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1. Some Basic Concepts

1.1 Introduction: Why nonlinear (nL) time series models?

Real world time series processes exhibit multifarious nonlinear and
nonstationary dynamic behavior including aperiodic (asymmetric) patterns or
cycles, intermittencies, and other transient behavior.

Additional features include symptoms such as non-Gaussianity,
multi-modality, and time-irreversibility.

“Classical”, i.e. stationary and linear (III).
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Preliminaries:

Def: The stochastic process {Yt , t ∈ Z} defined on a probability space is
called a discrete-time time series.

Def: {Yt} is stationary or weakly stationary (WS) if

1. E|Yt |2 < ∞, ∀t .

2. E(Yt) = μ, ∀t .

3. Cov(Yt , Yt+`) = γY (`) depends on ` ∈ Z only.

Def: {Yt} is strictly stationary (SS) if (Y1, . . . , YT )
D
∼ (Y1+`, . . . , YT+`) ∀T ≥ 1

and ` ∈ Z.

Remarks:

1. SS + (E|Yt |2 < ∞) =⇒ WS.

2. WS ; SS (think of an example)
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1.2 Linearity and Gaussianity

Def: {Yt} is a Gaussian time series if

(Ym, . . . , Yn) is multivariate normal (or Gaussian)

for all integers m < n, i.e., all finite dimensional distributions are normal.
Remarks:

1. A Gaussian time series is completely determined by the mean function
μt = E(Yt ) and the covariance functions γ(s, t) = Cov(Ys, Yt ).

2. A Gaussian time series is stationary (SS or WS) if and only if μt = μ and
γ(s, t) = γ(t − s) depends only on the time lag t − s.

Def: {Yt} is a linear process with mean 0 if for all t ∈ Z

Yt =
∞∑

i=−∞

ψiεt−i , where
∞∑

i=−∞

ψ2
i < ∞, {εt}

i.i.d.
∼ (0, σ2

ε). (∗)

Remarks:
1. The sequence {εt} is called strict white noise (WN) as opposed to weak WN, which is a

stationary sequence of uncorrelated random variables.
2. The requirement that {εt} is i.i.d. is more restrictive than that {εt} is serially uncorrelated.

Independence implies that 3rd and higher-order non-contemporaneous moments of {εt} are
0. When {εt} is assumed to be Gaussian distributed, the two concepts of WN coincide.
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Def: {Yt} is said to be linear causal if ψi = 0 for i < 0, i.e., if

Yt = εt +
∞∑

i=1

ψiεt−i , where
∞∑

i=1

ψ2
i < ∞, {εt}

i.i.d.
∼ (0, σ2

ε). (∗∗)

Remarks:

1. The MA(∞) representation in (∗∗) should not be confused with the Wold
decomposition theorem. In (∗∗) {εt} is only assumed to be i.i.d. and not
weakly WN as in the Wold representation.

2. If {εt} is also Gaussian, (∗∗) becomes

Yt = εt +
∞∑

i=1

ψiεt−i , where
∞∑

i=1

ψ2
i < ∞, {εt}

i.i.d.
∼ N (0, σ2

ε).

Then the best mean square error predictor of {Yt} equals the best linear
predictor.

Def: {Yt} is said to be nonlinear (nL) if neither (∗) nor (∗∗) hold.

1 – 4



Some Basic Concepts Some Univariate NL Models Probabilistic Properties

Figure: Quarterly U.S. unemployment rate (in %) (252 observations); red triangle up = business
cycle peak, red triangle down = business cycle trough.

Example: The series displays steep increases that end in sharp peaks and
alternate with much more gradual and longer declines that end in mild
troughs. Time series that exhibit such strong asymmetric behavior cannot be
adequately modeled by linear time series models with normally distributed
errors.
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Reversibility:

Def: A strictly stationary stochastic process {Yt} is time-reversible (TR) if

(Y1, Y2, . . . , YT )
D
∼ (YT , YT−1, . . . , Y1).

Result: i.i.d. sequences {Yt} are TR.

Thm: (Breidt and Davies, JTSA, 1992) Consider the linear time series {Yt}

Yt =
∞∑

i=−∞

ψiεt−i , {εt} ∼ i.i.d.,

where ψ(z) 6= zr ψ(z−1) for any integer r . Assume either

(a) ε0 has mean 0 and finite variance, and {Yt} has a spectral density
almost everywhere; or

(b) 1/ψ(z) = π(z) =
∑

πj zj , the series converging in some annulus
D = {z : d < |z| < d−1} with d < 1, and π(B)Yt =

∑
πjYt−j = εt .

Then {Yt} is TR if and only if ε0 is Gaussian.
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Example: Does the following time series look time-reversible?

1 – 7



Some Basic Concepts Some Univariate NL Models Probabilistic Properties

Example: Does the following time series look time-reversible?

Application: Plot {Yt}with the time axis reversed. If the mirror image is not
similar to the original plot there is “evidence” against TR. Formal test
statistics follow soon.

Figure: (a) EEG recordings of electrical potentials (activity) of the brain, and (b) the reversed plot.
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1.3 Initial Data Analysis

Normality of independent data:
• Jarque–Bera (Int. Stat. Review, 1987);
• Lin–Mudholkar (Biometrika, 1980).

Weakly dependent data (Lobato and Velasco, Econometric Theory, 2004).
Robust JB test statistic (Bai and Ng, JBES, 2005).

What about the sample ACF and PACF?
Using asymptotic Bartlett 95% confidence bands ±1.96/

√
T for nL time

series can lead to spurious results (Berlinet and Francq, JTSA, 1997).

Some alternatives:
• Generalizations of the sample ACF and PACF (nonparametric); Nielsen

and Madsen (CSDA, 2004). Matlab and R codes at
http://www2.imm.dtu.dk/courses/02427 .

• Kendall’s (partial) tau test statistic; Harvill and Ray (Comm. Stats.:
Theory & Methods,1999).

Some additional tools:
• (Partial) mutual information coefficient; Granger and Lin (JTSA, 1994).
• Recurrence and directed scatter plots (analysis of deterministic chaos).

1 – 8
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1.4 Some Books References:
• De Gooijer, J.G. (2017). Elements of Nonlinear Time Series Analysis and

Forecasting. Springer-Verlag, New York.
http://doi.org/10.1007/978-3-319-43252-6 .

• Douc, R., Moulines, E., and Stoffer, D.S. (2014). Nonlinear Time Series: Theory,
Methods, and Applications with R Examples. Chapman & Hall/CRC, London.
http://doi.org/10.1201/b16331 .

• Fan, J. and Yao, Q. (2003). Nonlinear Time Series: Nonparametric and Parametric
Methods. Springer-Verlag, New York. http://doi.org/10.1007/b97702 .

• Franses, P.H. and van Dijk, D. (2000). Nonlinear Time Series Models in Empirical
Finance. Cambridge University Press, Cambridge, UK.
http://doi.org/10.1017/cbo9780511754067 .

• Gao, J. (2007). Nonlinear Time Series: Semiparametric and Nonparametric
Methods. Chapman & Hall/CRC.
http://doi.org/10.1201/9781420011210 .

• Teräsvirta, T., Tjøstheim, D., and Granger, C.W.J. (2010). Modelling Nonlinear
Economic Time Series. Oxford University Press, New York.
http://doi.org/10.1093/acprof:oso/9780199587148.001.0001 .

• Tsay, R.S. and Chen, R. (2018). Nonlinear Time Series Analysis. Wiley.
http://doi.org/10.1002/9781119514312 .
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2. Some Univariate nL Models

2.1 Volterra Series Expansion

Let h(∙) denote a suitably smooth real-valued function. Then a general form
for modeling {Yt} can be expressed as

h(Yt , Yt−1, Yt−2, . . .) = εt , εt
i.i.d.
∼ (0, σ2

ε), (∗)

which is independent of future observations and due to its generality may be
considered as an nL model. Find h(∙) such that (∗) is causally invertible, i.e.

Yt = h̃(εt , εt−1, εt−2, . . .). (∗∗)

Assume that h̃(∙) is a sufficiently well-behaved function so that we can expand
(∗∗) in a Taylor series about some fixed time point – say 0 = (0, 0, . . .)′. Then
we can write Yt in a so-called discrete-time Volterra series, i.e.,

Yt =μ +
∞∑

u=0

guεt−u +
∞∑

u,v=0

guv εt−uεt−v +
∞∑

u,v,w=0

guvw εt−uεt−v εt−w + ∙ ∙ ∙ ,

where
μ = g(0), gu1 =

( ∂h̃

∂εt−u1

)

0
, ∙ ∙ ∙ , gu1,...,un =

( ∂nh̃

∂εt−u1 ∙ ∙ ∙ ∂εt−un

)

0
.
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Similarly, we have the dual Volterra series

εt =μ
′ +

∞∑

u=0

g′
uYt−u +

∞∑

u,v=0

g′
uv Yt−uYt−v +

∞∑

u,v,w=0

g′
uvw Yt−uYt−v Yt−w + ∙ ∙ ∙ ,

where {g′
u}, {g′

uv}, {g′
uvw}, . . . are defined in a similar way as above. A more

parsimonious representation is

μ
′ +

p∑

u=0

g′
uYt−u +

p∑

u,v=0

g′
uv Yt−uYt−v +

p∑

u,v,w=0

g′
uvw Yt−uYt−v Yt−w + ∙ ∙ ∙ =

μ +

q∑

u=0

guεt−u +

q∑

u,v=0

guv εt−uεt−v +

q∑

u,v,w=0

guvw εt−uεt−v εt−w + ∙ ∙ ∙ ,

which can be expressed more generally as,
h∗(Yt , . . . , Yt−p) = g∗(εt , . . . , εt−q).

A further generalization, assuming h∗(∙) is invertible, is given by
Yt = G(Yt−1, . . . , Yt−p, εt , . . . , εt−q). (∗ ∗ ∗)

Note (∗ ∗ ∗) treats {εt} as an observable input; therefore, the input-output
relationships are expressed in terms of a finite # of past inputs and outputs.

When {εt} is unobservable and instead is taken as a rv, redefine G(∙) as
Yt = G̃(Yt−1, . . . , Yt−p, εt−1, . . . , εt−q) + εt .
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2.2 State-dependent Models

Assume G̃(∙) is a sufficiently well-behaved function; then, we may proceed by
expanding the right-hand side of (∗ ∗ ∗) in a Taylor series about (0, 0, . . . , 0)′.
Retaining only the 1st term in the expansion, gives

Yt = μ(St−1) +

p∑

i=1

fi (St−1)Yt−i +

q∑

j=1

gj (St−1)εt−j + εt ,

where
St = (Yt , . . . , Yt−p+1, εt , . . . , εt−q+1)

′
,

μ(St−1) = G̃(Yt−1, . . . , Yt−p, εt−1, . . . , εt−q),

fi (St−1) =
( ∂G̃

∂Yt−i

)

St−1
, gj (St−1) =

( ∂G̃

∂εt−j

)

St−1
.

In ARMA-like notation, the state-dependent model (SDM) is given by

Yt = μ(St−1) +

p∑

i=1

φi(St−1)Yt−i + εt +

q∑

j=1

θj(St−1)εt−j . (∗ ∗ ∗∗)

Due to the characterization of the SDM as a locally linear ARMA model
‘identifiability’ like conditions need to be imposed on (∗ ∗ ∗∗).
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Bilinear (BL) model:
A general BL model of order (p, q, P, Q) is defined as

Yt = φ0 +

p∑

i=1

φiYt−i + εt +

q∑

j=1

θjεt−j +
P∑

u=1

Q∑

v=1

ψuv Yt−uεt−v .

The model is linear in the Yt ’s and also in the εt ’s separately but not in both.
So, provided ψuv 6= 0, the ARMA(p, q) model is nested within the BL model.

Complete BL model:

Yt = εt +
P∑

u=1

Q∑

v=1

ψuv Yt−uεt−v .

Three special cases:
• Diagonal: ψuv = 0 ∀u 6= v .
• Superdiagonal: ψuv = 0 ∀u > v . Here the multiplicative terms with

non-zero coefficients are such that the input variable εt−v occurs after
Yt−u so that these terms are independent. This fact makes analysis
somewhat easier.

• Subdiagonal: ψuv = 0 ∀u < v . The variable Yt−u occurs strictly after
εt−v , making analysis more difficult.

2 – 4
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Example: Consider the following specifications

Yt = φYt−1 + εt (linear AR(1))

Yt = φYt−1 + εt + ψYt−2εt−1 (subdiagonal)

Yt = φYt−1 + εt + ψYt−1εt−1 (diagonal)

Yt = φYt−1 + εt + ψYt−1εt−2 (superdiagonal)

with φ = 0.99 and ψ = −0.5, and where {εt}
i.i.d.
∼ N (0, 1).

Compare each BL model through the effect of a one-unit shock on Yt at time
t = 1, i.e. ε1 = 1, and ε2 = ε3 = ∙ ∙ ∙ = 0, given the history ωt−1.

Measure: The difference between the conditional expectation with/without the
shock, called generalized impulse response function (GIRF). We have

GIRFY (t , 1, ωt−1) = E[Yt |ε1 = 1, ε2 = 0, ε3 = 0, . . .] − E[Yt |ε1 = 0, ε2 = 0, . . .].

Iterating each BL model, we get

GIRF(sub) = φt−1, GIRF(diag) = φt−1, GIRF(super) = φt−2(φ + ψ), (t ≥ 2).

2 – 5
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Figure: (a) – (d) Realizations of 4 time series processes (T = 2,000); (e) GIRFsfor both diagonal
and subdiagonal BL models (blue medium dashed line), and superdiagonal BL model (red solid
line) for a unit-shock at t = 1; (f) GIRFs for both diagonal and superdiagonal BL models (blue
medium dashed line) and subdiagonal model (red solid lines) for a permanent shock δ of magnitude
−0.01, 0.02, and 1 at time t = 1.
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Exponential ARMA (ExpARMA) model:

Yt =φ0+

p∑

i=1

{φi +ξi exp(−γY 2
t−d )}Yt−i +

q∑

j=1

{θj + τj exp(−γY 2
t−d )}εt−j + εt ,

where γ > 0 denotes a scaling factor.

ExpARMA changes smoothly between 2 extreme linear models, since for
large |Yt−d |, the coefficients are almost φi ’s and θj ’s. For small values of
|Yt−d |, they are φi + ξi and θj + τj and the exponential function changes
smoothly between these 2 extreme values.

A sufficient condition for strict stationarity is that all the roots of the
associated characteristic equation

zp − c1zp−1 − ∙ ∙ ∙ − cp = 0

are inside the unit circle, where ci = max{|φi |, |φi + ξi |} (i = 1, . . . , p).
Hence, the characteristic roots are amplitude-dependent, instead of constant.

2 – 7
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Random Coefficient AR (RCAR) model:

Let μ(St−1) = μ as constant, θj(St−1) = 0 ∀j , and φi(St−1) = {φi + βi,t}.
Then the SDM) reduces to,

Yt = μ +

p∑

i=1

{φi + βi,t}Yt−i + εt ,

where {Bt = (β1,t , . . . , βp,t)
′} is a sequence of i.i.d. random vectors with

E(Bt) = 0 and Cov(Bt) = Σβ , and {Bt} is independent of {εt}.

If p = 1, a necessary and sufficient condition for 2nd-order stationarity is that
φ2 + σ2

β < 1. By introducing random coefficients to an ARMA model, we can
generalize the RCAR model.

By assuming the coefficients βi,t are not independent but follow an arbitrary
strictly stationary stochastic process (say an MA process) defined on the
same probability space as {εt}, one obtains the so-called doubly stochastic
model; Tjøstheim (JTSA, 1989).
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Nonlinear MA (NLMA) model:

Yt = εt +

q∑

j=1

θj,i1
(St−1)εt−ji1

= εt +
Q∑

i1=0

βi1
εt−i1

+
Q∑

i1=0

Q∑

i2=0

βi1,i2
εt−i2

εt−2i1
+∙ ∙ ∙+

Q∑

i1=0

Q∑

i2=1

∙ ∙ ∙
Q∑

iq=0

βi1,i2,...,iq εt−i2
εt−i3

∙ ∙ ∙ εt−ηiq ,

where η is the highest order of summations.

Example:

Figure: (a) A realization of the NLMA model Yt = εt + β(εt−1 + εt−2 + εt−3) − εt εt−4 with

{εt}
i.i.d.
∼ N (0, 1), β = 0.5 (T = 250); (b) 4 permanent step response functions.
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2.3 Threshold Models

Self-exciting threshold ARMA (SETARMA) model:

Yt =
k∑

i=1

(
φ

(i)
0 +

pi∑

u=1

φ
(i)
u Yt−u + ε

(i)
t +

qi∑

v=1

θ
(i)
v ε

(i)
t−v

)
I(Yt−d ∈ R(i)),

where ε
(i)
t = σ2

i εt , and {εt}
i.i.d.
∼ (0, 1).

Example:

Figure: (a) A realization of Yt = 2Yt−1 + εt if |Yt−1| ≤ 2 and Yt = εt otherwise (T = 250), and

{εt}
i.i.d.
∼ (0, 1); (b) GIRF for a one-unit shock at time t = 1 (Y0 = 0); (c) Permanent step

responses for δ = 0.1 and δ = 1; (d) Permanent step responses for δ = 2 and δ = 10. Note: {Yt}
switches between a locally nonstationary and a locally stationary process. Globally, it is stationary.
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Multivariate Thresholds:
Control the dynamics of a SETARMA model by introducing multivariate
thresholds with unknown linear relationships between the thresholds.

Example: Consider the SETAR(2; 1, 1)2 model

Yt = 0.5 + 0.9Yt−1 − 1.8Yt−1I(ω′
1X̃t−1 ≤ 0) − I(ω′

2X̃t−1 ≤ 0) + εt , {εt}
i.i.d.
∼ N (0, 1).

where ω1 = (1, −1)′, ω2 = (0, 1)′, and X̃t−1 = (Yt−1, Yt−2)
′. Rewriting the

model in 4 separate regimes gives

Yt =






−0.5 − 0.9Yt−1 + εt , I: if Yt−1 − Yt−2 ≤ 0 and Yt−2 ≤ 0,
−0.5 + 0.9Yt−1 + εt , II: if Yt−1 − Yt−2 > 0 and Yt−2 ≤ 0,

0.5 − 0.9Yt−1 + εt , III: if Yt−1 − Yt−2 ≤ 0 and Yt−2 > 0,
0.5 + 0.9Yt−1 + εt , IV: if Yt−1 − Yt−2 > 0 and Yt−2 > 0.

Figure: (a) Threshold boundaries; (b) Scatter plot of Yt−2 versus Yt−1 with 2 separating
hyperplanes (red solid lines); T = 500.
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Asymmetric ARMA (asARMA) model:

Yt = φ0 +

p∑

i=1

φ+
i Y +

t−i +

p∑

i=1

φ−
i Y−

t−i + εt +

q∑

j=1

θ +
j ε+

t−j +

q∑

j=1

θ −
j ε−t−j .

Here Y±
t and ε±t denote the asymmetric component processes, defined as

Y−
t = Yt I(εt ≤ 0), Y +

t = Yt I(εt > 0), ε−t = εt I(εt ≤ 0), ε+
t = εt I(εt > 0),

with {εt}
i.i.d.
∼ (0, σ2

ε).

If p 6= 0 and q = 0, the model reduces to an asymmetric AR(p) (asAR). It is
an asymmetric MA(q) (asMA) model for p = 0 and q 6= 0. Note: The model
has 4 filters, 2 for positive innovations and 2 for negative innovations.

An alternative form is

Yt =

p∑

i=1

(
φ−

i + αi I(εt−i > 0)
)
Yt−i + εt +

q∑

j=1

(
θ −

j + βj I(εt−j > 0)
)
εt−j ,

where αi = φ+
i − φ−

i (i = 1, . . . , p), and βj = θ+
j − θ−

j (j = 1, . . . , q).

2 – 12
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Nested SETARMA (NeSETARMA) model (Astatkie et al., IJF, 1997):
Suppose that a strictly stationary process {Yt} (output) has 2 input variables
{Xt} and {Zt}. Moreover, assume that the regime-switching is conditional on
the values of the delayed observable variables Yt and Xt .

Then the complete dynamic system is divided in 2 subsystems, or stages.
Each stage consists of regimes, with the 2nd stage regimes nested within
those of the 1st stage. The regimes are formed in such a way that there is a
linear relationship between Yt and its lagged values, and a linear relationship
between Yt and lagged values of Xt .

If Yt is used as regime-switching variable in the 1st stage, then Xt will be
used in the 2nd stage and the resulting model is called an output-input
NeSETARMA model.

On the other hand, if Xt is used in the 1st stage and Yt in the 2nd, then the
model is called an input-output NeSETARMA model. The (possibly lagged)
relationship between Yt and Zt may be linear or quadratic.

2 – 13
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Nested SETARMA (NeSETARMA) model (Cont’d)

Some notation:
• Let k1 ≥ 1 be the # of 1st-stage regimes formed by partitioning the values of Yt−d1

into
non-overlapping intervals with d1 ∈ Z+ the 1st-stage delay.

• Let R(i) = (ri−1, ri ] denote the i th (i = 1, . . . , k1) interval with r0 = −∞ and rk1
= ∞. The

parameters r1, . . . , rk1−1 are the 1st-stage thresholds.

• Let `i,2 ≥ 1 (i = 1, . . . , k1) be the # of 2nd-stage regimes formed by using Xt−d2
as a

threshold variable with d2 ∈ Z+ the 2nd-stage delay.

• Let R(i,j) = (ri,j−1, ri,j ] (i = 1, . . . , k1; j = 1, . . . , `i,2) denote the j th 2nd-stage regime
within the i th 1st-stage regime with ri,0 = −∞ and ri,`i,2

= ∞. The set {ri,1, . . . , ri,`i,2−1}

represents the 2nd-stage thresholds.

The NeSETARMA model is defined as

Yt =

k1∑

i=1

{ `i,2∑

j=1

(
φ

(i,j)
0 +

∑

s

φ
(i,j)
s Yt−s +

∑

u

ξ
(i,j)
u Xt−u

+
∑

v

η
(i,j)
v Zt−v + ε

(i,j)
t +

∑

w

θ
(i,j)
w εt−w

)
I(Xt−d2 ∈ R(i,j))

}
I(Yt−d1 ∈ R(i)),

where {ε(i,j)
t }

i.i.d.
∼ (0, 1). Clearly, the model consists of

∑k1
i=1 `i,2 regimes.
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2.4 Smooth Transition (ST) models

A (two-regime) smooth transition autoregressive (STAR) model of order
(2; p, p) is defined as

Yt =
{

φ
(1)
0 +

p∑

u=1

φ
(1)
u Yt−u

}
(1 − G(zt )) +

{
φ

(2)
0 +

p∑

u=1

φ
(2)
u Yt−u

}
G(zt ) + εt ,

= φ0 +

p∑

u=1

φuYt−u +
{

ξ0 +

p∑

u=1

ξuYt−u

}
G(zt ) + εt ,

where φu = φ
(1)
u and ξu = φ

(2)
u − φ

(1)
u (u = 0, 1, . . . , p).

The transition (or activation-level) function G(∙) allows the conditional
expectation of the model to change smoothly.

Assume G(zt) ≡ G(Yt−d ; γ, c) = Φ(γ{Yt−d − c}), where Φ(∙) is the CDF of
the N (0, 1) distribution. d ≥ 1 is the delay parameter, c is a location value,
indicating when the transition is occurring, whereas γ > 0 is a slope
parameter.

When γ increases, the transition is completed in a short period of time, and
Φ(γ{Yt−d − c}) approaches I(Yt−d − c). Then the model reduces to a
SETAR(2; p, p). When γ ≈ 0 it may be well approximated by an AR(p).
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Two plausible transition functions:
• Logistic function:

G(Yt−d ; γ, c) =
1

1 + exp{−γ(Yt−d − c)}
, γ > 0,

and the resulting model is the logistic STAR (LSTAR) model.
• Exponential function:

G(Yt−d ; γ, c) = 1 − exp{−γ(Yt−d − c)2}, γ > 0,

giving rise to the exponential STAR (ESTAR) model.

Figure: Effects of various values of the smoothness parameter γ on (a) the logistic transition
function, and (b) the exponential transition function. Both functions with c = 0 and d = 1.
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2.5 Nonlinear non-Gaussian Models

Example: NEAR(1)

Yt = εt +

{
βYt−1 with prob. α,
0 with prob. (1 − α),

= βJt Yt−1 + εt ,

where

εt =

{
Et with prob. p1 = (1 − β)/(1 − (1 − α)β)
(1 − α)βEt with prob. 1 − p1 = αβ/(1 − (1 − α)β)

Jt =

{
0 with prob. (1 − α)
1 with prob. α,

where {Et} is a sequence of i.i.d. unit mean exponential random variables
which ensures that fY (y) = exp(−y) (0 ≤ y < ∞).

The parameters α and β are allowed to take values over the domain defined
by 0 ≤ α, β ≤ 1 with α = β 6= 1. The innovation process is not allowed to
take on negative values, i.e. P(Et ≤ 0) = 0.

Two extreme cases:
• α = 1, 0 ≤ β ≤ 1: the exponential AR (EAR) model; Lawrance and Lewis (JRSS-B, 1980).
• β = 1, 0 ≤ α < 1: the transposed EAR (TEAR) model; Lawrance and Lewis (Adv. Appl.

Prob, 1981).
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2.6 Artificial Neural Network Models

Example: A single hidden layer feed-forward AR–NN(2; 0, 1) model

Yt = 0.15 + ξ tanh(Yt−1 − 1) − ξ tanh(Yt−1 − 1.5) + εt ,

where tanh(x) = (exp(2x) − 1)/(exp(2x) + 1), and Y0 = 0.1.
Note:

• For approximately 1 ≤ ξ ≤ 3.4 the model converges to a stable fixed point.
• For approximately 3.4 < ξ < 4.5 we see a local stable oscillation of period 2.
• The oscillation period is doubled for 4.5 < ξ < 5.8.
• At about ξ = 5.8 the plot hints at deterministic chaos, i.e. the model looses

predictability.

Figure: Skeleton of the AR–NN(2; 0, 1) model for 25 iterations of {Yt} for each value of
ξ = 1, 1.1, . . . , 24.9, 25.
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Neuro-coefficient STAR model:

NCTAR model of order p with q activation-level functions, NCTAR(k ; p, . . . ,
p)q , is defined as

Yt = φ0 + φ′Xt−1 +
k∑

j=1

(ξ0j + ξ′j Xt−1)G(X̃t−1; ω̃j , cj) + εt ,

where

G(X̃t−1; ω̃j , cj) = (1 + exp(−[ω̃′
j X̃t−1 − cj ]))

−1,

with

Xt−1 = (Yt−1, . . . , Yt−p)
′, X̃t−1 = (Yt−1, . . . , Yt−q)

′

ω̃j = (ω̃1j , . . . , ω̃qj)
′, ξj = (ξ1j , . . . , ξpj)

′, (j = 1, . . . , k),

and k the # of nodes in the hidden layer.

Some parameter restrictions need to be imposed, to guarantee identifiability.
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Figure: Flow diagram of various relationships between (non)linear AR models.
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2.7 Markov Switching (MS) Models

A Markov chain {St} is a discrete stochastic process St ∈ {1, . . . , k},
satisfying

P(St = j |St−1 = i , St−2 = r , . . .) = P(St = j |St−1 = i) = pij ,

k∑

j=1

pij = 1, pij ≥ 0, ∀i , j ∈ {1, . . . , k}.

Loosely speaking, a Markov chain (process) is called irreducible if any state j
can be reached from state i in a few steps, and it is termed aperiodic if the #
of steps it needs to return to a state has no period. The chain is ergodic if it is
irreducible and aperiodic.

Any Markov chain has a stationary distribution {πj = P(St = j)}k
j=1. For an

ergodic Markov chain, πj = limn→∞ P(Sn = j |S1 = i) (independent of i).
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Markov switching ARMA model:

Assume {Yt} is influenced by a hidden discrete stochastic Markov process
{St}. Then a Markov-switching ARMA (MS–ARMA) is defined as

Yt =
k∑

i=1

δti

(
φ

(i)
0 +

pi∑

u=1

φ
(i)
u Yt−u + ε

(i)
t +

qi∑

v=1

θ
(i)
v ε

(i)
t−v

)
,

where
δti =

{
1 if St = i ,
0 otherwise,

with ε
(i)
t = σ2

i εt , and {εt}
i.i.d.
∼ (0, 1), independent of {St}. So, St denotes the

regime or state prevailing at time t , one of k possible cases. When k = 1
there is only one state and {Yt} degenerates to an ARMA process.

Adding exogenous variables, such as trends, is a straightforward extension.
Another extension is to allow for GARCH errors. Multivariate modeling,
including modeling cointegrated processes, is also an option.
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2.8 Some Software References
• The R-tsDyn package contains a host of functions for modeling

univariate/multivariate threshold- and smooth transition models.

• Chap. 18 in the book by Zivot (2006) covers some popular nL time series
models/methods. S-Plus script files, using the S-Plus FinMetrics
module, are available at http:
//faculty.washington.edu/ezivot/MFTS2ndEditionScripts.htm .
R scripts: http://faculty.washington.edu/ezivot/MFTSR.htm .

• The website
http://sites.google.com/site/marcelocmedeiros/Home/codes
offers a set of MATLAB codes to estimate logistic smooth transition regression
models with and without long memory.

• The MATLAB toolbox NNSYSID contains a number of m-files for training and
evaluation of multi-layer perceptron type neural networks; see
http://personales.upv.es/ccarrasc/doc/1998-1999/trabajo_
vivi/Programas/nnsysid.html .

• MS Regress is a MATLAB package for estimating Markov regime switching
models; see http://msperlin.github.io/ .

• GAUSS code for estimating MS models is available from James D. Hamilton’s
website at http://econweb.ucsd.edu/ ˜ jhamilton/software.htm .
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3. Probabilistic Properties

3.1 Strict Stationarity

In a multivariate setting, a stochastic recurrence equation (SRE) is defined as

Yt = At Yt−1 + Bt , t ∈ Z,

where Yt = (Yt , . . . , Yt−m+1)
′ and Bt are random vectors in Rm, At are

random m × m matrices, and {(At , Bt), t ∈ Z} is an i.i.d. sequence.

Clearly, the SRE is the defining equation of a vector AR(1) process with
random coefficient matrix At .

Hence, it is also called a generalized (multivariate) random coefficient AR
process or RCA for short. The process is Markovian with transition probability
equal to the distribution of Aty + Bt . The SRE embeds many nL DGPs.
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Let | ∙ | be any vector norm in Rm, and ‖ ∙ ‖ the corresponding matrix norm,
i.e. for any m × m matrix A, ‖A‖ = sup|x|=1|Ax |. For an i.i.d. sequence of
m × m matrices {An, n ∈ Z}, with E(log+‖A1‖) < ∞, we define the
associated top Lyapunov exponent γ(∙) by

γ(A) = inf
n∈N

1
n
E(log‖A1A2 ∙ ∙ ∙An‖)

a.s.
= lim

n→∞

1
n

log‖A1A2 ∙ ∙ ∙An‖.

By recursive substitution of the lagged values of Yt , the SRE model can be
rewritten as

Yt =
( s∏

i=0

At−i

)
Yt−s−1 +

s∑

i=0

( i−1∏

j=0

At−j

)
Bt−i , ∀s ∈ N,

with the usual convention
∏−1

j=0 At−j = Im. If lims→∞
(∏s

i=0 At−i
)
Yt−s−1

a.s.
= 0m

holds, then it is reasonable to hope that the model has a solution process
{Yt} that is stationary.
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Suppose γ(A) < 0. Then, under some mild conditions, the series

Yt = Bt +
∞∑

s=1

At At−1 ∙ ∙ ∙At−s+1Bt−s, (∗)

converges a.s., and the process {Yt} is a non-anticipative stationary solution
to SRE.

Here, non-anticipative (or causal) means that {Yt} is independent of
{(At+h, Bt+h), h ∈ N} for each t . Further, the condition γ(A) < 0 is sufficient
when {(At , Bt)} is strictly stationary and ergodic.

Assume m = 1. Then, {Yt} as in (∗) is the unique strictly stationary solution
of SRE provided −∞ ≤ E(log |A1|) < 0 and E(log+ |B1|) < ∞. These two
conditions are easy to check, and γ(A) = E(log |A1|) can be obtained
explicitly.
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Example: (Evaluating the Top Lyapunov Exponent)

Consider the stochastic process

Yt = εt + β1Yt−1εt−1 + β2Yt−2ε
2
t−2, {εt}

i.i.d.
∼ (0, σ2

ε).

This can be written in the form of an SRE with

Yt =

(
Yt

Yt−1

)

, At =

(
β1εt−1 β2ε

2
t−2

1 0

)

, Bt =

(
εt

0

)

.

When β2 = 0 (i.e., m = 1), the strict stationarity condition based on the top
Lyapunov exponent takes the simple form

γ(A) = E(log |β1εt |) = log |β1| + E(log |εt |) < 0.

If {εt}
i.i.d.
∼ N (0, σ2

ε), the condition reduces to
σε|β1| <

√
2 exp(C/2) = 1.8874 ∙ ∙ ∙ , where C is Euler’s constant.

When m > 1, closed form expressions for γ(A) are hard to obtain, and one
has to resort to MC simulations.
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Second-order Stationarity:

The spectral radius ρ(M) of a square matrix M is defined as

ρ(M) = sup{|λ| : λ is eigenvalue of M}.

Then, provided E‖Bt‖2 < ∞, it can be deduced that

ρ
(
E(At ⊗ At)

)
< 1

is a necessary and sufficient condition for the moments of order two to exist.

This condition has a similar implication as that the characteristic polynomial
associated with a linear AR process has no roots on and within the unit circle.

If, in addition A t has finite moments of order 2m (m > 1), then a necessary
and sufficient condition ensuring finiteness of higher-order moments is
ρ[E{(At)

⊗2m}] < 1, where M⊗m = M ⊗ ∙ ∙ ∙ ⊗ M (m factors).
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Ergodicity: It is hard to obtain a necessary and sufficient condition for
ergodicity or geometical ergodicity (ensures strict stationarity) for a given
class of nL DGPs.

Example: Consider the SETAR(2; 1, 1) model

Yt =
{

φ1Yt−1 + εt if Yt−d ≤ 0,
φ2Yt−1 + εt if Yt−d > 0,

where {εi} are i.i.d. random variables with absolutely continuous marginal
distribution and positive pdf over the real line R1, and E|εt | < ∞.

Figure: Ergodic region of a SETAR(2; 1, 1) model; (a) d = 1, and (b) general d, where sd and td
are nonnegative integers depending on d, and sd and td are odd and even numbers, respectively.
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3.1 Invertibility

Suppose {Yt} follows the stationary and ergodic NLARMA(p, q) model

Yt = g(Yt−1, . . . , Yt−p, εt−1, . . . , εt−q ;θ) + εt , (∗)

where {εt}
i.i.d.
∼ (0, σ2

ε), and g(∙;θ) is a known real-valued function for a known
parameter vector θ.

Granger–Andersen (global) invertibility: Suppose that q initial values, say εj

(j = −q + 1, . . . , 0), of (∗) are given and that all Yt are known. Let {ε̂t , } be a
sequence of innovations generated by

ε̂t = Yt − g(Yt−1, . . . , Yt−p, ε̂t−1, . . . , ε̂t−q ;θ),

where ε̂i = εi for i ≤ 0. Define the reconstruction errors as et = εt − ε̂t . Then
the NLARMA model is said to be invertible, if

E|er
t | → 0 as t → ∞ (r = 1, 2, . . .).

If (∗) involves estimated parameters, the condition becomes

E|et |
r → c as t → ∞,

where c < ∞ is some constant. It is appropriate to take r = 2.
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A ready-to-use method to check invertibility.

Empirical invertibility of an NLARMA(p, q) model:

(i) Generate a random sample of i.i.d. innovations {ε̃t}N
t=T+1 from the known

distribution function (e.g., normal) of the residual series {ε̂t}T
t=1, where N is some

large value, say N = 1,000.

(ii) Replace εt by ε̃t for t = T + 1, . . . , N and use past values Yt−k (k = 0, . . . , p),
and ε̂t−k (k = 0, . . . , q), to generate a new set of observations {Ỹt}N

t=T+1.

(iii) Calculate {êt = Ỹt − Ŷt}N
t=T+1, where Ŷt are the out-of-sample fitted values.

Estimate E(e 2
t ) by (τ − T )−1∑τ

t=T+1 ê 2
t . If for all values of τ = T + 1, . . . , N,

this sequence does not exceed a pre-fixed value the process {Yt} is said to be
empirically (globally) invertible, otherwise it suggests non-invertibility.
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Example: Consider the asMA(1) model

Yt = εt + β+ε+
t−1 + β−ε−t−1, {εt}

i.i.d.
∼ N (0, 1),

where ε+
t = I(εt ≥ 0)εt and ε−t = I(εt < 0)εt .

Below is a graph of the empirical invertibility region for a simulated time
series of size T = 100, using 1,000 MC replications, and N = 1,000.

Figure: Contour plot of the invertibility region for the asMA(1)model for T = 100 (blue dots) and
the function |β−| = 1/|β+| (blue solid lines), and Wecker’s(JASA, 1984) invertibility region
|β+| < 1 and |β−| < 1 (red solid lines).
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Global and Local Invertibility:

When q > 1, a strictly stationary and ergodic SETMA(k ; q, . . . , q) process
Yt = εt +

∑k
i=1

(∑q
j=1 ψ

(i)
j εt−j

)
I(Yt−d ∈ R(i)) is globally invertible if

∏k
i=1 ρ(Ψ(i))pi < 1 with

Ψ
(i) =

(
ψ

(i)
1 ∙ ∙ ∙ ψ

(i)
q

Iq−1 0(q−1)×1

)
and pi = E[I(Yt−d ∈ R(i))] (0 < pi < 1).

Example: SETMA(2; 2, 2) with d = 1, ψ
(1)
1 = 1.4, ψ

(1)
2 = −0.7, ψ

(2)
1 = 1.5,

ψ
(2)
2 = −0.5, and {εt}

i.i.d.
∼ N (0, 1).

The corresponding 2 × 2 companion matrices Ψ(i) (i = 1, 2) have
eigenvalues λ

(1)
1,2 = 0.7 ± 0.4583i and λ

(2)
1,2 = 0.75 ± 0.25, respectively.

Notes:
1. The MA process in the first (Yt−1 ≤ 0) regime is (locally) invertible.

2. When Yt−1 > 0, the MA process is not invertible with one root on the unit circle and one root
less than one.

3. {Yt} is globally invertible. With ρ(Ψ(1)) = |0.7 ± 0.4583i| = 0.8367 and ρ(Ψ(2)) =

|0.75 + 0.25| = 1, we have ρ(Ψ(1))1−p1 × ρ(Ψ(2))p1 = (0.8367)0.4984 × (1)0.5016 < 1,
where p̂1 = 0.5016 is an estimate of p1 = E(Yt−1 ≤ 0).
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3.3 Some References

Threshold models:
• Chen, C.W.S. et al. (2011). A review of threshold time series models in finance. Statistics and

Its Interface, 4, 167–181. http://doi.org/10.4310/sii.2011.v4.n2.a12 .
• Hansen, B.E. (2011). Threshold autoregression in economics. Statistics and Its Interface, 4,

123–127. http://doi.org/10.4310/sii.2011.v4.n2.a4 .

Stationarity and ergodicity for models with nonlinearities in both the
conditional mean and the conditional variance:

• Chen, M. and Chen, G. (2000). Geometric ergodicity of nonlinear autoregressive models with
changing conditional variances. Can. J. Statistics, 28, 605–613.
http://doi.org/10.2307/3315968 .

• Ferrante, M., et al. (2003). Geometric ergodicity, regularity of the invariant distribution and
inference for a threshold bilinear Markov process. Statistica Sinica, 13, 367–384.

• Liebscher, E. (2005). Towards a unified approach for proving geometric ergodicity and mixing
properties of nonlinear autoregressive processes. J. Time Series Analysis, 26, 669–689.
http://doi.org/10.1111/j.1467-9892.2005.00412.x .

• Meitz, M. and Saikkonen, P. (2008). Stability of nonlinear AR-GARCH models. J. Time Series
Analysis, 29, 453–475. http://doi.org/10.2139/ssrn.945085 .

• Meitz, M. and Saikkonen, P. (2010). A note on the geometric ergodicity of a nonlinear
AR-ARCH model. Statistics & Probability Letters, 80(7-8), 631–638.
http://doi.org/10.1016/j.spl.2009.12.020 .
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1. Frequency-Domain Tests
1.1 Introduction

Bispectrum:
Suppose {Yt}T

t=1 is a time series arising from a real-valued 3rd-order strictly
stationary stochastic process {Yt} with mean 0. The inherent strength of
dependence can be measured by the ACVF, γY (`) = E(Yt Yt+`) (` ∈ Z).

However, we cannot base tests for nonlinearity (nL) and non-Gaussianity
(nG) on 2nd moments.

A direct approach is to consider moments of higher order. A useful function is
the 3rd-order cumulant , defined as γY (`1, `2) = E(Yt Yt+`1 Yt+`2), (`1, `2 ∈ Z).

Both functions are time invariant and unaffected by permutations in their
arguments, which creates the symmetries

γY (`) = γY (−`),

γY (`1, `2) = γY (`2, `1) = γY (−`1, `2 − `1) = γY (`1 − `2,−`2).
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If
∑∞

`=−∞ |γY (`)| < ∞, then we define the spectral density function
(spectrum) of {Yt} to be the discrete-time Fourier transform (FT) of the ACVF,

fY (ω) =
∞∑

`=−∞

γY (`) exp(−2πiω`), ω ∈ [0, 1],

where ω denotes the frequency.

If, in addition,
∑∞

`1,`2=−∞ |γY (`1, `2)| < ∞, then the bispectral density
function (bispectrum) exists and is defined as the bivariate, or double, FT of
the 3rd-order cumulant function,

fY (ω1, ω2) =
∞∑

`1,`2=−∞

γY (`1, `2) exp{−2πi(ω1`1 + ω2`2)},

(ω1, ω2) ∈ [0, 1]2.
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We have the following relations,

fY (ω) = fY (−ω),

fY (ω1, ω2) = fY (ω2, ω1) = fY (ω1,−ω1 − ω2) = fY (−ω1 − ω2, ω2).

The 3rd-order cumulant and the bispectrum are mathematically equivalent,
as are the spectrum and the ACVF.

Clearly, fY (ω) is symmetric about 0.5. Due to the periodicity of the FT, the
bispectrum in the entire plane can be determined from the values inside one
of the 12 sectors shown in the Figure on the next page. Therefore, it is
sufficient to consider only frequencies in the 1st triangular region, which we
define as the principal domain

D = {(ω1, ω2) : ω1 = ω2, ω1 = 0, ω1 = (1 − ω2)/2}.
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Figure: Values of fY (ω1, ω2) defined over the entire plane, as completely specified by the values
over any one of the 12 labeled sectors.
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Some properties:

• If {Xt} and {Yt} are two statistically independent processes and
Zt = Xt + Yt , then fZ (ω1, ω2) = fX (ω1, ω2) + fY (ω1, ω2).

• If {Xt} is Gaussian and i.i.d., then γX (`1, `2) = 0, ∀(`1, `2), and
fX (ω1, ω2) = 0, ∀(ω1, ω2), so fZ (ω1, ω2) = fY (ω1, ω2), i.e. symmetric noise
is suppressed in the bispectrum.

• The imaginary part of fY (ω1, ω2) is 0 for a TR process. Then, the
3rd-order cumulant function has the additional property that γY (`1, `2)
= γY (−`1,−`2), and hence

={fY (ω1, ω2)} =
∞∑

`1,`2=−∞

γY (`1`2, ) sin 2π(ω1`1 + ω2`2)

=
∞∑

`1,`2=0

γY (`1, `2){sin 2π(ω1`1 + ω2`2) + sin 2π(−ω1`1 − ω2`2)}

= 0,

using the identity sin A + sin B = 2 sin A+B
2 cos A−B

2 .
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Assume that the process {Yt} is linear causal , i.e.,

Yt = εt +
∞∑

i=1

ψiεt−i , where
∞∑

i=1

ψ2
i < ∞, {εt}

i.i.d.
∼ (0, σ2

ε),

with ψi = 0 for i < 0. Then

γY (`1, `2) = E(ε3
t )

∞∑

j=0

ψjψj+`1ψj+`2 .

Hence

fY (ω1, ω2) = E(ε3
t )H(ω1)H(ω2)H

∗(ω1 + ω2),

where H(ω) =
∑∞

j=0 ψj exp(−2πiωj) is known as the transfer function and
H∗(ω) = H(−ω) its complex conjugate.
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For linear process the spectral density function reduces to

fY (ω) = σ2
ε|H(ω)|2.

Hence, defining the normalized bispectrum,

BY (ω1, ω2) =
fY (ω1, ω2)√

fY (ω1)fY (ω2)fY (ω1 + ω2)
, (ω1, ω2) ∈ D.

The square modulus of the normalized bispectrum, called frequency
bicoherence is simply

|BY (ω1, ω2)|
2 =

{E(ε3
t )}

2

σ6
ε

≡
μ2

3,ε

σ6
ε

, (ω1, ω2) ∈ D,

where μ3,ε = E(ε3
t ).
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The above property may be viewed as the basis of several frequency-domain
tests for Gaussianity and linearity.

If {Yt} is linear, and the distribution of {εt} is symmetric, then μ3,ε = 0 and so
|BY (ω1, ω2)|2 ≡ 0 ∀(ω1, ω2) ∈ D. However, this is also true for linear Gaussian
time series processes. Thus the skewness function is a constant if {Yt} is
linear and that constant is 0 if {Yt} is Gaussian. Consequently, the null
hypotheses of interest are, respectively,

H(1)
0 : fY (ω1, ω2) = 0, ∀ (ω1, ω2) ∈ D; and

H(2)
0 : |BY (ω1, ω2)|2 = constant, ∀ (ω1, ω2) ∈ D.
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Consistent estimates of the spectrum and bispectrum can be obtained
through various techniques.

• Nonparametric methods (dominate the literature): direct vs. indirect.

• Parametric or model-based methods (e.g. AR modeling).

• Criterion-based methods (e.g. maximum entropy algorithm).

Nonparametric:
The (sample) periodogram, as a natural estimator of fY (ω), is defined as the
discrete FT of the sample ACVF, i.e.

IT (ω) =
T−1∑

`=−(T−1)

γ̂Y (`) exp{−2πiω`}, ω ∈ [0,
1
2

],

where γ̂Y (`) = T−1∑T−`
t=1 YtYt+`. However, IT (ω) is not a consistent

estimator of fY (ω). Similarly, the 3rd-order periodogram (direct method) is an
inconsistent estimator of fY (ω1, ω2).
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Consistent estimators are defined as

f̂Y (ω) =
M∑

`=−M

λ
( `

M

)
γ̂Y (`) exp(−2πiω`), ω ∈ [0,

1
2

],

f̂Y (ω1, ω2) =
M∑

`1,`2=−M

λ
( `1

M
,
`2

M

)
γ̂Y (`1, `2) exp{−2πi(ω1`1 + ω2`2)},

(ω1, ω2) ∈ D.

Here γ̂Y (`1, `2) = T−1∑T−β
t=1 YtYt+`1 Yt+`2 , with β = max{0, `1, `2},

(`1, `2 = 0, 1, . . . , T − 1) and 1 ≤ M � T (M = truncation point).

The function λ(∙) is a lag window (e.g. Parzen or Bartlett), satisfying λ(0) = 1
and the symmetry conditions.
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Example:

Figure: (a) A realization of the BL(0, 0, 1, 1) (diagonal) process Yt = 0.4Yt−1εt−1 +εt with

{εt}
i.i.d.
∼ N (0, 1); (b) Three-dimensional plot of γY (u, v); (c) Contour plot of the bicoherence

estimates of the BL process in (a); (d) Contour plot of the bicoherence estimates of a series
generated by Yt = 0.4Yt−1 + εt . Superimposed is a plot of the principal domain D; T = 100.
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1.2 Subba Rao – Gabr Test Statistics

Testing for Gaussianity (Broad outline of steps):

• Obtain an estimate of fY (ω1, ω2) on a set of lattice (designated)
frequencies in the principle domain D.

• Tests these quantities for constancy by estimating |BY (ω1, ω2)|2.

Estimates are constructed at the N points in the fine grid (ωjp , ωkq ) such
that they do not overlap. Several parameters are needed for this step.

• The resulting test statistic is a complex analog of Hotelling’s T 2 statistic
for testing a multivariate mean vector.

Under H(1)
0 , and as T → ∞, the test statistic follows an F distribution with

d.f. depending on N and P =
∑[2K/3]

i=1 (K − bi/2c − 1 − i) with K � T .
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If H(1)
0 (Gaussianity) is rejected, consider testing H(2)

0 (Linearity).

Testing for linearity (Broad outline of steps):

• Obtain estimates of |BY (ωjp , ωkq )| at the N points in the fine grid
(ωjp , ωkq ).

• Place them in a P × N matrix. Average the values in the columns of this
matrix to obtain a random sample of N estimates of the P × 1 mean
vector Z = (Z1, . . . , ZP)′. These estimates are asymptotically normally
distributed.

• If H(2)
0 is “true” then all the elements of Z are identical. Using results from

multivariate statistical analysis, a test statistic can be defined.

• Under H(2)
0 , and as T → ∞, the test statistic follows an F distribution

with d.f. depending on N and P.

Disadvantage: Great skill is needed in applying both test statistics (i.e.
linearity and Gaussianity) because of the large number of parameters
involved. In particular, this applies to choice of the lag window λ(∙), truncation
point M, and the placing of the grids.
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1.3 Hinich’s Test Statistics

Hinich (JTSA, 1982) modifies the Subba Rao – Gabr tests to use all the
bispectrum Fourier frequency gridpoints. The test statistics are based on a
consistent estimator of the bispectrum at frequency pair (ωm, ωn) obtained by
smoothing the 3rd-order periodogram over adjacent frequency pairs.

Let ωj = (j − 1)/T (j = 1, . . . , [T/2] + 1). For each pair (j , k) (j , k ∈ Z),
define the complex random variable

FY (ωj , ωk ) = Y (ωj)Y (ωk )Y
∗(ωj+k )/T ,

where Y (ωj) =
∑T

t=1 Yt exp{−2πiωj(t − 1)}. The principal domain of
FY (ωj , ωk ) is the triangular set

4 = {(j , k) : 0 < j ≤ T/2, 0 < k ≤ j , 2j + k ≤ T},

assuming T is even.
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Procedure: Obtain a consistent estimate of fY (ω1, ω2) by averaging FY (ωj , ωk )
in a square of M2 points, where the centers of the squares are defined by a
lattice L of points such that L ∈ 4. Then

f̂Y (ωm, ωn) =
1

M2

mM−1∑

j=(m−1)M

nM−1∑

k=(n−1)M

FY (ωj , ωk ),

with M = bT cc ( 1
2 < c < 1). An estimator of fY (ωm) is given by

f̂Y (ωm) =
1
M

mM−1∑

j=(m−1)M

|Y (ωj)|
2.
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Hinich (JTSA, 1982) shows that if {Yt} is linear, then for the boxes entirely
within the triangular set Δ, the distribution of the statistic

B̂Y (ωm, ωn) =
f̂Y (ωm, ωn)

{T 1−4cQm,nf̂Y (δm )̂fY (δn )̂fY (δm+n)}1/2

is complex normal with unit variance. Qm,n is the # of (j , k) in the squares
that are in Δ but not on the boundaries j = k or (2j + k) = T , plus twice the
# on these boundaries, and δx = (2x − 1)M/2T .

The estimates 2|B̂Y (ωm, ωn)|2 are asymptotically independent random
variables having the noncentral χ2

2(λm,n) distribution, with two d.f. and
noncentrality parameter

λm,n = 2(T 1−4cQm,n)
−1|BY (ωm, ωn)|

2 ≥ 2T 2c−1|BY (ωm, ωn)|
2.

c (in practice c is slightly > 1/2) controls the bias-variance trade-off of
B̂Y (∙, ∙): c = 1/2 small bias, and c = 1 small variance.
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Testing for linearity:

If {Yt} follows a zero-mean stationary linear (L) process, then

λm,n = 2T 2c−1 μ2
3,ε

σ6
ε

≡ λ0 (a constant).

One way to proceed is to use the asymptotic normality of the interquartile
range (IQRM ) of the 2|B̂Y (ωm, ωn)|’s entirely within Δ.

Let q0.75 − q0.25 denote the IQR from a χ2
2(λ0) distribution. Then, under H(2)

0
(Linearity), the approximate distribution of IQRM , as deduced from the theory
of order statistics, is given by

Z L
IQR =

IQRM − (q0.75 − q0.25)

σ0

D
−→ N (0, 1), as T → ∞,

where

σ2
0 =

3[fχ2
2(λ0)(q0.25)]

−2−2[fχ2
2(λ0)(q0.25)fχ2

2(λ0)(q0.75)]
−1+3[fχ2

2(λ0)(q0.75)]
−2

16P
,

and fχ2
2(λ0)(∙) is the density function of a χ2

2(λ0) random variable.
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Figure: Sorted p-values of Hinich’s test for linear time series together with the line y = x (black
solid line) for 1,000 replications. P = 12, 50, 100 and 500 correspond to time series of lengths
T = 144, 600, 1,200, and 6,000 when using M = T 1/2.

It is clear that, even for large P, the p-values of Hinich’s test statistic do not
follow a U(0, 1) distribution.
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Harvill and Newton (Biometrika, 1995) find analytical expressions for the
distribution and moment generating function of Hinich’s test statistic under
Gaussian WN. From these they derive a saddlepoint approximation for its
distribution.

Figure: Saddlepoint approximation of p-values of Hinich’s test for white noise; 1,000 replications.
P = 12, 50, 100 and 500 correspond to time series of lengths T = 144, 600, 1,200, and 6,000
when using M = T 1/2.
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Testing for Gaussianity:

If the error process {εt} in the linear DGP is Gaussian (G), then λ0 ≡ 0. In
that case the following test statistic may be used

T G = 2
∑

(m,n)∈L

|B̂Y (ωm, ωn)|
2,

which is asymptotically distributed as a central χ2
2P variate under H(2)

0
(Linearity), with P ≈ T 2/(12M2).

P = 100 requires a series of T = 1,000 when M = bT cc ( 1
2 < c < 1).

Disadvantage: Power linearity test is low.
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1.4 Related Tests Statistics

• Goodness-of-fit test statistics (Anderson–Darling (AD) and Cramér–von
Mises (CvM)). Jahan and Harvill (Comm. Stat.: Theory & Methods,
2008) approximate the noncentral χ2

2(∙) by a normal distribution.

Disadvantage: Sensitive to user-specified parameters.

• Maximal standardized interdecile (IDR) fractile statistic (Rusticelli et al.,
Econometric Reviews, 2009) defined as

MDL
IDR = max

ML≤M≤MH
{IDRM},

where

IDRM =
{fχ2

2(λm,n)(q0.9) − fχ2
2(λm,n)(q0.1)} − {fχ2

2(λ̂0)(q0.9) − fχ2
2(λ̂0)(q0.1)}

σ̂0
.

Disadvantage: The test statistic relies on the asymptotic normality of the
bispectrum.
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1.4 Related Test Statistics (Contd.)

• Bootstrapped-based tests (Berg et al., J. Stat. Plann. Inference, 2010)
for L+nG, L+S (S=symmetry), and G. Uses a ‘kernelized’ form of Hinich’s
test statistic for linearity.

Disadvantage: Choice of M, P, and order p of a prewhitening AR(p)
process.

Advantage: No asymptotic distributions are utilized.

• MSFE-based linearity test (Terdik and Máth, JTSA, 1998). If the process
is nG, the one-step ahead quadratic forecast has a smaller asymptotic
MSFE than the one-step ahead linear forecast.

Disadvantages: (i) low power, (ii) only examines 2nd-order features in
departure from the null hypothesis, (iii) depends on the order p of the
fitted AR process.
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1.5 Which Test to Use?

• Boostrapped test statistics give generally better power results than
Hinich’s G and L tests. The “classical” Hinich L test gives poor answers
for very short series (< 100 observations).

• The maximal IDR test Z L
IDR has the largest power improvement over the

Hinich L test.

• The power of the two goodness-of-fit tests (AD and CvM) for testing
Gaussianity is comparable with the Hinich G test statistic, but often
higher.

• There is no frequency-domain test statistic which uniformly outperforms
all other tests for all DGPs and sample size considered in the literature.

[Tentative recommendation: Use model-based bootstrap method.]
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1.6 Some Software References (go to http://www.jandegooijer.nl )

• Subba Rao–Gabr (1984, Appendices): F77.

• Hinich’s test statistics: http://www.la.utexas.edu/hinich/ (F77).
http://ashleymac.econ.vt.edu (a user-friendly executable version). See
also the MATLAB toolbox HOSA-GLSTAT.

• AD and CvM test statistics: goodnessfit.m.

• BS form of Hinich’s linearity test: R-code.

• Terdik-Máth MSFE linearity test: TerM.m.
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• Terdik, G. and Máth, J. (1998). A new test of linearity of time series based on the
bispectrum. J. Time Series Analysis, 19, 737–753.
http://doi.org/10.1111/1467-9892.00120 .

1 – 25

http://doi.org/10.1111/1467-9892.00120
http://doi.org/10.1007/978-1-4684-6318-7
http://doi.org/10.1080/07474930802388090
http://doi.org/10.1080/03610920802133319
http://doi.org/10.1111/j.1467-9892.1982.tb00339.x
http://doi.org/10.1016/j.jspi.2010.04.047


Frequency-Domain Tests Time-Domain Tests Model Estimation, Selection, and Checking

2. Time-Domain Tests
2.1 Lagrange Multiplier (LM) Test Statistics

Consider the nL process

Yt = g(Yt−1, . . . , Yt−p, εt−1, . . . , εt−q ;θ) + εt ,

where g(∙) is a sufficiently well-behaved function on R. Assume the model
nests a linear (L) time series model. This implies that

θ︸︷︷︸
ν×1

= ( θ′1︸︷︷︸
ν1×1(L)

, θ′2︸︷︷︸
ν2×1(nL)

)′,

with H0 : θ2 = 0. Define zt(θ) = ∂εt(θ)/∂θ and denote ẑt = zt(θ̂) and

ε̂t = εt(θ̂) with θ̂ = (θ̂′1, 0′)′. Partitioning ẑt conformably to θ yields
ẑt = (ẑ′

1,t , ẑ′
2,t)

′. The LM test statistic is given by

LMT = σ̂−2
ε

( T∑

t=1

ẑ2,t ε̂t

)′(
Σ̂22 − Σ̂21Σ̂

−1
11 Σ̂12

)−1( T∑

t=1

ẑ2,t ε̂t

)
,

where
Σ̂21 = Σ̂′

12 =
∑

t ẑ2,t ẑ′
1,t , Σ̂ii =

∑
t ẑi,t ẑ′

i,t , (i = 1, 2), and σ̂2
ε = T−1∑

t ε̂2
t .
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Under H0 : LMT
D

−→ χ2
ν2

as T → ∞.

Auxiliary regression:

ε̂t = ẑ ′
1,tβ1 + ẑ ′

2,tβ2 + ηt ,

where β1 and β2 are artificial parameter vectors of dimension ν1 and ν2

respectively, and {ηt} is an artificial error process.

Let SSE be the residual SSs in the linear regression, and SSE0 the residual
SSs under the null hypothesis β2 = 0. Then, applying standard LS
regression theory, we have

LMT = T
(SSE0 − SSE

SSE0

)
.

Use the above formulation as a first step to derive various variants of LM test
statistics. These variants depend on the form of the vector ẑ2,t , which is
determined by the type of nonlinearity investigated.
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Table: Asymptotic distribution of some LM-type linearity test statistics.

Model H0 LMT
D

−→

BL: Yt = φ0 +
∑p

i=1 φi Yt−i + εt ψuv = 0 χ2
PQ−r(r+1)/2

+
∑q

j=1 θj εt−j +
∑P

u=1
∑Q

v=1 ψuv Yt−uεt−v [r = max{0, min(P − q,

Q − p) − 1}]

ExpAR:Yt = φ0 +
∑p

i=1{φi + ξi exp(−γY 2
t−d )}Yt−i + εt γ = 0 χ2

p
STAR-1 [1st-order Taylor approximation of G(Yt−d ; γ, c)]

Yt = α0 +
∑p

i=1 αi Yt−i +
∑p

i=1

∑p
j=i βij Yt−i Yt−j βij = 0 χ2

1
2 p(p+1)

+ηt
STAR-3 [3rd-order Taylor approximation of G(Yt−d ; γ, c)]

Yt = α0 +
∑p

i=1 αi Yt−i +
∑p

i=1

∑p
j=i βij Yt−i Yt−j βij = 0, χ2

1
2 (p(p+1)+2p2

+
∑p

i,j=1 ψij Yt−i Y 2
t−j +

∑p
i,j=1 κij Yt−i Y 3

t−j ψij = 0, κij = 0
+ηt

STAR-1 [augmented]

Yt = α0 +
∑p

i=1 αi Yt−i +
∑p

i=1

∑p
j=i φij Yt−i Yt−j φij = 0, χ2

1
2 p(p+1)+p

+
∑p

i=1 ψi Y 3
t−i + ηt ψi = 0

F test statistics for nL-MA type models, NCTAR and AR-NN are available.
2 – 3



Frequency-Domain Tests Time-Domain Tests Model Estimation, Selection, and Checking

2.2 Likelihood Ratio (LR) Test Statistics

SETAR: Yt = φ
(1)
0 +

∑p
i=1 φ

(1)
i Yt−i + {φ(2)

0 +
∑p

i=1 φ
(2)
i Yt−i}I(Yt−d ≤ r) + εt ,

with p, d known (1 ≤ d ≤ p), r ∈ R̃ = [r , r ], with r and r finite constants.

Let φi = (φ
(i)
0 , . . . , φ

(i)
p )′ (i = 1, 2), and θ = (φ′

1,φ
′
2)

′. Parameter space:
Θ = Θφ1 ×Θφ2 , where Θφ1 and Θφ2 are compact subsets of Rp+1. Suppose
the true parameter vector θ0 = (φ′

10,φ
′
20)

′, is an interior point of Θ.

Hypotheses of interest are

H0 : φ20 = 0, H1 : φ20 6= 0 for some r ∈ R̃.

Observe that SETAR = linear regression model with the p + 1 vector of
added variables X′

t I(Yt−d ≤ r) with Xt = (1, Yt−1, . . . , Yt−p)
′. Then, with

{εt}
i.i.d.
∼ (0, σ2

ε), a LR-type test statistic is given by

FT = T
( supr∈R̃

{
SSE0 − SSE1

(
φ̂2T (r), r

)}

infr∈R̃ SSE1
(
φ̂2T (r), r

)
)

,

where SSE0 and SSE1 are the SSs of residuals under H0 and H1,
φ̂1T = arg minφ1∈Θφ1

∑
t ε̂

2
t (φ1), φ̂2T = arg minφ2∈Θ

∑
t ε̂2

t (φ2, r),
ε̂t(φ1) = ε̂t(θ,−∞), and ε̂t(φ2, r) is based on the iterative SETAR equation.
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For nested SETARs: generalize the F test statistic to a SETAR(k ; p, . . . , p)
model (k ≥ 2). Let Xt = (1, Yt−1, . . . , Yt−p)

′ be a (p + 1) × 1 vector. Rewrite
the k -regime SETAR model as

Yt = φ′
1Xt I

(1)
t (r, d) + ∙ ∙ ∙ + φ′

k Xt I
(k)
t (r, d) + εt , {εt}

i.i.d.
∼ (0, σ2

ε),

where r = (r1, . . . , rk−1)
′, r0 = −∞, rk = ∞, and I(i)t (r, d) =

I(ri−1 < Yt−d ≤ ri) (i = 1, . . . , k).

When k = 1: SETAR(1; p) (≡ AR(p)) with 0 thresholds, being the most
restrictive within the class of k -regime SETARs.

The models within this class are strictly nested . This simply means that the
i-regime SETAR being tested, the H0 is a special case of the alternative
SETAR(j ; p, . . . , p) model (i < j ; i = 1, . . . , k) against which it is being tested.

Again, use an F test statistic and bootstrap its distribution.
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2.3 Wald (W) Test Statistic: asMA

Yt = μ + εt +

q∑

j=1

θ+
j εt−j +

q∑

j=1

δj I(εt−j ≤ 0)εt−j , δj = θ−
j − θ+

j .

The H0 of symmetry is equivalent to testing the restriction θ+ = θ−, where
θ+ = (θ+

1 , . . . , θ+
q )′, and θ− = (θ−

1 , . . . , θ−
q )′.

Let θ =
(
μ, (θ+)′, (θ−)′

)′, and R is a q × (2q + 1) restriction matrix such that
Rθ = r, and r is a (2q + 1)-vector. From the partition R = (R1 : R2), where
R1 = 0q×1, the problem becomes one of testing the null hypothesis

H0 : R2θ = 0 against H1 : R2θ 6= 0.

W test statistic:

WT =
(

R2θ̂
)′[

RĤ
−1
T (θ̂)R′

]−1
R2θ̂,

where Ĥ is the empirical Hessian, and θ̂ is an unrestricted estimate of θ.
Under H0, and as T → ∞, WT has an asymptotic χ2

q distribution.
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2.4 Tests Based on 2nd-order Volterra Expansion

Linearity (H0) versus the alternative hypothesis (H1):

Yt = μ + εt +
∞∑

u=−∞

ψuεt−u +
∞∑

u,v=−∞

ψuvεt−uεt−v , {εt}
i.i.d.
∼ (0, σ2

ε).

Tukey’s (T) nonadditivity test (Keenan, Biometrika, 1985):

(i) Choose p ∈ [4, 8]. Regress Yt on {1, Yt−1, . . . , Yt−p}; compute the fitted
values {Ŷt}, the residuals {ε̂t}T

t=p+1, and SSE=
∑

t ε̂ 2
t .

(ii) Regress {Ŷ 2
t } on {1, Yt−1, . . . , Yt−p}; compute the residuals {ξ̂t}T

t=p+1.

(iii) Regress ε̂t on ξ̂t .
(iv) From the regression in (iii) calculate the test statistic

F (T)
T =

η̂ 2

(SSE − η̂ 2)/(T − 2p − 2)
,

where η̂ = η̂0

(∑
t ξ̂ 2

t

)1/2
with η̂0 the regression coefficient in step (ii).

Under H0, F (T)
T

D
−→ Fν1,ν2 with ν1 = 1 and ν2 = (T − p) − (p + 1) − 1.

The estimated size can be improved by using T − p instead of T − 2p − 2.
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Advantage: Tukey’s nonadditivity test F (T)
T is easy to implement involving little

subject choice of parameters. Reasonably powerful in finite samples.

Original F test (F (O)
T ):

This F test statistic is a direct modification of the original (O) Tukey
nonadditivity-type test statistic The test considers the residuals of regressions
that include the individual nL terms and quadratic terms up to 3rd-order
{Y 2

t−1, Yt−1Yt−2, . . . , Yt−1Yt−p, Y 2
t−2, Yt−2Yt−3, . . . , Y 3

t−p} while F (T)
T considers

the residuals of regressions on only the squared terms.

Advantage: F (O)
T is more powerful than F (T)

T for BL-type nonlinearity.

Augmented F test (F (A)
T ):

Extends the F (O)
T test statistic by including the regression of the cubic terms

{Y 3
t } on (1, Yt−1, . . . , Yt−p) in the set of regressions in steps (ii) – (iv).
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2.5 Arranged Autoregression Tests

Introduction
Consider a SETAR(2; p, p) process. Given {Yt}T

t=1, Yt−d can assume the
values {Yi}

T−d
i=h , where h = max{1, p + 1 − d}.

Let τj be the time index of the j th smallest observation among {Yi}
T−d
i=h .

Assume that the recursive ARs begin with a minimum # of start-up values,
say nmin > p + 1. Denote the resulting ordered time series by {Yτj }

T−d−h+1
j=nmin+1 .

Then we can write the SETAR as

Yτj +d =

{
φ

(1)
0 +

∑p
i=1 φ

(1)
i Yτj +d−i + ετj +d , (j = nmin +1, . . . , s),

φ
(2)
0 +

∑p
i=1 φ

(2)
i Yτj +d−i + ετj +d , (j = s + 1, . . . , T − d − h + 1),

where s satisfies Yτs < r ≤ Yτs+1 .

Estimate the parameters sequentially through recursive LS (Ertel and
Fowlkes, JASA, 1976; Tsay, JASA, 1989) giving standardized predictive
residuals. [Alternatively, use the Kalman filter].
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CUSUM test for SETAR(2; p, p):
(i) Choose the AR order p, the lag d , and nmin > p + 1 of start-up values.
(ii) For nmin ≤ r ≤ T − p, find the recursive LS estimates; compute the

standardized predictive residuals eτj +d

(j = nmin + 1, . . . , T − d − h + 1; h = max{1, p + 1 − d}).
(iii) Compute Zj =

∑j
i=nmin+1 êi , (j = nmin + 1, . . . , T − d − h + 1), and the

associated CUSUM test statistic

QT = max
nmin+1≤j≤T−d−h+1

|Zj |/
√

T ∗,

where T ∗ = T − d − h + 1 − nmin. Under mild conditions on the noise
process {εt}, the limiting distribution of QT is given by

P
(
(QT /

√
T ∗) 6 α

)
≡

∞∑

j=−∞

(−1)j[Φ
(
α(2j + 1)

)
− Φ

(
α(2j − 1)

)]
,

where Φ(∙) is the normal distribution function, and α the nominal
significance level.

Advantage: Easy to implement since it does not require estimation of the
SETAR model under Ha.
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F test for SETAR:

(i) Perform the arranged AR, and calculate êτj+1+d .

(ii) Compute a 2nd regression with the predictive residuals on Yτj +d , i.e.

êτj +d =β0+

p∑

i=1

βiYτj +d−i +ωτj +d , (j = nmin + 1, . . . , T − d − h + 1).

(iii) Compute the associated test statistic

F∗
T =

[
∑

t ê 2
t −

∑
t ω̂ 2

t ]/(p + 1)
∑

t ω̂ 2
t /(T − d − nmin − p − h)

,

where ω̂t is the LS residual of the regression in step (ii). Under the null
hypothesis of linearity, and as T → ∞,

F∗
T

D
−→ Fν1,ν2 ,

with d.f. ν1 = p + 1 and ν2 = T − d − nmin − p − h. Furthermore,
(p + 1)F∗

T is asymptotically a χ2
ν random variable with ν = p + 1 d.f.

Advantage: More power than CUSUM.
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New (N) F test for BL, STAR, and ExpAR:

(i) For a given delay d , fit recursively an arranged AR(p) to {Yt}T
t=1 and

calculate the standardized predictive residuals {êt}T
t=nmin+1.

(ii) Calculate SSE0 =
∑

t ê 2
t .

(iii) Regress ε̂t on {1, Yt−1, . . . , Yt−p}, {Yt−i ε̂t−i , ε̂t−i ε̂t−i−1} (i = 1, . . . , p),
and {Yt−1 exp(−γYt−1), Φ(zt−d ), Yt−1Φ(Yt−d )}, where
zt = (Yt−d − Ȳd)/sd with Ȳd , sd are the sample mean and standard
deviation of the Yt−d , respectively. Calculate the residual sum of squares
from this regression, SSE1 =

∑
t ω̂ 2

t .

(iv) The associated test statistic is given by

F (N)
T =

(SSE1 − SSE0)/[3(p + 1)]

SSE0/[T − nmin − 3(p + 1)]
.

Under H0, and as T → ∞,

F (N)
T

D
−→ Fν1,ν2 ,

with ν1 = 3(p + 1) and ν2 = T − nmin − 3(p + 1) d.f.
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Summary of size and power studies (De Gooijer, 2017, Appendix 5B):

“Positive points”
• A test statistics is effective at identifying the type of nL it is designed to

detect.
• The form of the nL functional relationship in the state-dependent model

is of less importance with tests based on the LR, LM, and W testing
principles. Finding the correct dimension (order) of the state vector is
more likely to be the key factor (Pitarakis, Studies in Nonlinear Dynamics
& Econometrics, 2006).

“Negative points”
• There is no test statistic that can be used as an overall tool against any

type of nL. Nevertheless, all LM-type tests seem to have reasonable size
and power properties.

• The presence and size of an intercept in a nL model seems to have a
considerable influence on the size and power of a test when T is not
large. Centering data is not recommended since then the asymptotic null
distributions are no longer valid.
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2.6 Some Software References
• http://www.estima.com/procs_perl/mainproclistwrapper.shtml

has RATS code for LM-type testing of STAR models. Also, there are codes for the
arranged AR test statistic, the F (O)

T , the F test statistic of Hansen, and the Hinich
L and G test statistics.

• Hansen’s webpage at http://www.ssc.wisc.edu/ ˜ bhansen/ offers
MATLAB, GAUSS, and R code (and data) to replicate some of the empirical work
reported in his papers on SETAR model selection and estimation (e.g.,
Econometrica, 1996, 2000).

Based on papers written by Hansen and his co-workers, the R-tsDyn package
has a host of test statistics for various forms of SETAR nonlinearity, including the
BS version of the test statistics for nested SETARs.

• The function lin.test in the R-nlts package computes the F (O)
T test statistic for

AR(p) processes up to order p = 5.
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3. Model Estimation, Selection, and Checking

3.1 Model Estimation: Introduction

Model:

Yt = g(Yt−1, . . . , Yt−p, εt−1, . . . , εt−q ;θg) + ηt ,

where

ηt = h(Yt−1, . . . , Yt−u, εt−1, . . . , εt−v ;θh)
1/2εt .

Here {Yt} is a strictly stationary and ergodic univariate stochastic process;
g(∙;θg) and h(∙;θh) are two real-valued measurable (known) functions on
Rp+q and Ru+v (u ≤ p), respectively; and θ = (θ′g ,θ′h)

′ is a vector of
unknown parameters that we wish to estimate, and we have available a set of
observations {Yt}T

t=1 with which to do so.

Further, we assume that h(∙;θ) is a non-negative function of past Yt ’s and
εt ’s.
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Quasi ML estimator:

Let p∗ = p ∨ u, q∗ = q ∨ v , Y0 = (Y0, . . . , Y1−p∗)′ be the initial starting values
of {Yt}, and ε0 = (ε0, . . . , ε1−q∗)′ be the starting innovations. In addition, let
θ0 = (θ′0,g ,θ′0,h)

′ denote the true value of the parameter vector θ, and
Yt = (Y1, . . . , Yt)

′. Assume that θ0 belongs to Θ = Θθg ×Θθh ⊂ Rp+q ×Ru+v .

Conditional mean and variance of {Yt} given Yt−1 and Θ:

E(Yt |Yt−1,Θ) = g(Yt−1, . . . , Yt−p, εt−1, . . . , εt−q ;θ0g) ≡ μt(θ0,g)

Var(Yt |Yt−1,Θ) = h(Yt−1, . . . , Yt−u, εt−1, . . . , εt−v ;θ0h)εt ≡ σ2
t (θ0,h).

Given Y0, and the density function fε(∙), the (conditional) likelihood function
evaluated at θ ∈ Θ is equal to

LT (θ) =
T∏

t=1

1
σt(θh)

fε
(Yt − μt(θg)

σt(θh)

)
,

assuming σt(θh) 6= 0.
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Treat fε(∙) and Y0 as unknown parameters (computationally demanding). As
an alternative replace, for instance, fε(∙) by the N (0, 1) density, and
approximate μt(θg) and σt(θh) by

μ̃t(θg)=g(Yt−1, . . . , Y1, 0, . . . ;θg), σ̃t(θh)=h2(Yt−1, . . . , Y1, 0, . . . ;θh).

Then the quasi ML (QML) estimator θ̂T of θ0 is given by

θ̂T = arg min
θ∈Θ

{ 1
T

T∑

t=1

(Yt − μ̃t(θg)

σ̃t(θh)

)2
+ log σ̃t(θh)

}
.

If σ̃t(θh) ≡ σ2
0 > 0, the QML estimator coincides with the “classical” nonlinear

least squares estimator.

The QML estimator is strongly consistent, and asymptotic normally
distributed (Tjøstheim, Stoch. Processes and their Applications, 1986).
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Conditional LS (CLS) estimator: (Ne)SETARMA, BL, STAR, multiple-regime
STAR, subset SETARMA (a genetic algorithm to reduce the # of parameters).

Example: CLS-based estimation of a subdiagonal BL model

Yt = τYt−2εt−1 + εt , {εt}
i.i.d.
∼ N (0, σ2

ε).

{Yt} is a stationary, ergodic and causal process if σ2
Y = σ2

ε/(1 − τ 2σ2
ε) exists,

i.e., if τ 2σ2
ε < 1. In that case it can be shown that {Yt} has the unique

representation

Yt = εt +
∞∑

k=1

τ kεt−2k

k−1∏

j=0

εt−2j−1,

in L2 sense.

The CLS-based estimator of τ is given by

τ̂ =
β̂2(1)

β̂1(0)
=

∑T
t=3 Yt Yt−1Yt−2

σ̂ 2
ε

∑T
t=3 Y 2

t−2

.
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Example: (Cont’d)

Figure: Boxplots and Q-Q plots of
√

T (τ̂ − τ) for τ = 0.3 (panels (a) and (c)), and τ = 0.5
(panels (b) and (d)); 1,000 MC replications, and σ2

ε = 1.

Notes:
• For increasing values of τ , the nonlinearity becomes more prominent and as a consequence

CLS estimation becomes more difficult.
• All distributions tend to have negative means and medians. Reduces with increasing values

of T .
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Iteratively weighted LS, IWLS (Mak, JRSS B, 1993):
Let θ be an m × 1 parameter vector. Assume that θ0 generating y, a T × 1
random vector of observations with density function f (y;θ), belongs to an
open parameter space Θ ⊆ Rm.

The ML estimate θ̂ of θ0 follows from solving G(y,θ) ≡ ∂ log f (y;θ)/∂θ = 0.
For any θ, θ̃ ∈ Θ, let g(θ̃,θ) = E{f (y;θ)|θ̃}. Then:

(i) Fisher’s information matrix is given by ∂g(θ̃, θ)/∂θ̃
∣
∣
θ̃=θ

.

(ii) If θ(0) is a given starting value, and define in the (u + 1)th iteration θ (u+1) (u ≥ 0) as a root
of the equation, g(θ̃, θ (u)) = G(y, θ (u)), then θ (u) → θ̂ as u → ∞. Furthermore,
|θ (u) − θ̂| = Op(T−u/2).

(ii) implies that if g(θ̃,θ) = G(y,θ) can be solved explicitly for θ̃, the
algorithm provides sufficient numerical accuracy in a few iterations.

Alternatively, use the linearization

G(y, θ) ' g(θ, θ) +
(∂g(θ̃, θ)

∂θ̃

∣
∣
∣
θ̃=θ

)′
(θ̃ −θ) =

(∂g(θ̃, θ)

∂θ̃

∣
∣
∣
θ̃=θ

)′
(θ̃ − θ).

Hence,
θ̃ ≈ θ +

{(∂g(θ̃, θ)

∂θ̃

∣
∣
∣
θ̃=θ

)′}−1
G(y, θ),

and at the (u + 1)th step: θ̂ (u+1) = θ̂ (u) +
{(

∂g(θ̃,θ)

∂θ̃

∣
∣
∣
θ̃=θ̂ (u)

)′}−1
G(y, θ̂ (u)).
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Example: Daily Hong Kong Hang Seng Index, 2010.

Figure: Time plots of (a) the daily closing prices Pt , and (b) Yt = 100(log Pt − log Pt−1)
252
t=1.

SETAR(3; 1, 5, 6)–TARCH(3; 1, 1, 3):

Yt =






0.13 + 0.07Yt−1 + ε
(1)
t if Yt−1 ≤ 0.16,

−0.47 + 0.69Yt−1 + 0.02Yt−2 + 0.19Yt−3

−0.37Yt−4 + 0.41Yt−5 + ε
(2)
t if 0.16 < Yt−1 ≤ 1.03,

0.61 − 0.39Yt−1 + 0.10Yt−2 + 0.08Yt−3

+0.09Yt−4 − 0.16Yt−5 + 0.23Yt−6 + ε
(3)
t if Yt−1 > 1.03,with

σ
2
t =






1.29 + 0.02ε2
t−1 if Yt−1 ≤ 0.16,

0.91 + 0.73ε2
t−1 if 0.16 < Yt−1 ≤ 1.03,

0.24 + 0.02ε2
t−1 + 0.07ε2

t−2 + 0.13ε2
t−3 if Yt−1 > 1.03,

where ε
(i)
t = σ2

t εt (i = 1, 2, 3) {εt}
i.i.d.
∼ N (0, 1). The sample variances of {ε

(i)
t } are 1.31

(T = 138), 1.18 (T = 58), and 57 (T = 49), respectively.
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3.2 Model Selection: AIC-type model selection rules

General family of model selection criteria:
min
θm∈Θ

{
− 2 log fm(y; θ̂T ,m) + pmC(T , pm)

}
,

where

C(T , pm) =






2 for AIC [Akaike, 1969, 1970,1973,1974, 1977],
2Tpm

T−pm−1 for AICc [Hurwich and Tsai, Biometrika, 1989],
2Tpm

T−pm−1 + 2T log
{

T
T−pm

}
for AICu [McQuarrie et al., Stats.Prob. Letters, 1997],

log T for BIC [Schwarz, Annals Stats., 1978],
ν + 1 for GIC with ν ∈ [2, 5] [Bhansali and Downham, Biometrika, 1977].

Figure: Penalty functions C(T , pm) of AIC (pink solid line), AICc with pm = 5 (blue long dashed
line), AICu with pm = 5 (red dotted line), BIC (green short dashed line), and GIC with ν = 3 (cyan
medium dashed line).
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3.3 Diagnostic Checking: Pearson residuals

ε̂t ≡ ε̂t(θ̂T ) =
(
Yt − E(Yt |F t−1, θ̂T )

)
/

√
Var(Yt |F t−1, θ̂T ).

McLeod–Li test statistic has high power in detecting ARCH structures. The
test has little power in detecting other type of nL dependencies in the
residuals.

Chen (J. Appl. Econometrics, 2008) presents a general framework for testing
Pearson residuals from the pth-order NLAR model with conditional
heteroskedasticity. The model is given by

Yt = g(Yt−1;θ) + ηt , ηt = h(Yt−1;θ)
1/2εt ,

where Yt−1 = (Yt−1, Yt−2, . . . , Yt−p)
′, and θ ∈ Θ denotes a parameter vector

in a compact parameter space Θ. Here, g(∙;θ) and h(∙;θ) are twice
continuously differentiable functions, and {εt} is an i.i.d. WN process with
moments μ1,ε = 0, μ2,ε = 1, and μ4,ε < ∞, where μr,ε = E(εr

t ).

Using residual autocorrelations, the null hypothesis is given by

H0 : {εt} is an i.i.d. sequence for some θ0 ∈ Θ.
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3.3 Diagnostic Checking: Quantile residuals

Let f (y;θ0,m) be the true pdf of the observations {Yt}T
t=1, θ0,m ∈ Θ ⊂ Rm, and

y = (Y1, . . . , YT )′. For each f : Θ × RT → R+, we can write

f (y;θm) =
T∏

t=1

ft−1(Yt ;θm),

where ft−1(Yt ;θm)≡ f (Yt ;θm|F t−1) is the conditional density function of {Yt}
given F t−1, the σ-algebra generated by {Y0, Y1, . . . , Yt−1}, θm ⊂ Rm, and
where Y0 represents the initial model values. Then, the theoretical quantile
residual is defined by

Rt,θm = Φ−1(Ft−1(Yt ;θm)
)
,

where Φ−1(∙) is the inverse CDF of the N (0, 1) distribution, and
Ft−1(Yt ;θm) =

∫ Yt
−∞ ft−1(u;θm)du is the conditional CDF of {Yt} (or

probability integral transform, PIT). The corresponding sample quantile
residual is

rt,θ̂T
= Φ−1(Ft−1(Yt ; θ̂T )

)
,

where θ̂T is a QML estimate of θ0,m.
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Steps suggested by Kalliovirta (Econometrics J., 2012):
1. Transform Rt,θ0 by a continuously differentiable function g : Rd → Rn such that
E
(
g(Rt,θ0 )

)
= 0, where Rt,θ0 = (Rt,θ0 , . . . , Rt−d+1,θ0

)′, and d and n are the dimensions
of the domain and range of g.

2. Conditional on Y0, and assuming that ft−1(Yt ; θm) exist, the log-likelihood function of the
sample is given by `T (y, θ) =

∑T
t=1 `t (Yt , θ) =

∑T
t=1 log ft−1(Yt ; θ).

3. Then, under some fairly standard regularity conditions, it follows that

1
√

T

T∑

t=1

g(Rt,θ̂T
)

D
−→ Nd

(
0, Ω),

where

Ω = GI(θ0)
−1G′ + ΨI(θ0)

−1G′ + GI(θ0)
−1

Ψ
′ + H,

with G = E
(
∂g(Rt,θ0 )/∂θ′

)
, H = E

(
g(Rt,θ0 )g(Rt,θ0 )′

)
, and where I(θ0) denotes the

expected information matrix evaluated at θ0, and Ψ is a constant matrix.

The first 3 terms in the asymptotic covariance matrix Ω represent model
uncertainty due to the effect of parameter estimation.
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General test statistic:

ST ,d =
1

T − d + 1

T−d+1∑

t=1

g(r t,θ̂T
)′Ω̂−1

T

T−d+1∑

t=1

g(rt,θ̂T
),

where r t,θ̂T
= (rt,θ̂T

, . . . , rt−d+1,θ̂T
)′. Under H0, and as T → ∞, the test

statistic has an asymptotic χ2
n distribution, with n = K1, K2, or 3 depending on

H0; see the table below.

Table: Three diagnostic test statistics based on univariate quantile residuals, as special cases of
the general test statistic ST ,d .

Null hypothesis H0 Transformation function g Test statistic

ρRt,θ0
(`) = 0, ∀t, g : RK1+1 → RK1 AT ,K1

= ST ,d with

(` = 1, . . . , K1; K1 � T ) g(rt,θ) = d = K1 + 1
(Autocorrelation) (rt,θ rt+1,θ , . . . , rt,θ rt+K1,θ)′

ρR2
t,θ0

(`)=0, ∀t , g : RK2+1 → RK2 HT ,K2
= ST ,d with

(` = 1, . . . , K2; K2 � T ) g(rt,θ) = d = K2 + 1
(Heteroskedasticity)

(
(r2

t,θ − 1)r2
t+1,θ , . . . , (r2

t,θ − 1)r2
t+K2,θ

)′

E(R2
t,θ0

− 1, R3
t,θ0

, g : R → R3 NT = ST ,d with

R4
t,θ0

− 3)′ = 0, ∀t (Normality) g(rt,θ) = (r2
t,θ − 1, r3

t,θ, r4
t,θ − 3)′ d = 1
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3.4 Some Software References

• RSTAR is a package for smooth transition AR modeling and forecasting;
see http://www.researchgate.net/publication/293486017_RSTAR_
A_Package_for_Smooth_Transition_Autoregressive_STAR_
Modeling_Using_R .

• Smooth transition regression (STR) models can be specified, estimated
and checked in the freely available, and menu-driven, computer package
JMulTi.

• An EViews add-in for STR analysis is available at
http://forums.eviews.com/viewtopic.php?f=23&t=11597&sid=
e01abc77f3732bfcdebcf2bce8dd1888 .

• Another option is the Ox-STR2 package at
http://www.doornik.com/download.html , and based on Timo
Teräsvirta’s GAUSS code.
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3.5 Some References
Model Estimation:

• Amano, T. (2009). Asymptotic efficiency of estimating function estimators for
nonlinear time series models. J. Japan Statistical Society, 39, 209–231.
http://doi.org/10.14490/jjss.39.209 .

• Coakley, J., Fuertes, A-M., and Pérez, M-T. (2003). Numerical issues in threshold
autoregressive modeling of time series. J. Economic Dynamics & Control, 27,
2219–2242. http://doi.org/10.1016/s0165-1889(02)00123-9 .

• Li, D. and Tong, H. (2016). Nested sub-sample search algorithm for estimation of
threshold models. Statistica Sinica, 26, 1543-1554.
http://doi.org/10.5705/ss.2013.394t .

Model Selection:
• Arlot, S. and Celisse, A. (2010). A survey of cross-validation procedures for model

selection, Statistics Surveys, 4, 40-79. http://doi.org/10.1214/09-ss054 .
• Hamaker, E.L. (2009). Using information criteria to determine the number of

regimes in threshold autoregressive models. J. Mathematical Psychology, 53,
518–529. http://doi.org/10.1016/j.jmp.2009.07.006 .

• Ding, J., Tarokh, V., and Yang, Y. (2017). Bridging AIC and BIC: A new criterion for
autoregression. IEEE Trans. Inform. Theory, 64, 4024–4043.
http://ieeexplore.ieee.org/document/7953690/ .

Diagnostic Checking:
• Kalliovirta, L. and Saikkonen, P. (2010). Reliable residuals for multivariate

nonlinear time series models; http://blogs.helsinki.fi/lkvaisan/
files/2010/08/ReliableResiduals.pdf .
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1. Tests for Serial Independence

1.1 Null hypothesis (4 specifications)

Consider a time series process in Rm, which at lag `, is given by

Y(`)
t = (Y1,t , . . . , Ym,t)

′ = (Yt , Yt−`, . . . , Yt−(m−1)`)
′, (m ∈ Z+, ` ∈ Z),

Specifications:
(1) If {Yt} is i.i.d., the joint pdf will be equal to the product of the individual marginals, and the

null hypothesis of interest is

H0 : fm(y) = f (y1) × ∙ ∙ ∙ × f (ym), ∀y ∈ Rm
.

(2) Moreover, if {Y(`)
t } admits a continuous distribution function Fm(y), the above null hypothesis

can also be formulated as follows

H0 : Fm(y) = F (y1) × ∙ ∙ ∙ × F (ym), ∀y ∈ Rm
,

where F (yi ) is the marginal distribution of {Yt−(i−1)`} (i = 1, . . . , m).
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(3) Let φ`(u) = E{exp
(
i(
∑m

k=1 uk Yt−(k−1)|`|)
)
} be the joint characteristic function where

u = (u1, . . . , um)′ ∈ Rm . Define D`(u) = φ`(u) −
∏m

k=1 φ(uk ) (` = 0,±1, . . .). This
expression is 0 ∀u ∈ Rm , if and only if there is no serial dependence of order m − 1 or,
equivalently,

H0 : D`(u) = 0, ∀u ∈ Rm
.

(4) Consider Fm(y) : Rm → [0, 1], with marginal distributions F (yi ) which are assumed to be
absolutely continuous. According to Sklar’s theorem there exists an m-copula function C(∙) of

{Y(`)
t }, such that ∀y ∈ Rm , Fm(y) = C

(
F (y1), . . . , F (ym)

)
. The corresponding joint pdf is

fm(y) = c
(
F (y1), . . . , F (ym)

) m∏

i=1

f (yi ),

where c(u), the density of the copula C(u), is given by

c(u) =
∂ mC(u)

∂u1 × ∙ ∙ ∙ × ∂um
=

fm(u)
∏m

i=1 f (ui )
, u ∈ [0, 1]m.

Hence, testing serial independence corresponds to the null hypothesis

H0 : c(u) = 1.
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1.2 Distance Measures and Dependence Functionals

(I)) Correlation integral

Consider the so-called correlation integral as a measure of spatial correlation
in {Y(`)

t } with ` = 1, which we denote by {Yt}. This measure of distance is
characterized by

Cm,Y (h) =

∫

Rm

∫

Rm
I(‖ y − x ‖≤ h)dμm(y)dμm(x),

where h is a bandwidth, depending on T , ‖ ∙ ‖ a norm, and μm(∙) a
probability measure.

If {Yt} clusters in any dimension, then Cm,Y (h) will take on relatively large
values. If, however, {Yt} is i.i.d. the correlation integral factorizes, i.e.

Cm,Y (h) = {C1,Y (h)}m,

and this equality can be used as a basis for a test statistic (i.e. BDS test
statistic) of serial independence; see below.
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(II) Quadratic distance

Model fit assessment for i.i.d. (time-independent) data is usually based, on
measures of distance Δ(μF , μG) between probability measures μF and μG.
One particular class is the kernel-based quadratic distance defined as

ΔK(μF , μG) =

∫ ∫
K(s, t)d(μF − μG)(s)d(μF − μG)(t),

where K(s, t) (possibly depending on G) is a bounded, symmetric kernel
function on the two-dimensional sample space. This form is asymmetric in μF

and μG, but it is symmetric with respect to interchanging μF and μG.

For computational purposes we have

ΔK(μF , μG) = K(μF , μF ) −K(μF , μG) −K(μG, μF ) + K(μG, μG),

where K(A, B) =
∫∫

K(s, t)dA(s)dB(t). The kernel function K(∙, ∙) is
assumed to be bounded, absolutely integrable, and consequently it has an
FT which does not vanish on any interval.
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Figure: Three kernel functions (left panel) and their associated FTs (right panel): Gaussian (black
solid line), squared Cauchy (blue medium dashed line), and uniform (red dotted line).

Example:

(i) (Gaussian kernel) K(x) = e−x2
and its FT K̃(ω) =

√
πe−ω2/4.

(ii) (Squared Cauchy kernel) K(x) = 1/(1 + x2)2 and its FT K̃(ω) = π(|ω| + 1)e−|ω|.

(iii) (Uniform kernel) K(x) = I(|x| ≤ 1) and its FT K̃(ω) = (2/ω) sin(ω).

Notes:
• The FTs of (i) and (ii) are everywhere positive. Hence, the Gaussian product kernel is positive

definite and defines a quadratic form suitable for detecting any differences between a pair of
distributions. Similarly, (ii) corresponds, after normalizing, to a density function.

• (iii) is not a positive definite kernel, as its FT takes negative values for certain frequencies ω.
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Within the context of serial correlation tests, the L2-norm can be used as a
distance measure. Specifically, given the m-dimensional process {Yt}, a
quadratic (Q) form measuring the serial dependence is given by

ΔQ(m) = ‖μ(1)
m − μ

(2)
m ‖2 = (μ

(1)
m , μ

(1)
m ) − 2(μ

(1)
m , μ

(2)
m ) + (μ

(2)
m , μ

(2)
m ),

where

(μ
(i)
m , μ

(j)
m ) =

∫

Rm

∫

Rm
Kh(y − x)dμ

(i)
m (y)dμ

(j)
m (x), (i , j = 1, 2),

with Kh(∙) a nonnegative definite, spherically symmetric m-variate kernel
function, and h > 0 a bandwidth parameter.

Use kernels that factorize as Kh(z) =
∏m

i=1 K (zi)/h. Here, K (∙) is a
one-dimensional kernel function, which is symmetric around 0.

The functional (μ(1), μ(1)) − (μ(2), μ(2)) with the “naive” or identity kernel
function Kh(z) = I(|z| < h) corresponds to Cm,Y (h).
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(III) Density-based measures

Consider specification (1) on page 1.1. Take m = 2. That is, for a strictly
stationary time series {Yt} with marginal density function f (∙) and joint pdf
f`(∙, ∙) of (Yt , Yt−`)

′ (` ∈ Z), we measure the degree of dependence by
Δ(`) ≡ Δ

(
f`(x , y), f (x)f (y)

)
.

Δ(∙) has the following basic properties: (i) nonnegativity, (ii) maximal
information, and (iii) invariance under continuous monotonic increasing
transformations.

For divergence measures not satisfying (iii), one can obtain scale and
location invariance by simply standardizing {Yt}, assuming that the 2nd
moments exist.

Or retain invariance under continuous monotonic transformations by
transforming the data to any given marginal density function (e.g. take ranks
or transform to a standard normal marginal).
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The functionals considered below are all of the type

Δ(`) =

∫

S2
B{f`(x, y), f (x), f (y)}f`(x, y)dxdy,

where B(∙, ∙, ∙) is a real-valued function, and the integrals are taken over the
support, say S2, of (Yt , Yt−`)

′.

Divergence measures:
• Generalized Kolmogorov (K):

ΔK
q (`) =

{∫

S2

∣
∣
∣f`(x, y) − f (x)f (y)

∣
∣
∣

q
dxdy

}1/q
, (q > 0),

which for q = 1 is the L1-norm. ΔK
q (∙) satisfies properties (i) – (ii), but not (iii).

• Csiszár (C) (1967):

ΔC(`) =

∫

S2
φ
{ f`(x, y)

f (x)f (y)

}
f`(x, y)dxdy,

where φ(∙) is some strictly convex function on [0,∞). Thus, B{z1, z2, z2} ≡ φ(z1/z2z3).
• Rényi (R) (1961):

ΔR
q (`) =

1

q − 1
log
∫

S2

{
f`(x, y)

}q−1{
f (x)f (y)

}q
dxdy, (0 < q < 1).

• Tsallis (T) (1998):

ΔT
q(`) =






1

1 − q

∫

S2

{
1 −

( f (x)f (y)

f`(x, y)

)1−q}
f`(x, y)dxdy (q 6= 1),

∫

S2
log
( f`(x, y)

f (x)f (y)

)
f`(x, y)dxdy (q = 1).

Both Rényi’s (R) measure and Tsallis’ (T) measure satisfy basic properties (i) – (iii).
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Other possible candidates for measuring statistical (serial) dependence
include the difference functional of Skaug and Tjøstheim (1993) which is
given by

Δ∗(`) =

∫

S2
{f`(x , y) − f (x)f (y)}f`(x , y)dxdy ,

and the Hellinger (H) distance which, with B{z1, z2, z3} =
(
1 − (z1/z2z3)

−1/2)2, is defined as

ΔH(`) =

∫

S2

{
f 1/2
` (x , y) −

(
f (x)f (y)

)1/2}2
dxdy

= 2 − 2
∫

S2

( f (x)f (y)

f`(x , y)

)1/2
f`(x , y)dxdy .

It is easy to see that Δ(H)(`) is symmetric, and hence it can serve as a
distance measure contrary to other divergences.

Various relations exist between the above divergence measures.
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(IV) Distribution-based measures

Two useful types of functionals are

Cq(`) =

∫

S2
ΔCR

q (`)dw`(x , y), and Cmax
q (`) = sup

S2
[ΔCR

q (`)w`(x , y)],

where w`(∙, ∙) is a positive weight function and ΔCR
q (∙) is the so-called

Cressie–Read (CR) (JRSS B, 1984) divergence measure:

ΔCR
q (`) =

2

q + 1

{
F (x)F (y)

(F (x)F (y)

F`(x, y)

)q
+
(

1 − F (x)F (y)
)( 1 − F (x)F (y)

1 − F`(x, y)

)q
− 1
}

.

Using q = 1 and w`(x , y) = F`(x , y)(1 − F`(x , y))dF`(x , y) in Cq(∙) gives the
Cramér–von Mises (CvM) functional

ΔCvM(`) =

∫

S2

{
F`(x , y) − F (x)F (y)

}2
dF`(x , y).

This measure satisfies the basic properties of nonnegativity and maximal
information, but is not invariant under continuous monotonic increasing
transformations.
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Setting q = 1 and w`(x , y) = F`(x , y)(1 − F`(x , y)) in Cmax
q (∙), in Cq(∙) gives

(
ΔKS(`)

)2
=
(

sup
S2

|F`(x , y) − F (x)F (y)|
)2

,

where ΔKS(∙) is the Kolmogorov–Smirnov (KS) divergence measure. This
measure satisfies the basic properties (i) – (iii).

Setting q = 1 and w`(x , y) = dF`(x , y) in Cq(∙) gives the Anderson–Darling
(AD) functional

ΔAD(`)=

∫

S2

(
F (x)F (y)−F`(x , y)

)2
F−1

` (x , y)
(

1−F`(x , y)
)−1

dF`(x , y).

Multiple-lag testing procedure. One simple procedure is to form M linear
combinations of single-lag two-dimensional test functionals Δ(`).

However, pairwise (serial) independence for all combinations of paired
random variables does not imply joint (serial) independence in general.
Hence, methods for the detection of serial dependence in m > 2 dimensions
are needed; see p. 1–15 below.

1 – 11



Tests for Serial Independence Time-Reversibility Forecasting

(V) Copula-based measures

An m-dimensional copula-based version of ΔT
q(∙) (T=Tsallis, c=copula) is

defined as

ΔT,c
m,q(`) =






1
1 − q

∫

[0,1]m

{
1 −

( 1
c(u)

)1−q}
c(u)du (q 6= 1),

∫

[0,1]m
c(u) log[c(u)]du (q = 1),

where c(u) is the copula density of {Y(`)
t }.

It can be shown that ΔT,c
m,q(`) ≥ 0 and ΔT,c

m,q(`) = 0 if and only if {Y(`)
t } is

serially independent. Equivalently, ΔT,c
m,q(C) = 0 if and only if C(u) = Π(u),

where Π(u) ≡
∏m

i=1ui being the independence copula (m ≥ 2).

Other m-variate copula-based measures can be obtained in a similar manner
as we previously applied to introduce the 4 major density-based measures.
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1.3 Kernel-Based Tests

Nonparametric testing methods for which f (∙) and f`(∙, ∙) are assumed to be
unknown under the H0 of serial independence.
Research questions:

• What is the most appropriate technique to estimate the densities?
• Which divergence measure should we adopt?
• Should we compute the functional estimates directly, or can we approximate the

integration by a summation?
• Is there a need to include a trimming (weighting) function in the test functional,

that is, screening off outliers by bounding the set of observations to some
compact set?

• What is the most appropriate method of computing p-values: a BS approach or
an MC permutation (random shuffle) approach of the data at hand?

Bagnato et al. (Meth. & Computing in Appl. Probability, 2014) present an
exhaustive MC simulation comparison of 10 nonparametric serial
independence tests, both single-lag and multiple-lag test procedures, using a
wide class of L and nL models.

Conclusion: The integrated estimator of the KL functional (IKL ≡ ΔT
1)

combined with Gaussian kernel density estimation, provides the best
performance in terms of empirical size and power. Also, a permutation-based
approach is to be preferred over BS, and trimming functions are not needed.
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Table: Single-lag (m = 2) tests. ST (`) ≡ {t ∈ N : ` < t ≤ T , f̂2(Yt , Yt−`) > 0, f̂ (Yt ) > 0, f̂ (Yt−`) > 0}.

Reference Divergence measure Test statistic

Density functions

Chan and Tran (1992) ΔK
1 Δ̂CT

T ,1(`) =
∑

t∈ST (`)

|̂f (Yt , Yt−`) − f̂ (Yt )̂f (Yt−`)|

Robinson (1991) (4) IKL ≡ ΔT
1 Δ̂R

T ,γ (`) =
1

T − `

∑

t∈ST (`)

Ct (γ) log
( f̂ (Yt , Yt−`)

f̂ (Yt )̂f (Yt−`)

)

Skaug and Tjøstheim (1993a) ΔH Δ̂
ST1
T (`) =

1

T − `

∑

t∈ST (`)

2
{

1−

√√
√
√ f̂ (Yt , Yt−`)

f̂ (Yt )̂f (Yt−`)

}
wt (`)

Skaug and Tjøstheim (1996) Δ∗ Δ̂
ST2
T (`) =

1

T − `

∑

t∈ST (`)

{̂f (Yt , Yt−`) − f̂ (Yt )̂f (Yt−`)}wt (`)

Granger and Lin (1994) 1 − e−2IKL
Δ̂GL

T (`) = 1 − exp
[ −2

T − `

∑

t∈ST (`)

log
( f̂ (Yt , Yt−`)

f̂ (Yt )̂f (Yt−`)

)]

Hong (2005) IKL ≡ ΔT
1 Δ̂HW

T (`) =
1

T − `

∑

t∈ST (`)

log
( f̂ (Yt , Yt−`)

f̂ (Yt )̂f (Yt−`)

)

Fernandes and Néri (2010) ΔT
q∈{ 1

2 ,1,2,4}
Δ̂FN

T ,q (`) =
1

(1 − q)(T − `)

∑

t∈ST (`)

{
1−
( f̂ (Yt )̂f (Yt−`)

f̂ (Yt , Yt−`)

)1−q}
wt (`)

Distribution functions

Skaug and Tjøstheim (1993b) ΔCvM Δ̂
ST3
T (`) =

1

T − `

T−∑̀

t=1

{F̂ (Yt , Yt+`) − F̂ (∞, Yt )F̂ (Yt+`, ∞)}2

Ct (γ) = 1 − γ if t is odd, Ct (`) = 1 + `γ if t = 1 mod(` + 1), and Ct (`) = 1 − γ otherwise, with γ ∈ (0, 1).

1 – 14



Tests for Serial Independence Time-Reversibility Forecasting

Multiple-lag test statistics:

Using the CvM functional, Hong (JRSS B, 1998) proposed

Q̂
H1

(M) =
M∑

`=1

(T − `)Δ̂
ST3
T (`).

A sensible generalization is to include a symmetric continuous window kernel
λ(∙) with λ(0) = 1. This ensures that the asymptotic bias of the test statistic
vanishes.

Under H0, {(T − `)Δ̂
ST3
T (`); ` = 1, . . . , T − 1} can be viewed as an

asymptotically i.i.d. sequence with mean 1/62 and variance 2/902. These
results suggest the test statistic

Q̂
H2(M) =

∑T−1
`=1 λ2(`/M){(T − `)Δ̂

ST3
T (`) − 1/62}

√
2
∑T−2

`=1 λ4(`/M)/902
,

with the Daniell lag window λ(u) = sin(πu)/πu, which is optimal over a class
of window kernels.

It can be shown that Q̂
H2

(M)
D

−→ N (0, 1) under the H0 of serial
independence.
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1.4 High-Dimensional Tests

BDS-test statistic:
Assume that the m-dimensional process {Yt} admits a common continuous
joint pdf fm(y) for y = (y1, . . . , ym)′. Hence, Cm,Y (h) (see p. 1–3) can be
rewritten as E[I(‖ Yi −Yj ‖≤ h)]. An estimator Ĉm,Y (h) of Cm,Y (h) is given by

Ĉm,Y (h) =
(N

2

)−1 ∑

1≤i<j≤N

I(‖Yi − Yj‖ < h),

where N = T − m + 1 is the # of vectors obtained from a time series {Yt}T
t=1.

Now, given the divergence measure Cm,Y (h) − {C1,Y (h)}m, a test statistic for
serial independence is defined as

Sm,Y (h) =
√

N
Ĉm,Y (h) − {Ĉ1,Y (h)}m

σ̂m,Y (h)
,

where σ̂2
m,Y (h) is a consistent estimator of the variance of√

N
(
Cm,Y (h) − {C1,Y (h)}m). Under H0 and by exploiting the asymptotic

theory for U-statistics, it can be shown that, as T → ∞,

Sm,Y (h)
D

−→ N (0, 1), ∀h ∈ (0,∞).
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BDS test statistic (residuals, e) is defined as

Sm,e(h) =
√

T
Ĉm,e(h) − {Ĉ1,e(h)}m

σ̂m,e(h)
,

where in this case the sample correlation integral is given by

Ĉm,e(h) =

(
T − m + 1

2

)−1 T∑

t=m+1

t−1∑

s=m

m−1∏

j=0

I(|et−j − es−j | < h).

Under H0, Sm,e(h) is asymptotically standard normal distributed.

Some problems:
• There is arbitrariness in the choice of h (bandwidth), which may affect

both the power and size of the test. In fact, some choices of h may
render the BDS test statistic inconsistent against certain alternatives.
Thus, the probability of rejecting H0 does not always approach 1, as
T → ∞.

• Another problem is that the BDS test statistic has high rates of Type I
error, especially for non-Gaussian data.
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Rank-based analogue of the BDS test statistic:

Let ẽt = rank(et)/(T + 1) denote the normalized ranks of the time series
{et}T

t=1. Write W̃t = (W̃1,t , . . . , W̃m,t)
′ = (ẽt , . . . , ẽt−m+1)

′. Then a rank-based
version of the BDS statistic may be defined as

Sm,W̃ (h) =
√

T
Ĉm,W̃ (h) − {Ĉ1,W̃ (h)}m

σ̂m,W̃ (h)
.

Under the H0 of no serial dependence, it follows that Sm,W̃ (h)
D

−→ N (0, 1),
∀h ∈ (0,∞), as T → ∞.

Finite-sample performances of Sm,W̃ (h) depends on the choice of h. A
common way to get around this problem is to integrate out h with regard to
some empirical process using various continuous functionals.

Adopting direct integration (D), the KS and CvM functionals, and 2 empirical
processes, Genest et al. (JASA, 2007) propose 6 rank-based BDS test
statistics; see the next Table. Moreover, they show that under H0, all 6 test
statistics converge in distribution to centered Gaussian variables.
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Table: Rank-based BDS test statistics of serial independence using 3 functionals (direct
integration (D), Kolmogorov–Smirnov(KS), and Craḿer–von Mises(CvM)), and 2 empirical processes.

Functional Empirical processes (1) (2)

D̃T (u) =
√

T{B̃T (u) −
∏m

k=1 G̃T (uk )} B̃∗T (u) = 2
√

T{B̃∗
T (u) − B̃T (u)}

D Ĩ
m,W̃

=

∫ 1

0
D̃T (h, . . . , h)dG̃(h) Ĩ∗

m,W̃
=

∫ 1

0
B̃∗T (h, . . . , h)dG̃(h)

KS M̃
m,W̃

= max
i∈{1,...,T}

∣
∣
∣D̃T

( i

T + 1
, . . . ,

i

T + 1

)∣∣
∣ M̃∗

m,W̃
= max

i∈{1,...,T}

∣
∣
∣B̃∗T

( i

T + 1
, . . . ,

i

T + 1

)∣∣
∣

CvM T̃
m,W̃

=

∫

[0,1]m
|D̃T (u)|2dB̃(u) T̃∗

m,W̃
=

∫

[0,1]m
|B̃∗T (u)|2dB̃(u)

(1) B̃T (u) =
(

T
2

)−1 ∑
1≤i≤j≤T

∏m
k=1 I(|W̃k,j − W̃k,i | ≤ uk ) with u = (u1, . . . , um)′ ∈ [0, 1]m ;

G̃T (h) = B̃T (h, 1, . . . , 1) with h ∈ (0, 1].
(2) B̃∗

T (u) = T−1 ∑T
i=1
∏m

k=1{F̃ (w̃k,i + uk ) − F̃ (w̃k,i − uk )}, where F̃ (∙) is the distribution of a U(0, 1)

random variable; B̃∗
T (u) =

∏m
k=1 G̃(uk ) with G̃(∙) a Beta(1,2) distribution.

Based on simulation results: T̃m,W̃ is the best performing rank-based BDS
test. But computationally demanding.
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Example:

Figure: S&P 500 daily stock price index Pt (3,102 observations) with 2 subperiods, denoted by
vertical red medium dashed lines, from 11/2000 – 2/2003(T = 608) and 3/2003 – 12/2003(T = 218).

Table: Bootstrap p-values of 7 test statistics for serial independence applied to daily S&P 500
stock returns; B = 1,000. Blue-typed numbers indicate rejection of H0 at the 5% nominal
significance level.

BDS Rank-based BDS test statistics

Period m Sm,T Ĩ∗
m,R̃

M̃∗
m,R̃

T̃∗
m,R̃

Ĩ
m,R̃

M̃
m,R̃

T̃
m,R̃

11/2000 – 2 0.21 0.07 0.14 0.08 0.57 0.53 0.91
02/2003 4 0.29 0.00 0.02 0.00 0.30 0.59 0.09

6 0.36 0.00 0.02 0.00 0.30 0.58 0.01
8 0.43 0.00 0.02 0.00 0.29 0.76 0.00

03/2003 – 2 0.21 0.91 0.31 0.89 0.33 0.22 0.00
12/2003 4 0.30 0.91 0.49 0.80 0.10 0.85 0.00

6 0.36 0.41 0.34 0.48 0.12 0.88 0.00
8 0.46 0.13 0.15 0.15 0.31 0.75 0.00

R̃t = rank(Rt )/(T + 1) with Rt = log(Pt /Pt−1).
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1.6 Application

Figure: Yearly Canadian lynx data for (blue solid line), and yearly Canadian snowshoe hare data
(in 1,000 (red solid line). Snowshoe hare (prey) constitute a major part of the lynx’s (predator) diet.

Table: BS p-values of 8 tests applied to the residuals of 5 models fitted to the log Canadian lynx
data; T = 114, B = 1,000. Blue-typed numbers indicate rejection of H0 at a 5% significance level.

BDS Rank-based BDS test statistics

Model m Sm,T Ĩ∗m,T M̃∗
m,T T̃∗

m,T Ĩm,T M̃m,T T̃m,T Δ̂DP
m,T

AR(2) 2 0.25 0.07 0.55 0.04 0.67 0.54 0.01 0.23
4 0.31 0.01 0.38 0.01 0.40 0.12 0.01 0.29
6 0.43 0.01 0.62 0.01 0.56 0.04 0.02 0.50

SETAR(2; 7, 2) 2 0.26 0.33 0.64 0.34 0.59 0.81 0.21 0.25
4 0.34 0.15 0.67 0.13 0.94 0.28 0.09 0.44
6 0.44 0.25 0.58 0.21 0.63 0.15 0.08 0.60

SETAR(3; 1, 7, 2) 2 0.25 0.66 0.38 0.63 0.98 0.56 0.13 0.50
4 0.32 0.40 0.27 0.32 0.92 0.27 0.15 0.52
6 0.41 0.44 0.17 0.41 0.62 0.15 0.14 0.38

ExpAR(2) 2 0.25 0.12 0.32 0.01 0.12 0.15 0.01 0.04
4 0.33 0.14 0.39 0.01 0.14 0.68 0.02 0.15
6 0.43 0.38 0.55 0.00 0.38 0.32 0.04 0.33

LSTAR(11) 2 0.25 0.02 0.41 0.03 0.23 0.91 0.26 0.37
4 0.32 0.01 0.20 0.01 0.19 0.99 0.24 0.09
6 0.42 0.04 0.18 0.04 0.08 0.95 0.30 0.15
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1.7 Some Software References
• The entire R code for replicating the MC simulation study of Bagnato et al. (2014)

is available at: http://www.jandegooijer.nl .

• A fast MATLAB code for computing BDS test statistic is based on:
http://papers.ssrn.com/paper.taf?abstract_id=151669 , is available
at:
http://econpapers.repec.org/software/bocbocode/t891501.htm .
Also BDS-C+, and BDS-MATLAB source codes are available at the address:
http://people.brandeis.edu/ ˜ blebaron/ .

• The C+ code of the Δ̂DP
m,T (DP=Diks-Panchenko test based on quadratic forms)

test statistic can be downloaded from Cees Diks’ web page located at
http://cendef.uva.nl/people .
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2. Time-Reversibility
2.1 Time-domain Test: Bicovariance-based

Since TR implies the equivalence of various distributions, it also implies the
equality of subsets of moments from the joint distribution of {Yt}, where they
exist. Use higher-order moments. Assume {Yt} has mean 0. Then a
sufficient (not necessary) condition for TR is

E(Y i
t Y j

t−`) = E(Y j
t Y i

t−`), ∀(i , j) ∈ N and ∀` ∈ Z.

For i = 1, j = 2, define the symmetric-bicovariance function as follows

ψY (`) = γ
(2,1)
Y (`) − γ

(1,2)
Y (`),

where γ
(i,j)
Y (`) = E(Y i

t Y j
t−`). If {Yt} is TR, then ψY (`) = 0 ∀` ∈ Z. The TR test

statistic (Ramsey – Rothman, J. Money Credit & Banking, 1996) is based on

ψ̂Y (`) = γ̂
(2,1)
Y (`) − γ̂

(1,2)
Y (`), (` ∈ Z),

where γ̂
(i,j)
Y (`) = (T − `)−1∑T

t=`+1 Y i
t Y j

t−` with (i , j) = (1, 2). Its variance is
given by

Var{ψ̂Y (`)} = 2(μ4,Y μ2,Y − μ
2
3,Y )/(T − `) − 2μ

3
2,Y (T − 2`)/(T − `)2

.
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Replacing μ3,Y and μ4,Y by their sample counterparts leads to V̂ar{ψ̂Y (`)}.
Then the TR test statistic is defined by

TR(`) = ψ̂Y (`)
/√

V̂ar{ψ̂Y (`)}.

Under H0 : ψY (`) = 0, it can be shown that TR(`)
D

−→ N (0, 1) as T → ∞.

Algorithm:
Stage 1:Type I

(
DGP=nL, with symmetric fε(∙)

)
, and Type II time-irreversibility

(DGP = Linear and {εt} is i.i.d. with a symmetric distribution): Rejection of H0

is consistent with both Type I and type II time-irreversibility.

Stage 2: Distinguish between Type I and Type II time-irreversibility.

Comment: ARMA prewhitening of {Yt} in Stage 1 may destroy TR since it
induces a phase shift in the series (Hinich et al. J. Macroeconomics, 2006).

TR test based on the characteristic function:
• Chen et al. (J. Econometrics, 2000): Unconditional symmetry.
• Chen and Kuan (J. Appl. Econometrics, 2002): Replace {Yt} by some

residual series.
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Example: A simple way to explore {Yt}T
t=1 for TR is to detect asymmetries in

plots of the sample distributions of Wt(`) = Yt − Yt−` (` = 1, 2, . . .). Consider
the stationary SETAR(2; 1, 1) process

Yt =

{
0.5Yt−1 + εt if Yt−1 ≤ 0,
−0.4Yt−1 + εt if Yt−1 > 0,

where {εt}
i.i.d.
∼ N (0, 1). Fig. (a) shows a plot of a typical subset of length

T = 100 of a simulated time series of 10,000 observations. Fig. (b) displays
the kernel smoothed densities of {Wt(`)}

10,000
t=1 (` = 1, . . . , 5), using a normal

kernel. Observe that the distributions are not symmetric about the origin,
indicating the SETAR process is time-irreversible.
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2.2 Frequency-domain: Bispectrum-based

Hinich and Rothman (Macroeconomic Dynamics, 1998): Under the H0 of TR,
={fY (ω1, ω2)} = 0 ∀(ω1, ω2) ∈ D where D is the principal domain (see Part II,
p. 1–3). This result can be used to define a frequency-domain TR test
statistic based on the imaginary part of the normalized estimated bispectrum
B̂Y (ω1, ω2), say ={B̂Y (ω1, ω2)}.

Trispectrum-based test:

Triple FT of the 4th-order cumulant function of a stationary time series {Yt},
i.e.,

fY (ω1, ω2, ω3)=
∞∑

`1,`2,`3=−∞

γY (`1, `2, `3) exp{−2πi(ω1`1 + ω2`2 + ω3`3)},

where (ω1, ω2, ω3) ∈ [0, 1]3 are normalized frequencies, and the 3rd-order
cumulant function is defined as γY (`1, `2, `3) = E(Yt Yt+`1 Yt+`2 Yt+`3). Owing
to symmetry relations, the trispectrum need to be calculated only in a subset
of the complete (ω1, ω2, ω3)-space (similar to sector 1© in the figure on p. 1–4
of Part II).
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Steps:
(i) Divide {Yt}

T
t=1 into K non-overlapping stretches, or frames, of length N so that K = bT/Nc.

Define the discrete Fourier frequencies ωj = j/N (j = 1, . . . , N).

(ii) Calculate the discrete FT Yk (ωj )=
∑N

t=1 Yt+(k−1)N exp{−2πiωj (t+(k − 1)N)}, and the
periodogram of the k th frame (k = 1, . . . , K ).

(iii) Compute

f̂Y (ωj1
, ωj2

, ωj3
)=

1

T

K∑

k=1

Yk (ωj1
)Yk (ωj2

)Yk (ωj3
)Yk (−ωj1

−ωj2
−ωj3

).

Then the normalized estimated trispectrum is

T̂Y (ωj1
, ωj2

, ωj3
) =

f̂Y (ωj1
, ωj2

, ωj3
)

√
f̂Y (ωj1

)̂fY (ωj2
)̂fY (ωj3

)̂fY (ωj1
+ ωj2

+ ωj3
)
.

(iv) Compute the TR test statistic

S∗
TR = 2T 2c−1

∑

ωj1
,ωj2

,ωj3
∈Ω

|={T̂Y (ωj1
, ωj2

, ωj3
)}|2, (

1

2
< c < 1).

Under H0 : ={TY (ωj1
, ωj2

, ωj3
)} = 0, and as T → ∞,

S∗
TR

D
−→ χ

2
M∗

with M∗ the # of frequency triples in Ω. This number is automatically computed in the
available software code. Disadvantage: S∗

TR is applicable if the one-dimensional marginal
distribution of {Yt} has a finite 8th moment. Computationally demanding.
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2.3 Other Nonparametric Tests:
• Copula-based test for Markov chains: Beare and Seo (Econometric Theory,

2014).
• Kernel-based test: Diks et al. (Physics Letters A, 1995).
• Sign test: Psaradakis (JTSA, 2008). The projection of the m-dimensional delay

vectors on (Yt , Yt−`) (` = 1, . . . , m − 1) can be evaluated by exploiting the fact
that for a TR process {Xt (`) = Yt − Yt−`}, we have

P(X0(`) > 0) = P(X0(`) < 0) =
1

2
, (` = 1, . . . , m − 1).

The object of interest is thus the probability π(`) ≡ P
(
X0(`) > 0

)
, which may be

thought of as a simple measure of deviation from 0 of the one-dimensional
distribution of {Xt (`)}. A point estimator of π(`) is

π̂(`) =
1

T − `

T∑

t=`+1

I
(
Xt (`) > 0

)
, (` = 1, . . . , m − 1).

For each fixed ` ∈ N, as T → ∞,
√

T − `
(
π̂(`) − π(`)

) D
−→ N

(
0, σ2

X (`)
)
,

where

σ2
X (`) = π(`)

(
1 − π(`)

)
+ 2π(`)

∞∑

t=1

{P(Xt (`) > 0)|X0(`) > 0) − π(`)}.
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Example: Consider the stochastic process

Yt = 1 − 1.4Y 2
t−` + 0.3Yt−2`−1 + εt , {εt}

i.i.d.
∼ U(−0.01, 0.01).

A “clothed”, or randomized, version of the time-delayed deterministic (its
skeleton) Hénon map. Time series generated by the Hénon map are known
to be time-irreversible. Compute

R(m) =
1

m − 1

m−1∑

`=1

|
1
2
− π̂(`)| × 100 (m = 2, . . . , 15).

Figure: Boxplots of R(m) based on 1,000 MC replications of series of length T = 5,000
generated from the time-delayed Hénonmap with (a) ` = 1 and (b) ` = 2. Note: time-irreversibility.
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2.4 Some Software References
• F77 code to calculate the first and second stage of the

Ramsey–Rothman TR test statistic can be found at the website
http://www.jandegooijer.nl .

Also, a GAUSS program for running the Chen–Chou–Kuan TR test
statistic is available. In addition, the above website has MATLAB code for
computing the copula-based TR test statistic for Markov chains.

• C source code and a Linux/Windows executable of the kernel-based TR
test statistic can be downloaded from Cees Diks’ web page, located at
http://cendef.uva.nl/profile/d/i/c.g.h.diks/c.g.h.diks.html .
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3. Forecasting
3.1 Exact LS Methods: Introduction

For a strictly stationary stochastic process {Yt} the least squares (LS), or
MMSE forecast of Yt+H (H = 1, 2, . . .), is given by E(Yt+H |Ys, −∞ < s ≤ t)
when this exists.

For a pth-order Markov process, the MMSE forecast of Yt+H equals
Y LS

t+H|t = E(Yt+H |Xt), where Xt = (Yt , Yt−1, . . . , Yt−p+1)
′. Calculation of Y LS

t+H|t

requires knowledge of the conditional pdf of {Yt}. For an NLAR(p) model

Yt = μ(Xt−1;θ) + εt ,

where {εt}
i.i.d.
∼ (0, σ2

ε) such that εt is independent of Xt−1, θ is a
finite-dimensional vector of unknown parameters, and μ : Rp → R. The
one-step ahead LS forecast at time t equals

Y LS
t+1|t = E(Yt+1|Xt) = E{μ(Xt ;θ) + εt+1|Xt} = μ(Xt ;θ).

So, for H = 1, the conditional mean is independent of the distribution of εt+1

which is an important property for both linear and NLAR models.
3 – 1



Tests for Serial Independence Time-Reversibility Forecasting

When H ≥ 2, however, this is true only for linear models. For example, the
two-step ahead LS forecast for an NLAR(p) model is given by

Y LS
t+2|t = E(Yt+2|Xt) = E{μ(Xt+1;θ) + εt+2|Xt}

= E{μ
(
μ(Xt ;θ) + εt+1

)
|Xt} =

∫ ∞

−∞
μ
(
μ(Xt ;θ) + ε)dF (ε),

where F (∙) is the distribution function of {εt}.

Thus, the 2nd term on the right-hand side depends on F (∙), and cannot
further be reduced as with the expression of the one-step ahead forecast.

The reason is that, in general, the conditional expectation of a nonlinear
function is not equal to the function evaluated at the expected value of its
argument.
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NLAR(p) model

Let g(∙) be the pdf of {εt}. Using the Chapman–Kolmogorov relation, the
conditional pdf of Yt+H given Xt = x t can be written as

f (yt+H |x t) =

∫ ∞

−∞
f (yt+H |x t+1)f (yt+1|x t)dxt+1,

where

f (yt+1|x t) = g
(
yt+1 − μ(x t ;θ)

)
.

Alternatively, this equation can be obtained by considering the joint pdf of
Yt+H , Yt+H−1, . . . , Yt+1 conditional on Xt = x and integrating out the
unwanted variables. Introducing fH(∙) ≡ fYt+H |Yt (∙|x), we have

fH(x) =

∫ ∞

−∞
fH−1(x)g

(
z − μ(x;θ)

)
dz.

Given fH(∙) at step H = 1, the conditional mean for H ≥ 2 is given by

Yt+H|t =

∫ ∞

−∞
fH−1(Yt+1)g

(
Yt+1 − μ(Xt ;θ)

)
dYt+1.

Computing Yt+H|t requires p + 1 numerical integrations; Pemberton (JTSA,
1987), Al-Qassem and Lane (JTSA, 1989), and Cai (JoF, 2005).
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Example:

Figure: (a) Forecast density f (yt+H |xt ) (H = 1, . . . , 5) for a SETAR(2; 0, 0) model; (b) Conditional
mean E(Yt+H |Xt ) (H = 2, . . . , 5; α = 1).

Consider the SETAR(2; 0, 0) model

Yt =
{

α + εt if Yt−1 ≤ 0,
−α + εt if Yt−1 > 0,

where {εi}
i.i.d.
∼ N (0, 1). Let ϕ(∙) be the pdf and Φ(∙) the CDF of N (0, 1). Then

f (yt) = {ϕ(yt + α) + ϕ(yt − α)}/2.

The exact LS conditional pdf of Yt+H (H = 1, 2, . . .) given Xt = x has the form
f (yt+H |x) = w (H)

1 (β)ϕ
(
Yt+H − I(Yt ≤ 0)α

)
+ w (H)

2 (β)ϕ
(
Yt+H + I(Yt > 0)α

)
,

where w (H)
1 (β) = (1 − βH−1)/2, w (H)

2 (β) = 1 − w (H)
1 (β), and β = 1 − 2Φ(α).
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Two-regime SETARMA:

Yt = Y (1)
t It−d + Y (2)

t (1 − It−d ),

where in the i th regime by Y (i)
t ∼ ARMA(pi , qi) (i = 1, 2).

Assume the joint process {(Y (1)
t , Y (2)

t , It−d )} is strictly stationary, invertible,
and ergodic. The exact H-step ahead (H ≥ 2) LS forecast is given by

Y LS
t+H|t = Y (1)

t+H|tE(It+H−d |F t) + Y (2)
t+H|t

(
1 − E(It+H−d |F t)

)
,

where Y (i)
t+H|t is the ARMA forecast in regime i , and F t = {Yt , Yt−1, . . .}

denotes the information set up to time t .

Depending on the case H ≤ d (easiest) or H > d , expressions for the
variance of the LS forecast errors can be derived; Amendola et al. (Physics &
Chemistry of the Earth, 2006).
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3.2 Approximate Methods: Monte Carlo (MC)

Given a H = 1 forecast at time t , the MC method is a simple recursive
simulation method to approximate the expectation of Yt+H (H ≥ 2)
conditional upon F t . The H = 2 forecast can be constructed as

Y MC
t+2|t =

1
N

N∑

i=1

Y MCi
t+2|t where Y MCi

t+2|t = μ
(
(Yt+1|t ;θ) + ε2,i

)
,

with {ε2,i}N
i=1 a set of pseudo-random numbers drawn from the presumed

distribution of {εt+1}, and with N large. The H-step ahead forecast is given by

Y MC
t+H|t =

1
N

N∑

i=1

Y MCi
t+H|t , (H > 2),

where

Y MCi
t+H|t = μ

(
(Y MCi

t+H−1|t ;θ) + εH,i
)

= μ
(
μ(∙ ∙ ∙ (μ(Yt+1|t ;θ) + ε2,i) + ∙ ∙ ∙ ) + εH,i

)
,

with εj,i (j = 2, . . . , H; i = 1, . . . , N) independent pseudo-random numbers
drawn from some pre-specified distribution of {εt+H}.
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Bootstrap (BS):

Forecasts obtained from the BS method are similar to the MC simulation
method except that the e∗

j,i are drawn randomly (with replacement) from the
within-sample residuals ei (i = 2, 3, . . . , T ), assuming a set of T historical
data is available to obtain some consistent estimate of θ.

In this case the H-step ahead (H ≥ 2) forecast is given by

Y BS
t+H|t =

1
T − 1

T∑

i=2

Y BSi
t+H|t ,

where

Y BSi
t+H|t = μ

(
(Y BSi

t+H−1|t ;θ) + e∗
H,i

)

= μ(μ(∙ ∙ ∙ (μ
(
Yt+1|t ;θ) + e∗

2,i) + ∙ ∙ ∙ ) + e∗
H,i

)
.

Advantage of the BS method over the MC method is that no assumptions are
made about the distribution of the innovation process.
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Deterministic, Naive, or Skeleton (SK):

“Switch off the white noise” in the MC method. Thus, the two-step ahead
forecast is given by

Y SK
t+2|t = μ(Yt+1|t ;θ).

This approach leads to biased predictions since Y SK
t+2|t 6= E(Yt+2|t). By

induction, the H-step ahead forecast can be computed as

Y SK
t+H|t = μ

(
μ(∙ ∙ ∙μ(Y SK

t+1|t ;θ))
)
.

Advantage: The SK method is computationally inexpensive. However, unlike
most approximate forecasting methods, the SK forecasts do not necessarily
converge to the mean of the process. (Disadvantage)

Moreover, as σ2
ε increases there is the possibility that the deterministic

component of the model ceases to dictate the behavior of the process and
the noise part starts to be dominant, causing for instance switches between
different limit/oscillation points. (Disadvantage)
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Empirical least squares (ELS): Guo et al. (Stat. Sinica, 1999)

Assume an NLAR(1) model is known and correctly specified for the DGP, but
the innovation distribution is unspecified.

Use F̂T (x) = (T − 1)−1∑T
i=2 I(ei < x) as an estimate of the innovation

distribution. Then the two-step ahead (H = 2) ELS forecast can be defined as

Y ELS
t+2|t =

1
T − 1

T∑

i=2

μ
(
μ(Yt+1|t ;θ) + ei

)
.

The ELS method can be readily extended to the case H > 2. For instance,
the exact three-step ahead LS forecast is given by

Y LS
t+3|t =

∫ ∞

−∞
μ
(
μ(μ(Yt+1|t ;θ) + ε) + ε′

)
dF (ε)dF (ε′).

Thus, as a three-stage ELS forecast, we may take

Y ELS
t+3|t =

1
(T − 1)(T − 2)

∑

2≤i 6=j≤T

μ
(
μ(μ(Yt+1|t ;θ) + ei) + ej

)
.

The ELS method can be generalized to NLARs with ARCH errors.
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Normal forecasting error (NFE):

An alternative to the H-step ahead (H ≥ 2) exact LS predictor is to assume
as an approximation that all (H − 1) forecast errors et+H−1|t (H ≥ 2) are
normally distributed with mean 0 and variance σ2

e,H−1 ≡ Var(et+H−1|t).

• Al-Quassem and Lane (JTSA, 1989) for ExpAR(1) models.

• De Gooijer and De Bruin (Stats. Prob. Letters, 1998) for SETAR(2;1,1)
models.

The normality assumption avoids the use of numerical methods. However, as
μ(∙;θ) is an nL function the multi-step ahead forecast errors et+H−1|t will not
equal the linear innovations, nor will they follow an i.i.d. Gaussian process.
(Disadvantage)
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Linearization (LN):

Taylor’s expansion up to order two of μ(∙;θ) about the point Yt+H−1|t gives

μ(Yt+H−1; θ) ' μ(Yt+H−1|t ; θ) + et+H−1|t μ
(1)(Yt+H−1|t ; θ) +

1

2
e2

t+H−1|t μ
(2)(Yt+H−1|t ; θ),

where μ(i)(∙;θ), (i = 1, 2) denotes the i th derivative of μ(∙;θ) with respect to
Yt+H−1|t , and et+H−1|t is the (H − 1)-step ahead forecast error (H ≥ 2).

Assume {et+H−1|t}
i.i.d.
∼ N(0, σ2

e,H−1). Then, substituting the above expression
in the NLAR(1) model and taking the conditional expectation of the resulting
specification, gives the H-step ahead LN forecast, i.e.

Y LN
t+H|t ' μ(Yt+H−1|t ;θ) +

1
2

σ2
e,H−1μ

(2)(Yt+H−1|t ;θ).

Disadvantage: Forecasts obtained from this method can be quite different
from the exact prediction method or from the NFE method for moderate or
large σ2

ε (mainly ≥ 10−2).
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Example:

Figure: Forecasts from an ExpAR(1)model with the NFE, SK, and LN methods; (a) σ2
ε = 1, and

(b) σ2
ε = 0.01; {εt}

i.i.d.
∼ N (0, 1), Y0 = 1.

ExpAR(1):

μ(X ;θ) = {φ + ξ exp(−γX 2)}X ,

where θ = (φ, ξ, γ)′ = (0.8, 0.3, 1)′. Using expressions for the partial
derivatives of μ(∙;θ) with respect to X , we get

Y LN
t+H|t = φ + ξfH−1 exp

(
− γ(Yt+H−1|t)

2)Yt+H−1|t ,

where fH−1 = 1 + γσ2
e,H−1

(
2γ(Yt+H−1|t )

2 − 3
)
.
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The specified ExpAR(1) process has two limit points at ±0.6368.

Notes:

• Fig. (a): it is clear that NFE forecasts go to a limit point 0, SK forecasts
go to the upper limit point 0.6368, while the series of LN forecast are
unstable up to about H = 30, then stabilize to a point far off the upper
limit point.

• Fig. (b) shows that for H ≤ 5 there is hardly any noticeable difference
between the three forecasting methods, provided σ2

ε is small. For
H ≥ 30 the LN method may go to the “wrong” limit point.
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Dynamic estimation (DE):

The DE method is based on the in-sample relationship between Yt and Yt+H ,
ignoring contributions of intermediate values, to produce H-step ahead
forecasts. That is, we replace the NLAR(1) model by the following
specification

Yt+H = μ(Yt ;θ
∗
H) + ε∗t+H ,

where θ∗H is a vector of parameters depending upon H. These parameters
can be estimated by minimizing the sum of squares of ε∗T+H over θ∗H for the
sample period t = 1, . . . , T . So that, given θ̂∗H , the corresponding H-step
ahead DE forecast can be written as

Y DE
t+H|t = μ(Yt ; θ̂

∗
H).

Comments:
• In a linear setting, there are no gains in terms of increased forecast accuracy using DE over

the traditional minimization of in-sample sum of squares of one-step ahead errors when the
model is correctly specified. When a nL model is correctly specified, DE may result in better
out-of-sample forecasts due to its simplicity.

• An obvious drawback is that the nonlinear model needs to be estimated for each H.

• Clements and Smith (IJF, 1997) conclude that the DE method is worse than the BS, MC and

NFE methods for SETAR(2; 1, 1) models with Gaussian disturbances and 0 intercepts.
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3.3 Forecast Intervals/Regions

Forecast intervals/regions are more informative than point predictions as they
indicate the likely range of forecast outcomes. As such, they are a measure
of the inherent model accuracy.

The conditional distribution of YT+H given F t = {Yt , Yt−1, . . .} can be used to
construct a forecast interval/region for YT+H . Given Xt = x, Qα ≡ Qα(x) ⊂ R
is such an interval with coverage probability 1 − α (α ∈ [0, 1]). That is
P{YT+H ∈ Qα(x)|XT−H−p+1 = x} = 1 − α, assuming the DGP is strictly
stationary and p-Markovian. The set Qα is called forecast region (FR). When
Qα is a connected set, it is called forecast interval (FI).

Obviously an FR/FI can be constructed in an infinite number of ways. For
instance, a natural FI for the conditional median of YT+H is the conditional
percentile interval (CPI) given by

CPI1−α = [ξ̂α/2(x), ξ̂1−α/2(x)],

where ξ̂α(x) is the αth conditional percentile of ξα(x) = inf{z : F (z|x) ≥ α}
and α the quantile level.
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3.4 Forecast Evaluation

Forecast schemes:

• Fixed: Let {Yt}T+H
t=1 be the sample of observations, where H ≡ Hmax ≥ 1

denotes the longest forecast horizon of interest. Assume the available
data set is divided into in-sample and out-sample portions, with R the
total # of in-sample observations and P the # of H-step ahead forecasts.
This setup implies that P out-of-sample forecasts depend on the same
parameter vector estimated on the 1st R observations. So, the forecast
scheme is based on a single, fixed, estimation sample.

• Recursive: The 1st forecast is based on a model with parameter vector
estimated using {Yt}R

t=1, the 2nd on a parameter vector estimated using
{Yt}R+1

t=1 , . . . , the last on a parameter vector estimated using {Yt}R+P−1
t=1 ,

where T ≡ R + P − 1.

• Rolling: The sequence of parameter estimates is always generated from
a fixed, but rolling, sample of size R: The 1st forecast is based on
parameter estimates obtained from the set of observations {Yt}R

t=1, the
next on parameter estimates obtained from {Yt}R+1

t=2 , and so on.
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Point forecast evaluation:
• Diebold–Mariano (DM): Based on the H0 that 2 forecasts are the same

in terms of forecasting accuracy, for some arbitrary loss function
L(ei,t+H|t) where ei,t+H|t = Yt+H − Yi,t+H|t is the H-step ahead forecast
error with Yi,t+H|t the forecasts from model i (i = 1, 2). The H-step
ahead loss differential is defined as

dt = L(ei,t+H|t) − L(ej,t+H|t), (i , j = 1, 2; i 6= j).

So

H0 : μd ≡ E(dt) = 0.

• Modified DM (MDM): For a small # of forecasts, use MDM. The
modification follows from replacing an approximation of Var(d), with
d = P−1∑R+P+H−1

t=R+H dt , by its exact variance.

Advantage: DM is “model-free”, i.e., the forecast models are assumed to be
correctly specified, but unknown, and L(∙) does not rests on additional,
conditioning, information. The competing forecasts Y1,t+H|t and Y2,t+H|t are
obtained from non-nested models.

Disadvantage: With nested models the limiting distribution of DM is
non-standard.
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Interval evaluation: Christoffersen (Int. Econ. Review, 1998). LR-based test
statistics.

Density evaluation: Consider a set of P one-step ahead forecast densities for
the future value of a process {Yt}, denoted by {̂ft(Yt |F t−1)}P

t=1, made at time
t with f1(Y1|F0) ≡ f (y1). The PIT, denoted by Ut , is defined as

Ut ≡
∫ Yt

−∞
f̂t(u|F t−1)du, (t = 1, . . . , P).

Under the H0 that the model forecasting density corresponds to the true
conditional density, given by the DGP which is denoted by ft(∙|F t−1), i.e.

f̂t(∙|F t−1) = ft(∙|F t−1), {Ut}
i.i.d.
∼ U(0, 1).

Testing the uniformity part:
• Use a nonparametric goodness-of-fit test like KS, AD or CvM.
• Plot the CDF of the Ut and visually compare it with a line at an angle of 45◦

representing the cumulative U(0, 1) distribution.

Testing the independence part:
• Use an LM-type test statistic for serial correlation in the sequences

{(Ut − U)u}P
t=1 (u = 1, 2), where U is the sample mean of Ut .
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3.5 Forecast Combination

If the individual forecasts are unbiased then common practice is to obtain a
weighted average of forecasts, with weights wi ≥ 0 and

∑n
i=1 wi = 1. The wi

follow from minimizing some loss function, usually the MSFE.

Equal-weighting (ew) often outperforms estimated optimal forecast
combinations, i.e.

Y ew
t+H|t =

1
n

n∑

i=1

Yi,t+H|t .

Interval forecasts: FIs are frequently too narrow, i.e. too many observations
are in the tails of the forecast distribution. One most likely reason is that
forecast errors are nG distributed because the underlying DGP is nL.

A simple method to construct non-symmetrical FIs is to combine (C) the
H-step ahead conditional quantile predictor {ξ̂i,q(x)}n

i=1

(
q ∈ (0, 1)

)
obtained

from n different models with weights wi,q(x) based upon within-sample
estimation, i.e.,

ξ̂ C
q (x) =

n∑

i=1

wi,q(x)ξ̂i,q(x).
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Density forecasts: Let {f̂i,t(Yt |F i,t−1)}P
t=1 (i = 1, . . . , n) denote n sequences

of P individual one-step ahead forecast densities at some time t . Then,
assuming the density forecasts are continuous, the combined (C) density
forecast is defined as

f̂ C
t (Yt) =

n∑

i=1

wi f̂i,t(Yt |F i,t−1), (t = 1, . . . , P),

with wi ≥ 0,
∑n

i=1 wi = 1, and F i,t−1 represents the i th information set.

The key issue is to find wi . Most simply, various authors (see, e.g., Hendry
and Clements, Econometrics J., 2004) advocate the use of equal weights
wi = 1/n.

A related topic is finding the set of weights that minimize the Kullback–Leibler
(KL) divergence between the combined density forecast and the true, but
unknown, conditional density ft(∙|F t−1); see, e.g., Bao et al. (JoF, 2007) and
Hall and Mitchell (IJF, 2007).
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3.6 Some Software References

• The R-BootPR package provides a way to obtain BS bias-corrected
coefficients for forecasting linear AR models. The code can easily be
adapted to SETAR-type models.

• The R-hdrcde package contains computer code for the calculation and
plotting of HDRs. GAUSS and MATLAB codes for computing the
conditional mean, median, mode, SCMI (shortest conditional modal
interval) and HDR (highest density region) are available at:
http://www.jandegooijer.nl .

• The MATLAB function dmtest retrieves the DM test statistic (under
quadratic loss) using the Newey–West estimator for the covariance
matrix of the loss differential. The R-forecast package contains the
function dm.test.
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1. Vector Parametric Models and Methods
1.1 General Multivariate

Consider an m-dimensional process Yt = (Y1,t , . . . , Ym,t)
′. Let g(∙) =

(
g1(∙)

, . . . , gm(∙)
)′ denote a smooth vector function on Rm, and θ a vector of

unknown parameters. Then denote a general nL vector time series model by

Yt = g(Yt−1, . . . , Yt−p, εt−1, . . . , εt−q ;θ) + εt ,

where εt = (ε1,t , . . . , εm,t)
′ i.i.d.
∼ (0m,Σε), independent of Yt .

Volterra series expansion, i th (i=1,. . . ,m) component:

Yi,t = μi + εi,t +
m∑

u=1

∞∑

k=1

bi,u,kεu,t−k +
m∑

u,v=1

∞∑

k,`=1

bi,u,v,k,`εv,t−kεu,t−` + ∙ ∙ ∙ .

Multivariate SDM of order (p, q), i th component:

Yi,t = μi(St−1) +

p∑

j=1

φi,j(St−1)Yi,t−j + εi,t +

q∑

`=1

θi,`(St−1)εi,t−`,

where St = (Y′
t , . . . , Y′

t−p+1, ε
′
t , . . . ε

′
t−q+1)

′.
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1.2 BL model

Yt =

p∑

j=1

ΦjYt−j + εt +

q∑

j=1

Θjεt−j +
P∑

u=1

Q∑

v=1

Ψuv{εt−v ⊗ Yt−u}.

Here, Φj = {φj
i,u , 1 ≤ j ≤ p} and Θj = {θj

i,u, 1 ≤ j ≤ q} are m × m matrices,
and Ψuv (1 ≤ u ≤ P; 1 ≤ v ≤ Q) is an m × m2 matrix with the i th row
obtained by vectorizing the m × m matrix ψuv

i = {ψuv
i,k,`, 1 ≤ k , ` ≤ m}, where

k is the row index and `th column index, i.e.

Ψuv =
(
(vec(ψuv

1 ))′, . . . , (vec(ψuv
m ))′

)′
.

Note: The BL model involves PQm2 + m(p + q) parameters, making it too
general to be of use in practice. As for the univariate BL model, special cases
include the

• Superdiagonal: ψuv
i,k,` = 0, ∀u > v .

• Subdiagonal: ψuv
i,k,` = 0, ∀u < v .

• Diagonal: ψuv
i,k,` = 0, ∀u 6= v .
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Example: Consider a bivariate (m = 2) BL model with p = P = Q = 1 and a
single lag in the noise term, say at lag q = 1. Then the SDM is given by

St = Fεt + ASt−1 + C1[εt−1 ⊗ I4]St−1,

where

F =




0.5 0
0 −0.7

0.5 0
0 −0.7



 , A =




0.2 0.3 0 0
0.1 −0.5 0 0
0 0 0 0
0 0 0 0



 , C1 =




0.2 −0.1 0 0 0.1 0.3 0 0
0.4 −0.3 0 0 −0.3 0.4 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



.

The second order stationarity condition (see Part I, p. 3–5) is given by
ρ
{
(A ⊗ A) + (C1 ⊗ C1)H

}
< 1 with H = E[{εt ⊗ I4} ⊗ {εt ⊗ I4}]. The global

invertibility condition is ‖Ψ11‖
√
E‖Yt‖2 < 1, where

Ψ11 =
(

0.2 −0.1 0.1 0.3
0.4 −0.3 −0.3 0.4

)
.
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Example: (Cont’d): Replace the expression for the invertibility condition by

the approximation ‖Ψ11‖(1,000)−1∑1,000
t=1 ‖Yt‖2.

Notes:
• When Σε = I2, the stationarity condition equals 0.57, and the values of the

approximate invertibility condition are in the range (0.71, 1.19) with an average of
0.89. Fig. (a) shows a typical realization. Y1,t (Y2,t ) = blue (red) solid line.

• When Σε =
(

2 0.5
0.5 2

)
the stationarity condition equals 0.70. The values of the

approximate invertibility condition are in the range (1.26, 1.62), so indicating that
the process is non-invertible; Fig. (b).

Figure: A typical realization of a bivariate BL process (T = 500; blue solid line Y1,t , red solid line
Y2,t ); (a) Σε = I2, and (b) Σε =

(
2 0.5

0.5 2

)
.
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1.3 General threshold ARMA (TARMA) model

Let {Xt} denote a weakly stationary m-variate continuous process in Rm.
Assume that Rm can be partitioned into k > 1 non-overlapping subspaces
Rm

i , i.e. Rm
i ∩ Rm

i′ = ∅ ∀i 6= i ′ (i , i ′ = 1, . . . , k) determined by the values of
{Xt−d}, where d > 0. Then, for an m-dimensional strictly stationary time
series process {Yt}, a VTARMA(k ; p, . . . , p, q, . . . , q) is defined as

Yt =
k∑

i=1

(
Φ

(i)
0 +

p∑

u=1

Φ
(i)
u Yt−u + ε

(i)
t +

q∑

v=1

Ψ
(i)
v ε

(i)
t−v

)
I
(
(ω(i))′Xt−d ∈ Rm

i

)
,

where Φ
(i)
0 are m × 1 constant vectors, Φ(i)

u and Ψ
(i)
u are m × m matrix

parameters, and ω(i) = (ω
(i)
1 , . . . , ω

(i)
m )′ is a pre-specified m-dimensional

vector.

When ω(i) = (1, 0, . . . , 0)′, the threshold variable is simply X1,t−d (Tsay,
JASA, 1998). The error process in the i th regime satisfies ε(i)

t = (Σ
(i)
ε )1/2εt ,

where (Σ
(i)
ε )1/2 are symmetric positive definite matrices and {εt}

i.i.d.
∼ (0m, Im).

{Xt} can include lagged values of {Yt}, or lagged values of an exogenous
variable. The order (p, . . . , p, q, . . . , q) can be different in each regime. Also,
the threshold regimes may include lagged exogenous variables.
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1.4 Vector STAR

Let Zt = (1, Y′
t−1, . . . , Y′

t−p)
′ be an (mp + 1) × 1 vector. Then an

m-dimensional k -regime VSTAR model of order (k ; p, . . . , p) is defined as

Yt =
k∑

i=1

{(
Φ

(i)
0 +

p∑

u=1

Φ
(i)
u Yt−u

)(
G(i−1)

t − G(i)
t

)}
+ εt

=
{ k∑

i=1

(
G(i−1)

t − G(i)
t

)
(Φ(i))′

}
Zt + εt ,

where Φ(i) is an (mp + 1) × m matrix given by

Φ(i) =
(
(Φ

(i)
0 )′, (Φ

(i)
1 )′, . . . , (Φ

(i)
p )′
)′

,

and G(i)
t ≡ G(X(i)

t ;γ(i), c(i)) is a diagonal matrix of transition functions

G(i)
t = diag{G(X (i)

1,t ; γ
(i)
1 , c(i)

1 ), . . . , G(X (i)
m,t ; γ

(i)
m , c(i)

m )}, (i = 1, . . . , k − 1),

with G(0)
t = Im, G(k)

t = 0, γ(i) = (γ
(i)
1 , . . . , γ

(i)
m )′ (slope), c(i) = (c(i)

1 , . . . , c(i)
m )′

(location), γ
(i)
j > 0, ∀i , j , and {εt}

i.i.d.
∼ (0m,Σε), independent of Yt .

The variable X(i)
t = (X (i)

1,t , . . . , X (i)
m,t)

′ (i = 1, . . . , k − 1) can be a lagged
variable of one of the components of {Yt}; a linear combination of the m
series; a weakly stationary exogenous variable; or a deterministic time trend.
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Special case: When k = 2, we have

Yt =
{
(Im − G(1)

t )(Φ(1))′ + G(1)
t (Φ(2))′

}
Zt + εt

= Φ0 +

p∑

u=1

ΦuYt−u +
{
Φ̃0 +

p∑

u=1

Φ̃uYt−u

}
G(Xt ;γ, c) + εt ,

where Φu = Φ
(1)
u , Φ̃u = Φ

(2)
u − Φ

(1)
u (u = 1, . . . , p), Φ0 = Φ

(1)
0 ,

Φ̃0 = Φ
(2)
0 − Φ

(1)
0 , and with Xt ≡ X(1)

t , γ ≡ γ(1), and c ≡ c(1).

From the 1st expression we see that each location parameter c(1)
j

(j = 1, . . . , m) represents the inflection point in which the transition function
has value 1/2, i.e. the process is halfway through the transition from G(1)

t to
G(2)

t .

When the diagonal elements of G(i)
t are logistic functions, the VSTAR

becomes the so-called logistic VSTAR (LVSTAR) model. See Hubrich and
Teräsvirta (ftp://ftp.econ.au.dk/creates/rp/13/rp13_18.pdf , 2013) for
a survey.

1 – 7

ftp://ftp.econ.au.dk/creates/rp/13/rp13_18.pdf


Vector Parametric Models and Methods Vector Semi- and Nonparametric Methods

1.5 Some Other Vector nL Models:
• Vector RCAR (Nicholls and Quinn, J. Multiv. Anal., 1981).
• Vector smooth transition error correction.
• Threshold vector error correction.
• VSETAR with multivariate thresholds.
• LVTAR with nonlinear cointegration Li and He (Report, 2012);

http://ideas.repec.org/p/hhs/oruesi/2012_007.html .
• LVSTAR with common nonlinear features (Anderson and Vahid, J.

Econometrics, 1998).
• Vector contemporaneous-threshold STAR (Dueker et al. J. Econometics,

2011).

Time-domain linearity tests:
• Nonadditivity-type test, Tukey’s nonadditivity-type test, and original F test

(Harvill and Ray, Biometrika, 1999; Psaradakis and Vávra, Economics
Letters, 2014); Extensions of the tests given in Part II, pp. 2–7 – 2–8.

• LR test statistic for VSETAR (Liu, Studies in Math. Sciences, 2011),
extending the LR test in Part II, p. 2–4.

• LM-type test statistic for VSTAR (Teräsvirta and Yang,
http://www.uclouvain.be/cps/ucl/doc/core/documents/
coredp2014_62web.pdf , 2014).
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1.6 Model Selection, Diagnostic Checking, and Forecasting

Example: (Model Selection)

Consider a strictly stationary m-dimensional time series {Yt} and a
v -dimensional exogenous variable Zt which follow a VTARX model of the form

Yt =
k∑

i=1

(
Φ

(i)
0 +

pi∑

u=1

Φ
(i)
u Yt−u +

qi∑

r=1

Ψ
(i)
r Zt−r + ε

(i)
t

)
I
(
Xt−d ∈ Ri

)
,

where {Xt} and the # of regimes k are known. For a fixed delay d , the # of
data points in regime i equals Ti =

∑T
t=h+1(I

(i−1)
t−d − I(i)t−d ), where

h = max(p1, . . . , pk , d), and T = total # of observations.

With p = (p1, . . . , pk ) and q = (q1, . . . , qk ), the multivariate versions of
AIC and BIC (see Part II, p. 3–7) are defined as

AIC(p, q, d , k) =
k∑

i=1

(
Ti log |Σ̂(i)

ε | + 2m(mpi + vqi + 1)
)
,

BIC(p, q, d , k) =
k∑

i=1

(
Ti log |Σ̂(i)

ε | + log(Ti)m(mpi + vqi + 1)
)
,

where Σ̂
(i)
ε is an estimate of the residual covariance matrix in each regime i .
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Diagnostic Checking:
• Two portmanteau-type tests statistics (Chabot–Hallé and Duchesne,

Stat. Prob. Letters, 2008).
• Test statistics based on quantile residuals (Kalliovirta and Saikkonen,

http://blogs.helsinki.fi/lkvaisan/files/2010/08/
ReliableResiduals.pdf , 2010).

Forecasting:
Consider a vector NLAR(p) model. The one-step (H = 1) ahead LS forecast
of the m-dimensional time series process {Yt} at time t is given by

YLS
t+1|t = E(Yt+1|F t) = E{g(Yt ;θ) + εt+1|F t} 6= g(Yt ;θ),

since E(εt+1|F t) 6= 0. When H = 2, the LS forecast is given by

YLS
t+2|t = E(Yt+2|F t) = E{g(Yt+1;θ) + εt+2|F t}

=

∫ ∞

−∞
∙ ∙ ∙
∫ ∞

−∞
g
(
g∗(Yt ;θ) + ηt+1) + εt+2|F t

)
dF (η, ε),

where ηt and g∗(∙) are defined in a similar way as εt and g(∙) respectively,
and F (∙) is the joint distribution function of the dependent processes {ηt} and
{εt}. Use MC simulation or BS procedures.
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1.7 Some Software References

• MATHEMATICA source code for testing and estimating bivariate TAR
models can be downloaded from
http://www.math.sk/bacigal/homepage/ .

• The website http://repec.wirtschaft.uni-giessen.de/ ˜ repec/

RePEc/jns/Datenarchiv/v233y2013i1/y233y2013i1p3_21/ provides
access to C source code and executable files for multivariate threshold
VSETAR analysis using GAs.

• Yang, Y. (2012, Appendix) provides a collection of R functions for the
specification and evaluation of VSTAR models; see http://pure.au.
dk/portal/files/45638557/Yukai_Yang_PhD_Thesis.pdf .
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2. Vector Semi- and Nonparametric Methods

2.1 Some Methods

• Nonparametric methods: Conditional quantiles, kernel-based
forecasting, k -nearest neighbors.

• Semiparametric methods: PolyMARS (De Gooijer and Ray, CSDA,
2003), projection-pursuit regression, vector functional-coefficient AR
model (Harvill and Ray, IJF, 2005), frequency-domain tests (Wong,
JTSA, 1997).

• Lag selection: Kendall’s tau and Kendall’s partial tau test statistics
(Harvill and Ray, Comm. Stat.: Theory & Methods, 2000).

See De Gooijer (2017, Chapter 12) for details and examples.
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2.2 Nonparametric Causality Testing

General framework:
Assume {(Xt , Yt)} is a strictly stationary bivariate (m = 2) time series
process. {Xt} is a strictly Granger cause of {Yt} if past and current values of
Xt contain additional information on future values of {Yt} that is not contained
in the past and current Yt -values alone.

More formally, let FX ,t and FY ,t denote the information sets consisting of past
observations of Xt and Yt up to and including time t . Then {Xt} is a Granger
cause of {Yt} if, for some H ≥ 1 (set, e.g., H = 1),

(Yt+1, . . . , Yt+H)′|(FX ,t ,FY ,t)
D
6∼ (Yt+1, . . . , Yt+H)′|FY ,t .

For finite orders, define the delay vectors

Xt = (Xt , . . . , Xt−`X +1)
′ and Yt = (Yt , . . . , Yt−`Y +1)

′, (`X , `Y ≥ 1).

The null hypothesis of interest is given by

H0 : Yt+1|(Xt , Yt) ∼ Yt+1|Yt .

2 – 2



Vector Parametric Models and Methods Vector Semi- and Nonparametric Methods

General framework: (Cont’d)

H0 comes down to a statement about the invariant distribution of the
dW = (`X + `Y + 1)-dimensional vector Wt =

(
X′

t , Y′
t , Zt)

′ where Zt = Yt+1.

Simplified notation: W = (X′, Y′, Z )′.

Under H0, the conditional distribution of Z given (X′, Y′)′ = (x′, y′)′ is the
same as that of Z given Y = y. Then H0 can be restated in terms of ratios of
joint distributions. Specifically, the joint pdf fX ,Y ,Z (x, y, z) and its marginals
must satisfy the relationship

fX ,Y ,Z (x, y, z)

fX ,Y (x, y)
=

fY ,Z (y, z)

fY (y)
,

or equivalently

fX ,Y ,Z (x, y, z)

fY (y)
=

fX ,Y (x, y)

fY (y)

fY ,Z (y, z)

fY (y)
,

for each vector (x′, y′, z)′ in the support of W.
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A bivariate nL causality test statistic is given by:

QT ,W (h) =
ĈX ,Y ,Z (h)

ĈY (h)
−

ĈX ,Y (h)

ĈY (h)

ĈY ,Z (h)

ĈY (h)
,

where

ĈW (h) =

(
T
2

)−1 ∑

1≤i≤j≤T

I(‖Wi − Wj‖ < h).

Since the correlation integral is a U-statistic it can be shown (Hiemstra and
Jones (HJ), J. Finance, 1994) that, under H0,

√
T QT ,W (h)

D
−→ N

(
0, σ2

W (h)
)
, as T → ∞.

Disadvantage: For a given nominal size, the actual rejection rate of QT ,W may
tend to one as T increases, i.e. the HJ test statistic over-rejects H0; Diks and
Panchenko (Studies in Nonlinear Dynamics & Econometrics, 2005).

2 – 4



Vector Parametric Models and Methods Vector Semi- and Nonparametric Methods

A modified bivariate causality test statistic:

Diks and Panchenko (J. Econ. Dynamics & Control, 2006) rewrite the null
hypothesis as

H0 : E
[( fX ,Y ,Z (X, Y, Z )

fY (Y)
−

fX ,Y (X, Y)

fY (Y)

fY ,Z (Y, Z )

fY (Y)

)
g(X, Y, Z )

]
= 0.

Here g(x, y, z) is a positive weight function which for convenience is set at
g(x, y, z) = f 2

Y (y), giving more stable results than alternative weight functions.

The corresponding dependence functional is given by

Δ ≡ E[fX ,Y ,Z (X, Y, Z )fY (Y) − fX ,Y (X, Y)fY ,Z (Y, Z )] = 0.

Under H0 the term within square brackets vanishes, so that the expectation is
zero.
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Test statistic:

Let f̂W (Wi) denote a local density estimator of a dW -variate random vector W
at Wi defined by

f̂W (Wi) =
(2h)−dW

T − 1

∑

j,j 6=i

I(W )
ij ,

where I(W )
ij = I(‖Wi − Wj‖ < h). Given this estimator, the proposed

nonparametric Granger causality (bivariate) test statistic is given by

Q∗
T ,W (h) =

T − 1
T (T − 2)

∑

i

f̂ 2
Y (Yi)

{
f̂X ,Z |Y (Xi , Zi |Yi) − f̂X |Y (Xi |Yi )̂fZ |Y (Zi |Yi)

}
.

Assume that h = cT−β (c > 0, β > 0), and setting dX = dY = dZ = 1, it can
be shown that, as T → ∞, we have

√
T

Q∗
T ,W (h) − Δ

σW (h)
D
−→ N (0, 1), iff

1
2ν

< β <
1

dX + dY + dZ
,

where ν is the order of the density estimation kernel and where

σ2
W (h) = 9 Var

(
r0(Wi)

)
, with r0(w) = lim

h→0
E
(
K (w1, W2, W3)

)
,

and Wi (i = 1, 2, 3) are i.i.d. random variables according to W.
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Example:

Climate variables Y1,t (carbon isotope), Y2,t (oxygen isotope), and Y3,t

(insolation). The absence of an arrow from node i to node j means that a Yi,t

is a non-Granger cause of Yj,t (H0 is not rejected).

Note: Very strong nL causal relationship from Y2,t → Y1,t and Y2,t ↔ Y1,t .
Y3,t is an important driving force for global warming either directly or,
mediated by Y2,t , indirectly.

Figure: Nonparametric causality testing: (a) QT ,W (h) (Hiemstra-Jones (HJ)test statistic) and (b)
Q∗

T ,W (h) (modified HJ test statistic). The single arrow symbol marks ap-value in the range 1%–5%, and
the double arrow symbol marks ap-value< 1%; h = 1.5, T = 216.
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Some applications:

• Bekiros and Diks (J. Macroeconomics, 2008): L and nL causal linkages
among 6 currencies.

• De Gooijer and Sivarajasingham (Physica A, 2008): Apply both
parametric and nonparametric Granger causality tests to determine
linkages between international stock markets.

• Francis et al. (J. Emp. Finance, 2010): Use both L and nL causality tests
to examine the relationship between the returns on large and small firms.

Evaluation:
Diks, C. and Fang, H. (2017). Transfer entropy for nonparametric Granger
causality detection: An evaluation of different resampling methods. Entropy,
19, 372. http://doi.org/10.3390/e19070372 .

A modified DP test statistic:
Fang, H. (2018). Multivariate Density Forecast Evaluation and Nonparametric
Granger Causality Testing. Ph.D. thesis, University of Amsterdam.
http://dare.uva.nl/search?identifier=
cc5207dd-b36c-4494-aa68-f3c0783942c0 .

2 – 8

http://dare.uva.nl/search?identifier=cc5207dd-b36c-4494-aa68-f3c0783942c0
http://dare.uva.nl/search?identifier=cc5207dd-b36c-4494-aa68-f3c0783942c0
http://doi.org/10.3390/e19070372


Vector Parametric Models and Methods Vector Semi- and Nonparametric Methods

A multivariate causality test statistic:
(Diks and Wolski, J. Appl. Econometrics, 2016).

Consider the strictly stationary multivariate time series process {(Xt , Yt , Qt)},
where {Xt} and {Yt} are univariate time series processes, and {Qt} is a
univariate or multivariate time series process. Then {Xt} is a Granger cause
of {Yt} if, for some H ≥ 1,

(Yt+1, . . . , Yt+H)′|(FX ,t ,FY ,t ,FQ,t)
D
6∼ (Yt+1, . . . , Yt+H)′|FY ,tFQ,t ,

where FX ,t ,FY ,t , and FQ,t are the corresponding information sets.

The assumption that both {Xt , } and {Yt} are scalar-valued time series
processes makes it possible to determine whether the causal relationship
between these 2 processes is direct or mediated by other variables.

The multivariate analogue of the null hypothesis is given by

H0 : Yt+1|(Xt , Yt , Qt) ∼ Yt+1|(Yt , Qt),

where Qt = (Qt , . . . , Qt−`Q+1)
′.
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A multivariate causality test statistic: (Cont’d)

Assume `X = `Y = `Q = 1. Thus, the dimensionality of Wt = (X′
t , Y′

t , Q′
t , Zt)

′,
where Zt = Yt+1, is a number dW ≥ 4. The asymptotic normality condition
becomes 1/(2ν) < β < 1/dW . So, for a standard ν = 2 kernel and dW ≥ 4,
there is no feasible β-region which would endow the test statistic Q∗

T ,W (h)
with asymptotic normality.

“Solution”: Improve the precision of the density estimator by reducing the
kernel estimator bias using data-sharpening (Hall and Minotte, JRSS-B,
2002). The sharpened (s) form of the plug-in density estimator is given by

f̂ s
W (Wi) =

h−dW

T − 1

∑

j,j 6=i

K
(Wi − ψp(Wj)

h

)
,

where ψp(∙) is a so-called sharpening function, with p the order of bias
reduction.
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A multivariate causality test statistic: (Cont’d)

The sharpened form of the causality test statistic is given by

Qs
T ,W (h) =

T − 1
T (T − 2)

∑

i

(̂
f s
X ,YZ (Xi , Yi , Zi )̂f

s
Y (Yi) − f̂ s

X ,Y (Xi , Yi )̂f
s
Y ,Z (Yi , Zi)

)
.

Under certain mixing conditions it can be shown that, as T → ∞,

√
T

Qs
T ,W (h) − Δ

ST

D
−→ N (0, 1), iff

1
2p

< β <
1

dW
,

where S2
T is a consistent estimator of the asymptotic variance of√

T
(
Qs

T ,W (h) − Δ
)
.
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2.3 Some Software References

• PolyMARS (or PMARS) is available in the R-polspline package. The
R-fRegression package has an option for computing a PMARS model as
a part of the function regFit.

• The function ppr in the R-stat package, and the function ppreg in S-Plus
both allow for PPR model fitting with multivariate responses.

• R codes for performing the HJ (hj.r) and the DP (dp.r) nonparametric test
statistics are available at the website http://www.jandegooijer.nl .
C source code, and an executable file, for computing both test statistics
can be downloaded from
http://www1.fee.uva.nl/cendef/upload/6/hjt2.zip .

Alternatively, a windows version and C source code are available at
http://research.economics.unsw.edu.au/vpanchenko/#software .
C source code for the multivariate nonlinear nonparametric Granger
causality test is available at
http://qed.econ.queensu.ca/jae/datasets/diks001/ .

2 – 12

http://qed.econ.queensu.ca/jae/datasets/diks001/
http://research.economics.unsw.edu.au/vpanchenko/#nameddest=software
http://www1.fee.uva.nl/cendef/upload/6/hjt2.zip
http://www.jandegooijer.nl

	Part1
	Some Basic Concepts  1 … 1
	Introduction  1 … 1
	Linearity and Gaussianity: Preliminaries, Reversibility   1 … 2
	Initial Data Analysis  1 … 8
	Some Book References  1 … 9

	Some Univariate NL Models  2 … 1
	Volterra Series Expansion  2 … 1
	State-dependent Models: BL, ExpARMA, RCAR, NLMA  2 … 3
	Threshold Models: SETARMA, Multiple thresholds, asARMA, NeSETARMA  2 … 10
	Smooth Transition (ST) Models: LSTAR, ESTAR  2 … 15
	Nonlinear non-Gaussian Models  2 … 17
	Artificial Neural Network Models  2 … 18
	Markov Switching Models  2 … 21
	Some Software References  2 … 23

	Probabilistic Properties  3 … 1
	Strict Stationarity  3 … 1
	Invertibility  3 … 7
	Some References  3 … 11


	Part2
	Frequency-Domain Tests  1 … 1
	Introduction  1 … 1
	Subba Rao…Gabr Test Statistics  1 … 12
	Hinich's Tests Statistics  1 … 14
	Related Test Statistics  1 … 21
	Which Test to Use?  1 … 23
	Some Software References  1 … 24
	Some References  1 … 25

	Time-Domain Tests  2 … 1
	Lagrange Multiplier (LM) Test Statistics: BL, ExpAR, STAR  2 … 1
	Likelihood Ratio (LR) Test Statistics: Nested SETAR  2 … 4
	Wald (W) Test Statistic: asMA  2 … 6
	Tests Based on 2nd-order Volterra Expansion  2 … 7
	Arranged Autoregression Tests  2 … 9
	Some Software References  2 … 14
	Some References  2 … 15

	Model Estimation, Selection, and Checking  3 … 1
	Model Estimation  3 … 1
	Model Selection  3 … 8
	Diagnostic Checking  3 … 9
	Some Software References  3 … 13
	Some References  3 … 14


	Part3
	Tests for Serial Independence  1 … 1
	Null hypothesis  1 … 1
	Distance Measures and Dependence Functionals  1 … 3
	Kernel-based Tests  1 … 13
	High-Dimensional Tests  1 … 16
	Distribution-based Test  1 … 21
	Application  1 … 21
	Some Software References  1 … 22

	Time-Reversibility  2 … 1
	Time-Domain Tests  2 … 1
	Frequency-Domain Tests  2 … 4
	Other Nonparametric Tests  2 … 6
	Some Software References  2 … 8

	Forecasting  3 … 1
	Exact LS Methods  3 … 1
	Approximate Methods  3 … 6
	Forecast Intervals/Regions  3 … 15
	Forecast Evaluation  3 … 16
	Forecast Combination  3 … 19
	Some Software References  3 … 21


	Part_extra
	Vector Parametric Models and Methods  1 … 1
	General Multivariate  1 … 1
	BL model  1 … 2
	General threshold ARMA (TARMA) model  1 … 5
	Vector STAR  1 … 6
	Other Vector nL Models  1 … 8
	Model Selection, Diagnostic Checking, and Forecasting  1 … 9
	Some Software References  1 … 11

	Vector Semi- and Nonparametric Methods  2 … 1
	Some Methods  2 … 1
	Nonparametric Causality Testing  2 … 2
	Some Software References  2 … 12



