Initially, the condition is produced for each token of the initial marking and
events that may extend the prefix are computed and stored in a list. At each step of
the computation, the event contained in the list having the smallest local configuration
(with respect to the considered adequate order) is removed from the list. This event is
added to the prefix where it is not a cutoff and this addition leads to updating of the
list of new events to be taken into account. When this list is empty, the obtained prefix
is complete. The interested reader can find in [RÖM 96] a detailed description of an
effective implementation of this algorithm.

Many properties can be verified from a complete prefix. The detection of the
presence of a dead marking was one of the first studies on the topic [MCM 92]. The
principle of detection is to build a configuration C ∈ Conf(Cutoff) such that for every
cutoff e of the adequate prefix Cutoff , there is an element of C in conflict with e.
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Indeed, this configuration will not be extended to reach a cutoff and therefore lead to
a blocking state. A precise definition of this algorithm and alternative techniques are
presented in [MEL 97, HEL 99].

EXAMPLE 13.7. We consider the finite prefix defined by the event set {e5, e7, e8} of
the branching process shown in Figure 13.3. We have seen that this prefix is adequate.
The set {e1, e3, e6} is a configuration of this prefix and it contains for each cutoff an
event which is in conflict with it (e3�e8, e3�e5 and e6�e7). This configuration leads to
the dead marking (−→sl +−→qr ) of the net.

The verification of any safety property which can be reduced to a problem
of coverage can be achieved very simply from a complete prefix. Indeed, to
decide whether a partial marking can be covered corresponds to deciding on the
quasi-liveness of a transition. Just add to the considered net a transition t whose
pre-condition Pre(t) is the partial marking to be covered. If the complete prefix may
be extended by an event labeled by this transition then it indicates that the marking
may be covered.

The verification of safety properties which cannot be reduced to a simple problem
of coverage can be solved by explicitly representing complementary places. This
requires that the bound of each place is known a priori. A general method for verifying
properties of accessibility from a finite prefix is discussed in [GRA 97].

13.4.4. Detection of infinite behaviors

The verification of liveness properties leads to the study of infinite behavior of the
system. The detection of such behavior is not easy within the general framework of
complete prefixes. An intuitive idea is to imagine that this type of behavior can be
detected by the study of cutoffs. Two approaches are possible. In both cases, a graph,
having as nodes shortcuts and their images by applying φ, is built. Here are the rules
of construction.

– Simple graph The cutoffs have their image by φ as a successor and the images
have as successors any cutoff reachable by extension (i.e. for the image φ(e) of a
cutoff e, the events of φ(e)∗ ∩ Cutoff).

– Concurrent graph The cutoffs have their image by φ as a successor
and images have as successors any cutoff reachable by extension or by being
concurrent (i.e. for the image φ(e) of a cutoff e, the events of (φ(e)∗ ∩ Cutoff) ∪
{e′ ∈ Cutoff | [e′] ∪ φ(e) ∈ Conf(S)}).

By reducing an infinite behavior to the cutoffs encountered in the prefix, we
build a path in the concurrent graph. A cycle in this graph implies an infinite firing
sequence through the markings associated with local configurations of the traversed
cutoffs. However, neither of these two graphs can decide definitively the presence of
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an infinite behavior. The concurrent graph may not show a cycle while the system has
the capacity to carry out an infinite sequence (see the example presented in Figures
13.6 and 13.7). The simple graph may contain a cycle, while the system cannot
produce an infinite sequence (Figures 13.8 and 13.9).
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Figure 13.6. First counter example for cycle detection
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Figure 13.7. Non-detection of infinite sequence (concurrent graph)
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Figure 13.8. Second counter example for cycle detection
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Figure 13.9. Erroneous detection of an infinite sequence (simple graph)



Petri Net Unfoldings – Properties 431

The use of set inclusion as an adequate order (i.e. C ≺ C ′ ⇒ C ⊂ C ′) allows
immediate detection of infinite sequences. Indeed, the system can achieve an infinite
sequence if and only if the adequate prefix built on that order shows at least one cutoff.

EXAMPLE 13.8. Consider the finite prefix defined by the set {e5, e7, e8} of events of
the branching process in Figure 13.3. It should be noted that the image of each cutoff
is included in its local configuration. An infinite behavior of the net corresponds to
each one.

However, this order imposes strong conditions on cutoffs and these conditions
can be relaxed. We introduce conditions based on a couple of orders that allow the
detection of infinite behavior.

DEFINITION 13.14 (Couple of adequate orders). A pair of relations 〈#1,≺2〉 over the
configurations of an unfolding (S, h) is a couple of adequate orders if:

– #1 is an adequate order,

– #2 is a pre-order (i.e. #2 is reflexive and transitive),

– ≺2 refines ⊂ (i.e. C1 ⊂ C2 ⇒ (C1 #2 C2) ∧ (C2 �#2 C1)),
– #1 and #2 are simultaneously compatible with the extension: for any transition

t, for any pair of configurations C1, C2 of S satisfying h(Cut(C1)) = h(Cut(C2)).(
C1 ≺1 C2

)
∧
(
C1 $2 C2

)
=⇒ ∀C ′

2 ∈ C2 · t, ∃C ′
1 ∈ C1 · t :

(
C ′

1 ≺1 C ′
2

)
∧
(
C ′

1 $2 C ′
2

)
The definition of adequate prefixes must be reviewed to take into account this new

type of order.

DEFINITION 13.15 (Doubly adequate finite prefix). A finite prefix Cutoff of 〈S, h〉 is
doubly adequate if and only if there exists a couple of adequate orders 〈#1,#2〉 and
an application φ : Cutoff �→ Conf(Cutoff) such that ∀e ∈ Cutoff:

– h(Cut(φ(e))) = h(Cut([e])),
– φ(e) ≺1 [e],
– (φ(e) %2 [e]) ∨ (C ⊂ [e]).

The new constraints imposed by the couple of orders allows us to have a simple
characterization of infinite behavior represented in a doubly adequate prefix.

PROPOSITION 13.13 (Doubly adequate finite prefix). Let Cutoff be a doubly
adequate finite prefix of 〈S, h〉. R has an infinite firing sequence from m0 if and only
if ∃e ∈ Cutoff such that φ(e) ⊂ [e]. Moreover, if 〈R,m0〉 is bounded then at least
one doubly adequate finite prefix exists for each couple of adequate orders.
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13.5. Conclusion

In this chapter, we first gave definitions and propositions related to Petri net
unfoldings. We continued with the study of methods of verification. The satisfaction
of safety properties can be determined from a complete finite prefix of the unfolding.
This structure also allows detection of the presence of infinite behavior.

Many prototypes have been developed and their evaluation on academic examples
has demonstrated the relevance and effectiveness of the approach. The lack of
successful tools is a major problem; however, we can cite the tool PEP [BES 96],
which includes a module for checking safety properties and which is based on
calculation of finite prefixes.

Unfoldings and associated methods of verification are still very active areas of
research. The research focuses on defining appropriate orders for models other than
Petri nets. For example, we can cite synchronized transitions systems [ESP 99]
and synchronized (and symbolic) Petri nets [COU 01]. The definition of efficient
algorithms for verification from finite prefixes is also a hot topic of study. Several
algorithms have been proposed for verifying safety properties [GRA 97, HEL 99],
LTL formulas [ESP 00, ESP 01], or branching-time logic formulas [HUH 98].
These methods have also been specialized for specific application domains
[MCM 95b, BOU 97, SEM 97, TAU 98]. Finally, branching processes support work
on many aspects of Petri net semantics [HOO 96, MES 97].

Recently, the book [ESP 08], which is entirely dedicated to unfoldings and
associated verification methods, has been published.
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Chapter 14

Symmetry and Temporal Logic

14.1. Introduction

Well-formed Petri nets are proposed to facilitate the development of distributed
systems during different stages, from design to qualitative and quantitative analyses.
The designer can model and improve algorithms, and test them using different input
parameters (e.g. the number of sites or resources for qualitative purposes, and the
relative weight of a transition firing for quantitative purposes). Among the analysis
methods, the building of a symbolic graph has been used for several applications
[DIA 09, BAA 08]. This yields a highly condensed representation of the state space
and is the starting point for decision algorithms for standard properties of Petri nets.

For other properties (e.g. liveness), only sufficient or necessary conditions are
preserved. It is then clear that a primitive exploitation of such graphs cannot offer
a sufficient framework for verifying the specific properties of systems. However, as
we will see in this chapter, some extensions can be applied to allow the checking of
complex properties. The new method appears to be very practical, since properties
can be specified in a high level specification language such as those proposed by the
temporal logic research community.

Symmetry concepts are a known way of alleviating the verification complexity
of distributed systems. Symbolic graphs mainly exploit them in the same way as
others [MIL 06]. Until very recently, the proposed techniques applied to highly
symmetric systems and from models having powers of expression more constrained
than those of well-formed Petri nets. However, as we shall describe below, their real

Chapter written by Serge HADDAD and Jean-Michel ILIÉ.
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limit concerns the ability to take logic formulas into account, and particularly the
linear fragment of temporal logic. Let us briefly recall the ordinary model checking
algorithm (see for instance [DIA 09] or [GER 93]):

– Translate the negation of a formula into a Büchi automaton.

– Build the synchronized product of the automaton and the reachability graph of
the system (i.e. the product of their states or transitions, provided they are compatible).

– Within the resulting graph, search a path which ends with a loop that contains an
accepting state of the Büchi automaton. We call such a path an invalidating path.

The formula is valid if and only if there is no invalidating path. Although the
size of the Büchi automaton is exponentially larger than that of the formula, this
size remains minimum with regard to the number of states of the system. As a
consequence, in practice, this last parameter is the determining factor of the difficulty
of the verification.

In a first symmetry approach [CLA 96], the atomic propositions of the formula
were restrained to express only symmetric properties, such as the following: “in a
future state, all the processes will be idle” or “from the moment some process is
waiting for a resource, then one process will get it.” In another way, a formula is
symmetric if its atomic propositions are invariant under the permutations that can
be applied to the process identities. For such formulas, a quotient graph, equivalent
to the symbolic graph, is substituted for the reachability graph and the verification
algorithm is left unchanged globally. This method applies to well-formed nets directly
(by using the symbolic graph) [ILI 97]. Unfortunately, numerous interesting formulas
are not considered to be symmetric under this symmetry definition. For instance, a
fair property such that “any process waiting for a resource will eventually get it” is
not symmetric.

In a second approach [EME 96], the authors define the concepts of symmetric
Büchi automata. From a symmetric automaton and a model of the system, a quotient
synchronized product is then built for which the presence of quotient invalidating
paths is equivalent to the presence of invalidating paths within the ordinary
synchronized product. The symmetric formulas of the previous method give birth to
symmetric automata, and other formulas including the former fair property become
symmetric.

Unfortunately, the above method does not cover the case of partially symmetric
formulas, which are considered as asymmetric. For instance, “Any process waiting
to access a resource will eventually get it, provided there is not some higher identity
process deciding to access the same resource concurrently.” Therefore, the authors
of the current chapter (with K. Ajami) [AJA 98] have introduced a method, tending
toward a definition of the quotient graph of the synchronized product, which is more
adjusted than the previous ones:
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– Determine the possible equivalence relations between the Büchi automaton
states for each permutation defining the symmetry group of the model, such that two
states are equivalent if they reach the same states in the future and could be reached
from the same states in the past, up to the action of this permutation.

– The quotient graph is built by forming pairs (model state, automaton state) from
the previous equivalence relations.

In the case of a symmetric automaton, there is no further gain (the same quotient
graph is obtained) but the method also partially shrinks symmetric automata, thus
generalizing the two previous methods. Because there can be an exponential number
of equivalence relations, it is often preferable to compute a subset of polynomial size.
As a consequence, a larger quotient graph is obtained but in favor of a reasonable
computation time.

Some practical cases emphasize that this third method (and thus the other two),
are frequently of no use in reducing the complexity of verification asymmetric
formulas. States within the Büchi automaton contain symmetric propositions
(identical up to a permutation), but the automaton is globally asymmetric. In other
words, the equivalence relations over the whole set of states are reduced to the
identity.

In the next section, we describe the principles of a method, namely the dynamic
symmetry method, which only exploits the symmetries of the atomic propositions of
each state within the automaton, regardless of the graph structure of the automaton
[HAD 00, BAA 04a]. Then, in the third section, the method is illustrated using an
example modeled on well-formed nets. We show how an adaptation of the symbolic
graph construction offers an efficient realization of the method and, at the same
time, provides a way of dealing with asymmetric features analogously. This point is
important because in practice most of the distributed systems appear to be partially
symmetric.

Finally, in the last section, we discuss the ability to combine the two last methods
in standard frameworks of model checking and also consider recent improvements
related to the management of equivalence classes [BAA 04b, THI 04, WAH 08].

14.2. Principles of the dynamic symmetry method

14.2.1. Verification of Kripke structures

In order to present the method in as general a form as possible, the presentation is
made at a semantic level, using a Kripke structure obtained from any syntactic model.

DEFINITION 14.1. A (finite) Kripke structure SK = (AP, S, S0,→, ν) is defined by:

– AP is a (finite) set of atomic propositions.
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– S is a (finite) set of states.

– S0 is the subset of the initial states,

– →⊆ S × S is the transition relation between states.

– ν : S → 2AP is an injective mapping which assigns to every state s. the set of
atomic propositions that hold in s.

So, each state is labeled by a subset of the atomic propositions of AP (ν(s) ⊆
AP ). The injectivity property for labeling states is in fact standard with regard to the
most frequently used models and means that any state is completely characterized
by its label of atomic propositions. Let us add that AP is assumed to be closed
under negation: if P is an atomic proposition, so is NOTP (with the simplification
NOTP ≡ P ). Furthermore, we will focus on state formulas but the proposed
approach can be adapted without any difficulty to formulas based on events,
classically by introducing a specific “labeled Kripke structure”. The final result of
the method (proposition 14.1) also holds for infinite systems with a finite branching
degree (there is a finite number of successors from every state).

DEFINITION 14.2. A Kripke structure SK = (AP, S, S0,→, ν) is said to have a finite
branching degree if and only if:

– the set S0 of initial states is finite;

– ∀s ∈ S, the set {s′ | s → s′} is finite (there are a finite number of successors
from every state).

To express a linear temporal logic property, we can use different specification
languages such as LTL or the μ-calculus. However, during the verification stage a
translation can be applied to obtain a Büchi automaton or one of its variants [VAR 07].

DEFINITION 14.3. A Büchi automaton A = (AP,Q,Q0,→, F, ν) is defined by:

– AP is a finite set of atomic propositions.

– Q is a finite set of states and ν(q) ⊆ AP represents the atomic propositions of
the state q.

– Q0 ⊆ Q is the set of initial states.

– →⊆ Q×Q is the transition relation between states.

– F ⊆ Q, is the set of accepting states.

– ν is a mapping from Q to 2AP .

Once the Büchi automaton is obtained, the satisfaction of a formula comes down to
searching some specific infinite sequences in the Kripke structure. We call {si}i=0..∞
with s0 ∈ S0 such a sequence; there must be at least one infinite path in the automaton
{qi}i=0..∞ with q0 ∈ Q0, such that the atomic properties specified for any such qi
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must also hold for si : ν(qi) ⊂ ν(si). Moreover, to be accepted, the path must cross
the states of F infinitely often. We are now able to introduce the key concept known
as a synchronized product.

DEFINITION 14.4. Let SK be a Kripke structure and B a Büchi automaton; the
synchronized product of SK and B is a graph Gr(SK,B) = (V, V0, R) defined by:

– V = {(s, q) | ν(q) ⊂ ν(s)} is the set of nodes.

– V0 = {(s, q) ∈ V | s ∈ S0 ∧ q ∈ Q0} is the set of initial nodes.

– →⊆ V × V is the transition relation between nodes s.t. (s, q) → (s′, q′) iff
s → s′ and q → q′.

The principle of the verification consists of translating the negation of the formula
to be checked into a Büchi automaton and searching a sequence of the Kripke structure
which is accepted by a path of this automaton.

DEFINITION 14.5. Let SK be a Kripke structure and B a Büchi automaton. SK
matches B iff there is an infinite path in the synchronized product Gr(SK,B), starting
from any initial node and crossing the set {(s, q) | q ∈ F} infinitely often.

If the system is finite, this is equivalent to finding a finite sequence in this product,
which ends with a node already crossed by the path. Regarding the subsequence whose
extremities are the two occurrences of that node, it is also required that the second
component of at least one of its node belongs to F . Numerous techniques have been
elaborated to implement an efficient way of finding the existence of such a path, which
works similarly on the quotient graph we will define in section 14.2.3.

14.2.2. Symmetric Kripke structures

In order to define a group of symmetries on a Kripke structure, we must pay close
attention to the atomic propositions attached to the states. For a simple but concrete
illustration of what follows, we refer to a well-formed Petri net whose tokens are built
from a simple color class C = {u, v, w, x}, without further partition into the so-called
static subclasses of colors [DIA 09] (Chapter 10). Let us first recall some useful ideas
about groups [LAN 77].

DEFINITION 14.6. Let G be a group, with its neutral element id and internal operation
(•).

– Let E be any set; an action of G over E is a mapping from G × E to E s.t. the
image of (g, e), denoted g.e, is such that:

∀e ∈ E id.e = e ∀g, g′ ∈ G (g • g′) · e = g · (g′ · e).
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– The isotropic (sub)group of an element of E is defined by Ge:

Ge =
{
g ∈ G | g · e = e

}
.

– Let H be a subgroup of G; the orbit of e under the action of H is:

H · e =
{
g · e | g ∈ H

}
.

– The generalization of this action to subsets of E is obtained by:

g.E′ =
{
g · e | e ∈ E′}.

Usually, the group of symmetries is obtained from permutation relations defined
over a set of atomic propositions (i.e. labels of states). In a well-formed net, this can
be derived from the group of admissible permutations defined for the color classes.
Consider for instance that E is the set AP of atomic propositions of the net; then
a proposition [p(u) = 1] means that the place p contains a token of color u and
possibly other colored tokens. Let G be the group of admissible permutations over the
elements of C, and let g be an element of G which permutates u and v, so we have
g.[p(u) = 1] = [p(g(u)) = 1] = [p(v) = 1]. Let {[p(u) = 1], [p(v) = 1]} be a subset
of atomic propositions, then the isotropic subgroup of this subset is characterized by
the subgroup of permutations which leave the subset {u, v} globally invariant. We are
now able to formally define a symmetric Kripke structure and, within it, the symmetric
states.

DEFINITION 14.7. Let SK be a Kripke structure and G a group acting on AP ; SK
is said to be symmetric (w.r.t. G) iff:

– Each state of SK has a “symmetric ”state in SK with regard to each element
of G:

∀s ∈ S, ∀g ∈ G, ∃s′ ∈ S, ν(s′) = g · ν(s)

The actions of the group can be extended to deal with states, by denoting g · s the
unique s′ of the former formula.

– The set of initial states is closed under the action of G: G · S0 = S0.

– The transition relation is a congruence under the action of G:

∀s, s′ ∈ S, ∀g ∈ G, s −→ s′ ⇔ g · s −→ g · s′.

By referring to [DIA 09], the reader can easily verify that all these conditions are
satisfied by any well-formed Petri net and its group of admissible permutations.
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14.2.3. Verification of symmetric Kripke structures

Let q be a state of the Büchi automaton B. For the sake of clarity, the isotropic
subgroup corresponding to the atomic properties of q is simply denoted by Gq (instead
of Gν(q)), although the actions of G (i.e. the admissible permutations) are defined for
the set of atomic propositions. Let us first observe that the cardinality of the subgroup
Gq strongly corresponds to the degree of symmetries of the atomic propositions of q,
independently of the structure of the Büchi automaton B.

Consider again our well-formed Petri net for studying different interesting cases.
If this subgroup is equal to G, the state is fully symmetric, as for the following set
of properties: {[p(u) = 1], [p(v) = 1], [p(w) = 1], [p(x) = 1]}. In contrast, if it
is reduced to the identity relation {id}, then the state is fully asymmetric as for the
set {[p(u) = 1], [p(v) = 2], [p(w) = 3], [p(x) = 4]}. In most cases, the considered
subgroup is non-trivial (different from id and G). More generally, in the context of
well-formed Petri nets, the isotropic subgroup of an automaton state is implicitly
defined by a given partition of the set of colors (i.e. the color class), s.t. this group
is exactly the subgroup of permutations which leave each element of the partition
invariant. For instance, by considering {[p(u) = 1], [p(v) = 1]}, the resulting color
partition is {{u, v}, {w, x}}. We call this partition the local partition of the state.

We aim to build a quotient synchronized product, denoted GRQ(SK,B), within
which an invalidating path is searched. In this quotient structure, every node
corresponds to a triplet (H,O, q), where H is a subgroup of G, O ⊂ S and q ∈ Q.
Moreover, the following two conditions must hold for it:

(C1) ∀s ∈ O, ν(q) ⊆ ν(s) and

(C2) H.O = O

The intuitive idea is that this node symbolically aggregates a set of nodes
{(s, q)}q∈O of the (ordinary) synchronized product. Moreover, as we will see, H is
used in the definition of the symbolic successor relation.

Let us illustrate this concept of a symbolic node. For instance, H can be implicitly
defined by a given partition of colors D = {{u}, {v}, {w, x}}, and O will simply be
represented by a symbolic marking (denoted by m̂ in the following). According to this
partition, the class C is temporarily decomposed into three static subclasses: {u}, {v}
and {w, x}. An important property is that the permutations that preserve these static
subclasses are the ones required to build O from any element of O. Therefore, O is
said to be the orbit of m̂ under the color partition D.

Building starts from the set of initial nodes, defined as (Gq0 , Gq0 .s0, q0) with s0 ∈
S0 , q0 ∈ Q0 and ν(b0) ⊂ ν(q0). Note that the condition C1 holds due to the definition
of Gq0 and that the condition C2 immediately results from the fact that Gq0 is a group.
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All we have to do now is define the successor relations, from any reachable
symbolic node: (H1, O1, q1) accepts (H2, O2, q2) as a successor, which is denoted
(H1, O1, q1) → (H2, O2, q2), iff:

q1 −→ q2 and ∃s1 ∈ O1, ∃s2 ∈ S with s1 −→ s2 and ν
(
q2

)
⊂ ν
(
s2

)
Under such conditions, O2 and H2 are defined by:

O2 =
(
H1 ∩Gq2

)
· s2 and H2 ⊂ G02

This rule leaves us free to choose the subgroup H2. The choice may depend on
different parameters, among them the choices of the input syntactical model and the
used representation of a symbolic node. Ideally, the maximization of H2 would be the
best, that is try to define H2 = GO2 . At worst, H2 corresponds to (H1 ∩Gq2).

For well-formed Petri nets, the successors of (H1, O1, q1) are defined from its
symbolic representation, e.g. (C1, m̂1, q1), such that the local partition C1 represents
H1 and m̂1 represents the equivalence class O1 under C1. So, in the presence of an
arc q1 → q2, such that Cq2 represents its local partition, the successor computation is
as follows:

– Realize the symbolic firings of transitions from m̂1. Further, consider m̂2 as a
resulting symbolic marking and assume that O2 is the orbit of m̂2 under C1.

– Refine C1 so that the result implicitly specifies the subgroup H1 ∩ Gq2 . This
operation corresponds to the intersection C2 = C1 ∩ Dq2 . Based on C2, the
permutations which do not leave ν(q2) invariant are now prohibited.

– Refine the symbolic representation of m̂2 w.r.t. C2. This is equivalent to
computing the partition of O2 yielded by the action of H1 ∩ Gq2 on O2, i.e.
{O2k | (H1 ∩ Gq2) · O2k = O2k } and defining for each element its symbolic
representation under C2. Basically, the symbolic refinement operation is as follows:
when a dynamic subclass Z is used symbolically to define the marking of some
colors belonging to a local static subclass D, then the partition of D into D1 and
D2 leads to the definition of a set of dynamic subclasses instead of Z, in order to
represent the color of D, but preserving the cardinality and the marking of Z, e.g.
|Z| = |Z1| + |Z2| and m̂2(Z) = m̂2(Z1) = m̂2(Z2). In general, the refinement
yields several solutions for defining the new dynamic subclasses assigned to D1 and
D2, and thus several symbolic markings. Further, let us focus on any of the subsets,
O2k , and more specifically on its symbolic representation under C2, denoted m̂2k .

– Check the validity of m̂2k with respect to the atomic propositions of ν(q2).
This can be performed at the symbolic level because the used local partition has
been refined sufficiently. In fact, each represented dynamic subclass in a place is the
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representative of a set of tokens that mark the place identically, up to the permutations
admissible under C2, thus contributing to the satisfaction of ν(q2) in the same way.

– The notation m̂2k is simplified by a grouping operation on the static subclasses:
any pair of local static subclasses reduces each one to a single dynamic subclass,
e.g. D1 = {Z1} and D2 = {Z2}, such that m̂2k (Z1) = m̂2k (Z2), are aggregated
into one local static subclass D. Thus, a new dynamic subclass Z is introduced,
representing the colors of D1 and D2, such that |Z| = |Z1|+ |Z2|, in order to replace
both markings of Z1 and Z2 in the places (i.e. m̂2k (Z) = m̂2k (Z1) = m̂2k (Z2)).
The fact that the color partition is getting more approximate leads us to extend the
group of admissible permutations and can further improve (successor) computations.

It is relatively easy to show that the building of each symbolic successor relation
corresponds to a set of ordinary successor relations at the ordinary (non-symbolic)
level. The following lemma and proposition 14.1 formalize the validity of this
symbolic construction. Readers should consult [HAD 00] for the proofs.

LEMMA 14.1. Let SK be a symmetric Kripke structure and B a Büchi automaton.
Let Gr(SK,B) be the corresponding synchronized product and GRQ(SK,B) the
quotient synchronized product, then:

– Each state of Gr(SK,B), represented by some symbolic node of GRQ(SK,B),
which is reached by some symbolic predecessor, is reachable from each state of
Gr(SK,B) that is represented by this symbolic predecessor:(

H1, O1, q1

)
−→

(
H2, O2, q2

)
⇒

∀s2 ∈ O2, ∃s1 ∈ O1,
(
s1, q1

)
−→

(
s2, q2

)
.

– A path (optionally infinite) in Gr(SK,B) corresponds to a symbolic path
(optionally infinite) in GRQ(SK,B):(

s0, q0

)
→
(
s1, q1

)
→ · · · →

(
sn, qn

)
⇒ ∃

(
H0, O0, q0

)
→
(
H1, O1, q1

)
→ · · · →

(
Hn, On, qn

)
with ∀i, si ∈ Oi.

It is worth noting that the first point of this lemma is no longer true if the idea of a
predecessor is replaced by that of a successor. Hence, the restriction (always satisfied
in the case of finite systems) expressed in the following proposition.

PROPOSITION 14.1. Let us consider a symmetric Kripke structure with a finite
branching degree, then there is an invalidating path in the ordinary synchronized
product iff there is an invalidating path in the quotient synchronized product.



444 Petri Nets

14.3. Illustration of the dynamic symmetry method

We now detail the dynamic symmetry method by applying it to a well-formed Petri
net which models a distributed algorithm.

14.3.1. Presentation of the model

14.3.1.1. Informal description of the algorithm

The aim of this algorithm is the realization of a meeting service, bipoint
oriented and symmetric, that can be used by an application distributed over several
sites [BAG 89]. The service interface is parameterized by a subset of admissible sites,
and a call to this service on a site means the application wishes to realize a distant
meeting with any one of the proposed admissible sites. In order to get a meeting
between two sites, the service must be called on both sites, so that with respect to
each site, the desired partner must belong to the locally proposed admissible sites.
This algorithm runs in an asynchronous communication environment within which
every site can communicate with every other site. However, it is supposed that the
communication channels do not preserve the FIFO discipline.

As an example, let us consider a client-server based application. Several redundant
servers are available to offer the same service but each one for a subset of the clients.
A client which wants to realize the service would call the meeting service available on
its site in order to reach any one of the server sites (all are admissible). Furthermore,
every server would run an infinite loop such that each iteration starts by a call to the
meeting service available on its own site, thus trying to communicate with any one
of the admissible clients. Then, the loop would be continued by the realization of the
required service for the client whose identity is returned by the meeting service.

We focus here on the protocol used to organize the meetings. We do not detail the
stage that follows such organization, since this corresponds to exchange data and does
not present any algorithmic difficulty.

The following cases are useful for understanding the algorithm. When an
application wants to establish a meeting, the service level successively sends a request
(by a message req) towards each admissible site until it receives a positive answer
(by a message ack). A negative answer corresponds to reception of a neg message.

In the first case, represented in Figure 14.1, the three sites have concurrently called
the meeting service; s1 wants a meeting with either s2 or s3, s3 wants a meeting
with s1, and s2 wants a meeting with s3. At roughly the same time, the three sites
send their meeting requests. In the case of s1, an indeterministic choice yields s3 to
be contacted first. On receiving the request from s2, s3 answers negatively since s2

does not belong to its (current) set of admissible sites. When s1 and s3 receive their
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Po={s3,s2}

Po={s1} Po={s3}

s3

req

req

req

neg

s1

s2

Figure 14.1. A first example of meeting

respective requests, they do not have to acknowledge and can engage immediately in
data exchange. Site s2 remains blocked for the moment since it has already tried to
contact all of its admissible sites. It might be unblocked by an ulterior request from s3.

ack

s1

s3 s2

Po={s2,s3}

{s3,s1}

req req

req

s1

s3 s2

{s1,s2}

neg

neg

s1

s2s3

Figure 14.2. Example of asymmetric behavior

A second case is highlighted in Figure 14.2. It consists of a symmetric situation
where each of the three sites wishes to meet any one of the others. In the presented
run, the indeterministic choice of a candidate leads the meeting service of s1 to send a
request to s2; similarly s2 sends a request to s3, and s3 to s1. On receiving a request,
each site is faced with a dilemma. It can accept the proposition of a meeting but has
already sent a request to a third site. Two situations are then possible (that are next
described for site s2 when it receives the request from s1):
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Behavior 1

As s2 is “engaged” by its request to s3, the site rejects the request from s1 and
sends a negative answer. If all the sites can have the same posture, s1 and s3 similarly
reject the received requests. Of course, the same posture can recur when the three sites
try to meet their second admissible sites. In that case, all the sites become blocked and
no meeting would be achieved, although several are possible.

Behavior 2

Opportunistically, s2 waits for the answer from s3 before sending its own answer
to s1: if s3 rejects the request from s2, it could accept the request from s1 or reject it.
In every instance, s2 seems to be sure of getting a meeting. Unfortunately, the other
sites could do the same, so remain blocked, waiting for an answer. This would result
in a communication deadlock.

This is one of the paradoxes of distributed algorithms. For the sake of simplicity,
the system design makes much use of symmetric concepts but the fully symmetric
solution does not guarantee the progression of the algorithm. It is important to
introduce a weak dose of asymmetry.

Currently, the most usual way to do this consists of developing the same code
for each site, which can lead to asymmetric behavior, but only depending on their
differences, which means their identity.

Here, if the receiver of a request has an identity number lower than that of the
sender, and if it is waiting for an answer to its own request, then it will choose to
delay its answer. In the opposite case, it will reject the request. Furthermore, it would
be possible for it to request the rejected site again, if the answer to its own request
appears to be negative.

We name Wti the proposition which specifies that the site i is waiting for an
answer and Dli,j the fact that the site i delays its answer to a requesting site j; the
above proposition corresponds to the following property.

Starting from the second example, the adapted behavior is as follows: s1 delays its
answer, while s3 (respectively s2) rejects the request of s2 (respectively s1). Once the
negative answer of s2 by s1 has been received, this last site can answer positively to
s3 and a meeting is obtained.

Modeling of the algorithm is realized in two stages, which are detailed in the next
two sections: first we specify the symmetric behavior of the algorithm by using a
well-formed Petri net, then the runs that do not respect the asymmetric properties of
the algorithm are prohibited.
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14.3.1.2. Modeling of the symmetric part of the algorithm

The set of sites for the distributed application is described by a class of colors
Pr = 1..N, where N is the number of sites. This class does not contain any static
subclass. The second color class represents the different kinds of messages and is
built from three elementary static subclasses, each one reduced to only one element:
r for a request, a for a positive acknowledgement, n for a rejection (negative answer).
The domains of places and transitions are the Cartesian product of occurrences of both
color classes.

For the sake of clarity, we split the modeling of the algorithm into two subnets
presented in Figures 14.3 and 14.4. The final well-formed Petri net is yielded by
fusions of the transitions that have the same name.

<x>

Call

Waiting

Success

Potential

Token
[Pr,Pr]

Idle
[Pr] [Pr] [Pr]

[Pr,Pr]

[Pr,Pr]

end

Empty_P

session start

request
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receive-delay

receive-fail_1

receive-fail_2
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<x,y>

<x,y>

Pr][Pr,

<x,S>

<x,y>

<x,y>Empty_T

<x,z>

<x,z>

Choice

Figure 14.3. Protocol between sites

The places Idle, Call, Choice, Waiting and Success represent the progression
of the protocol, locally to each site (say, the different values that can be assigned to
the local state variable of any site).

– When a colored token 〈x〉 is in place Idle, this means that the site sx is in its
idle state.

– A colored token 〈x〉 in place Call means the meeting service of the site sx is
required.
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Figure 14.4. Modeling of transmitted messages and related actions

– The “move” of this last token 〈x〉 into place Choice denotes the starting of a
search session, possibly yielding a meeting for this site.

– The place Waiting is marked by a colored token 〈x, y〉 to specify that sx has
sent a meeting request to a given site sy .

– A colored token 〈x, y〉 is put in place Success when the site sx gets a meeting
with the site sy .

The three following places correspond to the control variables of each site. The
first two places appear in Figure 14.3 and the third in Figure 14.4.

– The place Token models authorizations to send a request to some given site. A
token of color 〈x, y〉 in this place specifies that site sx gets credit to send a request to
site sy .

– The place Potential represents for each site sx the admissible sites from which
sx can choose a possible meeting partner. A colored token 〈x, y〉 in this place means
sy belongs to the sites that are admissible partners for sx.

– When the place Delayed is marked by a colored token 〈x,w〉, this means that
the site sx has delayed its answer for site sw.
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The place Message in Figure 14.4 represents the communication media between
sites. All the messages in progression correspond to a colored token
〈type of message, source site, target site〉.

Initially, every site is in its Idle state. Therefore the initial marking reduces to the
constant function 〈SPr〉 (i.e. a sum of tokens, one for each color of Pr) to mark the
place Idle.

We now describe the roles of transitions in this net.

The mechanism for specifying the set of admissible meeting partners is modeled
by the transition fill. When a site sx is in its state Call, each firing of this transition
adds a token 〈x, y〉 in both places Potential and Token, simultaneously. The arcs
that fill these places with tokens are in fact a compact representation of double arcs
of the same values, e.g. a standard output arc associated with an inhibitor arc. Such
a construction avoids the production of duplicates. Once the transition start is fired,
the set of admissible partner sites for sx is “fixed” by the second component of the
token 〈x, y〉 in the place Potential. The transition request models, for some site sx,
the sending of a meeting request to one of the admissible partner sites sy , provided to
have the communication token (which is lost when sending the request). The firing of
this transition produces a colored token in the place Message corresponding to the
request message (see Figure 14.4) and the color 〈x, y〉 of the place Token is removed;
moreover the state of the requesting site becomes Waiting (the site for which an
answer is expected is defined by the second component of the produced token).

When a request message is being received, the four following situations are
possible at the receiver site: delay of the answer, lack of an answer in the case of
crossing requests, the sending of either a positive acknowledgment or a negative
answer. Let us describe these (see Figure 14.4 and also Figure 14.3).

The transition receive-delay models the fact that the answer to some site sz is
delayed. In this case, the site sx not only waits for an answer from another site sy

but also does not yet have any delayed answer. Due to the guard [z <> y] bound
to the transition receive-delay, any treatment of a crossing request is ruled out of
this transition. For the same reason, a guard [z <> y] is bound to all the transitions
receive-fail_i. (The index i belongs to 1..3).

The three following transitions correspond to the reception of a request message
which makes the receiver progress towards its state Success.

– If the state of the receiver is Choice and the meeting request comes from a
possible partner then the transition receive-gain is fired.

– When the receiver sx is in its Waiting state, expecting an answer from site sy ,
it may receive from this last one an acknowledgement or a request. In both cases,
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this leads sx to change to Success. Actually, receipt of a request means that the
requests cross themselves through the communication media and these requests are
also interpreted as acknowledgements. Two transitions gain and gain-delay deal with
the crossing requests. The second differs from the first one to take into account that
the answer to some requesting site has been delayed by sx. This leads to a negative
answer being sent to the delayed site. As these two transitions must be enabled by
the reception of a request or an acknowledgement as well, the type of message is a
variable u, the value of which is restrained by the guard [u �= r] (i.e. the type of the
accepted message is u ∈ {d, a}).

The three following transitions model different cases of request message
receptions which lead to send a negative message. The receiver, named sx, is in its
Waiting state.

– The transition receive-fail_1 specifies that the requesting site does not belong
to the possible partner sites of sx (see the inhibitor arc of this transition, which
originates from the place Potential).

– The transition receive-fail_2 models the fact that the request from some site
sz is rejected by the site sx, although sz is a possible meeting partner for sx. In
this situation, sx is already waiting for an answer from a third site; moreover, it has
not yet delayed any site but the requesting site has a lower identity [z < x]. Note
that modeling of [z < x] is described in the next section. A final remark is that
receive-fail_2 is the only transition that provides a colored token 〈x, y〉 in the place
Token (after the beginning of the meeting search session). Without this fresh token,
two sites could wish to meet themselves, but their respective tokens would already be
consumed.

– The transition receive-fail_3 is fired if the receiver is waiting for an answer and
has already delayed another candidate.

The receptions of positive acknowledgements are modeled by the same transitions
as the ones associated with the receptions of crossing requests. We now consider
reception of a negative answer.

– The transition reject-delay corresponds to the reception of a negative message
from an admissible candidate if the answer to another site was delayed. As a
consequence, this last one finally gets the meeting and will be aware of that due to
the sending of an acknowledgement message.

– The transition reject models the fact that reception of a negative answer coming
from a previously selected candidate forces the receiver to go back to its state Choice,
provided it does not have the opportunity to delay any other answer.

Before any new meeting search session for some site sx, the unused authorizations
and the set of admissible sites corresponding to sx must be reset. For this purpose,
the “cleaning” of the places Potential and Token is processed for each color 〈x〉
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which marks the place Success, by firing the transitions empty_P and empty_T ,
respectively. Once these two places are emptied of all tokens the first component of
which is x, the transition end becomes enabled with respect to the color 〈x〉, and its
firings moves this color from the place Gain to the place Idle. Let us recall that some
fresh colored tokens will be produced in the reset places at the beginning of the next
meeting session (by some firings of the transition fill).

We are easily able to provide a lower bound of the complexity of the model,
expressed in a number of states. By observing that the places Token and Potential
can (or cannot) contain a colored token 〈x, y〉 for two distinct colors of Pr, we
conclude that the number of distinct markings is at least 2N ·(N−1). An analysis of
what could be contained in the other places of the model shows that this factor is
of paramount importance in the reachable state space complexity. Nevertheless, it
is possible to reduce the net complexity by an arbitrary restriction of the different
possibilities for marking the place Potential. For instance, each site could
systematically have all the other sites as possible candidates for each meeting session.
However, it is not obvious that the reduction would be significant, since the place
Token would again have a number of possible markings with the same order of
magnitude.

The above well-formed net is fully symmetric since there is no initial partition of
colors into static subclasses, hence every color plays a symmetric role. This induces an
over-covering of the behaviors of the algorithm, because some conditions [z > x] are
not yet modeled. The next section highlights different ways to prohibit ”undesired“
behaviors.

14.3.1.3. Restriction of events to obtain asymmetric behaviors

Two transitions are involved for some asymmetric conditions: receive-delay with
[z > x] and receive-fail_2 with [z ≤ x]. Without preserving these conditions, the
answer to a requesting site sz might or might not be randomly delayed by the receiver
sx. Hence, the firings of these transitions become asymmetric, in the sense that the
set of the enabled events depends on the identity of the color z, w.r.t. some color
x. Different approaches are possible for using the dynamic symmetry method. The
principle consists of removing some of the arcs from the proposed symmetric Kripke
structure, even is the corresponding events violate the asymmetric predicate.

In [HAD 00], an (asymmetry) control automaton is synchronized against the
Kripke structure, in order to express the pre- and post-state conditions, corresponding
to the arcs to be preserved. As synchronized products are commutative and
associative operations, it is possible first to synchronize the control and the Büchi
automata, then to apply the dynamic symmetry method from the well-formed Petri
net and the product automaton. The number of states of the control automaton would
be relatively small (2N for N sites in the Bagrodia protocol) with regard to the size
of the reachability graph; the task of modeling this is left to the user.
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Furthermore, it is possible to act on-the-fly during the firing of asymmetric
transitions, at the price of an increase in computation time. This has been used
intensively to extend the asymmetric guards of well-formed Petri nets [BAA 04a,
BAA 05]. Classically, the set of permutations is restrained to preserve the testing of
an asymmetric guard. For instance, [x ∈ D1 with D1 ⊂ C] requires avoidance of the
permutations between elements of D1 and C \ D1, thus leading to partition of the
colors in static subclasses D1 and C \ D1. More restrictively, a condition such as
[z > x] requires isolation of each color in a distinct local static subclass. Returning to
our computation of symbolic successors in section 14.2.3 (and as for the solution to
satisfying state atomic propositions), the testing of an asymmetric condition a from a
symbolic node (C1, m̂1, q) reduces to the symbolic refinement of m̂1 under C1 ∩ Ca,
and a symbolic test of satisfaction from the different resulting symbolic markings (Ca

is the color partition related to a). Clearly, only those for which a holds are processed
in the symbolic firing of the transition.

It is sometimes possible to reduce the number of asymmetric guards for the sake
of speed. Here, it is worth observing that [z > x] and [z ≤ x] are dual expressions,
in such a way that firings of the transitions receive-delay and receive-fail_2 are
exclusive. Hence, the guard of receive-fail_2 can be skipped, provided the firings of
receive-delay are favored, by using the transition priority mechanism of well-formed
Petri nets. A final remark is that guards which only involve equality or differences
between colors must be considered as symmetric, since they do not need to isolate
colors in local static subclasses. Actually, such predicates are solved at the dynamic
subclass level, according to the following symbolic principle: in a symbolic marking,
two dynamic subclasses are equal, and thus symbolically represent the same colors, if
and only if they have the same name.

14.3.2. Specification of the property to be verified

We illustrate the dynamic symmetry method from the following fair property: no
site si can remain blocked in its waiting state, whereas infinitely many calls to the
meeting service of the admissible partners of si also include si as a possible partner.

As described before, the Büchi automaton of negation of the formula is used.
However, there are some infinite runs of the modeling that must be skipped. Actually,
there is no mechanism for avoiding two sites getting an infinite number of meetings,
while two other sites should get a meeting independently (but do not). In other words,
the proposed well-formed Petri net enables fair runs where a site does not progress,
although it is not waiting for an answer.

Of course, the Büchi automaton which negates the property must match such runs.
Since the number of sites is finite, we can express the negation of the formula as
follows: the Büchi automaton must match the fair runs within which a waiting site si

still remains blocked, while infinitely many calls to the meeting service in another site
sj , an admissible partner for si, include si as an admissible partner.
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More formally, the specification of f is:

f = ∨i∈I ∨j �=i

[
FG Bi,j ∧GF

(
Chj ∧ Poj,i

)
∧GF Idj

]
.

The atomic proposition Bi,j holds if a colored token 〈i〉 is in the place Choice
and another one 〈i, j〉 is in the place Potential. The atomic proposition Chj holds
whether a colored token 〈j〉 is in the place Choice. The atomic proposition Poj,i

holds whether a colored token 〈j, i〉 is in the place Potential. The atomic proposition
Idj holds whether a colored token 〈j〉 is in the place Idle.

So, infinitely often the site sj will have the site si as an admissible partner and
obtain some meeting with any one of its admissible sites except si. In fact, si still
remains blocked in its state Choice.

b0

b1

b2

b4

b3
Bi,j

Bi,j

Bi,j Coj Poj,i

i,j Pr

True

Bi,j Idj

Figure 14.5. Büchi Automaton of f

The Büchi automaton is partially represented in Figure 14.5. For the sake of clarity,
only one branch (i, j) is detailed. Thus, the size of the automaton is of quadratic
order. Here, the structure of the automaton is directly deduced from the formula to
be invalidated. In the first state of this automaton, we wait for the blocking of the
site which occurs in the second state. From this second state, the sequence shows an
alternation of two states where either (Chj∧Poj,i) or (Idj) holds. The fact that one of
the states in the alternative is chosen to be accepting ensures an infinity of occurrences.
The automaton of Figure 14.5 is certainly more reduced than that which would be
obtained by an automatic translation (as described in Chapter 1). For instance, it is
taken into account that a site never goes, directly, from the state Idle to Choice and
vice versa.
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Figure 14.6. A faulty run

The meeting algorithm accepts runs for which the fair property does not hold.
Figure 14.6 is an illustration of such runs. The scenario is highlighted as a chronogram
such that the time is positioned vertically and each axis corresponds to the activity of
one of the three sites. The messages are represented by oblique edges whose origin is
the sending of the message from some site and the extremity is the reception of the
message by another site.

This runs starts with three calls to the meeting service, namely MS(). The set of
admissible sites for s1 and s3 only include s2, whereas that for s2 includes both sites
s1 and s3. It appears that s2 chooses to send a request to s1 first. On reception of the
request from s3, it decides to delay its answer. On reception of the request from s1, it
concludes that the meeting with s1 is possible and sends a negative answer to s3. If
the same behavior recurs in all the next meeting sessions, the site s3 remains infinitely
blocked while the two other sites get an infinite number of meetings. The site s3 is
always an admissible site for s2, but the latter still chooses s1 for its first request.

14.3.3. Building of the symbolic synchronized product

14.3.3.1. Computation of the local partitions of colors

Before building a symbolic synchronized product, we need to know how to
compute and represent the subgroup of permutations allowed by each state in the
automaton. Let us again take a simple color class to illustrate the way to do this.
The most simple way to proceed consists of detecting the colors which mark the
same propositions in the states. Since these colors are gathered in one color class,
the computation of subsets in fact yields a partition, namely a local partition of
colors. Thus, the permutations subgroup can be implicitly defined by the group of
permutations which leave (under its actions) each subset of the partition unchanged.
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For instance, by referring to a color class Pr = {1, 2, 3, 4} of four colors:

– For a state whose atomic propositions are 〈Wt1,Wt2,Wt3,Wt4〉, the partition
is composed of a singleton, {〈1〉, 〈2〉, 〈3〉, 〈4〉} (i.e. every color permutation is allowed,
here !4).

– For a state whose atomic proposition is 〈Wt2〉, the partition is composed
of a singleton, {〈2〉}, and another subset composed of the remaining colors, here
{〈1〉, 〈3〉, 〈4〉} (i.e. the color permutations must leave 〈2〉 unchanged).

– For a state whose atomic propositions are 〈Wt2,Wt3, Co4〉, the partition is
composed of four subsets: {〈1〉}, {〈2〉}, {〈3〉}, {〈4〉}. In this case, only the identity
permutation is allowed (i.e. each color only represents itself).

Note that the building of local partitions is analogous to splitting static subclasses.
Therefore, the elements of a local partition of colors are named local static subclasses.
As already used in well-formed Petri nets, such a color partition offers a highly
compact representation of an isotropic subgroup according to a state, hence can be
used to efficiently code the orbit of a state. We will take advantage of this when
building the symbolic synchronized product.

14.3.3.2. The states of the symbolic synchronized product

Let us recall that in the dynamic symmetry method, the representation of
an equivalence class of nodes is described according to a triplet (subgroup of
permutations, subset of markings, state of the automaton), such that the subset
of markings is the image of any marking of the subset, under the actions of the
subgroup.

The permutations subgroup is implicitly represented by a local partition that is not
necessarily the same as that of the state automaton.

The subset of markings is represented by a symbolic marking whose static
subclasses (here local) belong to the aforementioned local partition. Let us recall that
a symbolic marking built with respect to a partition in static subclasses of colors is in
fact built by using a refined anonymous partition whose elements are called dynamic
subclasses. Hence, the colors which belong to the same local static subclass and
which have the same marking distribution on the places of the net are represented
symbolically and in an undifferentiated way by the same dynamic subclass (usually
denoted by the use of variables Z with subscripts). Belonging to some local static
subclass and the number of represented colors (also called cardinality) are the major
characteristics of any dynamic subclass.

In the initial configuration, the sites are all in their Idle state, so this corresponds
to a single state in the symbolic synchronized product: 〈m̂0, b0〉, where m̂0 is defined
by:
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– a single local static subclass {〈1〉, 〈2〉, 〈3〉, 〈4〉}, represented in m̂0 by a unique
dynamic subclass (denoted Z1),

– m̂0 = 〈Z1〉 · Id with | Z1 |= 4 (Id represents the place Idle).

The atomic proposition of b0 (true) straightforwardly holds in the symbolic
marking m̂0.

14.3.3.3. Symbolic firing in a symbolic synchronized product

A quick evaluation of the behaviors of the well-formed Petri net shows that more
than 50 transition firings are needed to build the presented counter-example. We thus
limit the presentation to a sequence of two representative symbolic firings to bring
out how some local static subclasses can be split and then grouped. Let us recall
that a symbolic node is composed of a symbolic marking, and a state of the Büchi
automaton.

The symbolic marking m̂1 is described as follows: The site s1 is in its idle state,
both sites s2 and s3 have obtained a meeting, and the last site s4 is waiting for an
answer from s1 as its only possible meeting candidate. The site s4 has already used its
communication token and is blocked in the state Choice. As all the sites are specified,
the considered local partition consists of four elementary local static subclasses, each
one being composed of a single dynamic subclass. This implies that each dynamic
subclass represents a single and distinct color.

m̂1 = 〈Z1〉 · Idle + 〈Z4〉 · Choice + 〈Z4, Z1〉 · Potential

+
(
〈Z2, Z3〉+ 〈Z3, Z2〉

)
· Success

where each dynamic subclass Zi is associated with the local static subclass {i}.

Let us assume that the state of the automaton is currently b0 (true) and observe
that the transition end is enabled either for the color 〈2〉 or 〈3〉. From that position,
we now perform the corresponding symbolic computation of successors (which in
this particular case, can be assimilated to ordinary firings). The first observation is
that the state of the automaton that can next be considered when firing transition end,
is necessarily b0 again (say, any end site sx cannot be in the state Waiting, so the
proposition Bx,j does not hold, whichever the value of j). Therefore, we now focus
on the symbolic firing from m̂1.

Let m̂2 be the symbolic marking reached by the firing of end(〈2〉):

m̂2 =
(
〈Z1〉+ 〈Z2〉

)
· Idle + 〈Z4〉 · Choice

+ 〈Z4, Z1〉 · Potential + 〈Z3, Z2〉 · Success
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Up to now, there are no pairs of local static subclasses which can be grouped as
none of their dynamic subclasses marks the same set of places.

Let us now consider m̂3 as the symbolic marking reached after firing of end(〈3〉):

m̂3 =
(
〈Z1〉+ 〈Z2〉+ 〈Z3〉

)
· Idle + 〈Z4〉 · Choice + 〈Z4, Z1〉 · Potential

From now on, the static subclasses {2} and {3} of the local partition of colors
can be aggregated because each one is composed of a single dynamic subclass such
that the place marking is identical (see Z1 and Z2). This leads to a new version of the
symbolic marking m̂3:

m̂3 =
(
〈Z1〉+ 〈Z2〉

)
· Idle + 〈Z3〉 · Choice + 〈Z3, Z1〉 · Potential,

with only three static subclasses each described by one dynamic subclass: {1} by the
dynamic subclass Z1, {2, 3} by Z2 and {4} by Z3.

14.4. Efficient implementations and further work

The efficiency of the model checking procedure is fundamentally based on the size
of the symbolic synchronized product to be constructed; however, there are different
techniques for reducing the number of symbolic nodes.

First, it is possible to exploit symmetries to reduce the Büchi automaton before the
usual stage of synchronization [AJA 98]. The fact that two states of the automaton can
simulate each other leads to the preservation of only one of the states. For formulas
which are almost entirely symmetric, this approach is really fruitful since the reduction
of the automaton could be exponential.

So, the reduction problem seems highly concentrated on the part that brings the
symmetric structure into play (e.g. the well-formed Petri net). The use of symmetric
aspects is known to provide much space saving for fully symmetric systems, up to
an exponential order of magnitude. For partially symmetric systems, two major ideas
appear to be time and space efficient, due to a nice symbolic management of the set of
successors obtained from a symbolic node:

– It often appears that several successors can be aggregated in order to store fewer
symbolic nodes. The symbolic grouping operation of some symbolic successors makes
sense (in terms of efficiency) whenever they refer to the same isotropic subgroup.
Therefore, from a family of symbolic nodes, {(H,Oi, q)}i∈1..m, we need to find
a (larger) subgroup H ′ such that the condition C2 still holds for the aggregate
O = {Oi}i∈1..m, say H ′ · O = O, then the symbolic node (H ′, O, q) is built.
This principle has been experimented in the context of well-formed Petri nets, based
on an extension of the grouping of static subclasses (see, for instance, the DSRG
construction in [BAA 04b] and the SSP in [BAA 04a]).
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– The above proposition does not avoid the fact that some subsets of ordinary
markings can be represented several times in the orbits of some distinct reachable
symbolic nodes. Therefore, a symbolic inclusion operation can be used instead of the
(standard) symbolic equality test, in order to evaluate any symbolic successor against
the set of already visited nodes. In other words, (H,O, q)⊂ (H ′, O′, q) if (O⊂O′).
Again, this operation has a symbolic correspondence in the context of a symbolic
graph, based on refinements of the symbolic markings which result in sets of
comparable symbolic representations. To the best of the model checking algorithm
and with respect to the symbolic marking represented in the computed successor, this
consists of seeing whether a decision of satisfaction was already taken for a visited
node, having a larger or smaller orbit. Exact and approximate methods are described
in [BAA 07].

Most of the techniques proposed for improving the efficiency of model checkers
are again useful. In particular, the family of decision diagrams (such as BDD, MDD),
which can be used to compute huge sets of nodes, can be combined with symmetry
methods. Since they aim at building the set of reachable states in a memory, they are
able to annotate each state with the truth values of CTL formulas. However, one of
the known difficulties is the representation of the orbits of states. This can make the
decision diagrams explode easily in memory. Much research work has put forward
different solutions to cope with this problem, with concepts sometimes close to
dynamic subclasses, such as a (restrictive) use of counters to abstract several process
identities, and the mapping of orbits to obtain (canonical) representatives. Also,
dynamic computations of orbits appear to be more efficient [MIL 06]. Furthermore,
the authors of [THI 04] propose mixing representation of symbolic markings and
data decision diagrams to improve the study of reachability properties for (fully)
symmetric applications. Instead of using a series of variables to code a set of states,
the decision diagram is able to code a set of symbolic markings directly and all
their symbolic successors are computed in one stage of transition firings. Dealing
with linear temporal logic using decision diagrams is more tricky, specifically when
dealing with partially symmetric systems and formulas.

Finally, a recent proposition is very close in spirit to our method [WAH 08]. A
partition is attached to each state so as to code a group of admissible symmetries
locally. This method aims at abstracting a (symmetric) quotient structure whose
reduction preserves the reachability property. As for other works based on this last
idea [BAA 04a, BAA 07], the advantage of memorizing fewer equivalence states
works against obtaining an exact method for model checking.

14.5. Conclusion

The presented dynamic symmetry method allows us to check linear temporal logic
formulas exactly and on-the-fly. It can be applied to both symmetric systems and
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partially symmetric systems, and to whichever formulas. Proposition 14.1 lays a solid
and original foundation to the framework, which is not limited to finite systems.

The building of the symbolic synchronized product and the application of the
model checking method are illustrated on a concrete distributed algorithm taken from
the literature. The interest is twofold: on the one hand, it demonstrates how to apply
the dynamic symmetry method to a partially symmetric system, by specifying it as a
well-formed Petri net and specifying asymmetry criteria able to control the events
of the net. On the other hand, this modeling highlights the interests of additional
mechanisms, such as inhibitor arcs, transition guards, and transition priorities, in order
to easily control the enabling of transitions.

Many adaptations of the method are possible, due to the fact that each node of
the symbolic synchronized product now embeds its own subgroup of admissible
permutations. Different LTL model checkers have been implemented over the
GreatSPN Kernel and the efficient LTL management library SPOT [BAA 04a,
BAA 07]. Asymmetry criteria can take the form of an automaton to be synchronized,
or simply guards to be added to the transitions of well-formed Petri nets. Moreover,
the presented theory has been specialized to introduce symmetric and partially
symmetric Markov chains. From the same (stochastic) well-formed Petri net and
some asymmetry specification, it is now possible not only to check qualitative
formulas but also to obtain performance indices in an efficient way [ILI 04, BAA 05].
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Chapter 15

Hierarchical Time Stream
 Petri Nets 

15.1. Introduction

After presenting time stream Petri nets (TSPNs) in Chapter 6, this chapter 
introduces hierarchical TSPNs (HTSPNs) to solve the problem of temporal 
composition in general multilevel multimedia architectures. It has been seen that, as 
in PNs, the semantics of synchronization of this model requires the transition to be 
enabled in order to be fired. This constraint leads to the following alternatives. 

The first possibility is to define the semantics of synchronization of the “best 
effort” type, i.e. not always fulfilled in the event of inopportune drifts, as this 
temporal semantics does not account for different time constraints (i.e. selecting the 
earliest or the highest priority stream at a synchronization point). If some 
applications can be based on such a semantics of synchronization, it is clear that 
even all properties of soft real-time applications cannot be fulfilled by such an 
approach.

The other solution consists of defining very strong semantics of synchronization, 
without any desynchronization, guaranteeing the validity of given temporal 
constraints, accompanied by analysis techniques and verification able to check any 
risk of desynchronization between streams at a point of synchronization. Although 
such a stringent approach proves to be highly desirable in the context of hard real-
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time systems, it is not desirable for multimedia applications that can support some 
losses and desynchronization between streams without any problems. 

Nevertheless, it appears that these two semantics of synchronization can co-exist 
within the same application [COU 97]. As a consequence, this chapter introduces an 
extension to the TSPN model that offers a unifying approach to modeling the time 
constraints, i.e. synchronization and asynchronous events, that are intrinsic to the 
family of real-time applications. This extension, called hierarchical time stream Petri 
nets (HTSPN), will be introduced in three steps: initially, starting from an algebraic 
approach, we will consider structured time stream Petri nets (STSPN), briefly 
introduced in Chapter 6; then we will show how structured time stream Petri nets 
allow abstract and modular modeling of temporal constraints and synchronization; 
finally, we will propose a model to represent asynchronous events that are defined 
by the combination of temporal composition operators and temporal abstractions. 
The last part of this chapter will be devoted to the formal definition of the HTSPN 
model, followed by case studies in the fields of multimedia and hypermedia 
applications. 

15.2. Structured time stream Petri nets

15.2.1. Motivations 

Any activity in software engineering, modeling, and designing time-constrained 
systems can largely benefit from techniques of specification offering abstraction and 
encapsulation mechanisms. Indeed, the success of the object-oriented methods and 
languages depends mainly on the possibilities of encapsulation and modularity that 
are also offered by these environments. Chapter 6 introduced a model making it 
possible to abstract the fundamental features of time-constrained applications, 
namely synchronization constraints and temporal independence, which often define 
the behaviors of the tasks composing such applications. Although this modeling can 
be carried out with different levels of detail, thus inducing diagrams of 
synchronization having different fine levels of granularity, this model leads to a 
monolithic specification of the system, in the form of a single TSPN. However, 
from the lessons gained in software engineering, it would be desirable to have a 
technique allowing modeling of the fundamental characteristics of time-constrained 
systems based on a bottom-up or top-down approach. This chapter presents a 
modeling technique that simultaneously offers mechanisms of composition 
(supporting a top-down approach), refinement and abstraction (facilitating a bottom-
up approach).
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15.2.2. From composition to abstraction  

The complete set of temporal composition operators already introduced for 
stream TPNs the semantics of synchronization in weakly synchronous environments 
(i.e. a semantics covering the spectrum of systems from asynchronous to fully 
synchronous ones). These nine operators can be represented by an algebra of 
synchronization in weakly synchronous environments defined as follows.  

Let T be the set of tasks or streams of a system S and Ti T such as IVT (Ti) = 
(x, n, y); then Ti (x, n, y) is the task Ti with its temporal validity interval. Let us 
associate with these tasks the operator sequence denoted “seq” and the nine parallel 
operators of temporal composition previously defined and respectively denoted: 
“and”, “or”, “master”, “weak-and”, “strong-or”, “and-master”, “or-master”, “weak-
master”, “strong-master”. These 10 operators of composition induce on T an algebra 
of temporal composition formally defined by the following formulae: 

(Ti(xi, ni, yi), Tj(xj, nj, yj))  T, seq(Ti(xi, ni, yi), Tj(xj, nj, yj)) = Tk(xi+xj,ni+nj,yi+yj)
 [15.1] 

weak-and(Ti(xi, ni, yi), Tj(xj, nj, yj)) = Tk(maxk(xk), maxk(nk), maxk(yk)) [15.2] 

strong-or(Ti(xi, ni, yi), Tj(xj, nj, yj)) = Tk(mink(xk), mink(nk), mink(yk)) [15.3] 

master(Ti(xi, ni, yi), Tj(xj, nj, yj)) = Tk(xi, ni, yi) [15.4] 

and(Ti(xi, ni, yi), Tj(xj, nj, yj)) =
  Tk(maxk(xk), max(maxk(xk), min(mink(yk), maxk(nk))), max(maxk(xk), mink(yk)))
 [15.5] 

or(Ti(xi, ni, yi), Tj(xj, nj, yj)) = Tk(mink(xk), anyk(nk), maxk(yk)) [15.6] 

strong-master(Ti(xi, ni, yi), Tj(xj, nj, yj)) = Tk(xi, max(xi,mink(nk)), max(xi,mink(yk))
 [15.7] 

weak-master(Ti(xi, ni, yi), Tj(xj, nj, yj)) = Tk(xi, maxk(nk), maxk(yk)) [15.8] 

and-master(Ti(xi,ni,yi), Tj(xj,nj,yj)) = Tk(maxk(xk),max(xi,mink(nk)),max(yi,maxk(xk))
 [15.9] 

or-master(Ti(xi, ni, yi), Tj(xj, nj, yj)) = Tk(mink(xk),mink(nk),yi) [15.10] 
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In these formulae, the operator “any” applied to a sequence (xk) returns any 
element of this sequence. This operator makes explicit the indeterminism of 
synchronization, which is the basis of the “or” type synchronization (i.e. in this 
semantics, the synchronization is led by any of the tasks implied in the considered 
synchronization point). These 10 operators associated with a delay operator denoted 
, such as (x, n, y) and defined as ranging between x and y time units, allow us to 

specify, by composition, any arbitrarily complex synchronization scenarios. These 
scenarios of synchronization, built from these 10 operators, able to represent all 
important structures of synchronization, are called structured scenarios of 
synchronization and lead, by their translation in TSPNs, to a sub-class of TSPN 
called structured time stream Petri nets (STSPN). 

DEFINITION 15.1 A structured time stream Petri net is a TSPN built by recursive 
composition of sequential and parallel synchronization patterns.

The previously defined 10 formulae give the formal bases which make it 
possible to abstract or refine a specification (i.e. TSPN). Indeed, they define a 
grammar of refinement making it possible to transform any temporal arc into a 
diagram of synchronization, of finer granularity, that details the behavior of the task.  

Figure 15.1. Refinement of a TSPN: first level of specification of the temporal behavior of a 
task (a); refinement of the first level in the form of a sequence of tasks (b); refinement of a 

task of the second level in the form of a parallel composition carried out using 
 the operator of synchronization of the type “strong-or” (c) 
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Let us consider, for example, Figure 15.1, which illustrates two successive 
refinement steps of a temporal arc towards a STSPN.  

The first step consists of transforming this arc into a sequence (Figure 15.1b) by 
applying formula [15.1], that is: P1 (10,15,20) = seq (P1.1 (4,7,10), P1.2 (6,8,10)). 

The second step (Figure 15.1c) applies formula [15.3] to the timed arc outgoing 
from P1.2 place: P1.2 (6,8,10) = strong-or (P1.2.1 (6,8,5), P1.2.2 (7,9,10)). 

It is obvious that this process of refinement of specification is not deterministic, 
as the same high level initial specification can be refined into several different 
specifications.

Conversely, the iterative application of these formulae to a STSPN makes it 
possible to reduce the STSPN to a temporal arc whose temporal validity interval is 
an abstraction of the temporal behavior of the initial net. Thus, Figure 15.1 
illustrates, when it is considered bottom-up (i.e. from Figure 15.1c to 15.1a), the 
reduction of the STSPN (Figure 15.1c) into a temporal arc (Figure 15.1a) by the 
successive application of the formulae of reduction [15.3] and [15.1]. Note that the 
complexity of this algorithm of reduction is O(N), N being the cardinal of the 
transition set of the considered STSPN. More generally, these formulae induce on 
the STSPNs a relation of reduction defined as follows: 

DEFINITION 15.2 A STSPN R1 is reduced into a STSPN R2 by the relation of 
reduction >, denoted R1>R2, if and only if there is a succession of elementary 
reductions (i.e. given by the reduction formulae) that transforms R1 into R2. 

This relation of reduction induces on the whole set of STSPNs a relation of 
temporal equivalence defined as follows: 

DEFINITION 15.3 Two STSPN R1 and R2 are temporally equivalent, denoted R1 
R2, if and only if  R / (R1>R)  (R2>R).

The canonical representative of the equivalence class associated with a STSPN, 
relatively to , is a single temporal arc, together with its input place and output 
transition, as the arc (P1,t) in Figure 15.1a and such that R>(P1,t). Note that this 
temporal arc is a fixed point for the relation of reduction. This temporal arc is 
temporally equivalent to a set of STSPNs and constitutes an abstract representation 
of the temporal behavior of the related nets.  
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15.2.3. Verification of temporal coherence 

Translating Petri nets into this algebraic semantics of synchronization can 
introduce artifacts or temporal paradoxes. Let us consider a generic synchronization 
pattern, S, implementing a synchronization of the type X, with X {and, weak-and, 
or, …}, between N processing streams1:

S = X(seq(T1(X1,N1,,Y1),T1
’(x1,n1,y1)),…,seq(Tn(Xn,Nn,,Yn),Tn

’(xn,,nn,yn))

Let us note that any pattern of synchronization can be expressed from such a 
generic form, in which the Tk, k {1,…, N} (possibly such as IVT (Tk) = (0,0,0)), 
represent in an abstract way the temporal behavior of flow K upstream of the point 
of synchronization applied between tasks Tk.

Let us consider Figure 15.2 which translates this synchronization pattern, S, into 
a STSPN. 

T1’

Tk’

Tn’

(x1,n1,y1)

(xk,nk,yk)

(xn,nn,yn)

T1

Tk

(X1,N1,Y1

(Xk,Nk,Yk)

(Xn,Nn,Yn

t

t2

tk

tn

X

Figure 15.2. STSPN describing a generic pattern of synchronization
between N processing streams 

Since the traditional firing rules in Petri nets require the transition to be enabled 
to fire this transition, it appears that this enabling constraint does not make it 
possible to ensure in all cases the strict respect of the temporal semantics expressed 
by formulae [15.2] to [15.10]. Let us suppose that X is a point of synchronization of 
type “strong-or”; the application of formula [15.1] and [15.3] to the diagram of 
synchronization S gives the following synchronization semantics:  

S  Tk (mink (Xk + xk), mink (Nk + nk), mink (Yk + yk))

1 Any sequence of tasks such as seq(T1 (x1, n1, y1), Tk (xk, nk, yk)) is called a stream or a 
processing flow.
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However, if we consider the STSPN representing the diagram of synchronization 
S, we note that transition t  will be enabled, at the earliest, at the relative instant 
maxk(Xk) and at the latest at the instant maxk(Yk). The date of firing, D, of transition 
t  belongs thus to the interval: [max (maxk(Xk), mink(Xk + xk)), max (maxk(Yk), mink
(Yk + yk))], an interval distinct from the TVI associated with Tk given in the 
algebraic form. Thus, in this case, the more advanced stream could potentially be 
delayed by too much, i.e. delayed to the point that its temporal semantics cannot be 
satisfied by the enabling constraint of the transition that models the inter-flow 
synchronization. It thus appears necessary to have verification techniques that make 
it possible to pinpoint such desynchronization risks.  

It has been shown [WAL 83] that, in general, for PNs having temporal arcs of an 
unspecified structure, the verification of their temporal coherence leads to 
algorithms of non-polynomial complexity. Conversely, in the case of STSPNs, such 
a verification technique can be easily implemented (i.e. with a polynomial 
complexity) using their transformation into the canonical representative form (i.e. in 
accordance with Figure 15.2) [SEN 95b]. 

Syn (tw) Property 1 Property 2 

weak-and Always checked Always checked 

strong-or mink(Xk + xk)  maxk(Yk) mink(Xk + yk)  maxk(Yk)

master Xm + xm  maxk  m (Yk) Xm + ym  maxk  m (Yk)

Table 15.1. Verification of the temporal properties of an inter-stream synchronization pattern 

This temporal verification technique makes it possible to highlight two 
fundamental properties of a diagram of synchronization: 

– Property 1. The favored task always has its temporal constraints satisfied and 
cannot be delayed. 

– Property 2. The favored task is always temporally correct.

The second property is less restrictive than the first one, since it makes it 
possible to accept synchronization schemes likely to delay tasks (while satisfying 
their temporal constraints).  

The application of this temporal verification technique starting from the generic 
form of the synchronization pattern considered induces, for the three fundamental 
types of synchronization, the formulae given by Table 15.1. 
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15.3. Combining abstraction and temporal composition

15.3.1. Modularity and abstraction of temporal behaviors 

The preceding section formally introduced a technique of refinement and 
abstraction of temporal actions that describe the same behavior in terms of temporal 
constraints and synchronization, defined by various more or less fine levels of 
granularity. These techniques establish the bases of an ascending and descending 
methodology of specification based on TSPNs. Thus, a TSPN specification can be 
developed in an incremental way by considering that the temporal arcs, at step K, 
are an abstract representation of a synchronization scenario that will be developed in 
later steps. In order to benefit from the advantages of such a modular approach in 
terms of re-use and structuring of complex specification, let us introduce the concept 
of abstract place:

– an abstract place is a place associated with a temporally equivalent sub-net.  

This approach induces a hierarchy of specifications, based on TSPNs for the 
upper level and on STSPNs for the other lower levels, which develop the 
synchronization schemes in increasingly fine granularity. This hierarchical approach 
to the specification of the temporal behavior of a system defines an extension of the 
TSPN model called hierarchical time stream Petri nets or HTSPN [Sen 95b]. 

15.3.2. Hierarchical time stream Petri nets 

DEFINITION 15.4 A HTSPN is a tuple H = (R, S, Pin, Pout, FS, Fin, Fout) such as: 

– R = (Pr, Tr, Prer, Postr, Mr, Synr, Amr, TPr) is a TSPN extended by a function that 
types the places, denoted as TPr. In other words: 

- (Pr, Tr, Prer, Postr, Mr, Synr, Amr) defines the TSPN from which the 
hierarchy starts. This TSPN is called the root of the HTSPN and is supposed to be 
“safe” (i.e. p  Pr, Mr(p)  1). 

- TPr: Pr  {atomic, -composite} is the typing function of the places of the 
root net. An abstract place associated with a sub-net is called composite. The 
elementary places which are not refined by a subjacent network are called atomic 
places. 

– S = {Si / i  I} is a finite set of STSPN. Thus: 

- Si = (Pi, Ti, Prei, Posti, Mi, Syni, AMi, TPi) defines an extended STSPN such 
as:
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P, Ti, Prei, Posti, Mi, Syni, Ami) is a STSPN, 
TPi: Pi  {atomic, composite} is the typing function of the places Pi
with (i,j)  I2 / i j, ((Pi Ti)  (Pj Tj )) = 

– Pin P and Pout P, with P =
i I

iP , respectively represent the set of the entry 
and exit places of the sub-networks belonging to S. 

– FS: C  I {nul} is the function which associates any composite place with an 
element of S (i.e. a sub-net) and where C = {p P/TP(p) = composite}. Moreover, 
this function allows the association of an empty sub-net (represented by the “null” 
index), to a composite place when the abstract place is not yet refined. This leads to 
the possibility of building top-down specifications, by successive refinements. The 
only constraint on the hierarchy is to keep an acyclic directed graph: no net of the 
hierarchy must contain a composite place directly or indirectly associated with this 
net. All places p of H such as FS (p)  null are represented graphically by bold 
circles. A composite place such as FS (p) = null is represented by a dotted circle. 

– Fin: I  Pin, resp. Fout: I  Pout, is the function which associates any 
element of S to an entry place, resp. an output place. It will be assumed from now 
on that any atomic place merges with the entry and output of its virtually associated 
sub-net.  

Firing rules 

The TSPN firing rules are extended for HTSPNs by considering that the set of 
nets constituting an HTSPN, denoted H, behaves like only one net. In particular, this 
means all TSPNs belonging to H share the same simulation clock. The firing rules 
of HTSPN are then defined as follows:  

– The firing rules of a TSPN must satisfy a synchronization constraint defined 
between one abstract place and the output place of the associated sub-net. This 
constraint of synchronization is dependent on the type of synchronization associated 
with the output transition of the considered place. This constraint of synchronization 
means that a transition having composite places as input places is firable only when 
at least one, in the case of a synchronization of the type “or”, or all, in the case of a 
synchronization of the type “and“, of the output places of the sub-nets associated 
with the composite places are marked. This constraint of synchronization can be 
expressed as follows: 

- For a transition t from an HTSPN being fired, it is necessary that the two 
following conditions are satisfied: 
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1. Transition t in its TSPN (i.e. on its own level of abstraction) must satisfy 
the traditional TSPN firing conditions.  

2. Syn (t) = “and”  p / Pre (p, t) , m(Fout (p))  0 

Synt (t) = “or”  p / Pre(p, t) , m(Fout (p))  0 

Synt (t) = “master”, AM (T) = (p, t)  m(Fout (p))  0 

– Firing a transition t belonging to any of the TSPNs of H, and that has places of 
composite or atomic type in its prefix or its suffix, is completed for these places, by 
the following: 

- withdraw all tokens marking the places associated with the sub-nets 
associated directly or indirectly with the atomic or composite places belonging to 
the prefix of t. In other words (assuming that the network root is safe): 

p Px / (Pre(p,t)  0)  (((TP(p) = composite)  (TP(p) = 
atomic))  (FS(p)  nul)), remove(FS(p); 

p Px / (Pre(p,t)  0 ), mx(p) = 0
with X = I {r} and x X and the recursive function “remove” is 
defined in the following way: 
Function remove(j) 

p Pj / (Pre(p,t)  0)  (((TP(p) = composite)  (TP(p) = 
atomic))  (FS(p)  nul) ), remove(FS(p); 

p Pj / (Pre(p,t)  0), mj(p) = 0; 
end;

- add a token in all input places of the sub-nets associated with the 
composite or atomic places belonging to the suffix of t. This operation can be 
expressed formally in the following way: 

p Px / (Post(p,t)  )  (((TP(p) = composite)  (TP(p) = 
atomic))  (FS(p)  nul)), mark(FS(p)); 

p Px / (Post(p,t)  0), mx(p) = ; 

where “mark” is the recursive function defined as follows: 

Function mark(j) 
If ((TP (Fin(p)) = composite)  (TP (Fin(p) = atomic))  (FS 
(Fin(p))  null) then mark (FS(Fin(p))); 
mj(Fin(p)) = 1; 
end;
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15.3.3. Interrupts as a combination of abstraction and temporal composition

By associating the concept of composite place with the temporal composition 
semantics of the TSPN model, the extended firing rules of HTSPNs make it possible 
to model interrupts easily. Indeed, an interrupt can be modeled simply by a temporal 
arc “master” at a synchronization point, because it is able, at any instant, to stop the 
tasks involved at this point of synchronization. More generally, modeling an 
interrupt as a temporal arc associated with one of the nine temporal composition 
semantics makes it possible to formally clarify the concept of temporal interrupts. 

A temporal interrupt is an interrupt of the “master” type, whose event is 
associated with a temporal interval. In other words, if an interrupt is modeled as a 
“master” temporal arc, denoted a, such as IVT(a) = (x, n, y), then this interrupt 
cannot occur before the relative instant x and must occur at the latest relative instant 
y. For example, the temporal arc (I, t1) of Figure 15.3 models an asynchronous event 
able to stop the task modeled by the temporal arc (T, t1), at the earliest 5 units of 
time after the beginning of this task, and at the latest 20 units of time after its 
beginning.  

I T

t1 MASTER

AND
(5,15,20) (10,15,20)

(8,10,12)

(1,5,10)
(2,5,8)

T1

T2 T3

NULL

END (b)

START

(0,0,0)
t0 t3

t4

Figure 15.3. Modeling interrupts using the HTSPN model 

The influence of a temporal interrupt on the behavior of a system depends on the 
semantics of the point of synchronization of this interrupt. It is important to note that 
the concept of temporal interrupts makes it possible to model pro-active systems 
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with respect to temporal constraints. Indeed, a temporal interrupt is automatically 
fired when its maximum duration is reached (i.e. even if the event attached to this 
interrupt does not occur). 

The modeling and expressive power of HTSPNs for the specification of 
asynchronous events makes an important contribution compared to techniques based 
on activation arcs such as described in [Zubereck 80]. Indeed, by definition, 
activation arcs must be associated with all transitions which have in their prefix 
tasks likely to be stopped. Such an approach to modeling interrupts induces an 
important increase in the structural complexity of the net. Moreover, this structural 
complexity can reduce the capacity of the analysis of the (thus extended) model. 
Thus, by deleting the tokens in the sub-nets (associated with a composite place), 
HTSPN firing rules easily model asynchronous events, which are a basic behavior 
and semantics for interactive systems. In other words, the abstraction offered by the 
concept of composite place allows a synthetic and elegant representation of real 
asynchronous events. 

15.3.4. HTSPN state

The state of a TSPN was introduced in Chapter 6 in order to allow the formal 
simulation of the dynamic behavior of systems. In the same way the concept of state 
of a HTSPN must formally simulate the dynamic behavior of a system modeled 
using a more or less abstract view. However, HTSPN can be regarded as a set of 
TSPN: it thus appears that the concept of state of a HTSPN results from an 
immediate extension of the concept of TSPN state. Indeed, the state of HTSPN can 
be defined like the global set of the states of its component STSPNs. 

DEFINITION 15.5 The state of HTSPN H = (R, S, Pin, Pout, FS, Fin, Fout) is given 
by a couple S = (M, I) such that: 

– M is a couple M = (Mr,(Mi)i I), and 

– I is a couple I = (Ir,(I i)i I)

with j  I, Sj = (Mj,Ij) the current state of STSPN Si, and Sr = (Mr, Ir) the current 
state of root TSPN, R. 

By considering that all TSPNs constituting a HTSPN evolve synchronously as 
one net (i.e. share the same common clock), the rules of evolution between states of 
a HTSPN then result from an immediate extension of the rules between states of a 
TSPN.
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Let us consider as an example the HTSPN illustrated in Figure 15.3. This net, 
denoted H, implements a simple two-level hierarchy, made up of a root TSPN, 
denoted R (Figure 15.3a), and a leaf STSPN, denoted F (Figure 15.3b) associated 
with the composite place T of R. Thus, this HTSPN can be formally described by 
the couple H = (R, (F)). 

The initial state S0 = (M0, I0) of H is given by: 

The initial marking M0 = (MR0, (MF0)) which results from merging the initial 
markings of R and F. Thus, by considering that the places not appearing in a 
marking have no marking:  

– MR0 = (START(1)), START(1) meaning that place START has 1 token. 

– MF0= 0 

The couple I0 = (IR0, (IF0)), where IR0 and IF0 are respectively the lists of the 
dynamic temporal validity intervals (DTVI) of the arcs enabled in R and F, are: 

– IR0 = ((0,0,0)) 

– IF0 = 0 

Following the firing of transition t0, starting from S0 at the relative instant 0, H 
reaches the state S1 = (M1, I1), such that: 

– M1 = ((I(1), T(1)), (T1(1)))

– I1 = (((5,15,20), (10,15,20)), ((8,10,12))) 

From S1, the t1 “master” transition of R must be fired during the IDVT of the 
“main” arc (I, t1), i.e. (5,15,20). Thus, in agreement with the firing rules of TSPN, t1
can be fired, from S1, at the relative moment  such that 5  min(Mi) = 12, 
where Mi are the higher bounds of the firing intervals of the transitions enabled in 
state S1. In particular, transition t1 can be fired at the relative moment 5, whereas 
place T1 of the abstracted net is still marked. That means that the firing of t1, at the 
relative instant = 5, withdraws the token in place T1 in the sub-net. This withdrawal 
thus induces the “jump” of places T2 and T3 of the sub-net. Thus, after the firing of 
transition t1 at the relative moment  = 5 from state S1, H reaches the final state S2 =
(m2, I2) such that: 

– M2 = (END(1), ( )) 

–  I2 = ( ) 
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15.4. Examples

15.4.1. Modeling hypermedia systems 

The capacity to define a hierarchy and modeling of asynchronous events in 
HTSPNs proves to be particularly well adapted to modeling hypermedia systems.  

Wit

L C
t0

T1

Logical synchronization 

Multimedia synchronization 

Monomedia synchronization 

Composite component
e.g a multi-media scenario

Media
e.g a video

Unit of information
e.g a video screen

Link

Figure 15.4. Synchronization levels in a hypermedia system 

Indeed, hypermedia systems or documents offer users, via asynchronous events 
that result from link activations, the possibility of navigating within a space of 
multimedia components with semantics strongly dependent on inter- and intra-
media synchronization constraints. Thus the “hypermedia interpretation” of the 
HTSPN model is able to model the three fundamental levels of synchronization that 
exist in hypermedia systems (Figure 15.4), namely: 

The logical synchronization level, modeled by the root network, which 
specifies, for instance, the browsing semantics of the document. In this root net the 
temporal arcs model the abstract temporal behavior of the synchronization scenario, 
and its detailed temporal behavior will be modeled in the lower levels. The 
possibilities of links activations are also modeled by temporal arcs. 

The multimedia level synchronization is made up of a set of STSPN detailing 
the temporal behaviors of the composite places that compose the root TSPN. These 
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STSPNs describe the inter-flow synchronization schemes brought into play in the 
multimedia scenarios presented to the user, depending on its link activations. 

The monomedia synchronization level finally details the intrinsic 
synchronization constraints of the various media, which was described in the form 
of composite places in the synchronization scenarios of the multimedia 
synchronization level. 

Thus the global temporal behavior of a hypermedia system can be specified in 
the formalism of HTSPN by a triplet (R, (S1,…, Sk), (F1,…, Fj)) in which R 
represents the TSPN describing the logical level of synchronization, Si are the 
STSPN that detail the synchronization scenarios associated with the composite 
(abstract) places of R, and Fj describes the detailed synchronization constraints of 
each medium associated with the abstract places of Si [Sénac 96]. Note that the 
description of the components can be recursive and can thus induce more than three 
levels of modeling.  

15.4.2. A solution to “lip-synchronization” using HTSPNs

Let us first note that the basic TSPN model does not model the possibility of 
multimedia flows “jumping” a certain number of units of information to represent a 
temporal resynchronization with another flow. This section presents, using a 
HTSPN model, a solution to the problem of “lip-synchronization”, i.e. the problem 
of continuous synchronization between an audio and a video stream. In this 
example, it is assumed that the video, resp. the audio, is structured in the form of a 
stream of data units Vi (i.e. video frames), resp. Aj, such as TVI(Vi) = (35,40,60), 
resp. TVI(Aj) = (30,30,30).

The specification given in Figure 15.5 describes an inter-flow synchronization 
control scheme that guarantees a maximum delay (resp. maximum advance) of  
100 ms (resp. 150 ms) of the video flow with respect to the audio flow. Moreover, 
this specification insures that, in the event of a delay of the video flow with respect 
to the audio flow, it will not jump more than one unit of video data out of three (i.e. 
a maximum loss rate of 33%). Note that in this specification, the audio flow is 
regarded as the main stream of the inter-flow synchronization scheme, because it is 
more sensitive to jitter variations than the video flow. 

This solution uses the hierarchical capabilities provided by the HTSPN model. 
This specification is a HTSPN composed of 5 TSPNs and 3 hierarchical levels 
(Figure 15.5). The upper level of the hierarchy, illustrated by Figure 15.5a, specifies 
the inter-flow synchronization constraints between the audio flow, modeled as the 
composite place A0, and the video flow, modeled as the composite place V0. This 
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net specifies in particular that video flow should not be in advance (resp. a delay) by 
more than 150 ms (resp. 100 ms) with respect to the audio flow. 
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Figure 15.5. Modeling of a “lip-synchronization” pattern using the HTSPN model. a) The 
root of the hierarchy specifying in particular the control of the advance of the video 
compared to the audio; b) specification of the abstract place V0. This level describes the 
control of the video delay with respect to the audio; c) and d) specification of the abstract 
places V1 and V2 describing the video intra-flow synchronization constraints; e) specification 
of the abstract place A0 describing the audio intra-flow synchronization constraints 

The control of the advance must be controlled within a maximum granularity of 
30 video synchronization units (or 40 audio synchronization units). Indeed, the 
minimum jitter of the video synchronization units being 5 ms, i.e. 40 – 35 ms, and 
the units of audio synchronization having no jitter, a 150 ms maximum drift can be 
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obtained after 30 video synchronization units. Thus, the TSPN of Figure 15.5a 
specifies that a point of synchronization of the “master” type, the audio unit being 
the “master” arc, is located every 40 audio synchronization units (i.e. every 1200 
units of time) in order to resynchronize the video flow and the audio flow. Thus, in 
the case of a maximum advance of the video flow, the video flow will be blocked 
during 150 ms (this inter-flow synchronization being applied periodically along the 
audio-visual sequence). 

The abstract place V0 is specified via the sub-net illustrated by Figure 15.5b. 
This TSPN specifies the control of the delay of the video flow with respect to the 
audio stream.  

Given the acceptable maximum delay of the video synchronization (i.e. 100 ms) 
combined with the maximum jitter of a video information unit (i.e. 20 ms), the 
control of the delay of the video flow must be carried out at least every 5 video 
synchronization units. Such a period of control of the drift can induce, in the event 
of a maximum delay of the video flow, a jump of two units of video data every 5 
units. In order to reduce the number of consecutive losses and to better distribute the 
losses, we choose to control the delay of the video flow every 3 units of video data. 
During such a period, the drift control ensures that no more than 1 unit of video data 
out of three “will be jumped” in the event of a significant delay of the video flow 
with respect to the audio flow. The control is modeled by places C0 and C1. The 
audio-visual resynchronization is carried out by “or-master” transitions, possibly 
inducing an “acceleration” of the video flow. The composite places V1 and V2 are 
specified by the TSPNs illustrated by Figures 15.5c and 15.5d, and these TSPNs 
describe the video intra-flow synchronization constraints. The composite place A0 is 
associated with the sub-net illustrated by Figure 15.5e, which specifies the audio 
intra-flow synchronization constraints. 

15.5. Conclusion

This chapter introduced a new model, called hierarchical time stream Petri nets 
(HTSPN), which allows designers to specify precisely, completely and in a unified 
way (i.e. via temporal arcs) the logical and temporal constraints of synchronization 
which are the bases of reactive systems. The contributions and the clarifications 
brought by this model are multiple, and, in particular, the following contributions 
should be emphasized:  

The HTSPN model has a modeling power allowing easy and unified 
specification of the fundamental components (temporal tasks, interrupt) of reactive 
systems, such as hypermedia systems. 
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The HTSPN model provides explanations of the concept of synchronization in 
temporally constrained environments. Indeed, the HTSPN model gives, using rules 
of synchronization that combine in a complete way the temporal and logical 
constraints of synchronization, a formal semantics for the concept of temporal 
interrupts. 

The HTSPN firing rules associated with hierarchical possibilities allow easy 
and powerful modeling of the asynchronous events able to stop processing of 
arbitrary structured complexity at any moment. 

The analysis and verification techniques developed for the HTSPN model 
make it possible to check the logical and temporal properties of these systems. 

This model provides the basis of many contributions in the field of multimedia 
design of distributed systems and advanced communications protocols [SEN 95a, 
ROJ 98]. 
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Chapter 16  

Petri Nets and Linear Logic

16.1. Introduction 

Existing analysis methods for Petri nets are often “state-oriented” methods, i.e. 
they use the state graph, or, for example, the graph of state classes in the case of 
timed Petri nets (Chapter 5), in support of the analysis. Chapter 1 showed how to 
express and check properties by using temporal logic. One of the difficulties of these 
approaches is the combinative explosion of the state graph, so some methods have 
also been developed in this book to try to reduce this (for step graphs and 
symmetries, see Chapters 2 and 4). 

The approach developed in this chapter is different in the sense that it proposes 
an “event-oriented” analysis method, where events of a Petri net are, of course, 
firings of the transitions. Indeed, by definition, Petri nets offer a quasi-total 
symmetry between states (places) and events (transitions). This symmetry is found 
in the methods of structural analysis developed in Chapter 3 since it is quite as easy 
to calculate invariants of transitions as invariants from places. On the other hand the 
various tools for reachability analysis are generally based on states: we will see how 
it is possible to use an “event-oriented” approach to examine certain questions of 
reachability, using “logical reasoning” which is directly based on the structure of the 
Petri net, without generating the state graph. Moreover, we will see how this action-
oriented analysis (firings of transitions) also allows us to obtain precise temporal 
information about the sequences (or more generally the scenarios) of transition 
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firings: thus we will be able to compute their duration and to specify the temporal 
constraints which must check the firing dates. 

Why choose to work without using the state graph? The first reason is certainly 
the processing of parallelism. One of the characteristics of state graphs is to 
represent parallelism by interleaving, i.e. by a choice. But the state graph already 
contains other types of choice, those which result, for example, from the resolution 
of conflicts: there is thus a risk of confusion. On the other hand, by considering that 
two events A and B can occur in parallel, we specify that, a priori, there is no 
relation of precedence and thus of causality between them: they are not ordered 
events. Interleaving, on the other hand, does not induce an order, but two possible 
orders: A followed by B or B followed by A. We want to express all the existing 
causality relations, and only these. This is why we seek the assistance of logic at the 
same time as a tool of representation of this causality and as a tool of reasoning. 
Instead of reasoning on a sequence (a set of firings completely ordered due to 
interleaving), we will reason on a scenario of firings (a partially ordered set). 

In addition to the applications of temporal logic which is used to build the state 
graph, the idea of associating Petri nets and logic appeared several years ago. But, in 
all the cases, these approaches based on traditional propositional logic do not enable 
processing of any type of Petri nets: they are sometimes safe, sometimes not 
bounded, non-cyclic, etc. These difficulties are related to the monotony of traditional 
logic: if a proposal is proven to be true, it remains true, whatever it is applied to. 
However, for the problems which we model with Petri nets, we need to characterize 
resources which are produced then consumed, or allocated then released. Moreover, 
it is necessary to be able to count them, which traditional logic does not allow since, 
by definition, A AND A is equivalent to A (this equivalence, resulting from the 
“contraction rule”, can also be seen as the idempotence of AND). This is why we 
use non-traditional logic, linear logic, able to represent all these concepts related to 
the resources. The proposals are no longer eternal truths: they can be consumed 
during the reasoning of a proof, which implies non-monotony. 

After devoting a paragraph to the presentation of linear logic, we will present a 
method connecting linear logic and the structure of Petri nets. Next, we will present 
the connection between transition firings (the events) and formulas from linear logic 
whose objective is to characterize the operation of the network and not only the 
structure. One of the main points of this approach is equivalence between provability 
of the sequents of linear logic and reachability in the corresponding Petri net. Not 
only reachability is preserved, but there is also equivalence between causality and 
precedence relations. No parasitic precedence relation will be introduced by the 
reasoning. It is on these results that we base our work. We will then clarify how to 
build proofs which correspond to scenarios, i.e. sets of partially ordered transition 



Petri Nets and Linear Logic     483 

firings. It is then possible to introduce temporal information and to obtain sets of 
temporal constraints allowing us, for example, to obtain the duration of the scenario. 

16.2. Linear logic 

16.2.1. Bases: a logic which handles resources 

Linear logic was proposed by J. Y. Girard [GIR 87] as an alternative to 
propositional logic: this logic is “non-monotonous”. It substitutes for monotony the 
concept of “linearity”. It is based on the “sequent calculus”, which was initially 
introduced by Gentzen (in 1934) for traditional logic. This calculus is the preferred 
tool for defining and leading a proof in linear logic. The fundamental point is that 
the two rules of traditional propositional logic which are the “contraction rule” and 
the “weakening rule” are removed with the aim, in particular, of better expressing 
causality. The result is a redefinition of the connectors AND, OR and IMPLIES: 
thus the associated calculus of the sequents led to a system able to treat dynamics of 
systems. The propositions of linear logic are resources, which can be consumed or 
produced. A deduction of linear logic consumes the propositions of its premises and 
produces the propositions of its conclusion. If a proposition is used twice in a 
deduction, it is necessary that it was available or produced twice before this 
deduction. This dynamic aspect introduces, of course, a subjacent concept of time, 
and thus of state, of the resources. It is this capacity to reason on the concepts of 
resources, of multiple specimens of the same resource, of production/consumption, 
of state, etc. which makes linear logic a priori attractive for the study of Petri nets: 
these concepts are the gist of these nets. 

16.2.2. Connectors and their interpretation 

As indicated above, two essential rules of traditional propositional logic have 
been removed in linear logic. The rule of contraction leads to the idempotence of 
AND since it is possible to deduce A AND A from A. From the viewpoint of 
representation of available resources, it is easy to imagine that two specimens of the 
same resource should be differentiated from the case of a single specimen. The 
second rule which is removed is the one of weakening. This makes it possible, in 
particular, to deduce A from A AND B. Always, from a resource viewpoint, it is 
necessary to differentiate the case where A AND B are consumed from the case 
where only A is consumed. The disappearance of these two rules leads to a complete 
recasting of the traditional connectors AND and OR. These changes also involve a 
new semantics for implication and negation. Among the connectors of linear logic 
we will present here only those used for our work on Petri nets: the connectors TIME
and LINEAR IMPLICATION. The interested reader will be able to find a detailed 
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presentation of all the connectors (which are Petri net-oriented) in [GIR 97a] or in 
one of the articles of synthesis devoted to linear logic by Girard [GIR 95a, GIR 95b]. 

The connector  (LINEAR IMPLICATION) expresses causality between the 
production and the consumption of resources. For example A  B translates the 
fact that by consuming proposal A, the proposal B is produced. It is thus the result of 
an action which is thus modeled. 

The connector  (TIMES) is a form of conjunction (corresponding partly to the 
connector AND of traditional logic), which expresses the accumulation of resources: 
thus proposal A A represents the presence of two specimens of A. This proposal is 
not equivalent to proposal A.  

To illustrate some consequences of this change compared to traditional 
propositional logic, let us consider two simple examples. From proposals A A and
A  B it will be possible to deduce A B but not B: the second specimen of A
cannot “be forgotten”. Symmetricly, on the basis of A and of A A  B it will not 
be possible to deduce B because only one specimen of A is not sufficient for the 
execution of the action. In both cases, the use of the connectors of traditional logic 
(AND and IMPLIES) would have allowed such deductions. 

16.2.3. Sequent calculus 

All the deductions of linear logic can be performed within a clear and formal 
framework: sequent calculus. One sequent is an expression of the form:  in 
which the left and right parts are constituted with finished series of formulas 
separated by commas. These series of formulas are called “blocks”. The comma is a 
meta-symbol. One can consider that a sequent is a theorem. The  block is the set of 
necessary assumptions and the  block that of the possible conclusions. Within the 
framework of work presented here, the right member will be always reduced to only 
one formula, which, moreover, includes only the  connector. To prove one 
sequent, is to show that it is syntactically correct. This proof consists of showing that 
it can be built entirely starting from a set of rules introducing the atoms (proposals) 
and the connectors. The rules presented below are only those which we will use.  

For each rule, the sequent to prove is written in the lower part of the bar while 
the sequent(s) used for this proof is (are) written above. In these rules, A represents 
an atom, F, G, H represent formulas (here atoms connected by the two logical 
connectors  and ) and  and represent the blocks (of the sets of formulas 
connected by the meta-connector “,”). The meta-connector “,” is commutative. 



Petri Nets and Linear Logic     485 

    
 ,  ,            

 ,        ,       
     ,    
 ,  ,       

Identity
A A

F G F GL R
F G F G

F G H oL
F o G H

Figure 16.1. Rules of the sequent calculus used 

Using these rules, a proof is calculated from bottom to top by writing the sequent 
to be proved, as the root of the proof tree. This sequent is proven if each leaf of the 
tree ends with one sequent axiom (here, the only axiom is the identity sequent). Let 
us consider, for example, the demonstration of sequent A, A B B. It should 
be noted that this sequent expresses the consumption of A but also that of A B to 
produce B. The implicative formula is seen here as a consumable resource or, more 
exactly, as a process of action [GIR 97a]. 

       
 ,       

Id Id
A A B B oL

A A o B B

Figure 16.2. The proof tree of A , A  B  B 

16.3. Petri nets and linear logic 

16.3.1. Various approaches 

From the time of the first publications on linear logic, some authors were 
interested in the existing relations with Petri nets, but it should be noted that these 
publications were essentially intended for logicians, the Petri nets only constituting 
an interpretation of linear logic. Moreover, it is only in the publications of 1995 that 
Girard explicitly employs the terms “states” and “transitions” when he speaks about 
linear logic. An exhaustive and argued analysis of these publications is available in 
[GIR 97a]. One of the frequently followed approaches [GEH 92, GUN 89] consists 
of modeling the structure of the Petri net, without explicit representation of the 
marking. This led to interesting results but they remain at the structural level. As the 
highlighted causality relations do not take into account the current marking, it is not 
possible to obtain in an exact way the precedence relations binding transition firings 
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for a given scenario. Our proposal for a representation, differs in the sense that those 
are markings and transition firings which are modeled in the sequents and not the 
transitions in a structural way. 

16.3.2. Approach with marking 

The approach that we developed [GIR 97a, GIR 97b] remains within the strict 
framework of linear logic. The transitions are represented by implicative 
propositions (and not by sequents associated with proper axioms added to linear 
logic as in the preceding approach) which each express one transition firing. We 
thus represent the events of transition firings and not the transitions, and the 
implicative propositions could be consumed during the proof, which will indicate 
that the transition is indeed fired. A second important change is that the reachability 
is expressed by a sequent explicitly including the initial marking and the final one.  

For a given Petri net: 

 one propositional atom P is associated with any place p of the network; 

 one formula in  is associated with any marking of the net and with any 
precondition (Pre) or post-condition (Post) of transition; 

one implicative formula is defined for each transition t from the Petri net, 
starting from the vectors Pre (t) and Post (t). If Pre(pi, t) is valuated with n, the 
proposition pi appears n times in the left part and it is the same for the exit places. 

         
,  ,  

i o

i o

P o P
i Pre p t o Post p t

t :

Any sequent of the form M, t1,…, tn  M’ expresses accessibility between two 
markings M and M’, by specifying which are the fired transitions (ti represents the 
implicative formula corresponding to a firing of the corresponding transition). The 
proof is then led, in a canonical way. We will illustrate with an example. Let us 
consider the Petri net in Figure 16.3 and the sequent expressing the reachability 
between two markings A B and B C thanks to the firing of each transition t1 and 
t2.

The tree, given in Figure 16.4, makes it possible to illustrate how the proofs are 
led. The effective firing of a transition is always effected by the application of the 
rule : the sequent generated in the left part represents the tokens consumed 
during this crossing, while the right sequent represents what remains to be proven. If 
the fired transition has only one entry place, the left sequent is an identity (B  B, for 
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example, for the transition t2 which is the first fired) but it is of the type A, D A  D
if it comprises more than one entry place. We then use the rule R to cut the 
marking. This rule is also used to eliminate the formula located on the right of the 
sequent (final marking) at the end of the proof. The rule L is a simple rewriting of 
the  connector in the shape of the meta-connector “,”. The proof is finished when 
only identity sequents remain.

t1 Ct2A

D

B

Figure 16.3. A Petri net without structural parallelism 

,  ,  
, , ,  

, ,  
, , ,  

, ,  

Id Id Id Id
A A D D B B C CR R

A D A D B C B C oL
A C D A D oB B CId L

B B A C D A D oB B C oL
A B A D oB B oC D B C L

A B A D oB B oC D B C

Figure 16.4. The canonical proof tree 

The procedure to lead the proof is thus relatively simple. The size of this tree is 
strictly proportional to the number of firings included in the sequent.  

The canonical tree is obtained by the following algorithm: 

TO APPLY the rule L as many times as necessary to transform the initial 
marking into a list of atoms separated by the meta-connector “,” 
WHILE the rule L is applicable (i.e. if the precondition (Pre) of one or more 
transition formulas is included in the list of the atoms of the current stage)

 To apply the rule L to the candidate implicative formula of smaller 
collating sequence, 

 To finish the proof of the left sequent generated while using, if necessary, 
the rule R,



488     Petri Nets 

 To apply, if necessary, the rule L to the produced marking in the right 
sequent (in the left part of this one). 

END WHILE 

This algorithm led to a proof of the initial sequent if all the implicative formulas 
corresponding to transition firings were eliminated and thus if all the sheets of the 
tree end with the identity sequent. 

Other interesting sequents are provable for this network. For example, the 
sequent A A D, t1, t1, t2  B  C D expresses what occurs when t1 is fired 
twice whereas t2 is fired only once. It is thus a multiset of transition firings which is 
expressed by one sequent. 

16.3.3. Equivalence between reachability in a Petri net and provability of one 
sequent in linear logic 

The important point in this step of the proof is of course canonicity but it would 
not have any interest if this proof were not connected to the concept of reachability 
for Petri nets.  

It was shown that all sequents of the type M, t1,…, tn | M’ are provable if and 
only if the reachability between markings M and M’ is checked. A set of sequences 
(differing only by their order) corresponds to the multiset under consideration [GIR 
97a] such that for any sequence of this set we have:  

 Another important point is to know if the causality relations that we can deduce 
from a canonical proof can be interpreted like precedence relations, i.e. if we obtain 
all the precedence relations and only those which come from the operation rules of 
the Petri nets (consistency and completeness). The main operational semantics of 
Petri nets not founded on the concept of sequence is based on the concept of 
unfolding and describes behaviors in the form of the processes of Petri nets [BEST 
87]. It was shown [RIV 03] that for each proof we could associate at least one 
process and that for each process we could associate at least one proof (while 
possibly exploiting the collating sequence of the transitions). 

We can thus plan to characterize the scenarios of transition firing while 
analyzing the causality relations. The question is then to know what this method 
brings compared to the usual techniques of Petri nets. The first way of processing 
reachability in the network analysis is to solve the characteristic equation: 

'...,,1,' MtntMMM sequence
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Unfortunately, this equation provides only one necessary (but non-sufficient) 
condition of reachability. Moreover, the characteristic vector s provides only the 
multiset of the transitions concerned: no firing order can be given. The information 
obtained for s is thus only necessary and is not ordered.  

The second method for obtaining information on reachability is to determine a 
sequence seq such as: 

In this case, information obtained is completely ordered and the condition is 
necessary and sufficient. However, this total order (whatever the real causality 
relations, firings are carried out one after the other) does not make it possible to 
distinguish the real causality links which we seek. 

What can we expect from this new characterization in linear logic? First of all, 
the proof by sequent calculus makes it possible to obtain quickly and simply exact 
answers (condition necessary and sufficient) for reachability between two markings, 
by simultaneously providing the multiset of the implied transitions. Moreover, it is 
possible to extract information on the order of these firings starting from the 
canonical proof tree. This causality information is not provided by the nature of the 
rules of the sequent calculus used but by the produced and consumed tokens. To 
obtain these causality links, we will associate a label with each token. Either this 
label is a temporal label, and then we can obtain the duration of firing of the 
multiset, or this label is that of an event (transition firing having produced the token 
or having consumed the token according to the position of this last one in the 
sequent) and we will obtain the set of the precedence relations (thus defining a 
partial order) having to be checked by the transition firings. 

Again let us consider the network in Figure 16.3 and the sequent of which the 
proof tree is provided in Figure 16.4, A B, t1, t2  B C: we see, helped by this 
tree, that the firing of t1 (rule L for formula A D B) can be done only after 
that of t2 (rule L for the formula B  C D) since the token of the place D,
necessary for the firing of t1, is produced by the firing of t2. According to marking, 
these causality links can be different. Let us consider the sequent A B D, t1, t2 
B C D: it also represents only one firing of each transition, but the initial marking 
is different. In this case, there is a scenario such that any causality link does not 
connect these two firings: by developing the proof tree, we would realize that each 
of the two transitions can consume tokens already present in the initial marking. 

s C .  M M '

'MM seq
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This causality information is capital for a temporal analysis and therefore we will 
describe them by means of labels. 

16.4. Sequent labeling and graph of precedence relations 

16.4.1. Labeling 

The labeling of the logical atoms (tokens) in the proof tree is carried out for a 
given scenario. Let us recall that a scenario is a set of transition firings provided 
with a partial order and passing from an initial marking to a final marking. It is used 
to describe a behavior and not a state. 

Each time that, in the proof tree, the rule L is applied, a formula describing a 
transition firing is eliminated. We can thus label these applications of rules by the 
corresponding entities of firing by giving the name of the fired transition, with as 
exponent the number of the entity (tN for the Nth firing of t). The implicative formula 
which is eliminated (F G in Figure 16.1) is such that F = Pre (t) and G = Post 
(t). The atoms (tokens) of F and G in the higher part are labeled by the label of the 
eliminated rule. Thus the atoms of F are labeled by the event which consumed them, 
whereas those of G are labeled by the one which produced them. The labels 
produced by the rules applied before, and thus appearing in the blocks of formulas 
and  (Figure 16.1), are deferred in the sequents of the higher part. Finally, in order 
that all the atoms of the final sheets (higher terminations of the proof tree) have a 
label, the atoms corresponding to initial markings are labeled by the virtual events 
having produced them (atom by atom) and the atoms corresponding to final 
markings are labeled by virtual events having consumed them (atom by atom). Once 
labeling has been carried out, each identity sequent represents the association of two 
views of the same atom (token): in the left part it is labeled by the event which 
produced it and in the right part by that which consumed it. 

 Let us again take the example of the Petri net of Figure 16.3. The proof tree of 
Figure 16.4 after labeling (to simplify we do not have indexed transition firings 
since there is only one for each one of them) is represented in Figure 16.5 (we 
duplicated it in two stages). It is seen, by observing the sheets of the tree, that it is 
the atom D which dictates that t2 is fired before t1 because it cannot be consumed 
before being produced. The other sheets impose only precedence relations between 
firings and the two initial events i1 and i2 and the two final events f1 and f2.
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Figure 16.5. The labeled proof tree 

16.4.2. Graph of precedence relations 

Figure 16.6. Graph of precedence associated with the tree in Figure 16.5 

Information concerning the causality relations (and thus precedence) between the 
events of the scenario obtained by the labeling of the proof tree can be represented in 
the shape of a graph whose nodes are the events (transition firings, initial events, and 
final events) and edges are the identity sequents (relation between the event having 
produced an atom and that having consumed it). The transitive closure of this 
precedence graph is simply the partial order that the transition firings have to check. 

Thus the precedence graph associated with the tree labeled in Figure 16.5 is 
given by Figure 16.6. If we now we return to the consistent scenario starting from 
marking A  B  D to arrive at marking B  C  D (sequent A  B  D , t1, t2  B
C  D) by using all the tokens of initial marking to cross t1 and t2, we obtain the 
graph of Figure 16.7 which illustrates well the fact that the two transitions can be 
fired simultaneously. 
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Figure 16.7. Precedence graph associated with A  B  D , t1, t2  B  C  D 

16.4.3. Conflicts of transitions and tokens 

The concept of transition conflict is traditional. Two transitions t1 and t2 are in 
conflict for a current marking when they have at least an entry place which is 
common and the contents of this place, if it is sufficient to fire t1 or t2, is insufficient 
to fire both simultaneously. Consequently, it is thus necessary to decide to fire t1
before t2 or t2 before t1. It is clear that the precedence relations will be different in 
each case. In terms of proof trees, any effective transition conflict involves the 
construction of two different trees. Let us take, for example, the simple network of 
Figure 16.8a and the scenario leading from marking A B to marking C D by firing 
each transition exactly once. Since t2 and t3 are in effective conflict, it will be 
necessary to build two proof trees. The two precedence graphs in Figure 16.9 are 
then obtained. In the first, the token produced by t1 is used to fire t3, in the second it 
is used to fire t2.

Figure 16.8. Conflicts of transitions and tokens 
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Figure 16.9. Two precedence graphs resulting from transition conflict

A case parallel to that of the transition conflict is that of the token conflict, an 
example of which is provided on Figure 16.8b. Again let us consider the scenario of 
marking A B leading to marking C D by firing each of the three transitions 
exactly once. The firing of t3 could be done either with the token resulting from the 
firing of t1, or with that resulting from the shooting of t2. Once again the causality 
relations will be different and it will be necessary to build two different proof trees. 
The two precedence graphs are given by Figure 16.10. 

Figure 16.10. Two precedence graphs resulting from transition conflicts 

16.5. Temporal evaluation of scenarios 

16.5.1. Introduction

The analysis of distributed systems generally requires us to check the respect of 
quantitative temporal constraints. The approaches which we will present in this 
section allow this for a given scenario, i.e. for one of the possible behaviors (one 
firing sequence) between two markings. When an ordinary Petri net is considered, 
there are several ways of introducing quantitative temporal constraints. For example 
it is possible to associate these constraints either with the transitions (t-temporal 
Petri nets), or with the places (p-temporal Petri nets). 

The first approach has been introduced in Chapter 5. The second one, i.e. the p-
temporal Petri nets, consists of associating a temporal interval I (p) = [dpm, dpM] with 
each place p of the Petri net. The operational semantics is as follows. A clock is 
associated with each token of the marking. It is initialized to 0 when the token is 
produced in a place. This token can then be used to fire a transition at a given time 
only if the value of its clock is between dpm and dpM. If during an execution a token 
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could not be consumed at the maximum date (dpM), it dies and cannot be used any 
more. This phenomenon of “death of a token” characterizes a violation of the 
temporal constraints. The t-temporal Petri nets have, as first a objective, the 
description of watchdogs and thus start actions when some temporal constraints are 
not respected; the p-temporal Petri nets are used to describe sets of temporal 
constraints which must be strictly respected. The modeling objectives are thus 
different. 

We now present two approaches allowing the introduction of temporal 
constraints based on a labeled proof tree. The first produces a simple temporal 
network and the second produces expressions in (max, +) algebra. 

16.5.2. Simple temporal networks 

A simple temporal network [DEC 91] consists of a set of real variables (temporal 
with a dense time) X and a set of binary constraints, Cij, binding pairs of variables 
(xi, xj). These constraints represent the distance between xi and xj and they have the 
form of a convex interval [cm, cM] where cm and cM represent two real variables or 
the infinity symbol with: cm x j xi cM .

Many evaluations, for example such as that of the total duration of the scenario, 
are reduced to the execution of the classic Floyd Warshall algorithm [DEC 91] for 
the shortest path (or here the longest) in a graph. The simple temporal networks are 
typically used to solve problems of planning under a set of temporal constraints. 

The graph of precedence describes constraints of order between transition 
firings. Let us consider, for example, the graph on the left of Figure 16.10. It 
specifies that, for example, the firing of t3 must follow that of t1 because a token 
produced by the firing of t1 in the place C is consumed by the firing of t3. This 
graph can be seen as a simple temporal network where with each arc between ti and 
tj a constraint Cij with value [0, [ is associated, i.e. an arc (ti, tj), labeled by the 
name of a place p. It corresponds to a token produced by ti in p and consumed by tj.
So, a temporal constraint I(p) = [dpm, dpM] associated with the place p in a p-temporal 
Petri net will simply transform the precedence constraint [0,  [ into a quantitative 
constraint [dpm, dpM]. Thus in the case of a p-temporal Petri net, the transformation of 
a graph of precedence into a simple temporal network is immediate; it is sufficient to 
replace, for all the arcs, the name of the place containing the token by the 
corresponding interval I(p).
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Figure 16.11. P-temporal Petri net and simple temporal network for a scenario 

If we consider again the Petri net in Figure 16.8b and transform it into a p-
temporal Petri net by associating intervals with the places as in Figure 16.11, then 
the graph of precedence on the left of Figure 16.10 will become the simple temporal 
network of Figure 16.11 (right part). This graph corresponds to one of the two 
scenarios (there are two scenarios because of a conflict of tokens) associated with 
the sequent: A B,t1,t2,t3  C D.

 As an example of a possible reasoning, let us consider the case where both 
tokens in A and B are produced simultaneously. On the network of constraints in 
Figure 16.11, it is sufficient to add an arc between the nodes i1 and i2 with the 
constraint of distance [0,0]. We then obtain the simple temporal network of Figure 
16.12a. If it is necessary to delimit the temporal distance between the transition 
firings of t2 and t3 (if the firing of t3 consumes the token produced by t1) it can be 
done by propagation of constraints or by applying the Floyd Warshall algorithm. 
The simple temporal network of Figure 16.12b and thus the constraint (x2 is the 
temporal variable corresponding to the date of the firing of t2, and x3 of t3) are 
obtained. 

Figure 16.12. Example of the calculation of a constraint between two variables
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In order to calculate the total duration of the scenario, i.e. until the date on which 
the two tokens are present (have been just produced) in places C and D, it is 
necessary to calculate the temporal distance of the events f1 and f2 (corresponding to 
the consumption of the tokens C and D) from i1 (i2 = i1). The intervals [2, 4] and [2, 
6] are obtained (see Figure 16.13), which means that during the interval 

2,4 2,4 2,6  the tokens C and D are present simultaneously. If the 
intersection of the intervals had been null, that would have meant that marking C D
would have been inaccessible for the values of the temporal constraints given. The 
sequent proof implies that this marking is logically (causally) reachable, i.e. it is 
reachable for certain values from the temporal constraints, but not necessarily for all. 
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Figure 16.13. Example of the duration calculation of a scenario 

16.5.3. Temporal labeling

We have just seen an interesting method but one which easily applies only in the 
case of p-temporal Petri nets. In the case of t-temporal Petri nets, problems occur 
due to the fact that the quantitative constraints are associated with the enabling of 
transitions. The starting point of the constraint is therefore the enabling date. This 
date is that of the firing of the transition which produced the last necessary token. 
This concept of last event is absent in the proof trees as well as in precedence 
graphs, since it depends on quantitative temporal considerations, whereas the proof 
trees express only purely logical relations of causality. It is however possible to 
calculate the duration of the scenario (provided that strong semantics for the t-
temporal Petri net is not considered: see Chapter 5). To calculate the duration, it is 
sufficient to associate a temporal label with each produced token: it corresponds to 
its date of production and, in the sequent we will use, for example, A(dk) to indicate 
that this token of the place A has been produced at date dk [PRA 99b]. The process 
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of labeling does not depend on the numerical values of the maximum bound of the 
static intervals associated with the transitions; each dk is a parameter. The temporal 
label 0 is attached to the tokens of the initial marking. 

Let us consider, for example, the Petri net in Figure 16.3 and the scenario 
allowing passage from marking A B to B C by firing, once, transitions t1 and t2.
Labeling with temporal labels, the proof tree in Figure 16.4 is given by Figure 16.14 
by supposing that the duration of enabling transition t1 is d1 and that of t2 is d2. The 
first application of the rule L corresponds to the firing of t2. Token B of 
temporal label 0 is consumed and the tokens C and D are produced with the label d2.
The second application of the rule L corresponds to the firing of t1. The date on 
which it is possible to consume, as soon as possible, the tokens A and D is max (0, 
d2) and the token produced in place B receives the label d2 + d1 = max (0, d2) + d1.
The duration of this scenario is equal to the maximum of the dates associated with 
the tokens B and C, i.e. (d2 + d1).

,  ( 2 1) , C( 2) o 1
(0) , C( 2) , ( 2) , o  

(0) , C( 2) ( 2) , o  o 2
(0) , (0) , o , oC  

(0) (0) , o , oC  

Id Id Id Id
A A D D B B C CR R

A D A D B d d d B C L t
A d D d A D B B CId L

B B A d D d A D B B C L t
A B A D B B D B C L

A B A D B B D B C

Figure 16.14. The proof tree with temporal labels 

By supposing all the conflicts (tokens and transitions) solved, the algorithm for 
obtaining the canonical proof tree with temporal labels is as follows: 

TO APPLY rule : the temporal label of the atoms of the initial marking is 
equal to 0,

WHILE rule L is applicable
 Apply rule L to one of the enabled transitions: the temporal label 

associated with the atoms of the produced marking (Post) is equal to the 
maximum of the labels of the consumed atoms increased by the duration 
associated with this transition; the other labels are unchanged, 

 Terminate the proof of the left generated sequent by using, if necessary, 
the rule R,

 Apply, if necessary, rule R to the right sequent: the temporal labels of 
the atoms are unchanged. 

END WHILE 
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ACCORDING TO the case: 

All the transitions were treated: the sequent is proven (this validates reachability) 
and the duration of the scenario is equal to the maximum of the labels associated 
with the atoms of the final marking (date of production as soon as possible of this 
marking). 

Some transitions could not be fired: the sequent is not provable because 
reachability between markings by the considered multiset is not possible (all 
conflicts are assumed solved). The deadlock and its date can be derived thanks to the 
labels. 

Let us consider again the scenario and the Petri net (for a certain way of solving 
the conflict) of Figure 16.11. To express the same temporal constraints in the form 
of a t-temporal Petri net, it is possible to move the constraints associated with the 
places towards their output transitions (this is possible because they have only one 
input place), which leads to the net in Figure 16.15. 

Figure 16.15. Example of a t-temporal Petri net 

The sequent to be proven is A B, t1, t2, t3
1, t3

2, t4 | D E  and in order to find 
the same scenario it is necessary to solve the conflict in the same way, i.e. to choose 
the token coming from A to fire t4, the one coming from B moves consequently to 
D. The association of temporal labels (the transition ti has a di duration) in the proof 
tree gives, for the token produced in D, the label (d2+d3) and for the token produced 
in E, (d1+d3+d4). The obtained duration of the scenario is then max(d2+d3,
d1+d3+d4). If the parameters d1, d2, d3 and d4 are replaced by the values given in 
Figure 16.15, the minimal duration of the scenario is max (2, 2) = 2. It is exactly the 
value which had been found previously. On the other hand the maximum duration is 
max(4, 6) = 6 because in the t-temporal approach, a token can wait in a place if the 
output transitions are not enabled and it is thus possible to wait until date 6 to fire a 
transition consuming the tokens in D and E simultaneously. The worst case is the 
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max of the worst cases, whereas in the case of the p-temporal network it is necessary 
to consume the token in E before the death of the token in D.

16.6. Conclusion 

The approach presented in this chapter has to be seen as complementary to the 
existing methods for the analysis of systems represented by Petri nets: it provides 
event-oriented tools and therefore cannot replace state-oriented tools such as 
reachability graphs. The search for an inevitable property (such as liveness) is not 
possible with linear logic. 

Considering the results presented throughout this chapter, linear logic proves to 
be an interesting tool for Petri nets: the originality of the expressed concepts 
(resources, multiplicity of resources, production, consumption) makes it possible to 
represent the operation of a Petri net and in particular to simply solve the question of 
the reachability of a specific marking without building the state graph completely. It 
makes it possible to work directly starting from the Petri net. 

The construction of a proof tree in linear logic is in fact a way of complementing 
the results which can be obtained by solving the characteristic equation 
( sCMM if . ), i.e. by determining a multiset of transition firings allowing 
(possibly) passage from an initial marking to a final marking. Indeed, the solution of 
this equation only gives a necessary condition, whereas the sequent proof gives a 
sufficient condition. We showed that after labeling, the partial order of the transition 
firings, for each scenario, is obtained — true concurrency is handled without 
interleaving. Instead of working with markings, we use sets of tokens which are 
causally independent (it is possible to have all of them simultaneously) but without 
ever supposing that they all will indeed be present at the same moment of time for 
the numerical values considered (under the form of a marking). An important point 
is that the size of the proof is linear with respect to the number of firings. 

Finally we have seen that it is possible to complement the approach by taking 
into account quantitative temporal constraints. The transformation of the graph of 
precedence relations, obtained by labeling the proof tree, into a simple temporal 
network, is straightforward in the case of p-temporal Petri nets. We thus have a 
bridge allowing passage from Petri nets to a large number of tools and approaches 
which have been developed within the framework of artificial intelligence and 
planning. If time is associated with the transitions and not with the places, then the 
use of temporal labels during the proof makes it possible to obtain symbolic 
expressions using the operators “max” and “+” and the relations are instead with 
work relating to (max, +) algebra.  
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Chapter 17 

Modeling of Multimedia Architectures:
the Case of Videoconferencing with 

Guaranteed Quality of Service

17.1. Introduction 

Computing multimedia data changed radically the way applications must be 
developed: computers not only have to perform as many computations as possible as 
fast as possible (best effort), but must also present each information unit at a time 
which respects its temporal validity. 

This change forces us to rethink the way applications are designed, and to 
develop models able to consider temporal constraints of distributed multimedia 
applications. 

In this chapter, a videoconferencing system with guaranteed quality of service is 
presented for this purpose. It shows how the use of a formal model (time stream 
Petri nets, presented in section 17.6) helps, by modeling of multimedia stream 
constraints, to propose a synchronization constraints architecture, which leads the 
global design of the application. 

Section 17.2 presents characteristics and requirements of multimedia information 
and asynchronous systems which are the hardware and software supports on which 
multimedia applications are now designed. Section 17.3 shows how time stream 
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Petri nets allow the modeling of multimedia flow constraints; from this modeling of 
multimedia constraints, a synchronization architecture of the application is derived 
(section 17.4). 

17.2. Problems of multimedia synchronization 

17.2.1. Multimedia information: characteristics and requirements 

17.2.1.1. Notion of flow, continuous flows, discrete flows 

The first characteristic which makes multimedia data different from classical 
computer data (text, binary data, etc.) is their computing unit: multimedia data 
consist of flows, while texts and binary data are handled as files. Indeed, audio and 
video data are sequences of images or audio samples which succeed each other at a 
constant or inconstant rate. Multimedia data are not incompatible with the notion of 
computer file, and files are still used to save movies or audio documents; but the 
computations are made information unit by information unit (image by image, for 
instance); these information units, back to back, form a flow. Note however that 
text, graphics and binary data can take advantage of this kind of computing. 

Flows are also characterized by the temporal relationships which exist between 
the different information units. For example, there is no temporal relationship 
between the characters which form a textual flow. Similarly, for fixed images, 
which can be considered as bit flows, or for graphics, there is no temporal 
relationship between the different units of the flow. These are typically discrete
flows.

On the other hand, for video or audio, images or audio samples must be 
produced, computed and presented at a regular rate. These are continuous flows (or 
streams). If the time interval between two consecutive flow units is constant, the 
flow is said to be isochronous; nevertheless, a given variability in these time 
intervals can be tolerated: this variability is called authorized jitter.

17.2.1.2. The notion of quality of service

In the presentation of the flow notion seen above, the notion of temporal 
constraints has already appeared. However, many other quality parameters exist. In 
fact, multimedia flows are characterized by their quality of service (or QoS). One of 
the QoS parameter families deals with the presentation of multimedia flows. 

For example, binary or textual data cannot stand any loss (they require full 
reliability); on the other hand, their requirements in terms of storage capacity or 
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bandwidth for being sent on a network are low. In addition, these kinds of data have 
no temporal constraint. 

Similarly, graphics can hardly stand losses or errors. They require only very 
limited storage or communication resources, and are not really sensitive to jitter 
phenomena. 

Fixed images can support some error or loss rate. However, the required storage 
capacity and network bandwidth are higher than for text or graphics. Besides, in 
order to reduce the amount of data of a video image, compression algorithms have 
been designed as GIF or JPEG1 [WAL 91]. 

Audio flows can hardly stand errors or losses; the quality perceived for audio 
flows decreases dramatically witht he error and loss rates. The required throughput 
and the storage capacity are variable depending on the coding used: only 64 kbps 
are required for digital telephone quality, while 1.2 Mbps (without compression) are 
required for HiFi laser quality. In addition, audio flow is very sensitive to temporal 
disturbances. 

Finally, live video is the least constrained medium in terms of errors or losses: 
the loss of one image is not perceived by the end user. On the other hand, the 
amount of data such a flow represents and the throughput required are huge. Much 
effort have been made in the area of video compression with algorithms such as 
H261 [LIO 91, TUR 93], MPEG2 [LEG 91], etc.; however, video streams, even 
compressed, remain very demanding in terms of memory space and bandwidth. In 
addition, temporal constraints on flow images are strong, even if a given jitter level 
can be acceptable. 

We have given a brief summary of the quality of service constraints for different 
kinds of media. However, this summary is far from exhaustive and does only 
consider QoS parameters related to losses, errors, required memory space, and 
bandwidth. Anyway, enumerating all QoS parameters is impossible as each 
application has its own requirements, and will then have to fulfill its own QoS 
parameters on its own data. We have just presented the most common QoS 
parameters in current multimedia applications such as videoconferencing. 

17.2.1.3. Multimedia synchronization 

Previous sections introduced the multimedia QoS notion and illustrated it by 
presenting the main QoS parameters associated with multimedia flows. However, 

1 JPEG: Joint Photographic Expert Group. 
2 MPEG: Motion Pictures Expert Group. 



504     Petri Nets 

the temporal aspect, which has been mentioned in section 17.2.1.1, is essential and 
continuous flows are basically characterized by their temporal constraints. For 
example, in a multimedia presentation which includes several kinds of data, 
temporal and spatial relationships inside the flows exist. Temporal relationships can 
also exist between these flows. These relationships define multimedia 
synchronization constraints. The following presents its different aspects. 

17.2.1.3.1. Spatial synchronization 

Spatial synchronization expresses the visual scheduling constraints of the 
different multimedia objects on the presentation support (screen, image wall, etc.). It 
allows the definition of the size of the different areas, overlays, juxtapositions, etc. 
as in the MHEG3 standard [ISO 90, ISO 93]. 

17.2.1.3.2. Temporal synchronization 

The problems related to temporal synchronization are the most important and 
difficult to solve in the design of multimedia distributed applications and systems 
[BLA 96]. It aims at expressing and guaranteeing temporal constraints and 
relationships which exist between the objects constituting a multimedia document. 
Two kinds of synchronization appear: intra- and inter-stream synchronizations. 

Intra-stream synchronization aims at enforcing the presentation constraints on 
each information unit of the flow; this consists of controlling the jitter in order to 
prevent the presentation duration from diverging from its ideal value by a value 
greater than the maximum authorized jitter. For example, for a live video, we must 
guarantee that the presentation time of each video object (image) respects the time 
that existed between two consecutives image captures when the movie was created. 

Inter-stream synchronization aims at controlling the temporal drift that can exist 
between two streams. Drift is due to the cumulative effects of jitters; indeed, jitters 
supported by the objects can accumulate, and the drift can become very high. It is 
then necessary to control this drift in order to keep it below a tolerance threshold. 
This is typically the case in the synchronization between one audio and one video 
stream, for which it is necessary to ensure that sounds correspond to the lip 
movements; this issue is known as the lip synchronization problem. 

Similarly, there is a difference between discrete and continuous synchronization. 
Discrete synchronization appears most of the time when only discrete flows are 
considered; it consists of synchronizing objects when it is necessary. For example, 
in the case of a movie with subtitles, it is necessary to synchronize subtitles with the 
movie only when there is dialog. 

3 MHEG: Multimedia and Hypermedia information coding Expert Group. 
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On the other hand, continuous synchronization consists of periodically 
introducing synchronization points in the presentation of flow(s). For example, in 
the case of lip synchronization, it is necessary to periodically introduce 
synchronization points between the audio and video streams to avoid the drift 
increasing too much. 

17.2.1.3.3. Hypermedia synchronization 

Hypermedia synchronization integrates spatial and temporal synchronization 
notions. However it also adds the notion of logical synchronization, which consists 
of synchronizing the presentations of the application according to the activation of 
links of a hypermedia document (as in MHEG [ISO 90, ISO 93]). Hypermedia 
synchronization will, however, not be considered in this chapter. 

17.2.2. Asynchronous distributed systems 

17.2.2.1. Why asynchronous distributed systems? 

The study and methodology described in this chapter rely on the use of 
asynchronous distributed systems, and this is for three reasons: 

– First, almost all distributed systems are asynchronous: LANs, Internet and 
operating systems (Unix, DOS, etc.) are asynchronous. Moreover, current trends 
(imposed by manufacturers) develop asynchronism to improve performance, and 
asynchronism seems to be the future of computers. As a consequence, this study has 
been made in the widest possible domain, to propose synchronization mechanisms 
that can be generalized for a maximum number of applications on a maximum 
number of platforms. 

– Then, the solution of the multimedia synchronization problem in a 
synchronous environment is a particular case of the one in an asynchronous 
environment, where asynchronism is zero, and we then provide a solution for the 
most general case. 

– Finally, with real-time scheduling classes in Unix (as in Solaris 2 for instance), 
it becomes possible to implement real-time applications (this was not the case 
before) [COU 94, JEF 92, JEF 94b, VOG 95]. However, the gap between the theory 
of real-time systems and the reality of experimental real-time available systems is 
large [KAT 94]. Indeed, using real-time operating systems means solving some of 
the same problems as with asynchronous supports because, for example: 

- inputs/outputs are asynchronous; 

- priority inversions can appear when synchronizing processes; 

- the kernel has to be fully pre-emptive; 
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- system tasks can disturb the temporal scheduling of applications. 

In fact, for real-time behavior with a real-time operating system, it is necessary 
to limit the real-time processes to operations that do not perform any input/output 
operations [BAK 94]. However, this is incompatible with distributed multimedia 
applications that have to access multimedia and network boards. On the other hand, 
using classical systems (UNIX or POSIX) is of great interest, because they are 
widely available, and they imply only a few more problems than using “pure” real-
time systems [ADE 94]. In addition, it has been shown [KAN 94] that high speed 
wide area synchronous systems (including communication support and operating 
systems) are impossible to realize, thus justifying the use of asynchronous systems. 

17.2.2.2 Characterization of asynchronous systems 

Using asynchronous bases to support isochronous multimedia data introduces 
several problems. The essential one follows from the temporal variability of 
computing, as a real asynchronous operation has no upper bound. This variability 
(asynchronism) appears at three levels within any distributed system. 

– Communications supports and protocols are asynchronous. For example, the 
media access modes of most networks are non deterministic (depend on network 
load for instance), and no upper bound on the transit delay is ensured. This 
phenomenon is more important when using a WAN such as the Internet. 

– In a classical operating system (such as Unix), variability is due: 

- to the time-shared scheduling mechanisms (to privilege interactive processes 
and average throughput instead of temporal constraints). Moreover, the heavyweight 
processes notion, as in Unix, introduces a scheduling overhead that prevents 
parallelism and high throughput required by multimedia streams; 

- to the non pre-emptive or locally pre-emptive nature of the kernels, which 
induces non-deterministic latency times for process switching or interruption 
handling; 

- to memory swapping and other system tasks that run at non-deterministic 
instants and with priorities greater than those of users tasks. 

– The audio and video boards are not synchronous. In fact, new processors 
integrate multilevel cache memories for instructions and data that generate non-
deterministic memory access and context switching time. Likewise, virtual memory 
introduces a variability in memory access time. 
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17.2.2.3. Problems due to asynchronous systems 

The problems which appear in asynchronous systems then are: 

– Jitters problems due to temporal variability of operations run in the kernel. 
This cannot later guarantee a constant computing time and/or predictable time for 
the different operations, and cannot guarantee the presentation times of multimedia 
data. 

– Drift problems which are due to the cumulative effect of jitter, and can make a 
large drift appear, especially after computing of a long sequence presentation. 

– Finally, loss and duplication problems; indeed, the scheduling of tasks being 
unpredictable, it is possible that in the case of a buffer management, for instance, 
production tasks get easier access to the processor than consumption tasks. This 
would lead to a buffer overflow and losses. Similarly, losses can appear in 
communication networks. Duplicated objects can also arise, in particular in 
networks, when the routing algorithm duplicates packets. 

All these issues have to be solved, or at least controlled, in order to make it 
possible to write multimedia distributed applications. 

17.3. Modeling of multimedia synchronization constraints 

17.3.1. Modeling requirements

Section 17.2 pointed out the variability of possible QoS constraints. In addition, 
temporal constraints are difficult to express, and one of the first issues to address 
deals with easily and completely representing synchronization constraints which can 
exist in a multimedia document. 

This point did not appear to be essential at the beginning of our work, and we 
thought that it would be possible to guarantee intra- and inter-streams 
synchronization in a videoconferencing system without modeling the constraints to 
be enforced. For this purpose, an intuitive solution for synchronization uses 
timestamps [DIA 94a], which indicate the presentation date of each object. Thus, 
each object is timestamped with a relative date (0 being the start of the application), 
and the presentation process just has to present the considered object at the time 
indicated by its timestamp. This technique was used for developing the first 
videoconferencing prototype called TSVS (Timestamp Synchronized 
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Videoconference System)4, whose pros and cons are evaluated in what follows (this 
technique was then re-used in [ROT 95]). 

The timestamp based synchronization technique is easy to implement, and it 
solves both intra- and inter-streams synchronization issues. Intra-stream 
synchronization is obviously enforced, as a sequence captured in N seconds is 
replayed in N seconds with regular presentation rate of objects. On the other hand, 
inter-stream synchronization is also enforced as each stream is synchronized 
according to the common real timeline which synchronizes both streams to each 
other [DIA 94a]. 

However, timestamps do not take into account the asynchronism notion. They 
also do not consider the notion of temporal intervals, and then cannot support any 
jitter on an object. Therefore, if an object arrives after its presentation date (even if 
this delay is very short), it will not be presented; this creates a discontinuity in the 
stream, whereas the delay would maybe correspond to an acceptable jitter; therefore, 
some data were discarded, whereas it could have been presented after a short delay5.
The QoS degradation is then much stronger than what it could have been, which is 
not acceptable if the objective is to enforce the best possible presentation quality. In 
addition, because of the asynchronism, it is impossible to guarantee any fix date at 
operating system level. Finally, the timestamp based synchronization technique 
suffers from an a posteriori knowledge of synchronization constraints to be 
enforced; the end synchronization entity only knows the presentation date of any 
object when it effectively receives this object; this end entity then cannot anticipate 
the computing to achieve. 

These statements confirm that it is mandatory to model very accurately 
multimedia synchronization constraints that need to be respected by our 
applications. For this purpose, we have been looking at previous state-of-the art 
work to find a model which could match our requirements. 

4 TSVS is a videoconference system synchronized using the timestamp technique. The 
synchronization quality is very good and the tool works very well when problems related to 
asynchronism are limited (i.e. machines and networks are not loaded). This tool is available 
from the authors on request. 
5 In TSVS, jitter problems are solved using an ad hoc method. Indeed, to avoid positive jitter 
issues (which cannot be solved), received data are buffered for a duration greater than the 
maximum jitter generally observed in the systems and networks. However, this buffering time 
impacts on the interactivity level as it leads to some significant delays between the sender and 
the receiver. That is why TSVS works well only when issues related to asynchronism are 
limited. 
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To design guaranteed synchronized multimedia applications in asynchronous 
environments, it is mandatory to consider all problems due to the temporal 
variability of the computing times (jitter, drift) and to link them to the properties 
inherent to each multimedia object (for instance to link the jitter of an operating 
system to the acceptable jitter of each multimedia object). To define these 
synchronization properties on the multimedia objects themselves, a model allowing 
the author of a multimedia application to model the application synchronization 
constraints is required. This formal approach is also very interesting as it also allows 
computer scientists to simulate and validate the modeled scenarios. Several studies 
have already been completed in this area, and some models have been proposed 
[DIA 93a]. In particular, some of these models use formal approaches based on time 
Petri nets whose graphical characteristic is close from the paradigm of the digital 
VCR [SEN 94]. Chapters 5 and 6 present the state of the art of temporal extensions 
of Petri nets, especially applying them to the multimedia synchronization problem in 
terms of modeling and expressivity capabilities6. It appears that multimedia 
synchronization models and temporal extensions of Petri nets which have been 
proposed up to now do not provide the required expressivity and modeling 
capabilities for specifying synchronization scenarios of multimedia applications. 

The limitations of the existing models led us to propose a new model (based on 
Petri nets7), called TSPN (time stream Petri nets, presented in Chapter 6), providing 
the expressivity capability of the TPN model and the modeling capability of the 
ATPN model. The TSPN [DIA 93a, DIA 93b, SEN 94] model extends the ATPN 
model by adding inter-stream firing rules on transitions. 

By definition, TSPNs use temporal intervals on the arcs leaving places. This 
allows us to take into account both the temporal non-determinism of distributed 
asynchronous systems and the presentation time variability of multimedia objects. 
The temporal intervals are triplets (xs, ns, ys) called validity time intervals, where 
xs, ns and ys are respectively the minimum, nominal and maximum presentation 
values. Nominal values are useful for computing temporal drift on arcs (compared to 
the nominal duration). 

The inter-streams temporal drifts can be controlled in a very precise way using 
nine different inter-streams transition semantics. From an execution point of view, 
this synchronization semantics is defined as synchronization instants taking into 
account the real duration of processes. From a modeling point of view, these firing 
rules define firing intervals considering all possible synchronization instants, 

6 The modeling capacity of a model is its ability to easily represent a scenario. Its 
expressivity capability is its ability to specify the scenario completely. 
7 Because of the graphical aspect of Petri nets, which permit better visualization of 
synchronization characteristics of a multimedia document. 
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obtained by a complete combination of dynamic temporal validity intervals of 
considered arcs [DIA 93a, SEN 94]. For example, by using these transition rules, it is 
possible to specify synchronization mechanisms driven by the earliest stream (“or” 
synchronization rules), the latest stream (“and” synchronization rules) or by a given 
stream (“master” synchronization rules). This synchronization semantics defines the 
synchronization instants from an arc statically or dynamically chosen. 

17.3.2. Modeling example for a videoconference application 

The TSPN model is perfectly suited for modeling synchronization constraints of 
multimedia streams, in an asynchronous environment, for the applications we are 
considering. Thanks to its high modeling and expressivity capabilities, this model 
makes it possible to model complex synchronization scenarios easily and 
completely. In addition, from the description in TSPN of a synchronization scenario, 
it is possible to check its temporal validity. This verification is possible thanks to 
techniques designed for this purpose, but whose description is beyond the scope of 
this chapter8.

With regard to the multimedia synchronization aspect in this chapter, the key 
point deals with studying how it is possible from a TSPN to describe the behavior of 
a synchronization layer, and, in particular, to get the temporal scheduling of 
multimedia presentation processes for a presentation with all intra- and inter-stream 
synchronizations respected. 

The TSPN model will be used in the following to describe and implement the 
synchronization constraints of a videoconference application. The videoconference 
case perfectly exhibits the TSPN model capabilities. 

In a videoconferencing application, a video and an audio stream have to be 
synchronized. Some of the dynamic QoS parameters can be described by a TSPN. 
Figure 17.1 models a videoconference application for which dynamic QoS 
parameters are: 

– throughput: 10 images per second; 

– acceptable jitter on an audio or video object: 10 ms [JEF 94a]; 

– audio part is the most important medium (because the sound is the medium 
that contains most information); 

8 [COU 96] also proposes a methodology for verifying the temporal validity of a 
multimedia/hypermedia document. 
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– synchronization quality: the inter-stream drift must not exceed 100 ms [JEF 
94a], 100 ms being the limit below which the temporal gap between audio and video 
cannot be heard. 

These QoS parameters determine the parameters of the TSPN presented in 
Figure 17.1, where: 

– The 10 images per second rate defines the nominal presentation time of a video 
object, i.e. 100 ms (if we consider identical granularities for both audio and video, it 
is also the nominal presentation time of an audio packet). 

– The maximum acceptable intra-stream jitter determines the temporal validity 
intervals that are [90, 100, 110]. 

– The inter-stream synchronization is of “and-master” type for the sound. In fact, 
the sound being more important than the video, its temporal constraints have always 
to be respected, even if those on video are violated. However, the objective is to 
synchronize two continuous streams with each other and to avoid as far as possible 
discontinuities on the video stream (which could be caused by the acceleration 
mechanisms of the and type firing rule). For this purpose, the “and-master” firing 
rule has been selected, guaranteeing that the constraints on the audio stream will be 
guaranteed, and also trying as much as possible to respect the temporal constraints 
on the video stream too. 

– The inter-stream drift must not exceed 100 ms; the inter-stream 
synchronization period corresponds to the presentation of 5 images. Indeed, the 
maximum drift on 5 audio or video objects is 50 ms. The inter-streams drift between 
the two streams is then at most 100 ms. 

image 1 image 2 image 3 image 4

audio "and-master" 
synchronization

image 5

audio 1 audio 2 audio 3 audio 4 audio 5

[90,100,110] [90,100,110] [90,100,110] [90,100,110] [90,100,110]

[90,100,110] [90,100,110] [90,100,110] [90,100,110]

[90,100,110]

Figure 17.1. TSPN example for videoconferencing at a rate of 10 images/s
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17.4. Modeling of a synchronization architecture 

17.4.1. Introduction

This section aims to study and develop an approach and a set of mechanisms for 
guaranteeing to users multimedia QoS parameters such as audio and video quality, 
video rate, end-to-end delay or temporal synchronization constraints for distributed 
multimedia applications. More specifically, this part focuses on how to guarantee 
synchronization constraints of a videoconference application in an asynchronous 
environment (PNSVS: Petri net synchronized videoconference system). Indeed, 
multimedia synchronization is the key constraint to be enforced for multimedia 
distributed systems [BLA 96]. The problem related to multimedia synchronization, 
as detailed in section 17.2.1.3 of this chapter, aims to enforce both intra- and inter-
stream synchronization. 

We will address the following points: first, it will be shown that the behavior of 
the synchronization application can be very different from the one expressed by the 
users, in order to take into account the specific characteristics of the computer 
hardware devices and of the operating system. In section 17.4.2.2 we will show that 
two levels of synchronization exist in a videoconference application of PNSVS. 
Then, by analyzing results obtained with PNSVS, section 17.4.3 will show that it is 
interesting to use for PNSVS a partial order transport service, which, compared to 
standard transport, significantly improves the performance and quality of 
presentation. The new architecture of PNSVS will then be presented and evaluated 
in section 17.4.3.5. 

17.4.2. Modeling of a videoconference application

17.4.2.1. Multimedia boards latency and inter-stream synchronization: the drifted 
rendezvous

The presentation TSPN depicted in Figure 17.1 shows how units of the audio 
and video streams have to be synchronized. In particular, for a normal inter-stream 
synchronization, any audio object i must be synchronized with image i. 
Nevertheless, the multimedia boards do not have the same latency time. If the video 
board has a 50 ms latency time and the audio board a 250 ms latency time, then, by 
respecting the presentation TSPN of Figure 17.1, the final presentation will not be 
synchronized: the audio part will be 200 ms late compared to the video part, i.e. 
audio object i would be synchronized with image i + 2, even if the synchronization 
mechanisms have synchronized the audio object i with image i. 
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 To solve the problem of these different latency times on different multimedia 
boards, drifts have to be introduced in the inter-stream synchronizations (we also 
call these drifts “drifted rendezvous” [OWE 96a]). The difference between the audio 
and the video board latency times being 200 ms, it is sufficient to synchronize audio 
object i with image i  2 (see Figure 17.2, which represents the applicative TSPN 
modeling the applicative behavior of the application): after having been computed 
by the presentation boards, audio object i will be synchronized with image i. 
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       110]

drift period

audio latency time = 250 ms
video latency time = 50 ms
maximum inter-stream drift = 100 ms

Figure 17.2. Applicative TSPN taking into account the hardware latency times 

However, the chosen example is simple as the difference between the two 
latency times is a multiple of the presentation time of an object. Of course, this is 
not always the case. For example, if the audio and video latency times equal 230 and 
50 ms, respectively, the difference between the latency times is 180 ms: the drift that 
has to be modeled in the rendezvous corresponds to two objects, which represent a 
200 ms drift. Nevertheless, after this 200 ms drift, there remains a 20 ms drift 
between the audio and video streams. To force the maximum inter-stream drift to 
remain under 100 ms, the TSPN inter-stream synchronization period has to be 
changed. If the inter-stream synchronization is enforced after every five images, 
because of the remaining 20 ms drift which has not been canceled, the inter-stream 
drift of the audio/video streams would be in the interval [ 80 ms, 120 ms], which 
could be greater than the allowed 100 ms in absolute value. It follows that an inter-
stream synchronization must be done after every four images, in order to make the 
inter-stream drift remain in the interval [ 60 ms, 100 ms]. 

The presentation TSPN modeling the multimedia synchronization scenario and 
the applicative TSPN modeling the applicative processes behavior have different 
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shapes, because of the drifted rendezvous and the modified inter-stream 
synchronization period. 

17.4.2.2. The two levels modeling of PNSVS 

It now clearly appears that two models are needed to describe both presentation 
and application levels. The first is the interface level whose behavior is modeled 
using the presentation TSPN. This TSPN models the application behavior as seen by 
the users, i.e. how audio and video objects are synchronized and what are their 
temporal constraints. This presentation TSPN is the same for the two users: the 
sender and receiver have to compute the same objects having the same temporal 
constraints (see Figure 17.1). 

The second level corresponds to the applicative synchronization. The applicative 
synchronization cannot be modeled by the presentation TSPN because of the 
characteristics of the operating system and of the multimedia boards. These 
characteristics force the synchronization mechanisms to consider multimedia objects 
in a different way than at the interface (presentation) level. To model the applicative 
synchronization mechanisms, the applicative TSPN model has been defined. 
Moreover, the sender and receiver entities appear to be different at the application 
level, and two models are required. Figure 17.2 represents the applicative TSPN for 
the receiving entity of PNSVS9. [OWE 96b] gives the full definition of both TSPN 
models and shows how the applicative TSPNs are automatically derived from the 
presentation TSPN, which is itself derived from the QoS requested by users. 

17.4.2.3. Software architecture for synchronization 

In asynchronous distributed systems, all components are asynchronous: 
communication supports, operating systems, multimedia boards. Therefore, 
synchronization operations have to run at the highest level of the videoconference 
system architecture, i.e. in the application layer of the receiver. Indeed, enforcing 
strong (final) synchronization operations within the communication layers would 
often be useless because the data synchronized in the low layers can be 
desynchronized when going through upper layers: operating system and multimedia 
boards can introduce a non-deterministic jitter in the computing of each multimedia 
object, thus annihilating the effect of low layer temporal synchronization processes. 

9 Note however that the TSPN of Figure 17.2 can still be modified. We have already shown 
that inter-stream synchronization constraints can lead to reduction of the inter-stream 
synchronization period. On the other hand, because of the behavior of audio devices, we may 
have to reduce the size of audio packets in order to limit end-to-end delays [OWE 96b, OWE 
98a]. Besides, in the global modeling of the videoconference system in Figure 17.7, it appears 
that audio packets have been divided in two for this purpose. The production time of audio 
data is then halved, as well as the end-to-end delay. 
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In addition, the application layer (user part of the operating system) is the only layer 
where developers can change the process scheduling.  

However, the application written in the user space of the operating system has to 
be weakly synchronous, and has therefore to respect maximum presentation times. 
The operating system being asynchronous, no bound on computing times is ensured 
in the system and time-shared scheduling classes. To be able to assure presentation 
duration will not be greater than their maximum bound, it is necessary to run 
processes with priorities greater than the ones of the system tasks, and to use a fully 
pre-emptive operating system. With the Solaris 2 operating system, such a 
scheduling class exists and is called real-time (RT). Nevertheless, even when they 
run with the RT priorities, the processes only have a few real-time characteristics: 
their essential feature is that their priority class is greater than that of the system 
tasks. On the other hand, as using the RT scheduling class is able to disturb the 
operating system because system tasks are delayed when a RT process runs, RT 
processing must be kept short. For instance, if the workstation is overloaded by RT 
tasks, communications (in the system class) will no longer be processed. 
Furthermore, if a RT process makes a system call, it loses its RT feature, and enters 
the system scheduling class. As a consequence, the RT scheduling class is essential 
for respecting the temporal synchronization constraints, but it has to be handled 
carefully [OWE 96b]. 
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Figure 17.3. Synchronization architecture for a videoconference application 
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The architecture for the videoconference application resulting from the problems 
presented previously is depicted on Figure 17.3 [OWE 95]. It depicts the different 
components of the videoconference system, associating each of them with their 
scheduling class in the operating system. In addition, this figure shows the different 
tasks of the application, with: 

– the audio and video stockers which get the data from the network, and store 
them in audio and video buffers. These audio and video buffers are used for 
temporarily storing the unsynchronized data coming from the network and to keep 
them long enough to solve the jitter problem; 

– the presentation audio and video processes, running in the time-shared class, 
which perform the required operations and computing required for the sound and 
picture presentations; 

– the real-time orchestration processes which play the synchronization scenario 
modeled by the receiver applicative TSPN and which control the presentation 
processes to guarantee the presentation temporal requirements. 

With these processes, the intra-stream synchronization principle relies on 
controlling the presentation processes in real time thanks to the orchestration 
processes. The main idea deals with de-correlating presentation tasks suffering from 
system asynchronism from temporal control tasks. Inter-stream synchronization is 
implemented thanks to a rendezvous between audio and video orchestration tasks 
which respect the “and-master” firing semantic of the TSPN depicted in Figure 17.1. 

17.4.3. Using a partial order transport 

17.4.3.1. Architecture analysis

The QoS management principles presented in this chapter have been 
implemented for the PNSVS videoconference application. Measurements of audio 
and video object presentation times for the application showed that synchronization 
constraints are perfectly respected [OWE 98]. However, there is the problem of 
excessive losses when an unreliable network is used. In fact, each network loss 
results in more than a single discontinuity at the presentation interface level. Indeed, 
if an object is lost by the network, and if this loss is acceptable according to the QoS 
requested by the user, then this loss leads to duplication (at the presentation level) of 
the preceding object, which represents a discontinuity (what seems to be the normal 
and minimal degradation in such a case). However, as PNSVS presentation 
processes [OWE 96b] cannot determine whether this object has been lost or only 
delayed, they wait for it as long as possible (till the maximum presentation time of 
the preceding object expires) before starting an exception computing (replacing the 
missing object by another temporarily equivalent). Thus, in the case of one loss, the 
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application is unable to recover from it, and, in addition, it wastes time waiting for 
the object to compute. Because of this time waste, or the accumulation of such time 
wastes, the end-to-end delay increases, which can make the mechanism of delay 
control work, and create new losses. Similarly, the delay induced by waiting for an 
object increases the inter-stream drift, and when the inter-stream transition is fired, 
it can lead to an acceleration of the late stream, thus causing new losses on this 
stream. The loss of one image, which should only provoke one discontinuity, can 
then have much more serious consequences. 

To solve these problems, it is necessary to use a transport mechanism which 
delivers data and detects losses as early as possible. 

17.4.3.2. A solution based on a partial order transport 

[AME 94, CHA 95a, CHA 95b, DIA 95] define a new partial order transport 
protocol as a transport aiming to deliver objects sent once or on several connections, 
according to a given order. This order is any order between the total order (TCP) 
and no order (UDP), and can be expressed as a serial/parallel composition of 
objects. It appears that this order can be the one described by the constraints of the 
applicative TSPN [DIA 94b]. Thus, [AME 94, CHA 95a, CHA 95b, DIA 95] define 
this delivery according to a given order as a logical synchronization of multimedia 
objects. 

In addition, this new notion of partial order is enriched by the partial reliability 
notion.  

According to the issues encountered with the first version of PNSVS presented 
in the previous section, the partial reliability notion is essential. This notion is 
tightly related to an end-to-end transport QoS that defines a nominal QoS and a 
minimal QoS under which the user requested service is not ensured. In term of 
reliability, this minimal QoS can be expressed in different ways: by a maximum 
number of losses inside a sequence, and/or by a maximum of consecutive losses. 
Thus, in the case of an acceptable loss, detected when the received object is 
logically after the one expected, the object initially expected can be declared lost 
immediately (no recovery attempt is initiated), and the object just received by the 
receiving transport entity is delivered to the application (earliest delivery). On the 
other hand, if the loss is not acceptable according to the requested reliability, 
retransmission occurs, the number of retransmissions being a parameter of the 
transport service. Any object received by the receiving transport entity is then 
delivered as early as possible in respect of the partial reliability. If this object cannot 
be delivered according to the partial order, it is certainly because a network problem 
disturbed the transmission of objects which are logically before this later object. 
Then, if the objects which logically precede the received one can be lost according 
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to the partial reliability, they will be considered as lost (early losses), and the 
received object is not delayed anymore (early delivery) [AME 93a, AME 93b]. 

In fact, two approaches exist for managing partial reliability: medium by 
medium, and by group of media. In medium by medium management, the receiving 
entity can only use partial reliability mechanisms on the stream it manages, and not 
on the other streams of the multimedia connection. On the other hand, with a by 
group of media management, the receiving entity of a stream can, to implement the 
early delivery principle, declare some losses on other streams of the multimedia 
connection when there are inter-stream logical synchronizations [DIA 95]. 

A1 A2 A3 A4 A5 A6 A7 A8

V1 V2 V3 V4 V5 V6 V7 V8

Figure 17.4. Partial order example 

Let us consider the example in Figure 17.4, which represents one Petri net of a 
serial/parallel composition for a multimedia connection (audio and video). Let us 
assume that the maximum number of losses on a stream for each inter-stream 
synchronization period is one object. Let us now assume that objects V1, A1, A2, 
and A3 have been received by the receiving transport entity and delivered to the 
application. Let us assume now that the receiving transport entity receives the V4 
object; by respecting the partial order on the video connection, the V4 object cannot 
be delivered, as it would need to declare V2 and V3 as lost objects. But two losses 
per synchronization period and per stream are forbidden. The V4 object is then 
stored, waiting for new object receptions. If object V3 arrives, it can be delivered if 
object V2 is declared lost. In order not to delay transmissions, the partial order 
transport delivers the received or stored objects as early as possible; it then declares 
the loss of object V2 (as soon as it receives V3), and delivers sequentially V3 and 
V4, which was previously stored: the principle of the early delivery, allowed 
because of an early loss declaration. This illustrates the by medium management 
mechanism of the partial reliability principle. 

Let us now assume that the V5 object arrives. Regarding the partial order, this 
object cannot be delivered, because it is logically after the A4 object (because of the 
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inter-stream synchronization after A4 and V4). With by medium management of the 
partial order multiconnection, the V5 object has to be stored as long as the A4 object 
arrives or is declared lost (because of the arrival of A5). 

However, if we consider a by group of media management, the manager of the 
video connection can also declare some losses in the audio connection. In this case, 
as one loss is acceptable in the audio stream for the first period, it then declares the 
A4 object as lost in order to deliver V5 to the application as early as possible. This 
by group of media partial reliability management requires the architecture of the 
receiving transport entity (Figure 17.5) to integrate a manager for multimedia 
multiconnections [CHA 95c]. 

USER S  USER R 

connection QoS1

connection QoS2

POCPOC

Inter-streams dependancies 
management

Partial order
multimedia

transport

Physical layer to
network layer

POC POC

intra-stream dependancies 
management

POC : Partial Order Connection

Figure 17.5. Architecture of the sending and receiving entities of a partial order transport 

17.4.3.3. Architecture for an application over a partial order transport 

The architecture required to run PNSNS on top of a partial order transport is 
depicted on Figure 17.6. This architecture does not directly put the synchronization 
task on top of the partial order transport: because of its logical management of data, 
the partial order transport cannot detect long loss sequences, and does not provide, 
in this case, any improvement compared to a transport protocol as UDP. These 
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losses in sequence cannot be detected without an explicit management of time 
(using a real or relative clock). Thus, the pre-synchronization layer has been added 
between the transport and application layers for providing temporal control on data 
delivered or lost by the transport; it allows the detection of long loss sequences, 
network drifts and communication system asynchronism issues. 

synchronization

pre-synchronization

partial order transport

video device audio device

APPLICATION

TRANSPORT

ATMNETWORK

Figure 17.6. PNSVS architecture on top of a partial order transport service 

The software architecture of this second version of PNSVS is very similar to the 
first version. In the second version, there are only two pre-synchronization 
processes which control the temporal behavior of stockers, in the same way as 
orchestrators control the temporal behavior of presentation processes. 

17.4.3.4. Modeling of the different synchronization levels 

It should be noted that the Petri net model is used for modeling the behavior of 
each layer: user interface, synchronization application, transport, etc., and each layer 
has different behaviors. In fact, Figure 17.7 shows how it is possible to model, level 
by level, the behavior of each layer according to their functionalities and the 
constraints they have to respect in this architecture (with four levels). 

17.4.3.5. Architecture evaluation

The PNSVS application has been implemented on Sun workstations (Sun 
SparcStation 10, 5 or 2) with the Solaris 2.5 operating system. These machines were 
equipped with Parallax video boards which allow the capture, display, compression 
and decompression of images at the M-JPEG format. The audio board is the 
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standard one on these types of machine. Tests were performed on a 10 Mbps 
Ethernet and a 155 Mbps ATM network. 
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Figure 17.7. Modeling of the behavior of each level of PNSVS 

PNSVS is a videoconference application which can handle 25 images/s (320 x 
240 pixels and 24 bits coded colors) full duplex. The minimum end-to-end 
presentation delay obtained is around 400 ms and seems very difficult to reduce 
because of the audio board latency time (around 250 ms). 

It has been shown that the temporal constraints of audio and video presentation 
(jitter and drift) are perfectly enforced [OWE 98]. 
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In addition, benefits due to the use of a partial order transport on an application 
as PNSVS have been evaluated. Thus, Figure 17.8 presents, according to a 
simulated network loss rate, the additional loss rate due to the first version of 
PNSVS (which takes advantage of UDP) and the second version of PNSVS (which 
takes advantage of a partial order transport). The curves exhibit a significant quality 
improvement when partial order transport is used. 

Figure 17.8. Comparative assessment of losses with POC and UDP for PNSVS 

17.5. Conclusion 

This chapter has presented a new and adequate architecture and its related 
mechanisms for fulfilling important synchronization requirements for multimedia 
applications in asynchronous environments. To reach the best possible QoS, the 
synchronization architecture is limited by two extreme layers: an applicative 
synchronization layer that ensures the multimedia objects temporal requirements, 
and a new multimedia advanced partial order transport layer. However, to interface 
the partial order transport service with the application needs, a pre-synchronization 
level has been located between the application and the transport levels. While 
conceptually this level should be located inside the transport layer, due to 
implementation constraints, it here has been situated in the application layer. 

This architecture has been derived after considering a formal representation of 
multimedia information [DIA 97]. It has been shown that it is possible to model the 
behavior of all layers of such a synchronization architecture. The model that has 
been used here is a time Petri nets based model, the TSPN presented in Chapter 6. A 
presentation TSPN, deduced from the user QoS (see section 17.3.2), is used to 
model the presentation level multimedia synchronization scenarios at the interface 
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between the application and the user. Then, in the general case, a modified 
applicative representation (for the sender and the receiver) is deduced to model the 
synchronization application behavior. Finally, the receiver applicative model leads 
to the design of the partial order transport. 

These concepts have been used to design the PNSVS videoconferencing system. 
Its implementation has been based on advanced system mechanisms, such as the 
real-time scheduling class of Solaris 2, as described in section 17.4.2.3, which 
perfectly fulfills videoconference requirements. The new transport architecture, 
service and protocol based on partial orders, running on the Solaris 2 streams 
mechanisms, provides the basis of the global architecture. An evaluation has shown 
the efficiency of the architecture compared to the traditional one based on UDP/IP. 
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Chapter 181

Performance Evaluation
in Manufacturing Systems 

18.1. Introduction 

The increasing complexity of production systems and their control, as well as the 
increasingly high costs of their components (machines with numerical control, 
automated guided vehicles, automated stores, robots, etc.) oblige companies to 
optimize their systems during their design (installing a new system or modifying 
existing structures), but also during their exploitation (minimizing work-in-progress, 
determination of dynamic rules, etc.). To create or modify a production system 
involves high costs for a company. If the manufacturing system is undersized, the 
company will not be able to achieve its goals. This system will therefore have to be 
modified, which will result in significant over-costs. If the manufacturing system is 
oversized, the company would have spent its capital unnecessarily. Thus to create or 
modify a manufacturing system, it is important to initially define the various 
performance indicators which have to be reached. Next, based on the experience of 
industrial experts, a model of the system is established by achieving as well as 
possible the performance indicators previously defined. Then the performance of 
this model will be evaluated before analyzing the obtained results. This phase of 
analysis makes it possible to modify or adjust the model so that it can fulfill as far as 
possible the desired performance requirements. To find the optimal manufacturing 
system (i.e. the system best meeting, with lowest costs, the desired performance 
indicators) thus involves loops of the phases of modeling and performance 
evaluation.

                                                          
Chapter written by Isabel DEMONGODIN, Nathalie SAUER and Laurent TRUFFET.
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The first part of this chapter is devoted to modeling of manufacturing systems 
using the formalism of Petri nets (PN), which are powerful tools enabling the 
specification, modeling, evaluation and management of dynamic systems. Indeed, 
this formalism has many analytical properties that often allow a simple evaluation of 
the qualitative and quantitative properties of the considered manufacturing system 
during the design period but also in the exploitation phase [DES 94, PRO 94, SIL 
97, VAL 97]. Based on transition-timed PNs, the modeling and analysis of cyclic 
production systems (i.e. repetitive behavior), where operational times are 
deterministic or stochastic, are dealt with in this chapter. After having defined the 
different characteristics of manufacturing systems with cyclic behavior, the various 
stages of modeling of flexible manufacturing systems (job-shops) and of just-in-time 
systems (or kanban systems), are described. Then, high throughput (i.e. high speed) 
production systems are studied, which generally require tools from the field of 
hybrid dynamic systems. Next, some temporal properties of these systems are 
presented, in term of cycle time, permanent state, etc. Complementing Chapter 5, the 
available analysis techniques are dedicated to timed marked graphs (T-timed marked 
graphs), for which a deterministic or stochastic firing delay is associated with each 
transition (see Chapter 5). These techniques are based on the analysis of the graph 
structure, and not on the evolution of the model. Three classes of marked graphs are 
studied: discrete-deterministic, discrete-stochastic and continuous-deterministic. 
Finally, the optimization of discrete models (deterministic or stochastic) will be 
discussed. More precisely, the problem of marking optimization for structures such 
as marked graphs is investigated. For a manufacturing system, this problem consists 
of maximizing productivity using the smallest possible number of transport 
resources (carriages, pallets, stocks, etc.). 

18.2. Modeling of manufacturing systems 

The various machines (or resources) of a manufacturing system, through which 
the product moves, constitute the manufacturing process and carry out operations 
that can be classified in four categories: 

– Transformation operations, which modify the physical status of the product. 
They operate on only one product and finish by releasing the transformed product 
(example: filling of a bottle in a conditioning line). 

– Operations of modification of the structure, which combine some products to 
form a new product (example: creation of a pack composed by several basic 
products). 

– Information operations which control, for example, the quality of the product. 

– Transfer operations, which modify the position of the product in space without 
changing its physical status or structure. These operations can be performed by 
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transport resources (for example pallets, AGV, etc.) and, in certain cases, they can 
correspond to storage sections (example: transport by conveyors). 

18.2.1. Discrete event systems aspects

Generally, the dynamics of discrete event systems (DES) can be described by a 
state recursion equation of the form: 

(  + 1) = f( ( ), U( )) [18.1] 

( ) denotes the state of the system at date , U( ) is an exogenous variable, f 
represents the instantaneous dynamics of the system. A performance criterion I(.) of 
the system is defined as a cost function of the state system. We assume that this 
performance criterion can be written as follows: 

 I( ) = C  ( ( ),…, (0))  [18.2] 

Classical questions on dynamics of such systems are: 

– the computation problem of series <I( )>, usually called the transient problem. 
The transient analysis of discrete event systems naturally appears in reliability 
problems, alarm control in manufacturing systems, quality service in networks, and 
so on; 

– the existence and the computation of the permanent (or stationary or 
asymptotic) behavior of the system, i.e.: )()(lim II . It corresponds to the 

study of the stability of the system. 

The description of the instantaneous dynamics of the systems (i.e. to find 
function f in equation [18.1]) must be done by experts in the system. Thus, 
formalism is needed to describe such instantaneous dynamics. The instantaneous 
dynamic is the result of the interaction of different parts of the system. Historically, 
queuing networks were elaborated to describe the flows of entities between different 
parts of the system [VAN 93]. Petri nets were elaborated to describe 
synchronizations in parallel or distributed systems for verifying specifications (for 
instance detection of deadlocks, etc.). 

Let us consider a manufacturing system having K machines. The main goal is to 
provide a description of synchronization mechanisms arising in such manufacturing 
systems. To do this we follow the approach of Baccelli and Makowski [BAC 89], 
where the entities are called parts. Each machine k, 1 k K, is associated with the 
series < n

k> and < n
k>, where n

k denotes the arrival date of part n and n
k
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corresponds to its treatment delay. The set of operations on the machine (i.e. storage 
and treatment) maps series < n

k>, < n
k> to two other series < n

k>, < n
k>, where n

k

and n
k are the initial date of treatment and the date of departure of part n from 

machine k, respectively. Let us distinguish two kinds of constraints. 

Weak constraints 

We have the monotonicity property, i.e.: 

Kk...,... k
n

k
n

kk 1110

The treatment of part of a machine cannot start before the arrival of the part on 
this machine: 

Kk,n,k
n

k
n 1

A part cannot leave a machine before its treatment: 

Kknk
n

k
n

k
n 1,,

Routings between machines of the manufacturing system could exist. If these 
routings are assumed instantaneous then we have: 

j
n

i
n , for some ],1[, Kji

Let us define k
n

k
1n

notk , where k
n

k
1n  denotes the nth

firing time of transition t1; k
n

notk , where k
n  denotes the nth firing time 

of the transition t2. Finally, n corresponds to the number of times where a transition 
is fired. Figure 18.1 shows how to describe the dynamics of machine k using Petri 
net and queuing formalisms. 
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p11t 2t

kk k

k

Petri net model   Queuing model 

Figure 18.1. Representation of machine k 

Strong constraints 

Other kinds of stronger constraints exist in manufacturing systems: some of them 
are described below. 

Arrival–arrival constraints. The sequences of arrival dates to machines j and k
satisfy some relations. For example to describe the fork primitive between machines 
j and k in parallel, we impose: 

nkjj
n

k
n ,,

Such synchronization could be represented using Petri net formalism as depicted 
by Figure 18.2 (in the case of three machines in parallel). 

p 31 1 pt
4p

2p

Figure 18.2. Fork of three machines in parallel 

Departure–departure constraints. The sequences < n
k>, k = 1,…, K satisfy 

some relations. For example, in the case of the join primitive, we require: 

n,kj,j
n

k
n

Such synchronization could be described using Petri net formalism as depicted in 
Figure 18.3 (in the case of three machines in parallel). 
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Figure 18.3. Join of three machines in parallel 

Departure–arrival constraints. Relationships exist between the time of the end 
of a treatment of a part on a machine and the arrival time of the same part at another 
machine. An example is routing between machines. Let us mention a typical 
example in manufacturing systems. We consider a simple production line with K
machines in tandem with finite capacities N1, …, NK, respectively. As the system is 
not allowed to lose parts, we require a blocking policy for the machines. It means 
that if the machine k + 1 is full, the part on machine k will be blocked (after or 
before treatment). Thus, we have the following relationships: 

n,Kk,k
n

k
Nn k

1

Such constraint between machines k and k + 1 is represented by the set {p2, p6,
t3} in Figure 18.4. 

p 21

t1

N k

p p

3

54

p

p

6p
Nk+1

t2 t4
t5t3 k+1kk-1 k k+1

Figure 18.4. Blocking mechanism between machines k and k + 1 

Other strong constraints exist in discrete event systems: services–services, 
services–arrival. They will be defined in the text if necessary. 

After this brief introduction, the particular class of Petri nets able to apprehend 
and describe synchronizations in manufacturing systems, when the decisional part is 
defined, is that of a marked graph (MG), where any structure of conflict is absent. 
Obviously, it will be necessary to add the temporal aspects with these graphs in 
order to take into account the operational durations of the machines. The main 
principles of timed Petri nets having been given in Part 1, we will focus in this 
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chapter on models with discrete state space where the concept of time is 
deterministic or stochastic and models with continuous state space with 
deterministic time. From the modeling viewpoint, the concepts of time are 
associated with the transitions of the Petri net model. 

18.2.2. Cyclic aspects

The particular feature of cyclic manufacturing systems is that the various types 
of products are produced according to given ratios that are the same for all periods. 
For a given scheduling of operations on machines, cyclic manufacturing systems can 
be modeled by the particular class of Petri nets that are the marked graphs (MG) 
[DES 94, HIL 89]. In this type of model, the operations are represented by 
transitions, stocks are modeled by places, and the level of stocks corresponds to the 
marking of the net. 

We consider the case of a production system composed of a set of machines that 
can produce various types of products. Every product has to undergo a series of 
elementary operations (transformation, assembly, disassembly, etc.) on various 
machines. The manufacturing process of this type of product is defined by the order 
in which machines are visited to assemble the product and the necessary time 
(deterministic or stochastic) to manufacture the product on the machine. Products 
are often conveyed by transportation resources (AGV, conveyor, etc.) which are 
available in limited numbers in the workshop. In the following, we make the 
assumption that every transportation resource can transport only a single type of 
product. Furthermore, we assume a machine can process only one operation at a 
time, in other words, we adopt a single server semantic. 

18.2.2.1. Model of a flexible manufacturing system (job-shop)

In a job-shop, each type of product follows a linear manufacturing process. In 
other words, each product undergoes successively a series of operations in a given 
order. When the routing is the same for all the types of products, we obtain a flow-
shop, which is a particular case of a job-shop.

The system being studied is composed of three machines (M1, M2 and M3) and 
can produce two types of products. The manufacturing processes of these products 
are denoted by: 

– product of type A: M1(d1), M2(d2), M3(d3);

– product of type B: M2(d4), M1(d5).
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The numbers in brackets are the manufacturing times. These values are 
deterministic (or constant) or stochastic. The manufacturing system is cyclic and the 
production ratios are 3/5 for products of type A and 2/5 for products of type B. The 
input sequences of the machines verifying the production ratios, given by the 
company or determined by scheduling methods, are the following: A, A, A, B, B for 
machines M1 and M2, while machine M3 treats only products of type A.  

The method for establishing a flexible manufacturing system model contains two 
steps (see [DES 94, PRO 94] for more details): the modeling of the manufacturing 
process for each type of product and the modeling of the control. In our example, the 
manufacturing process of product A can be modeled by the elementary circuit in 
Figure 18.5.  

t (d  )
1 1

M1

t (d  )
3 3t (d  )2  2

M M32

p
1

p
3

p
2

Figure 18.5. Elementary circuit corresponding to the manufacturing process A 

Place p3, called the resource place, allows curling on the manufacturing process 
of product A. Consequently, as soon as a product has ended its manufacturing, a 
new product is launched. The elementary circuits, created for every manufacturing 
process, are called process circuits. Tokens in the resource places represent the 
available transportation resources, and tokens in the other places of the process 
circuits represent work-in-process products (i.e. the transportation resources 
associated to a product). As was shown in section 3.5.3, an elementary circuit of a 
marked graph (MG) corresponds to a P-semi-flow. Consequently, the number of 
tokens in the process circuits is invariant and so the number of transportation 
resources associated with every type of product is constant.  

To be able to model this system with a MG by respecting the ratios of production 
(3/5 of products A and 2/5 of products B), it is necessary to duplicate some process 
circuits. Furthermore, at this step of modeling, we must make two important 
remarks: 

– It is possible that two transitions corresponding to the same machine are 
simultaneously fired. 
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– Production ratios may not be respected. Indeed, in every process circuit, tokens 
evolve at their own speed, which only depends on the number of tokens in the 
circuit and on the timing of transitions. 

To control the system and synchronize the various process circuits, it is thus 
necessary to add an elementary circuit containing all the transitions that correspond 
to the same machine, by making sure that the process circuits are visited in the order 
of the input sequences of machines. These elementary circuits are called command 
circuits. There is exactly one token in each command circuit, which prevents two 
transitions corresponding to the same machine from being fired simultaneously. 
They also impose the input sequences of products to the various machines. 

The complete model of the job-shop previously considered is given by the MG 
in Figure 18.6. Three machine command circuits are represented by dotted lines and 
three machines are associated with them. The connection of the command circuits 
and the process circuits gives new elementary circuits, called mixed circuits. They 
are formed by parts of command circuits and parts of process circuits. For example, 
 = (t1, p1, t2, p20, t5, p21, t8, p8, t9, p24, t3, p3) is a mixed circuit.  

It should be noted that the number of elementary circuits increases very quickly 
with the size of the model. In our example, the MG is composed of 93 elementary 
circuits. We should also note that the MG modeling this flexible manufacturing 
system is strongly connected, but its size can be important. To reduce the size of the 
model, we use weighted marked graphs (WMG). In particular, weights are used for 
command circuits. Immediate transitions are added to connect two process circuits, 
and weights are added on the arcs to respect the production ratios. With this model, 
the number of tokens in each command circuit is not always one. It depends on the 
P-semi-flow corresponding to its circuit. If we consider the command circuit of M2,
 = <t2, p10, t8, p11, t4, p12, t9, p13>, it is necessary to have one of the two following 

constraints on the marking: 

(i) m(p10) + m(p13) = 3 and m(p11) + m(p12) = 0 

(ii) m(p11) + m(p12) = 2 and m(p10) + m(p13) = 0 

These conditions are necessary so that the WMG is live and so that the machine 
M2 does not treat several products simultaneously. Remember that we are always in 
a single server semantic. 
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Figure 18.6. Discrete marked graph for the job-shop system 

The new model is given in Figure 18.7. We can see that the size of this new 
model is less important than the first model: 14 places instead of 26, 9 transitions 
instead of 13. Furthermore, the WMG also allows modeling of the 
assembly/disassembly systems of batches of products at the level of the process 
circuits.
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Figure 18.7. Discrete weighted marked graph for the job-shop system 

18.2.2.2 Model of kanban systems

In the kanban system, the production system can be decomposed in stages and 
every stage consists of one manufacturing sub-system and an output stock. As 
previously explained, the sub-system can consist of a single machine, or by several 
identical machines working in parallel, or by a complete workshop. In every stage, 
we affect a fixed number of kanban. Every product arriving in a stage is attached to 
a kanban and this kanban is removed from the product when the product leaves the 
stage. Di Mascolo et al. [DIM 91] showed that a kanban system could be modeled 
by a MG. Figure 18.8 gives a model of a stage of a kanban system constituted by a 
single machine and its relations with the nearby stage. Place qk contains tokens 
corresponding to the free kanbans that wait for a part going out of stage k 1. Place 
pk contains tokens corresponding to kanban attached to parts waiting to be serviced 
at stage k (including the one being serviced). Place rk contains tokens corresponding 
to kanban attached to completed parts waiting to be moved to the next stage. lk and
lk+1 are untimed transitions and correspond to the input and output of kanban at this 
stage.
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Figure 18.8. Stage k of a kanban system 

Finally, the model of a kanban system is obtained by connecting together the 
Petri net models of different stages. The principle of modeling the system is similar 
to the previous case. It is necessary to duplicate the process circuits to respect the 
production ratios and connect them with command circuits by respecting the 
sequences of machines. 

Much work has been done on this type of model. In particular, Di Mascolo et al.
[DIM 91] produced results on the modeling and the evaluation of the kanban system 
by using Petri nets. Chaouiya and Dallery [CHA 97] also proposed models based on 
Petri nets for various types of kanban systems: kanban control system, generalized 
kanban control system, extended kanban control system.

18.2.3. High throughput aspects

A high throughput manufacturing system corresponds to a quasi-linear structure, 
composed of machines separated by storage sections or by transfer elements used as 
buffer zones. The parts of the system, generally products of a single type, pass 
successively once and only once through all the resources in a well-defined order. 

In the design phase, a high throughput manufacturing line is sized using the so-
called “V-logic”, after identification of the pilot machine. This machine is often 
considered as the slowest of the system. The farther away one machine is from the 
pilot machine, the faster it is. Depending on the position in the line, the nominal 
throughput of the upstream machines decreases to the pilot machine throughput, 
while that of the downstream machines increases. For quality and uniformity of the 
product, the throughput of the machine that transforms the product is taken as the 
pilot machine throughput. The behavior of the latter should be as continuous as 
possible, to avoid blocking or starving conditions during the period of manufacture. 
In bottling (filling of bottles or cans), the pilot machine is very often the rotary filler. 
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In the production phase, when a machine is stopped (breakdown, starving, 
blocking), restarting after this stoppage produces a certain number of losses. In order 
to limit these losses and the phenomena of blocking or starving, a control is added to 
the high throughput manufacturing line. This control uses and pilots the variable 
speed of machines. Thus, the variability of speeds makes it possible to ensure a 
better decoupling of machines and decreases the occurrence of blocking and 
starving. The main aim of regulation of part flows in machines is to optimize the 
operation of resources, in order to deal with random breakdowns, to anticipate 
induced stops before they occur, and finally to avoid important fluctuations of the 
occupation of the storage sections. 

A high throughput production line can be seen as a system consisting of a 
physical part (machines and transfer elements) and a control part (control laws). The 
principal performance indicator of a high throughput production line is its 
production capacity (or productivity), i.e. the average number of parts that the line is 
able to produce per unit of time. As in a traditional production line, the sizing of the 
physical part (choice of machines, determination of sizes of intermediate stocks) has 
a significant impact on performance and it is essential to have tools to aid decision-
making to evaluate and optimize performance. 

In pursuing the objective of evaluation and optimization of high throughput 
production systems, a purely discrete model led to an explosion of the number of 
accessible states, due to the large number of entities. This aspect is crucial when we 
seek to evaluate the dynamic performance of a production system because the 
computing time necessary to obtaining the performance is directly related to the 
number of accessible states, which constitutes a limit to the use of discrete Petri 
nets. Several authors studying production systems have modeled large numbers of 
products by real numbers, this approximation being generally very satisfactory 
[SUR 94]. Thus, when the products are no longer represented as discrete entities, the 
concept of continuous product flows enables the number of generated events to be 
considerably reduced, and thus avoids a combinatorial explosion of the number of 
states. Many recent works use mixed approaches (discrete and continuous) to model 
and analyze this type of system [ZAY 01]. Among Petri net models, continuous 
Petri nets, defined by David and Alla in 1990 [DAV 05], prove to be best adapted to 
the modeling of systems with heterogeneous sizes. These continuous models allow 
the representation of continuous systems (flow and mixtures of fluids) with a 
discrete events approach. Other Petri net models based on fluid approximations have 
appeared in the last few years (see [DIF 01] for more details). Let us mention the 
fluid stochastic Petri net developed by Trivedi and Kulkarni in the 1990s. This 
model directly derives from the generalized stochastic Petri net (GSPN) [AJM 95,] 
where the fluid concept has been introduced on the arcs.  
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18.2.3.1. Modeling with continuous Petri nets 

In a continuous Petri net, all the variables take their value in the set of positive 
real numbers and are not restricted to natural values as for the discrete Petri net. The 
pre- and post-incidence applications have the same significance and are defined by: 
Pre, Post: P x T  IR+; m: P  IR+. The application, Tempo: T  IR+* {+ },
associates a non-negative real number j with each transition, called maximum firing 
speed.

From the modeling viewpoint, the passage of a discrete PN model to a 
continuous PN model is carried out by transforming the discrete nodes into 
continuous nodes. According to the time application (i.e. Tempo function), various 
continuous models of PN could be used [DAV 05]. Constant continuous PN, which 
fixes the maximum firing speed of a continuous transition as the inverse of the delay 
associated with the discrete transition, generates a marking evolution according to a 
piecewise affine function. Variable continuous PN considers the inverse of the delay 
multiplied by the value of markings of the upstream places of the continuous 
transition. In this model, the marking evolution follows an exponential piecewise 
function. Asymptotic continuous PN approximates variable continuous PN and 
generates a piecewise affine function for the marking evolution, while considering 
an event-driven approach. The hybrid PN model has been defined by combining 
constant continuous PN and transition-timed discrete PN. By its modeling power of 
discrete and continuous parts, it allows us to study several classes of hybrid dynamic 
systems (see C6 of [ZAY 01] and [DAV 05]). An extension of hybrid PN, called 
batches PN and developed by Demongodin and Prunet in 1992, enables modeling of 
the time variability of flow and the behavior of conveyors with accumulation in a 
precise way (see Chapter 15 of [ZAY 01]). Finally, the last extension of hybrid PN 
with the integration of the arc espilon (0+) [DAV 05], allows modeling of a fixed 
time on the flow. 

18.2.3.2. Application to high throughput conditioning systems 

Based on a bottling line in a Perrier factory, the modeling of a conditioning line 
by the constant continuous PN is established in this section. The high throughput 
conditioning system in Figure 18.9 is composed of conveyors and machines: a 
machine for removing empty bottles from pallets, a rotary filler and a packaging 
machine for full bottles. Various packaging entities are involved: the bottle (or the 
can), the pallet of empty bottles, the pack (of full bottles) and the pallet of packs. 

Based on the knowledge of experts, to preserve an optimal quality of the product 
(e.g a constant level of liquid), the rate of the rotary filler is often taken as the pilot 
throughput. By considering the rotary filler as the pilot machine, the nominal 
throughputs of the upstream and downstream machines are determined on the 
principle of the V-graph (generally oversized compared to requirements). 
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C1C2
C3C4C5C6

C8

C7 C9 C10
C11

C12

C13
C14C15C16C17C18C19C20

C21
C22

C23

Unpalletizer

Washing

Checking 

Packaging

ZONE 2

ZONE 1

Rotary
filler

Figure 18.9. Bottling line 

Name Capacity Maximum throughput 
Unpalletizer 1 layer of 360 bottles 1,800 bottles/min 
Rotary filler 133 bottles 800 bottles/min 
Packaging 50 pack (1,200 bottles) 1,200 bottles/min 
Name Capacity (bottles) Name Capacity (bottles) 

C1 1,050 C13 351 
C2 75 C14 112 
C3 150 C15 40 
C4 63 C16 90 
C5 10 C17 125 
C6 145 C18 24 
C7 30 C19 1,720 
C8 60 C20 400 
C9 70 C21 50 

C10 1,626 C22 338 
C11 75 C23 438 
C12 575   

Table 18.1. Characteristics of physical resources 
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Table 18.1 and Figure 18.10 respectively represent the physical characteristics 
and the model of this high throughput production system (the performance analysis 
of this system will be detailed in section 18.3.4). The conveyors are represented as 
simple stocks with limited input and output flows. This constraint on flows is 
modeled by the maximum speed associated with continuous transitions. 

18.2.4. Weighted marked graphs

As explained in section 18.2.2.1, PN structures in the form of weighted marked 
graphs, WMG, can be exploited for modeling of production systems. For these 
structures, the following notations are used in this chapter: 

– pi P, wi = Post (pi, pi) is the weight of the input arc of place pi.

– pi P, vi = Pre (pi, pi ) is the weight of the output arc of place pi.

i
p

w vi i

Figure 18.10. Notations of arcs 

Let us recall that when a graph is strongly connected (i.e. pair of nodes 
(transitions or places) there is an oriented directed path which connects them), it can 
be decomposed into a finite set of elementary circuits. 

For WMG, the gain of a circuit , representing the evolution of the number of 
tokens during time, is defined by [CHA 93, TER 92]: 

ii p i

i

p ii

ii

v
w

)p,Post(p
),pPre(p

G )(

REMARK The gain of a path, ij = <ti, …, tj> is given by: 

ijkp k

kj
iij v

wGG )(

Depending on the value of its gain, an elementary circuit can be classified in one 
of following cases [TER 92]: 
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– if G( ) = 1, the circuit is neutral, which means that the global marking of the 
circuit is constant whatever the further evolution; 

– if G( ) > 1, the circuit is absorbing, which means that the global marking of 
the circuit is decreasing during further evolution; 

– if G( ) < 1, the circuit is generating, which means that the global marking of 
the circuit is increasing during further evolution. 

According to these definitions, a weighted marked graph can also be classified. 

– a WMG is neutral if and only if each circuit in WMG is neutral; 

– a WMG is generating if and only if it contains no absorbing circuit and has at 
least one generating circuit; 

– a WMG is absorbing if and only if it contains at least one absorbing circuit. 

For instance, the job-shop model in Figure 18.7 and the high throughput model 
in Figure 18.10 are neutral WMG, strongly connected. 

18.3. Evaluation of manufacturing systems 

18.3.1. Performance evaluation methods 

The most popular technique for evaluating the performance of a system is 
simulation. The interest of such an approach lies in representing very complex 
systems with models that are very close to the real system. However, one of its main 
drawbacks is the simulation time. This simulation time can be prohibitive in the 
context of the optimization of a DES, which requires many simulations. 

This section provides some complements to the performance analysis methods 
already given in Part 1. In this sequel, we present some methodologies that lead to 
numerical computation of performance criteria. Some typical performance criteria in 
manufacturing systems are: 

– the productivity; 

– the stock level; 

– the mean rate of utilization of resources; 

– inter-blocking probabilities of machines in tandem; 

– the mean time to failure for machines/systems with possible breakdowns. 
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At this point, let us specify how the state recursion (see equation [18.1]) could be 
obtained. Generally, two methods are used: 

– The first method is based on daters (for example the arrival date of a part to a 
machine, the date of the beginning of the treatment of a part, the departure date of 
part from a machine, etc.), i.e. we are interested in the date at which the marking of 
a Petri net can change. 

– The second method is based on counters (for example the number of parts in a 
machine), i.e. we are interested in the dynamics of the markings of a Petri net.  

Let us clarify these two methods in the case of one machine: 

– We can write Lindley’s equation , Wn+1 = max (0, Wn + n – ( n+1 n)) where 
Wn, n, n denote the response time of the machine, the treatment duration, the 
arrival date at the machine of the part n, respectively. 

– Let N( ) be the number of parts at instant the counter equation is obeyed: 
N( ) = A( ) – D( ), where A( ) and D( )) respectively denote the number of parts 
which arrive at or leave the machine in the time interval [0,  [. Let us note the 
constraint: A( )  D( ), . Moreover, we can use a graph to represent the 
dynamics of N(.). The nodes of the graph are all the possible values of N(.), arcs 
between nodes represent the possible change of states (i.e. the possible change of 
values of N(.)), the valuations of the arcs correspond to the infinitesimal transition 
rates between states. This graph corresponds to the accessible markings graph in a 
Petri net. When the transition rates are constant, the model is homogeneous 
Markovian. 

Let us illustrate some methods that complete the ones presented in Part 1. 

18.3.1.1. Dater equations 

Firstly, ergodicity (or stability) conditions can be obtained from these equations, 
i.e. WWlim n

n
 with W finite.

Loynes’s scheme notes that: 

nUUUUUW nn ),...,...,,,0max( 01001  , with iU iiii ),( 1 .

The series <Wn> converges if: ))0...()((,, 000 nUUnnnn .

This kind of reasoning was generalized in [BAC 92] for all systems for which 
dynamics is linear in the so-called (max,+) algebra. 
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Secondly, based on these equations we can compare the dynamics of two 
systems. We present the sketch of the comparison principle below.  

Suppose that we can establish a stochastic comparison of the form: 
nnn UUU,n , where ,  are partial orders between random variables (in the 

deterministic case the partial orders ,  coincide with the natural order on IR). If 
the variables Wn are ,  monotone functions, and if 000 WWW , then the 

series < nW >, < nW > defined by ),0max(1 nnn UWW ,

),0max(1 nnn UWW , verify ., nWWW nnn

In the case where  is the increasing convex order then: 
nUUEU nnn ,)( , where E(.) denotes the mean of a random variable. In this 

case it is interesting to note that the deterministic model is a lower bound of the 
stochastic model. For more details of bounding methodologies, the reader is referred 
to [STO 83].  

18.3.1.2 Counter equations  

When the state space of a discrete model is large, it can be useful to approximate 
the model by a continuous model. Here we present two kinds of approximation. 

18.3.1.2.1 Fluid approximation

The idea is to replace the process <N( )> by an IR-valued process, <X( )>
defined by: X( )=E(A( ))-E(D( )), , with density function 

,),0)0([/,[)((),( xXdxxxXPdxxf . This approximation is good 
when A( ) and D( ) take large values and behave as their respective means (law of 

large numbers). The function ))(()( AEd
d  (resp. 

))(()( DEd
d ) denotes the arrival (resp. treatment) rate of a part. 

18.3.1.2.2. Diffusion approximation

When a system is nearly saturated, the fluid approximation is not efficient. We 
use the theoretical result of [KIN 62] which states that the random variables A( )
and D( ) are independent when the system is saturated. Moreover, the random 
variables A( ) and D( ) are normally distributed (central limit theorem). The process 
<N( )> can be approximated by the diffusion process < ( )>, i.e. a process such 

that its probability density ,),)0([/,[)(();,( 00 xxdxxxPdxxxp ,
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satisfies the Chapman–Kolmogorov equations which are also the Fokker–Planck 
equations: 

)];,()([)];,()([);,(( 002
1

0 2

2
xxpxxxpxxxp xx

, and 

)];,()([)];,()([);,(( 00002
1

0 0
2

0

2
xxpxxxpxxxp xx

where  

d
xdVx

d

])(/)()([lim)(
0

,

d
xdEx

d

])(/)()([lim)(
0

, x , 

V(.) denotes the variance.  

Then we have to write the limit conditions: , 0 ( )  machine capacity. 

18.3.1.3. Performance analysis based on the unfolding of a Petri net into its 
accessible markings graph 

This section considers the Markovian case and provides performance evaluation 
methods other than those presented in Part 1. The Markovian assumption is not so 
restrictive as we might imagine a priori. First, the class of batch Markovian arrival 
processes is dense in the set of stationary processes [ASM 93]. Second, the 
superposition of On–Off sources is a long memory process [JAC 98]. Both 
stationary processes and long memory processes play an important role in the study 
of DES. The main drawback of the Markovian approach is that it generates a large 
state space. 

A possible way to encompass such a problem is to develop techniques to reduce 
the state space. In this group of methods, we can distinguish approximation methods 
and bounding methods, the methods that focus on the stationary behavior of the 
Markov chain and the methods that allow the study of the transient behavior of the 
Markov chain. Many approximation methods of the invariant measure of a Markov 
chain have been proposed. Among them, let us mention the method proposed by 
Courtois et al. [COU 84]. The method is as follows. Let ),( 21  be the solution 
of Q , where Q is the transition probability matrix of a Markov chain:
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2221

1211

QQ
QQ

Q

We can write:  

2221212

2121111

QQ
QQ

From this we deduce that the probability of being in one of the states 
corresponding to the sub-matrix Q11 of Q is given by: 

))(( 21
1

22121111 QQIQQ .

We now have to find (good) approximations of matrix 21
1

2212 Q)QI(Q . To 
approximate the transient behavior of a Markov chain we use stochastic 
majorization methods coupled with the positive invariance of sets. A set S is 
positively invariant by the application:

xQxfx
RRf nn

)(
: ,

if and only if .S)S(f

This kind of invariance characterizes the weak lumpability property of Markov 
chains. As an example, well-formed nets (see Part 1) generate Markov chains with 
invariant cones of which the extremal ray is the vector 1 = (1,…,1). The dimension 
of the vector 1 is determined by the number of states of the aggregate we consider. 
Based on techniques developed in [LED 01] we can bound the initial Markov chain 
with a large state space by bounding chains with fewer numbers of states. These 
techniques are based on positive invariance and the stochastic order called strong
ordering. All these bounding techniques lead to numerical algorithms to bound the 
transient and the stationary behavior of the Markov chain with a large state space. 
These techniques also provide a bound on the error made. However, the major 
drawback of such methodologies is that they can lead to large errors. 

18.3.1.4. Analytical methods 

Analytical methods for performance evaluation of manufacturing systems 
developed in [DAL 92] are a means of avoiding simulation. These methods are 
based on the state recursion equation of the system and the Markovian assumption. 
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The flow of parts passing through the production line is assumed to be continuous. 
Then the performance evaluation method uses an aggregation technique and/or a 
decomposition technique. Nowadays we have efficient analytical methods to 
evaluate the performance of certain classes of manufacturing systems. Assuming 
that the treatment duration of parts is exponentially distributed independently and 
that the machines are independent, a first algorithm for evaluating the performance 
of a production line has been proposed. Its convergence speed has been increased by 
Dallery, David and Xie [DAL 89]. More recently, the quality of the results has been 
improved by Dallery and Le Bihan [DAL 97] using a better characterization in the 
decomposition procedure. However, these analytical methods and the new 
decomposition scheme do not capture the variability of the flow in high throughput 
manufacturing systems.  

Now let us consider the performance evaluation methods dedicated to the 
structures of strongly connected marked graphs. We will be interested more 
particularly in the characterization of the permanent mode. 

18.3.2. Deterministic and stochastic discrete marked graphs 

When there is at least one token in every elementary circuit of a strongly 
connected MG, the discrete MG is live and has no blocking (see Part 1). In this case, 
it is interesting to determine the productivity of the system and in particular the 
firing frequencies (or throughput) of the transitions in the steady state. These 
frequencies are all identical in the case of a strongly connected MG. The optimal 
performances are obtained by using the mode of functioning as soon as possible. 
This mode consists of firing a transition as soon as possible. 

18.3.2.1. Deterministic timed marked graphs  

For a deterministic marked graph (MG), Chrétienne [CHR 85] showed that the 
steady state, obtained after a finite number of firings, is K-periodic. This means that 
the period of functioning is established on K successive firings of all transitions. By 
using the mode of functioning as soon as possible, the cycle time of a MG (which 
corresponds to the inverse of firing frequencies) obtained from an initial marking 
m0, denoted (m0), is given by:  

)(m
)(max)(Cmax)m( 0

where: 

–  is the set of elementary circuits (including the self-loop) of the MG; 
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– μ( ) is the sum of the firing times of the transition belonging to , i.e. 

kt
kd)( ;

– m( ) is the number of tokens in the places belonging to , i.e. 

kp
k )p(m)(m .

We should note that (m0) depends only on the number of tokens in every 
elementary circuit and not on their distribution in the places of the various circuits. 
This cycle time represents the average time separating the passage of two successive 
tokens at any point on the graph when the steady state is established. If *  is 
such that C( *) = (m0), then * is called the critical circuit. These critical circuits 
define the “speed of functioning” of the MG. 

REMARK We assume that a transition cannot be fired by another token if it is in 
execution (hypothesis of a single server). This is modeled by a place associated with 
every transition and containing a single token. An elementary circuit t formed by 
this place and the transition is created for every transition t T. It is called “self- 
loop” and must be taken into consideration in computing the cycle. Therefore, we 
have k

Tt
dmaxm

k
0 .

18.3.2.2. Stochastic timed marked graphs 

Let us consider a stochastic timed marked graph for which the firing time of the 
transitions is generated by random variables (see Part 1). We denote by Xt(i) the ith 
firing of transition t. We consider that (Xt(1), Xt(2), ..., Xt(n),...), form a sequence of 
independent identical distributed integrable random variables and that the sequences 
{Xt(i)}i=1,.., , for all t  T, are mutually independent. By convention, Xt(i) = 0, i
0. In the following, index i is often omitted and Xt is used to define the firing time of 
transition t.

As shown in [CHR 85], the transition firing time initiation instants can be 
determined by the following recursive equation, called the evolution equation:  

t,mkXt,mkSmax)k(S
)t(en

t 00

where: 

– en(t) is the set of transitions which immediately precede transition t, i.e. 
en(t) p t such that p;
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– ( , t) is the place connecting transition to transition t;

– St(k) is the starting time of the kth firing of transition t. By convention St(k) = 0, 
k  0. 

If every elementary circuit contains at least one token, it is possible to find a 
sequence of transitions s which are firable from the initial marking m0 and such that 
every transition appears to it only once. Consequently, this equation allows us to 
compute transition firing time initiation instants in the order of the sequence s (see 
[PRO 96b] for more details). 

As in the determinist0c case, we are interested in the performance of stochastic 
marked graphs. Baccelli [BAC 92] showed that, if for every transition t: (i) the 
process {Xt(i)}i=1,.., , associated with firing times, is ergodic and stationary; (ii) Xt(i)
is integrable for i > 0 (i.e. the first moment of Xt(i) exists); (iii) the MG is strongly 
connected and its initial marking m0 is bounded, then there is a constant (m0), 
called the average cycle time, such that: 

Tt),m(
k

)k(SE
lim

k
)k(S

lim t
k

ps
t

k
0

This value can be obtained by a simulation of the stochastic timed MG based on 
the evolution equation. This approach leads to a simulation faster than the classic 
technique of simulation with discrete events. The average cycle time can also be 
obtained by the exact or approached methods (decomposition) presented in Chapter 
9. Most of these methods are not specific to structures of marked graphs and often 
can be applied to the case of particular distribution (exponential). Bounds of the 
cycle time of the stochastic PN were also developed and are often based on linear 
programming [BAL 98, Chapter 17]. In the particular case of the stochastic timed 
MG, some authors [XIE 94] proposed lower and upper bounds for all distributions. 

18.3.3. Discrete weighted marked graphs 

The qualitative properties of these particular Petri nets were studied in [TER 92]. 
In particular, it was shown that a generating weighted marked graph (WMG) is not 
bounded and that an absorbing WMG is not live. Consequently, we are only 
interested in the neutral and strongly connected WMG. These models are consistent 
and there is a unique minimal T-semi-flow, denoted Z = (zt1, ..., z|T|), covering all 
transitions (the net is a mono T-semi-flow). 

As in the case of the discrete MG, the maximal performance of a WMG is 
obtained with the mode of functioning as soon as possible and the steady state is  
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K-periodic [MUN 93, MUN 96]. Moreover, the frequencies are not identical for all 
the transitions, but are proportional in minimal T-semi-flow and the cycle time can 
be defined in the following way. 

DEFINITION 18.1 The average cycle time, (m0), of a WMG is the average time to 
fire once the minimal T-semi-flow under the earliest operational mode, EOM (i.e. 
transitions are fired as soon as possible), from marking m0.
The frequency of transition t, Ft(m0), is equal to:  

Ft(m0) = zt / (m0), t T.

One way to compute the average cycle time of WMG consists of building the 
equivalent MG which corresponds to the same precedence constraints on the firings 
of transitions [MUN 93, MUN 96]. This equivalent MG, depending on the initial 
marking, is obtained in two steps: expansion of the transitions and expansion of the 
places. As the equivalent MG is a new marked graph, it does not contain the 
transitions and the places of the initial WMG. However, this expansion can give a 
large model. Furthermore, it depends on the initial marking and not only on the 
structure.

Computing of the cycle time can also be also obtained in an analytical way but 
under very restrictive conditions on the initial marking and in the multi-servers case 
[CHA 93]. Lower and upper bounds of this cycle time in the deterministic and 
stochastic cases were obtained by Campos et al. [BAL 98, Chapter 17] using linear 
programming. 

18.3.4. Continuous weighted marked graphs

Let us now return to the study of performance of high throughput manufacturing 
systems for which it is important to analyze the fundamental properties related to the 
continuous Petri nets. In the autonomous case, Recaldi and Silva recently studied the 
properties of liveness and boundedness in a way similar to those of discrete PN [SIL 
02]. Based on the early work of Commomer et al. [COM 71], we can say that a 
strongly connected continuous WMG is live if and only if each one of its elementary 
circuits is neutral or generating, and contains a marked place (the marking of a place 
of each circuit is non-zero.) [DEM 99]. When time is taken into account in the 
analysis of the model, the firing frequencies of discrete transitions correspond to the 
final speeds of continuous transitions, when the stationary mode is reached. This 
model, also called the final state of CPN (or stationary state, permanent mode), is a 
state of the net where no event can occur. This state is characterized in terms of final 
speeds and markings. 
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18.3.4.1. Final speeds of continuous weighted marked graphs 

Under the liveness property, it is always possible to formally deduce the final 
state characteristics of continuous weighted marked graphs. However, the time 
dynamic representation of the continuous model needs to define the instantaneous 
firing speed j( ), associated with each transition tj at time . This speed represents 
the quantity of marks that pass through the transition by time unit. 

For a continuous marked graph, live but non-weighted, David and Alla [DAV 
05] determined the firing speeds at the final state.  

k
T
kj 1min)(

, tj  T. 

This first result has been extended to neutral continuous weighted marked graphs 
[MOS 00] using some assumptions on the initial marking. Nevertheless, to present 
this work, it is necessary to introduce a concept specific to continuous PN, the fed 
continuous place. An empty continuous place can be fed by an input continuous 
transition that is enabled. Thus, as a flow can pass through an unmarked continuous 
place, this place can deliver a flow to its output continuous transitions. 
Consequently, continuous transition tj is enabled at time  if and only if all its input 
places (pi) satisfy at least one of the following conditions1:

– m(pi ) > 0, 

– pi is fed, where m(pi ) = 0. 

According to the state of places (marked, empty or fed), three cases of enabling 
for transitions can be distinguished: 

1. If at time all input places of transition tj satisfy the first condition (they have 
a non-zero marking), tj is strongly enabled. Thus, the instantaneous firing speed is 
equal to the maximal firing speed, i.e. j( ) = j.

2. If at time  some of the input places of transition tj are fed while all the others 
are non-empty, transition tj is weakly enabled and its instantaneous firing speed is 
given by: 

)()(min,min)(

0),(
/

ji

pm
tp

i
jj B

i

ji

                                                          
1 m(pi , ) denotes the marking of place pi at time , corresponding to m(pi)( ).
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where Bi( ) is the dynamic balance of place pi, input place of transition tj. Bi( )
represents the variation (increasing or decreasing) of marking m(pi, ) at time . If C
denotes the incidence matrix of the net, the dynamic balance vector is given by: 

)(.)()( C
du

udmB
u

For continuous WMG, where each place pi has exactly one single input transition 
tk and a single output transition tj, by using the notations defined in section 18.2.4, 
the balance of pi is provided by:  

Bi( ) = wi . k( ) – vi. j( ).

REMARKS

(i) Bi( ) > 0  the marking of place pi increases linearly, 
Bi( ) < 0  the marking of place pi decreases linearly, 
Bi( ) = 0  the marking of place pi is constant. 

(ii) to guarantee a positive marking, an empty place cannot be negative.  

3. Finally, transition tj is not enabled if at least one of its input places does not 
satisfy both previous conditions. In this case, the instantaneous firing speed is null, 
i.e. j( ) = 0. 

To summarize, the instantaneous firing speeds, piecewise affine functions, 
depend on the dynamic balance and the marked or unmarked states of places. These 
speeds will change if at least one of the dynamic balances of places is strictly 
negative. When a place becomes empty, an event occurs, the dynamic balance 
vector is determined and the instantaneous firing speeds vector, ( ) is determined. 
If the dynamic balance vector of places is positive, then no more events can occur 
and the net has reached a particular state called the final state. In other words, in the 
final state, all dynamic balances of places are positive or zero.  

In the case of a continuous weighted circuit (and using the notations of

Figure 18.11, at time , the instantaneous speed of the weakly enabled transition 
tj is given by: 

).,min( 11 j
j
jjj G

.

where j
jG 1  is the gain defined in section 18.2.4.  
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Figure 18.11. Continuous weighted circuit 

At the final state, without establishing the dynamic evolution of the net, the 
firing speeds vector of a neutral MG and of a neutral or generating circuit could be 
determined. Here, only the principal results are provided, and demonstrations can be 
found in [DEM 00, MOS 00]. 

THEOREM 18.1 A neutral strongly connected continuous marked graph (assumed to 
be live) reaches a steady state where the final firing speed vector * is given by:  

j* = j

k* = j.zk/zj,  k  j 

where transition tj verifies 
kZ

k
TktkjZ

j

/
min , with zk is the kth component of any 

T-semi-flow Z. 

THEOREM 18.2 For a generating or a neutral continuous circuit (supposed live),  = 
<t1,…,pn>, the firing speeds vector is single. It is characterized by:  

ff *

),min(* k
ffkk G ,  k  f 

where tf is the slowest transition of circuit , identified by the following algorithm:

– step 1. f = i = k = 1; j = 2.
– step 2. If k = n + 1; tf is the slowest transition. 
– step 3. Else, 

- step 3.1. If j i . G ij, f = j, i = j; j = j +1; k = k + 1. Return to step 2.
- step 3.2. Else, f = i; j = j + 1; k = k + 1. Return to step 2. 
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REMARK The vector * and, consequently, the final state of a neutral or generating 
continuous MG, is single and independent of the value of the initial marking. Thus, 
to obtain the final vector, it is possible to choose any value of the initial marking 
such that the continuous MG is live. 

From this characterization of final speeds, it is possible to determine the 
strongly, weakly or not enabled transitions of the net at the final state, and for a 
neutral continuous MG, to give its final state explicitly. 

18.3.4.2. Final markings of neutral continuous marked graphs 

Let N be a weighted continuous MG with m places and n transitions. We note:  

– T*: the set of saturated transitions of N in the final state, i.e. T* = {ti  N / i*
= i}.

– T**: the set of transitions of N which are not saturated at the final state but 
have more than one input place (junction transition), i.e. T** = {ti  N / | (ti)| > 1
and ti  T*}

– i: the set of oriented paths linking a transition of set T* to a given transition ti
which is not a transition of T*.

– For ti  T* and pk (ti), i’(pk) is the set of oriented paths ji i which 
contain place pk.

PROPERTY 18.1 The dynamics of the instantaneous firing speed of a live strongly 
connected continuous weighted marked graph follow a non-increasing function, i.e.  

tk T, k ( 2) k ( 1), 2 > 1

Moreover, if ti T*:  i ( ) = i, 0.

DEFINITION 18.2 The weighted marking N( ji, ) of an oriented path, ji = <tj, …, 
ti> at time , is given by: 
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),(.),( where pr = ji (ti).

REMARK If the first transition of the path is not fired after time , the weighted 
marking corresponds to the maximal marking that the last place of this path can 
contain. 
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EXAMPLE 18.1. Let us consider the continuous oriented path from transition tj to 
transition ti, in Figure 18.12, at time .
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Figure 18.12. Weighted continuous path 

The weighted marking at time  is given by:  
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and for M( ) = (20, 5, 9), 5,51
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From all these concepts, the marking of a neutral continuous MG, at the final 
state, can be directly determined by the following theorem (see [MOS 01] for more 
details).

THEOREM 18.3 In a neutral continuous weighted marked graph (assumed to be live), 
the final marking mr* of any place pr is given by:

– for pr such that (pr)  = ti  (T*  T**), mr* = 0 

– for pr such that (pr)  = ti  T*, 
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– for pr such that (pr)  = ti  T** (see Figure 18.13),
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Figure 18.13. Example for the case where (pr)  = ti  T** 

18.3.4.3. Applications

For the neutral continuous weighted marked graph, strongly connected and live, 
described in Figure 18.10, by applying theorem 18.1, we obtain: 

1* = 0.75 batches/min., 

j* = 272.7 bottles/min., for j = 2 to 27, 

28* = 11.36 packs/min.  

Transition t19 is strongly enabled ( 19* = 19) and saturated at the final state. 
Thus, it is considered as the bottleneck transition of the model. 

Finally, the final markings of this CWMG are directly determined by theorem 
18.3. The final markings vector is given by: 

m* = (360, 0, 0, 1050, 0, 75, 0, 150, 0, 63, 0, 10, 0, 145, 0, 80, 0, 30, 0, 133, 0, 
60, 0, 70, 0, 1626, 0, 75, 0, 275, 0, 351, 0, 112, 0, 40, 90, 0, 125, 0, 24, 0, 1720, 0, 
400, 0, 50, 0, 338, 0, 438, 0, 0, 4685, 1200). 

With respect to the studied bottling system, we obtain the indicators given in 
Table 18.2. 

In terms of performance indicators, the exit of conveyor C15 is the bottleneck 
element of the system. The transition, which represents it, is strongly enabled. At the 
final state, we should note that all markings of the downstream elements are zero, 
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i.e. the conveyors or machines are not saturated or in full mode. The conveyors, 
considered in this representation as simple stocks with limited input and output 
flows, are on average empty of parts in the permanent mode. The productivity of the 
conditioning system is 272.7 bottles per minute. 

Name Final throughput 
Unpalletizer 0.75 layer/min (272.7 bottles/min) 
Rotary filler 272.7 bottles/min 
Packaging machine 11.36 packs/min (272.7 bottles /min) 

Name Number of 
bottles

Output 
flows

Name Number of 
bottles

Output 
flows

C1 1050 272.7 C13 351 272.7 
C2 75 272.7 C14 112 272.7 
C3 150 272.7 C15 40 272.7 
C4 63 272.7 C16 0 272.7 
C5 10 272.7 C17 0 272.7 
C6 145 272.7 C18 0 272.7 
C7 30 272.7 C19 0 272.7 
C8 60 272.7 C20 0 272.7 
C9 70 272.7 C21 0 272.7 
C10 1626 272.7 C22 0 272.7 
C11 75 272.7 C23 0 272.7 
C12 275 272.7    

Table 18.2. Characteristics of elements at the final state 

18.4. Optimization of manufacturing systems 

In this section, we consider an optimization problem of manufacturing systems. 
The goal is to reach a given productivity while minimizing the number of resources 
(such as transportation devices, acquiring or adding storage bins). This cost remains 
the same as the production process proceeds. It is therefore possible to size the zones 
of storage or to determine the minimum number of transportation resources (AGV, 
kanban, etc.) that allow saturating of the bottleneck machine, while minimizing the 
cost. When applied to real-life problems, it turns out that minimizing the number of 
transportation resources consists of minimizing a P-semi-flow, while reaching a 
given productivity is equivalent to keeping the cycle time of the model below a 
given value. This problem, called the marking optimization problem, can be defined 
as follows: 

This problem consists of finding an initial marking, m0  INn, in order to: 
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– C is a given positive real value. It is the average cycle time that we want to 
obtain. 

– (m0) is the average cycle time obtained from the marking m0.

– tY = (y1, ..., y|P|)  (IR+)|P| is a P-semi-flow. 

In this problem, the value 1/C can be considered to be the required throughput 
rate or productivity value that we want obtain. For any marking m0, f(m0) represents 
the total cost associated with the marking. As Y is a P-semi-flow, f(m0) = f(m) for all 
m reachable from m0. In general, we choose the P-semi-flow equal to the sum of all 
minimal P-semi-flows. In terms of manufacturing systems, f(m0) corresponds to the 
cost of the resources. 

18.4.1. Deterministic marked graphs

When the model is a strongly connected marked graph, much work has been 
done to solve the marking optimization problem. In particular, a mixed-integer 
linear programming formulation and a heuristic have been proposed by Hillion and 
Proth [HIL 89]. Laftit et al. [LAF 92] have developed an iterative method 
(adjustment heuristic algorithm) based on the degree of freedom associated with 
each place, which very quickly gives a good solution, whatever the size of the 
system. A heuristic which uses the (max,+) algebra has also been developed by 
Gaubert [GAU 90]. An exact method based on a branch and bound approach has 
been proposed by [PRO 97]. This method also allows an approached solution for 
which the maximal distance to the optimal solution is known to be obtained quickly. 

Other authors have been interested in problems close to this problem of marking 
optimization. In particular, Valentin developed an algorithm to solve the marking 
optimization problem of hybrid marked graphs [VAL 94]. Korbaa et al. [KOR 02] 
proposed a method that enables scheduling of products on machines by respecting 
the optimal cycle time, while optimizing a secondary criterion (the number of 
transportation resources). In the multi-servers case, Giua et al. [GIU 00] was 
interested in the problem that consists of determining the initial marking of a marked 
graph allowing minimizing the average cycle time with a fixed number of tokens. 
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18.4.2 Stochastic marked graphs 

Only some methods exist for solving the marking optimization problem of a 
stochastic marked graph. Properties of the criterion f(m0) (which depends on P-semi-
flow) as well as conditions of reachability of a given cycle are proposed in [PRO 
96b]. In particular, it is always possible to obtain an average cycle time lower than a 
given value C with a finite number of tokens if t

Tt
XECC max* . Therefore, if C

> C*, the marking optimization problem of a stochastic marked graph has a solution. 

In the following, we present two heuristic algorithms based on infinitesimal 
perturbation analysis to solve the marking optimization problem of a stochastic 
marked graph. These methods, developed by Proth et al. [PRO 96b], are two-phase 
methods. The first phase consists in computing the optimal solution to the 
deterministic problem obtained by assigning to each transition the mean value of its 
firing time. For this, methods developed for solving the determinist problem are 
used. The second phase of these algorithms is an iterative process. At each iteration, 
one token is added in a place as long as the average cycle time is greater than or 
equal to a given value C. The problem is to determine the place for adding a token. 
The idea is to add a token in a place that significantly reduces the average cycle 
time, while increasing the cost f(m0) by as little as possible. For that purpose, the 
sensibility of the average cycle time according to the marking of each place pi,
denoted p(m0,pi), is estimated in the following way: 

p(m0,pi) = (m0) +(m0,pi)

where +(m0,pi) is the cycle time obtained when we only add a token in place pi.
Place p* in which a token is removed, is the place that maximizes the quantity: 

i

ip

y
pm ,0

where y1, y2, ..., y|P| are the P-semi-flow coefficients. 

p(m0,pi) can be obtained by simulation. However, in this case, |P| extra 
simulations are needed, at each iteration, in order to evaluate the sensibility of each 
place pi. Two other criteria for the choice of p* allow us to avoid these extra 
simulations by using the information obtained from the simulation necessary to 
calculate (m0). This simulation uses the evolution equation (section 0). During this 
simulation, the following values are computed: 
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where: 

– (t,k) is the transition belonging to en(t) = { T / p t such that p} which 
triggers the kth firing of transition t;

– (t,k) denotes the place connecting transition (t,k) to t. This means that the 
transition t waits for the arrival of a token in the place (t,k) to begin its kth firing;  

– ( ,t) is the place which connects transition  to transition t.

(p, ) represents the probability that in the steady state the transition which 
follows the place p waits for the arrival of a token in p to begin a new firing. 

)(* kSt  would be the starting time of the kth firing of transition t if (t,k) were not 
critical for this kth firing. 

W(p, ) is the average waiting time of transition p  due exclusively to the lack of 
tokens in place p.

For each transition t T, we also consider the average cycle time of the stochastic 
marked graph, denoted 1(m0,tj, ), obtained by increasing the firing times of a 
transition tj by  time units. Therefore, the derivative of 1(m0,tj, ) with respect to ,
denoted 1(m0,tj), is defined by: 

)(),,(
lim

),,(
),( 0

1
0

1

0
0

1

0
1 mtm

d
tmd

tm
.

This derivative, which represents the sensibility of the cycle time with respect to 
firing times, exists everywhere except on a set of zero measure. The following 
property [PRO 96b] also allows us to estimate the derivative 1(m0, pi ) during the 
simulation to determine the average cycle time (m0). This result is obtained by 
using the infinitesimal perturbation analysis technique. 
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PROPERTY 18.2 Under the following regularity condition: 

– the random variables from which time of firing are generated are independent; 

– the successive realizations of a random variable are independent in their set;

– the probability that two firing starts are simultaneous is zero;

we have: 

Tt
k

km
tm tt

k

ps
,

),(
lim*),( 0*,

0
1

where ( t ,k),t* 0 0( t ,k ) t*
t ,t* 0

1 m , k m ( (t, k)) , if k 0
(m ,k)

0, if k 0

Intuitively, we can say that if the value 1(m0, t) is large, then a weak reduction 
of the firing time of the transition t leads to an important reduction of the average 
cycle time. Furthermore, adding a token in a place p has an effect comparable to 
reducing the firing duration of the transition p  if p is an input place of p such p is 
"often" the transition that achieves the maximum of the evolution equation during 
the simulation. Consequently, it is possible to define two criteria of choice of p*,
using (p, ) or W(p, ). 

Criterion 1: we choose place p* P, which maximizes 
py

pmpW ),().,( 0
1

.

Criterion 2: we choose place p* P, which maximizes 
py

pmp ),().,( 0
1

.

According to this result, a single simulation is thus necessary for every iteration 
to estimate (m0), (p, ), W(p, ) and the |T| values 1(m0, t) and consequently to 
determine the place in which a token is added by using one of the criteria given 
previously. 

18.4.3. Extension to deterministic weighted marked graphs 

Contrary to the marking optimization problem of deterministic marked graphs, 
there is no analytical formula to compute the average cycle time. As in the stochastic 
case, an iterative method using simulation to obtain the cycle time has been 
developed [SAU03]. The principle is a little bit different. It starts with a feasible 
marking and, at each iteration, removes one token from a place as long as the 
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average cycle time is less than or equal to a given value C. The problem is always to 
determine the place p* for removing a token.  

We first give preliminary results concerning the feasibility of the marking 
optimization problem of WMG and an acceptable initial solution. Then, the detail of 
the method of resolution is presented. 

Let us recall that we are only interested in strongly connected and neutral WMG. 
Then, there is a unique minimal T-semi-flow, denoted Z = (zt1,…, zt|T|), covering all 
transitions (the net is a mono T-semi-flow) and a unique minimal P-semi-flow, 
denoted Y = (yp1, ..., yp|P|). This first result gives us the minimal average cycle time 
that the system can reach [SAU 03]. It corresponds to the maximal productivity that 
the production system can reach. 

PROPOSITION 18.1 The marking optimization problem of a WMG has a solution if, 
and only if, tt

Tt
d.zmax*CC .

Proposition 18.2 gives an initial marking which allows every average cycle time 
greater or equal to the previous value C* to be reached.  

PROPOSITION 18.2 For any C  C*, the marking m0 such that m0(p) = zp .Pre(p,p ),
 p P, is a feasible solution of the marking optimization problem of a WMG. 

In theorem 18.4, the maximum number of tokens which can be removed from a 
place without modifying the average cycle time of the graph, is analytically 
determined. This result allows the removal of several tokens in the same place at 
each iteration and so accelerates the convergence of the method. 

THEOREM 18.4 Let pr  P, ti = pr, tj = pr  and the minimal T-semi-flow Z = (zt1,
...,zt|T|). We can remove R(pr) tokens from place pr without modifying the average 
cycle time, where R(p) is given by: 

– if vr  wr then: 

r
r

rr
rr

z,...,k
r v.

v
)k.(w)p(m

)k.(w)p(mmin)p(R
i

1
1 0

0
1

– if vr > wr, then: 

)p(mk.vw.
w

)p(mk.v
min)p(R rrr

r

rr
z,...,k

r
j

0
0

1



Performance Evaluation in Manufacturing Systems      565 

In the proposed heuristic, the idea is to remove, at each iteration, a token in a 
place by meeting two fundamental objectives: reduce the value of the criterion f(m0), 
that is the cost of the resources, as much as possible; increase as weakly as possible 
the average cycle time, i.e. decrease the productivity by as little as possible. 

As recalled in section 18.3.3, one way to compute analytically the average cycle 
time of a WMG (in the mono-server case) consists of building the equivalent MG. 
This depends on the initial marking and not only on the structure. Therefore, it is 
necessary to build as many extensions as places of the WMG to determine the 
adequate place in which to remove a token, at each iteration. In this case, the 
computation time can be important and it is difficult to solve large problems. 
Consequently, the simulation is used to determine the average cycle time of a 
WMG. To be able to solve the marking optimization problem by limiting the 
number of simulations (that is by limiting computation time), the information 
obtained during the simulation allows us to estimate the average cycle time and to 
determine the best place. In particular, for each place p  P, the following quantity 
is computed: 

0 0

1L( , ) . max 0, m ( , ) Pre( , ) .d
s

p s p p p
s

where m0(p, ) is the number of tokens in place p at the instant of considering 
reserved tokens. L(p, ) corresponds to the average number of unused tokens in the 
next firing of the transition p . If this value is large, some tokens will wait a long 
time in place p before firing the transition p . Therefore, to reduce the criteria value 
f(M0), it is interesting to remove one token from the place with a large coefficient of 
the P-semi-flow yp and a large value L(p, ). Consequently, we choose the place p*
which maximizes L(p, ).yp.

However, before removing one token from a place, we must verify that the 
WMG is going to stay live. The basic method is based on the fact that a WMG is 
live if, and only if, its circuits are live. Nevertheless, it is necessary to find all its 
elementary circuits and the number could be very great. Furthermore, it is more 
complicated to determine the conditions for liveness of a weighted circuit (see 
Chrzastowski–Wachtel and Raczunas 1995 for arithmetical conditions) than those of 
an ordinary circuit. Another method for avoiding the enumeration of all circuits has 
been developed by Teruel et al. [TER 92]. In our case, we have two possibilities for 
ensuring that the WMG is always live after removing one token from a place: 

– At each iteration, we test every place to determine the set Q containing the 
places from which we can remove one token while keeping live the WMG, and 
afterwards we select a place p* Q.
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– At each iteration, we select a place p* and verify if the WMG is always live 
after removing one token from p*. If not, we select another place. The rejected 
places cannot be selected again. 

This heuristic starts with the feasible marking given by proposition 18.2. While 
the set from which tokens can be removed is not empty, we simulate the WMG with 
precision to compute the approximate values of the average cycle time *(m0) and 
the quantities L(p, ). If *(m0) is greater than C, then the marking is not a feasible 
solution. Therefore, we put back R(p*) + 1 tokens in the place p* and p* can no 
longer be selected. If the average cycle time is always less than or equal to C, we 
select place p* for removing tokens. This place p* must maximize the criteria 
L(p, ).yp and the WMG must stay live after removing one token from this place. If 
the place does not contain one token, a marking reachable from m0 containing at 
least one token is computed. We remove one token from p* and determine the 
maximum number of tokens R(p*) that can be removed from place p* without 
modifying the average cycle time. It is necessary to compute R(p*) after removing 
one token from p* because the value R(p*) depends on the new marking. We stop 
the algorithm when Qis empty. 

Algorithm
Give 

//   is the precision of the simulation  
// We initialize the initial marking M0

For all p P do 
Let m

0
(p) := zp .Pre(p,p•)

Let Q := P // Q  is the set of places from which could be selected the place p*
While (Q ) do { 

Simulate the WMG with the precision  to obtain an estimation of the average 
cycle time *(m

0
) and the quantities L(p, )

// We test if the marking is not a feasible solution 
If ( *(m0) > C) then { 

// It is not the first iteration because we initialize the method with a feasible // 
marking
m0(p*) := m0(p*)+R(p*)+1 
Q := Q \{p*}

}
Else { 

// We select the place p* for removing one token 
Selection := false 

While (Q  and Selection = false) do { 
Selection := true 

Select the place p* Q maximizing the criterion L(p, ).yp
While (m0(p*) < 1 and at least one transition is enabled from m0) do { 

Compute the new marking m0 obtained from m0 by firing all enabled 
transitions except the transition following p*

}

If (m0(p*)  1) then {m0(p*) := m0(p*)–1}  
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If (WMG is not live) then {  
m0(p*) := m0(p*)+1
Q := Q \{p*}
Selection := false 
}

}
If (Selection = true) then {

// We determine the maximal number of tokens R(p*) that can be  
// removed from the place p* without modifying the average cycle time 
Compute R(p*) by using theorem [18.4] 
m0(p*) := m0(p*)-R(p*)

}
}

}

18.4.4. Applications 

This section is dedicated to application of the previous methods to 
manufacturing systems. We consider the job-shop modeled in section 0. Indeed, as 
models obtained are strongly connected MG or WMG, the previous algorithms can 
be used. 

18.4.4.1. Deterministic case 

In the case of deterministic MG, Hillion and Proth [HIL 89] demonstrated that it 
was always possible to fully utilize the bottleneck machine with a finite number of 
resources. In other words, it is possible for the bottleneck machine to work non-stop. 
Consequently, in this case, we can reach a cycle time equal to the longest cycle time 
of the command circuits, that is: 

)(max CC
c

where: 

– c is the set of command circuits, 

– C( ) is the sum of the firing times of the transitions belonging to , for all 
c.

In the particular case of a job-shop, the criterion to be minimized is the sum of 
work-in-process (that is the manufacturing resources) in the process circuits. These 
work-in-process are modeled by tokens only in process circuits. Furthermore, as the 
command circuits have to contain only one token, we add the supplementary 
constraint m0( ) = 1, for all c. The problem is thus the following one: 
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where:  

– C is the cycle time which we want obtain; 

– P is the set of places; 

– Pc is the set of places belonging to command circuits; 

– yp is the P-semi-flow defined by: 
c

c
p Pp

Pp
y

if1
if0

.

To eliminate the constraints m0( )=1 for all c it is possible to penalize in an 
important way places belonging to the command circuits in the objective function. 
Then, we obtain this new problem: 

Cm

pmpmmfMinimize
c cPPp Pp

)(
s.t.

)(.)()(

0

\
000

where  is a “big” value. In this case, the P-semi-flow used is 

c

c
p Pp

Pp
y

if1
if

.

Let us consider the MG in Figure 18.6. We consider that the manufacturing 
times are deterministic and have the following values (units of time):  

d1 = 1, d2 = 3, d3 = 2, d4 = 1, d5 = 2 

The cycle times of command circuits to each machine are: 
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M1 = 7, M2 =11, M3 = 6. 

As the most loaded machine is machine M2, we choose to obtain a cycle time 
equal to 11 units of time. 

The results obtained by the adjustment heuristic algorithm [LAF 92] in 18 
iterations and the exact method based on a branch and bound approach [PRO 97] are 
optimal with this model and give the following marking:  

m0 = (0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0). 

Five transportation resources are thus needed to obtain maximum productivity, 
distributed in the following way: 

– a resource in every process circuit of the products of type A (that is 3); 

– a resource in every process circuit of the products of type B (that is 2). 

As seen in section 0, it is possible to use a WMG to reduce the size of the model 
(see Figure 18.7), while always penalizing places belonging to the command 
circuits. The result obtained in 30 iterations with the method developed in section 0 
is the following one: 

m0 = (1, 1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 1, 0, 1). 

With this model, only four transportation resources are needed to obtain 
maximum productivity, distributed in the following way: 

– two resources in every process circuit of the products of type A; 

– two resources in every process circuit of the products of type B. 

This result explains the fact that by using a model of type WMG, the number of 
process circuits can be less important and as it is necessary to have at least one 
resource in each process circuit, the minimum number of resources can be weaker 
when the system is modeled by a WMG. Then, in this case, the compact model is 
very interesting and gives the best solution. When the ratios are very different for 
the products, the number of process circuits created to obtain the MG is very large 
and the difference can be important. Furthermore, this compact model allows the 
representation of batch systems with assembly and disassembly operations in 
process circuits. 
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18.4.4.2. Stochastic case 

We consider now the case of a job-shop in which the firing times are stochastic. 
The problem therefore is no longer to saturate the bottleneck machine but to find a 
good compromise between the number of the work-in-process and the productivity 
of the system. In other words, we try to obtain a given average cycle time with a 
minimum number of tokens.  

The following random variables Xi are assigned to transitions ti of the MG given 
in Figure 18.6: 

– product A: 
- machine M1: X1 is a constant and equal to 1; 
- machine M2: X2 is uniformly distributed on [2, 4]; 
- machine M3: X3 is a random variable with exponential distribution and  
E[X3] = 2. 

– product B: 
- machine M2: X4 is a random variable with exponential distribution and  
E[X4] = 1, 
- machine M1: X4 is a random variable with a two-stage Erlang distribution 
and E[X4] = 1. 

We choose to reach a given cycle time C =11.1 units of time. This problem is 
solved by the algorithm presented in section 0.  

For the first phase, which consists of finding an initial solution by solving the 
determinist problem, we used adjustment heuristic algorithm, which give good 
results very quickly. The solution of this phase is the following one: 

– m0 = (1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0); 

– (m0) = 11,51 obtained by simulation; 

– the number of transportation resources is 5.  

In the second phase (stochastic phase), from this initial solution, we increase 
gradually the number of tokens in places belonging to the process circuits so as to 
decrease the average cycle time of the system. In this phase, we do not take into 
account places belonging to the command circuits, because after the determinist 
phase, every command circuit already contains one token and we therefore cannot 
add any more. The results of this stage according to the chosen criterion are given in 
Table 18.3. 
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  Criterion 1 Criterion 2 
Number of iterations 7 6 

m0 (1, 1, 0, 1, 1, 0, 0, 2, 1, 1, 0, 0, 1, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0, 0, 1, 0) 

(2, 0, 0, 2, 0, 0, 1, 1, 1, 1, 0, 0, 2, 0, 1, 0, 
0, 0, 0, 0, 0, 1, 0, 0, 1, 0) 

(m0) 11.02 11.09 
Number of resources  9 10 

Table 18.3. Results of stochastic phase 

For this example, we note that the first criterion gives a better result. This is not 
always the case, and a detailed study of these methods [PRO 96b] shows that the 
results obtained with these two criteria are very close. 

18.5. Conclusions 

The requirements of industrial competition, within the framework of 
performance evaluation and optimization of complex production systems, have 
stimulated the research and development of models. At present, in manufacturing 
systems, the most used approaches for analysis are discrete event simulation 
techniques. Unfortunately, these techniques raise several problems. They are 
expensive in terms of time: time spent on the design of the model and of the 
simulation program, time spent on the program execution and the analysis of results, 
etc. Moreover, the numerical results obtained cannot be very precise, due mainly to 
the possible phenomena of propagation of miscalculations during the execution of 
the program. This is why the development of analytical methods seems to be an 
essential complement to simulation approaches. 

Without being exhaustive on analysis methods based on Petri nets, this chapter 
has focused on the behavioral properties of manufacturing systems. By supposing 
that the decisional aspect is known, the class of marked graph structures allows us to 
express many relevant problems in computer-integrated manufacturing. The 
performance evaluation methods of marked graphs, presented in this chapter, allow 
the analytical treatment of models with discrete state space and deterministic and/or 
stochastic timed transitions, and of models with continuous state space and 
deterministic timed transitions. Let us distinguish some fundamental aspects 
concerning these methods. They are based either on the analysis of the dater 
equations, or on the analysis of the counter equations. We can also distinguish these 
methods according to whether they are based on the marking graph associated with 
the Petri net behavior or on the analysis of the Petri net structure by considering it as 
a bipartite graph. Complementing the techniques described in Part 1, this chapter 
presents an approach that exploits the structure of marked graphs to deduce some 
behavioral states without establishing the accessibility graph. Indeed, within the 



572     Petri Nets 

framework of production systems modeling, the structure of marked graphs allows 
detection of regularities in the time dynamics of the system. More precisely, for 
strongly connected graphs, it is possible to determine the cycle time and the flow 
rates, but also to characterize the final state in stationary mode. These methods are 
mainly based on the decomposition of the graph into elementary circuits. The 
disadvantage of these methods is that all the elementary circuits and paths must be 
determined explicitly, and the complexity of this computation is exponential. For the 
analysis of discrete event systems or hybrid systems, it is however possible to use 
other methods [CAS 00, BAC 92, DEM 02, DAV 05], complementary to graph 
theory. Let us mention, for example, the use of linear programming, dioid algebra, 
stochastic processes, and automata approaches. 

The improvement of performance evaluation methods to optimize manufacturing 
systems can be achieved by comparing the various models of marked graphs 
presented in this chapter. For example, while replacing stochastic variables by their 
average, the deterministic model thus obtained is a bound of the stochastic model. 
Another aspect of the improvement consists of extending the existing models 
towards hybrid system theory. Indeed, the combination of discrete aspects and 
continuous aspects in the same formalism increases the modeling and analysis 
power for performance evaluation of manufacturing systems. 
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Conclusion 

As should be clear from the chapters of this book, a large and consistent set of results 
now exists and can be used to design, starting from Petri net-based models, complex 
distributed architectures and to show that they are able to fulfil required properties. 

In particular, the corresponding approaches, together with their associated 
methodologies and tools, allow the designers and users: 

 to acquire a deep understanding at the same time of the system specifications and 
of the sytem behaviors;  

 to master the different semantical principles on which the global system and its 
architecture are based, making future evolutions easier;  

 to integrate, in the same coherent and formal framework, all functional and non-
functional, i.e. temporal and stochastic, aspects that are very often required, with 
relatively simple and clear semantics.  

The goal of this volume was to present the results which seems to be the most 
interesting initially, including a set of specification models, an easy to understand 
representation of key mechanisms, a set of tools and some examples of use.  

We hope that these concepts, techniques and approaches will allow the readers to 
better undestand the problems of these systems, and so to better master their design 
process.  
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Of course, all results in this field are not given here, and other developments and 
proposals exit. Interested readers will have to follow the present and continuing set of 
results resulting from the publications dedicated to Petri nets and to other models of 
concurrency. 

Note that this book should be used as a basic start that we should like to see evolving 
in the future. As a consequence, for any questions or comments, send them to 
lrdp@laas.fr, and the website www.laas.fr/rdpb will give the corresponding informations 
and answers that seem to be of general interest. 
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