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Outline of my talk today
• Definition of Computational Risk Assessment
• Computational resources
• Simulating physical phenomena via Smoothed Particle Hydrodynamics
• Performing assessment via CRA
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Computational Risk Assessment (CRA)
• Computational Risk Assessment is a focus of current 

research and development
• CRA is a combination of

– Probabilistic (i.e., dynamic) scenario creation where 
scenarios unfold and are not defined a priori

– Mechanistic analysis representing physics of the unfolding 
scenarios

• CRA relies on the availability of computational tools
– Processors (hardware)
– Methods (software)

• CRA is not simply solving traditional PRA models faster or 
with higher precision

– It is a different way of thinking about the safety problem
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Integrating the worlds 
of physics and 

probability leads us to 
predictions based upon 

an approach called 
“computational risk 

assessment”



CRA driving factors
• Computers are improving
• Software is improving

– And much of it is free
• Analysis characteristics including
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Temporal
(timing issues)

Spatial
(location issues)

Mechanistic
(physics issues)

Topology
(complexity issues)



Computational performance @ dawn of risk and reliability analysis
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MOPS = millions of 
operations per second

https://www.nap.edu/read/11148/chapter/5#31



Computational performance over time has steadily increased
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Notes:

1 EFlop/s = one 
exaFLOPS, or a billion 
billion calculations per 

second (1018)  

1 MOPS does not even 
appear on this plot.

https://www.top500.org/statistics/perfdevel/



But how available is this “computational performance?”
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Titan ($97,000K) 8,200 kW

NVIDIA DGX-1 ($130K) 3.2 kW

PS4 Pro ($400) 0.3 kW

Summit ($200,000K) 10,096 kW



Smoothed Particle Hydrodynamics
• A way to simulate flooding scenarios is needed
• Smoothed Particle Hydrodynamics (SPH)

– Particle based method
– Originally developed for astrophysics applications in 1977
– Later extended for fluid dynamic applications

• SPH allows for flooding scenarios to be simulated
– Does not confine fluid to meshes
– Allows for a natural flow to be modeled

• A reliable SPH code is needed
– Compare to experimental results
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Ogee Spillway Comparison
• Comparison Model

– Ogee spillway with horizontal apron 
– Details of experiment provided in Flow over 

Ogee Spillway: Physical and Numerical Model 
Case Study by Bruce M. Savage and Michael C. 
Johnson

– Experiment details (scaled model):
• Measurements taken 2 m upstream

– Flow Rate
– Total Head

• Ten different runs conducted
– Prototype scale was used for the SPH 

comparison which required scaling the model 
scale up 30 times
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Neutrino Model 
• Developmental SPH code Neutrino was used to conduct the comparison
• Model construction process:

– Determine how to fill particles behind the spillway 
– Reduce leakage 
– Determine particle emitter location to set total head
– Determine particle emitter location to set flow rate instead
– Conduct parametric studies on model width and particle size
– Reduce leakage again
– Change particle emitter types
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Comparison Results
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Run Flow

Rate

Physical 

Total Head 

Result

SPH Total

Head 

Result

Relative 

Error

1 1.9 m2/s ± 0.25% 24.3 m 24.9 m 2.4 %

2 6.0 m2/s ± 0.25% 25.3 m 26.7 m 5.5 %

3 12.3 m2/s ± 0.25% 26.5 m 27.5 m 3.7 %

4 19.0 m2/s ± 0.25% 27.4 m 28.6 m 4.4 %

5 27.9 m2/s ± 0.25% 28.5 m 30.0 m 5.5 %

6 37.8 m2/s ± 0.25% 29.5 m 31.3 m 6.2 %

7 48.2 m2/s ± 0.25% 30.4 m 32.8 m 7.7 %

8 58.9 m2/s ± 0.25% 31.4 m 34.1 m 8.9 %

9 73.8 m2/s ± 0.5% 32.4 m 33.7 m 4.0 %

10 89.9 m2/s ± 0.5% 33.5 m 35.3 m 5.4 %



How to Join Physics Model & System Model
• Good - Run repeated simulations and add 

the failure information into the existing 
static models

• Better – Dynamic PRA model that can 
interact with the simulation

– No corrections needed for time 
dependent  calculations

– Determine average or mean time of 
particular outcomes

– Analyze time order of failures to 
determine early protection methods
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Enabling 
Conditions Flood
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SSC 
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Scenario Simulation
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Scenario 

Generation

3D Models for 
the Facility 
including 
Systems, 

Structures, & 
Component 

(SSC)

Computation
al Layers 

Used for the 
Analysis . . .

Probabilistic events

Seismic

Flooding

Thermal-hydraulics

Hazard Freq. Static/Dynamic 
Loads Debris FragilitiesWater Migration
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Timing is Everything
• Physics simulation are dynamic and time 

dependent
• Control logic is not always available in 

simulations
• Need to modify the behavior of the simulation at 

during execution.
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Example of a fluid solver (physics representation)
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Making a wave CRA style (water physics)
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Physics (water) + facility model + probabilistic failures = CRA
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River flood modeling
• INL/EXT-15-37091, Flooding Capability for River-based Scenarios
• Evaluated two different types of potential river-based flooding tools

– 1D/2D grid based (GeoClaw, EPA’s SWMM code, and Army Corps HEC)
– 3D particle based
– Both the 2D and 3D methods have positives and negatives

• Combination of both seems to be best approach moving forward
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2D grid approach for 
“bulk” scenario 

attributes

3D particle approach 
for details at the 

facility
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Dam break and subsequent 
river flood

by
Steve Prescott (INL)

Ram Sampath (Centroid Lab)
Donna Calhoun (BSU)



Conclusions
• The Idaho National Laboratory is demonstrating a next-generation uncertainty and risk-

assessment approach that supports PRA and decision-making
• Combines mechanistic physics-based models with probabilistic analysis (CRA)
• Provides new opportunities for the next generation of scientists/engineers to attract talent

20

• Provides an opportunity to greatly 
enhance the realism in our risk models

• Uncertainty analysis can be built upon and 
supported for next-generation methods and 
tools

• Can provide solution to “what’s next” 
in modeling (e.g., synthetic data for 
machine learning, digital twin 
framework)
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Curtis.Smith@inl.gov

Thank you!
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