Computational Methods for External Flooding PRA

Dr. Curtis Smith, Director Nuclear Safety and Regulatory Research Division Idaho National Laboratory

Outline of my talk today

- Definition of Computational Risk Assessment
- Computational resources
- Simulating physical phenomena via Smoothed Particle Hydrodynamics
- Performing assessment via CRA

Computational Risk Assessment (CRA)

- Computational Risk Assessment is a focus of current research and development
- CRA is a combination of
 - Probabilistic (i.e., dynamic) scenario creation where scenarios unfold and are not defined a priori
 - Mechanistic analysis representing physics of the unfolding scenarios
- CRA relies on the availability of computational tools
 - Processors (hardware)
 - Methods (software)
- CRA is not simply solving traditional PRA models faster or with higher precision
 - It is a different way of thinking about the safety problem.

Integrating the worlds
of physics and
probability leads us to
predictions based upon
an approach called
"computational risk
assessment"

CRA driving factors

- Computers are improving
- Software is improving
 - And much of it is free
- Analysis characteristics including

Temporal (timing issues)

Spatial (location issues)

Mechanistic (physics issues)

Topology (complexity issues)

Computational performance @ dawn of risk and reliability analysis

Computational performance over time has steadily increased

Performance Development

Notes:

1 EFlop/s = one exaFLOPS, or a billion billion calculations per second (10¹⁸)

1 MOPS does not even appear on this plot.

But how available is this "computational performance?"

Performance Development

Smoothed Particle Hydrodynamics

- A way to simulate flooding scenarios is needed
- Smoothed Particle Hydrodynamics (SPH)
 - Particle based method
 - Originally developed for astrophysics applications in 1977
 - Later extended for fluid dynamic applications
- SPH allows for flooding scenarios to be simulated
 - Does not confine fluid to meshes
 - Allows for a natural flow to be modeled
- A reliable SPH code is needed
 - Compare to experimental results

Ogee Spillway Comparison

- Comparison Model
 - Ogee spillway with horizontal apron
 - Details of experiment provided in Flow over Ogee Spillway: Physical and Numerical Model Case Study by Bruce M. Savage and Michael C. Johnson
 - Experiment details (scaled model):
 - Measurements taken 2 m upstream
 - Flow Rate
 - Total Head
 - Ten different runs conducted
 - Prototype scale was used for the SPH comparison which required scaling the model scale up 30 times

Neutrino Model

- Developmental SPH code Neutrino was used to conduct the comparison
- Model construction process:
 - Determine how to fill particles behind the spillway
 - Reduce leakage
 - Determine particle emitter location to set total head
 - Determine particle emitter location to set flow rate instead
 - Conduct parametric studies on model width and particle size
 - Reduce leakage again
 - Change particle emitter types

Comparison Results

Run	Flow	Physical	SPH Total	Relative
	Rate	Total Head	Head	Error
		Result	Result	
1	1.9 m ² /s ± 0.25%	24.3 m	24.9 m	2.4 %
2	$6.0 \text{ m}^2\text{/s} \pm 0.25\%$	25.3 m	26.7 m	5.5 %
3	12.3 m ² /s ± 0.25%	26.5 m	27.5 m	3.7 %
4	19.0 m ² /s ± 0.25%	27.4 m	28.6 m	4.4 %
5	27.9 m ² /s ± 0.25%	28.5 m	30.0 m	5.5 %
6	$37.8 \text{ m}^2/\text{s} \pm 0.25\%$	29.5 m	31.3 m	6.2 %
7	48.2 m ² /s ± 0.25%	30.4 m	32.8 m	7.7 %
8	$58.9 \text{ m}^2/\text{s} \pm 0.25\%$	31.4 m	34.1 m	8.9 %
9	$73.8 \text{ m}^2/\text{s} \pm 0.5\%$	32.4 m	33.7 m	4.0 %
10	$89.9 \text{ m}^2/\text{s} \pm 0.5\%$	33.5 m	35.3 m	5.4 %

How to Join Physics Model & System Model

 Good - Run repeated simulations and add the failure information into the existing static models

- Better Dynamic PRA model that can interact with the simulation
 - No corrections needed for time dependent calculations
 - Determine average or mean time of particular outcomes
 - Analyze time order of failures to determine early protection methods

Risk Analysis
Steps for
Scenario
Generation

Enabling Conditions

Flood

Plant SSC Response to Initiator SSC Failures & Successes

Scenario Simulation

Timing is Everything

- Physics simulation are dynamic and time dependent
- Control logic is not always available in simulations
- Need to modify the behavior of the simulation at during execution.

System Model

Simulation

Example of a fluid solver (physics representation)

Making a wave CRA style (water physics)

Physics (water) + facility model + probabilistic failures = CRA

River flood modeling

- INL/EXT-15-37091, Flooding Capability for River-based Scenarios
- Evaluated two different types of potential river-based flooding tools
 - 1D/2D grid based (GeoClaw, EPA's SWMM code, and Army Corps HEC)
 - 3D particle based
 - Both the 2D and 3D methods have positives and negatives
- Combination of both seems to be best approach moving forward

Conclusions

- The Idaho National Laboratory is demonstrating a next-generation uncertainty and riskassessment approach that supports PRA and decision-making
- Combines mechanistic physics-based models with probabilistic analysis (CRA)
- Provides new opportunities for the next generation of scientists/engineers to attract talent

