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15.1.1  We want to find the S2  operator in the uncoupled basis m1m2 , which comprises four 
states:  

 + +  ,   + −  ,   − +  ,   − −  

The S2  operator is 
  S

2 = S1 + S2( )2 = S12 + S22 + 2S1 iS2  
Let's do each piece in turn.  The eigenvalue equations for S1

2  and S2
2  are 

 
 

S1
2 m1m2 = s1 s1 +1( )2 m1m2

S2
2 m1m2 = s2 s2 +1( )2 m1m2

 

where s1 = 1 2  and s2 = 1 2 .  Now use these to find the matrix elements: 

 

′m1 ′m2 S1
2 m1m2 = ′m1 ′m2 s1 s1 +1( )2 m1m2 = s1 s1 +1( )2 ′m1 ′m2 m1m2 = s1 s1 +1( )2δm1 ′m1

δm2 ′m2

′m1 ′m2 S2
2 m1m2 = ′m1 ′m2 s2 s2 +1( )2 m1m2 = s2 s2 +1( )2 ′m1 ′m2 m1m2 = s2 s2 +1( )2δm1 ′m1

δm2 ′m2

 

yielding 

 

 

S1
2 

3
4
2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ +
+ −
− +
− −

S2
2 

3
4
2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ +
+ −
− +
− −

 

So each is proportional to the identity matrix. 
Now work on the cross term: 

  S1 iS2 = S1xS2x + S1yS2y + S1zS2z  
Rewrite this in terms of the ladder operators, which are 

 
S1+ = S1x + iS1y S2+ = S2x + iS2y
S1− = S1x − iS1y S2− = S2x − iS2y

 

Solve these for the Cartesian components: 

 
S1x = 1

2 S1+ + S1−( ) S2x = 1
2 S2+ + S2−( )

S1y = − i
2 S1+ − S1−( ) S2y = − i

2 S2+ − S2−( )
 

and substitute to get 
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S1 iS2 = S1xS2x + S1yS2y + S1zS2z
= 1

2 S1+ + S1−( ) 12 S2+ + S2−( ) + − i
2 S1+ − S1−( ) − i

2 S2+ − S2−( ) + S1zS2z
= 1

4 S1+S2+ + S1−S2+ + S1+S2− + S1−S2−( )− 1
4 S1+S2+ − S1−S2+ − S1+S2− + S1−S2−( ) + S1zS2z

= 1
2 S1+S2− + S1−S2+( ) + S1zS2z

 

The ladder operators yield zero when acting on the extreme states 

 
S1+ + + = S1+ + − = S1− − + = S1− − − = 0
S2+ + + = S2+ − + = S2− + − = S2− − − = 0

 

For the other states, use the ladder operator equation  

 
 
J± j,mj =  j( j +1)− mj (mj ±1)⎡⎣ ⎤⎦

1/2
j,mj ±1  

which gives 

 

S1+ − + =  s1(s1 +1)−m1(m1 +1)[ ]1/2 + + =  1
2
3
2 − − 1

2( )(− 1
2 +1)⎡⎣ ⎤⎦

1/2
+ + =  3

4 + 1
4[ ]1/2 + +

=  + +
 

The other results are 

 

 

S1+ − − =  1
2
3
2 − − 1

2( )(− 1
2 +1)⎡⎣ ⎤⎦

1/2
+ − =  3

4 + 1
4[ ]1/2 + − =  + −

S1− + + =  1
2
3
2 − 1

2( )( 12 −1)⎡⎣ ⎤⎦
1/2

− + =  3
4 + 1

4[ ]1/2 − + =  − +

S1− + − =  1
2
3
2 − 1

2( )( 12 −1)⎡⎣ ⎤⎦
1/2

− − =  3
4 + 1

4[ ]1/2 − − =  − −

S2+ + − =  1
2
3
2 − − 1

2( )(− 1
2 +1)⎡⎣ ⎤⎦

1/2
+ + =  3

4 + 1
4[ ]1/2 + + =  + +

S2+ − − =  1
2
3
2 − − 1

2( )(− 1
2 +1)⎡⎣ ⎤⎦

1/2
− + =  3

4 + 1
4[ ]1/2 − + =  − +

S2− + + =  1
2
3
2 − 1

2( )( 12 −1)⎡⎣ ⎤⎦
1/2

+ − =  3
4 + 1

4[ ]1/2 + − =  + −

S2− − + =  1
2
3
2 − 1

2( )( 12 −1)⎡⎣ ⎤⎦
1/2

− − =  3
4 + 1

4[ ]1/2 − − =  − −

 

The action of  S1 iS2  on the basis states m1m2  is 

 

 

S1 iS2 + + = 1
2 S1+S2− + S1−S2+( ) + S1zS2z{ } + + = 1

2 0 + 0( ) + 1
2  12 { } + + = 1

4 
2 + +

S1 iS2 − − = 1
2 0 + 0( ) + −1

2( ) −1
2( ){ } − − = 1

4 
2 − −

S1 iS2 + − = 0 + 1
2  − + + 1

2  −1
2( ) + − = 1

4 
2 2 − + − + −( )

S1 iS2 − + = 0 + 1
2  + − + 1

2  −1
2( ) − + = 1

4 
2 2 + − − − +( )
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Projecting these results onto the basis states yields the matrix representation 

 

 

S1 iS2 
2

4

1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ +
+ −
− +
− −

 

Now add the three parts to get 

 

 

S2 = S1
2 + S2

2 + 2S1 iS2

 2 3
4
2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 2 
2

4

1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 2
2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ +
+ −
− +
− −

 

This operator is block diagonal, so we know two eigenvalues and eigenstates by inspection (we 
know that the eigenvalues have the form  s s +1( )2 ): 

 
sa = 1,       sa = 1,ma = 1 = + +

sb = 1,       sb = 1,mb = −1 = − −
 

The other two eigenvalues and eigenstates are found by diagonalizing the submatrix in the 
middle 

 

 

2 − λ 2

2 2 − λ
= 0

2 − λ( )2 − 2( )2 = 0
2 − λ( ) = ± 2( )
λ = 2 ± 2 = 22,02

s = 1,0

 

The resultant eigenstates are superpositions of the two states + −  and − + : 

 

sc = 1:
2 2

2 2
⎛

⎝
⎜

⎞

⎠
⎟

α
β

⎛

⎝
⎜

⎞

⎠
⎟ = 2

2 α
β

⎛

⎝
⎜

⎞

⎠
⎟ ⇒α + β = 2α ⇒α = β ⇒ sc =

+ − + − +
2

sd = 0 :
2 2

2 2
⎛

⎝
⎜

⎞

⎠
⎟

α
β

⎛

⎝
⎜

⎞

⎠
⎟ = 0

2 α
β

⎛

⎝
⎜

⎞

⎠
⎟ ⇒α + β = 0⇒α = −β ⇒ sd =

+ − − − +
2
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15.1.2  (1) The hyperfine Hamiltonian is 
  Hhf = AS1 iS2  

We know from problem 15.1.1 that  S1 iS2  is nondiagonal when expressed in the uncoupled 
basis.  However, it is diagonal in the coupled basis.  This is clear if we note that 

 
 

S2 = S1 + S2( )2 = S12 + S22 + 2S1 iS2
⇒ S1 iS2 = 1

2 S
2 − S1

2 − S2
2( )

 

The coupled basis vectors sm;s1s2 ≡ sm  are eigenstates of S2 , Sz , S1
2 , and S2

2 .  All the 
coupled states have the same quantum numbers s1 = 1 2  and s2 = 1 2 , and hence are eigenstates 
of S1

2  and S2
2  with eigenvalues  si si +1( )2 = 32 4 .  The matrices are thus proportional to the 

identity matrix (as they are in the uncoupled basis) 

 

 

S1
2 

3
4
2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

11
10
1,−1
00

S1
2 

3
4
2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

11
10
1,−1
00

 

where the rows (and columns) are labeled with the s,m  quantum numbers.  The matrix for S2  is 
obtained from the eigenvalue equation  S

2 sm = s s +1( )2 sm : 

 

 

S2  2
2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

11
10
1,−1
00

 

The hyperfine Hamiltonian is thus 

 

 

Hhf =
1
2
A 2

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

− 3
4
2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

− 3
4
2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

= A2

4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

11
10
1,−1
00
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Hence we can read the hyperfine energies from the diagonal values.  These add to the 
values for the original Hamiltonian, giving 

 

 

E =
−Ry + A2 4;   s = 1

−Ry − 3A2 4;   s = 0

⎧
⎨
⎪

⎩⎪
 

There are 3 s = 1 states ( 11 , 10 , 1,−1 ) and 1 s = 0 state ( 00 ), the triplet and singlet. 
(2) The energy difference between these 2 levels is 

  ΔE = E s = 1( )− E s = 0( ) = A2 ≡ hfhf  
To estimate the frequency fhf  of this hyperfine (hf) transition, note that the interaction energy of 
the two magnetic dipoles separated by a distance a0 is 

 
 
Ehf ≈

µe i
µP

a0
3  

where the magnetic moments are given by Eqn. 14.4.18b: 

 
 

µ = g q
2mc

S  

Hence we get 

 

 

AS1 iS2 ≈
1
a0
3 ge

q
2mec


S1 i gp

q
2mpc


S2

⇒ A ≈ 1
a0
3
ege
2mec

egp
2mpc

≈ 1
a0
3

e 2( )
2mec

e 5.6( )
2mpc

 

Hence the energy difference is 

 

 

ΔE = A2

≈ 1
a0
3

e 2( )
2mec

e 5.6( )
2mpc

2

≈ mee
2

2
⎛
⎝⎜

⎞
⎠⎟

3
e 2( )
2mec

e 5.6( )
2mpc

2 ≈ 2.8 e8

4c4
me

mp

mec
2

≈ 2.8( )α 2 me

mp

α 2mec
2 ≈ 5.6( )α 2 me

mp

Ryd

 

This gives a value of 

 ΔE ≈ 5.6( ) 1
1372

1
1836

13.6eV ≈ 2.21µeV  

and a wavelength of 

 λ ≈ 1240eVnm
ΔE

≈ 1240eVnm
2.21µeV

≈ 56cm  

compared to the actual value of 21 cm.  Our estimate for the frequency is 
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 fhf ≈
c
λ
≈ 3×10

10cms−1

56cm
≈ 534MHz  

compared to the actual value of 1420 MHz. 
(3)  To estimate the thermal populations use the Boltzmann factor (note the degeneracy factor): 

 

Ps=1
Ps=0

= gs=1 e
−Es=1 kT

gs=0 e
−Es=0 kT = 3e− Es=1−Es=0( ) kT = 3e−ΔE kT

≈ 3e−2.21µeV 25meV

≈ 3 1− 2.21µeV
25meV

⎛
⎝⎜

⎞
⎠⎟ ≈ 3 1− 0.00009( ) ≈ 3× 0.99991≈ 2.99973

 

 
 
3.  Particle #1 has angular momentum 1 (j1 = 1) and particle #2 has angular momentum 1/2 (j2 = 
1/2).  
a) The possible uncoupled basis states j1m1 j2m2  are: 
There are 3 states with j1 = 1, each with a different z-projection: m1= 1,0,-1 
There are 2 states with j2 = 1/2, each with a different z-projection m2  = 1/2, -1/2. 
There are 6 possible states in the uncoupled basis states j1m1 j2m2 .   These are 

 

11 12 12 11 12 −1
2

10 1
2
1
2 10 1

2
−1
2

1,−1 12 12 1,−1 12 −1
2

 

b)  For any angular momentum addition, the possible values are 

 J = j1 + j2  ,  j1 + j2 −1 ,  j1 + j2 − 2 , …  j1 − j2 .  In this case, we get 

 J = 3
2  ,  12  

The allowed values of M are always –J to J, giving 

 
J = 3

2  :   M = 3
2  ,  12  ,  −12  ,  −32

J = 1
2  :   M = 1

2  ,  −12
 

c)  The coupled basis states are 

 
3
2
3
2

3
2
1
2

3
2

−1
2

3
2

−3
2

1
2
1
2

1
2

−1
2

 

d)  The Clebsch-Gordan table is given below  
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j1=1 j 3
2

3
2

3
2

3
2

1
2

1
2

j2= 1
2 m 3

2
1
2 - 1

2 - 3
2

1
2 - 1

2

m1 m2

1 1
2 1 0 0 0 0 0

1 - 1
2 0 1

3
0 0 2

3 0

0 1
2 0 2

3 0 0 - 1
3

0

0 - 1
2 0 0 2

3 0 0 1
3

-1 1
2 0 0 1

3
0 0 - 2

3

-1 - 1
2 0 0 0 1 0 0  

Using the columns of the Clebsch-Gordan table gives the coupled basis states in terms of the 
uncoupled basis states 

 

3
2
3
2 = 11 12 12

3
2
1
2 = 1

3 11 12 −1
2 + 2

3 10 1
2
1
2

3
2

−1
2 = 2

3 10 1
2

−1
2 + 1

3 1,−1 12 12
3
2

−3
2 = 1,−1 12 −1

2

1
2
1
2 = 2

3 11 12 −1
2 − 1

3 10 1
2
1
2

1
2

−1
2 = 1

3 10 1
2

−1
2 − 2

3 1,−1 12 12

 

e)  Using the rows of the Clebsch-Gordan table gives the uncoupled basis states in terms of the 
coupled basis states 

 

11 12 12 = 3
2
3
2

11 12 −1
2 = 1

3
3
2
1
2 + 2

3
1
2
1
2

10 1
2
1
2 = − 2

3
3
2
1
2 + 1

3
1
2
1
2

10 1
2

−1
2 = 2

3
3
2

−1
2 + 1

3
1
2

−1
2

1,−1 12 12 = 1
3

3
2

−1
2 − 2

3
1
2

−1
2

1,−1 12 −1
2 = 3

2
−3
2

 

 
 
 
 
 
 


