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Outline of my talk today

« Definition of Computational Risk Assessment
« Computational resources
« Simulating physical phenomena via Smoothed Particle Hydrodynamics

- Performing assessment via CRA
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Computational Risk Assessment (CRA)

Computational Risk Assessment is a focus of current
research and development
CRA is a combination of

— Probabilistic (i.e., dynamic) scenario creation where
scenarios unfold and are not defined a priori

— Mechanistic analysis representing physics of the unfolding
scenarios

CRA relies on the availability of computational tools

— Processors (hardware)

— Methods (software)
CRA is not simply solving traditional PRA models faster or
with higher precision

— Itis a different way of thinking about the safety problem

Integrating the worlds
of physics and
probability leads us to
predictions based upon
an approach called
“*computational risk
assessment”
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CRA driving factors

Computers are improving

Software is improving
And much of it is free

Analysis characteristics including

f Spatial

(location issues)

Temporal
(timing issues)

Mechanistic
(physics issues)

Topology
complexity issues)
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Computational performance @ dawn of risk and reliability analysis
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Computational performance over time has steadily increased

Performance Development

10 EFlop/s
1 EFiopis - Lists | woe®”
OPFOPS 7 o sum 4 #1 = #8500 .'..:::““““ Notes:
e | | . 1 EFlop/s = one
s | | Ll exaFLOPS, or a billion
S r00Trops billion calculations per
% 10 TFlop/s .....o'.. — ._-".. second (1018)
1 TFIoprs 00 aaaa? _."..
100 GFlop/s ;‘“‘: .-"... 1 MOPS does not even
10 GFlop/s ..-"._. | appear on this pIOt
1GFlopis_u"® o
10 WFiepis 1995 2000 2005 2010 2015

https://www.top500.org/statistics/perfdevel/ 6



-~

\Eﬂb Idaho National Laboratory

But how available is this “computational performance?”

Performance Development
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Smoothed Particle Hydrodynamics

A way to simulate flooding scenarios is needed

 Smoothed Particle Hydrodynamics (SPH)
— Particle based method
— Originally developed for astrophysics applications in 1977
— Later extended for fluid dynamic applications

- SPH allows for flooding scenarios to be simulated
— Does not confine fluid to meshes o
— Allows for a natural flow to be modeled ! I

* Areliable SPH code is needed O Dt fapet
— Compare to experimental results Ll
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Ogee Spillway Comparison

« Comparison Model
— Ogee spillway with horizontal apron

— Detalls of experiment provided in Flow over
Ogee Spillway: Physical and Numerical Model
Case Study by Bruce M. Savage and Michael C.
Johnson

— Experiment details (scaled model):
« Measurements taken 2 m upstream
— Flow Rate
— Total Head
« Ten different runs conducted

— Prototype scale was used for the SPH
comparison which required scaling the model
scale up 30 times
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Neutrino Model

« Developmental SPH code Neutrino was used to conduct the comparison

* Model construction process:
— Determine how to fill particles behind the spillway
— Reduce leakage
— Determine particle emitter location to set total head
— Determine particle emitter location to set flow rate instead
— Conduct parametric studies on model width and particle size
— Reduce leakage again
— Change particle emitter types

10




Comparison Results

Run Flow
Rate

1.9 m?/s + 0.25%
- 6.0 m?/s + 0.25%
- 12.3 m?/s + 0.25%
19.0 m2/s + 0.25%
27.9 m?/s + 0.25%
n 37.8 m%s + 0.25%
48.2 m?/s + 0.25%
H 58.9 m?/s + 0.25%
n 73.8 m?/s + 0.5%
89.9 m?/s + 0.5%

Physical

Total Head

Result
24.3 m
25.3m
26.5m
27.4m
28.5m
29.5 m
30.4 m
31.4m
324 m
33.5m

SPH Total

Head

Result
249 m
26.7m
27.5m
28.6m
30.0 m
31.3m
32.8 m
34.1m
33.7m
35.3m

Relative

Error

2.4 %
5.5 %
3.7 %
4.4 %
5.5 %
6.2 %
7.7 %
8.9 %
4.0 %
5.4 %

RELATIVE ERROR (%)
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TOTAL HEAD VS. FLOW RATE-3 M
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7 SPH Results
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How to Join Physics Model & System Model

* Good - Run repeated simulations and add
the failure information into the existing
static models

- Better — Dynamic PRA model that can
interact with the simulation

— No corrections needed for time
dependent calculations

— Determine average or mean time of
particular outcomes

— Analyze time order of failures to
determine early protection methods

System
& _— failure
R . .

)
e P (-
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Risk Analysis _
Steps for Enabling
Scenario Conditions

Generation

Flood

Plant SSC SSC
Response =TSR Scenario Simulation
to Initiator Successes

3D Models for
the Facility
including
Systems,
Structures, &
Component
(SSC)

Probabilistic everts
Computation Seismic
al Layers

Used for the
Analysis

Flooding Hazard Freq.

Thermal-hydraulics

|

Static/Dynamic Debris

Loads Water Migration

Fragilities
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Timing is Everything

* Physics simulation are dynamic and time
dependent

« Control logic is not always available in
simulations

* Need to modify the behavior of the simulation at
during execution.

System Model

IE Eval Eval Eval Action Eval Eval Cont

> _ > > >
Start [::ﬂa':i'lr Comp '[.I‘:ﬂarll"lelfs Comp [Comp Stop
Flood R Door Height Wave Splash . Flood . Flood Sim

Simulation
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Example of a fluid solver (physics representation)

River

Up to 6M fluid particles

15
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Making a wave CRA style (water physics)

S EETE T e e T T TR, R m e =



—
- m |daho National Laboratory

Physics (water) + facility model + probabilistic faillures = CRA
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River flood modeling

* INL/EXT-15-37091, Flooding Capability for River-based Scenarios

- Evaluated two different types of potential river-based flooding tools
— 1D/2D grid based (GeoClaw, EPA’'s SWMM code, and Army Corps HEC)

— 3D patrticle based
— Both the 2D and 3D methods have positives and negatives

 Combination of both seems to be best approach moving forward

=90 grid ap“"“‘pr_oé{ch'fd? —_—
“hulk™“scenario
attributes
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Conclusions

The Idaho National Laboratory is demonstrating a next-generation uncertainty and risk-
assessment approach that supports PRA and decision-making

Combines mechanistic physics-based models with probabilistic analysis (CRA)
Provides new opportunities for the next generation of scientists/engineers to attract talent

* Uncertainty analysis can be built upon and

supported for next-generation methods and
tools

« Provides an opportunity to greatly
enhance the realism in our risk models

« Can provide solution to “what’s next”
in modeling (e.g., synthetic data for
machine learning, digital twin
framework)

20
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Curtis.Smith@inl.gov

Thank you!
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